
1

BGL: GPU-Efficient GNN Training by
Optimizing Graph Data I/O and Preprocessing

Tianfeng Liu*, Yangrui Chen*, Dan Li, Chuan Wu, Yibo Zhu, Jun He

Yanghua Peng, Hongzheng Chen, Hongzhi Chen, Chuanxiong Guo

tianfeng.leo@gmail.com

April 17, 2023

GNN: Deep Learning on Graphs

Input Graph

Hidden Layer Hidden Layer

ReLU ReLU ···

Node Prediction
Link Prediction

Graph Generation

GNN Training on Large-scale Graphs

3

Sampling-based GNN Training
• Full-batch training needs large memory to load the entire graphs, which

cannot scale to very large graphs, such as billion-node graphs

• Existing training systems adopt the sampling-based training method,

which samples a subgraph from original graphs and constructs a mini-

batch as the input of GNN model

ℎ!
(#)

ℎ%
(!)

ℎ&
(')

Architecture of Sampling-based Training

4

Components and stages of sampling-based training
Graph Store

Graph Structure Features
Worker

GNN

Mini-batch
Sampler

Subgraph

① Subgraph sampling

② Feature

Retrieving

③ Model Computation

We refer to the first two stages as Data I/O and Preprocessing

Data I/O and Preprocessing Bottleneck

5

Existing systems suffer from preprocessing bottleneck
• 87% and 82% of the training time were spent in data I/O and preprocessing

by Euler and DGL, respectively

• The maximum GPU utilization of DGL and Euler is 15% and 5%, respectively

Data I/O and Preprocessing Bottleneck

6

A huge gap between preprocessing and model computation

60

400

M
in

i-
ba

tc
he

s
pe

r
se

co
nd

Preprocessing Speed
PCIe 3.0 x16
100Gbps NIC

Model Computation Speed
P3dn.24xlarge
8 V100 GPU

Large data size of one mini-batch
Each mini-batch has 200MB data

Limited by network and PCIe bandwidth

Shallow GNN model and low FLOPS
Three layers with 256 hidden neurons
20ms for V100 to compute a mini-batch

Gap

Challenge #1 in Removing Bottleneck

7

Ineffective caching for node feature retrieving
• Node feature retrieving renders the biggest bottleneck

• 97% of data in mini-batches are node features

• PaGraph[SoCC 20] adopts a static cache policy to reduce the traffic volume

• Cache node features of high degree nodes

Tradeoff between static cache policy and dynamic cache policy
• Static cache policy has small cache overheads, but low cache hit ratios

• Dynamic cache policy has high hit ratios, but large cache overheads

Subgraph Sampling

Graph Store
Graph Structure Features

Worker

Sampler

Model
Computation

GNN

Feature
Retrieving

1

2

3

Subgraph

Mini-batch

Can we achieve a good trade-off between hit ratios and overheads?

Challenge #2 in Removing Bottleneck

8

Existing partition algorithm is not scalable and friendly for GNN
• Subgraph sampling renders another major bottleneck

Goal of ideal graph partition algorithm
• Preserve multi-hop connectivity

• Balance training nodes

• Scale to billion-node graphs

We need an algorithm which is scalable and friendly to subgraph sampling

Challenge #3 in Removing Bottleneck

9

Training pipeline of GNN is much more complex than DNN
• Different stages consume different CPU/PCIe/Network resources

Different data preprocessing stages contend for resources
• If all stages freely compete for resources, contention leads to poor performance

• Existing training systems largely ignore this problem

2. Construct
Subgraphs

3. Send
Subgraphs

3. Receive
Subgraphs

4. Process
Subgraphs

5. Execute
Cache Logic

8. Compute
GNN Model

1. Process
Sampling
Requests

CPU GPU Network PCIe

6. Move
Subgraphs

to GPU

Graph
Store

Worker
Machine

7. Move
Features
to GPU

We need to alleviate resource contention and balance time of stages

Overview of BGL

10

Graph Partition Module

Distributed Graph
 Data Files

Worker Machine

Graph Store Server Graph Store Server
Graph Store

Sampler

Graph Store

Sampler

Worker

Remote
Features

Sampled
Subgraphs

Worker

Feature Cache Engine

GPU GPU

CPU

Worker Machine

Worker Worker

Feature Cache Engine

GPU GPU

CPU

Parameter
Synchronization

Cross-Partition
Communication

Graph Partition

SamplerSampler

NVLINK NVLINK

Feature cache engine with algorithm-system co-design for Challenge #1
• Proximity-aware ordering to improve temporal locality

• Multi-GPU cache supporting dynamic cache

New graph partition algorithm for Challenges #2
• Multi-level coarsening to reduce the size of graph

• New partitioning heuristic considering both multi-hop

connectivity and training workload balancing

Resource isolation for Challenges #3
• Formulate as an optimization problem

• Assign isolated resources to minimize the maximal time of

each stages

Feature Cache Engine

11

Which dynamic cache policy should use?
• We implement three popular polices, FIFO, LRU, LFU, whose operations are 𝑂(1)

GPU computation time per batch

LRU and LFU have intolerable cache overhead, much higher than computation time

FIFO meets the
throughput requirement,
but cache hit ratio is low

We propose proximity-
aware ordering (PO) to
improve FIFO hit ratios

Feature Cache Engine

12

Proximity-aware ordering
• Change the order of selecting training nodes

• Select training nodes in traversal-based ordering, such as BFS order

• Insight

• Each node appears more than once among different mini-batches

• Reuse data by caching features in nearby batches (a.k.a., temporal locality)

• BFS improves the chance of appearance of the same nodes in nearby batches

1
7

4

2 3

5

9

10

11

16

13

8

15

6
14

17
18

19

20

Other NodesTraining Nodes

(b) Cache using Random
Ordering { }

17 9 3 10

17 9 3 10 7 18 8 13 5 2

7 18 8 13 5 2 11 4 10 16

5 2 11 4 10 16 1 3 6 9

4 10 16 1 3 6 9 8 17 2

16 1 3 6 9 8 17 2 15 14

17 9 3 10

17 9 3 10 1 8 2

17 9 3 10 1 8 2 4 5 6

3 10 1 8 2 4 5 6 11 16

8 2 4 5 6 11 16 7 18 13

4 5 6 11 16 7 18 13 15 14

17

7

11

1

9

15

17

7

11

1

9

15

1-hop Subgraph Cache Miss Cache Hit

(a) A Sample Graph with
6 Training Nodes

(c) Cache using Proximity-aware
Ordering { }17 7 11 1 9 15 17 71119 15

PO improves FIFO
cache hits from 8 to 14

Feature Cache Engine

13

Trade-off between temporal locality and model convergence
• Traversal-based ordering improves temporal locality but harms convergence

• Random ordering guarantees convergence but has poor temporal locality

PO balances the above trade-off based on SGD property
• Insight：SGD is robust enough, hence, slightly relaxing IID assumption does not

influence convergence rate

• Introduce two types of randomness

• Multiple sequences with random BFS roots

• Circularly shifting each BFS sequences

8 9 0 1 2 43 5 6 7

4 5 6 7 8 09 1 2 3

6 7 8 9 0 21 3 4 5

2 3 4 5 6 87 9 0 1

Batch 0 Batch 1 Batch 2 Batch 3 Batch 4

SEQ 0

SEQ 1

SEQ 2

SEQ 3

0 1 2 3 4 65 7 8 9SEQ 4

CPU

GPU 0 GPU 1 GPU 2

CPU
Cache Buffer

CPU
Cache Map

GPU 0
Cache Map

NVLink

GPU
Cache
Buffer

PCIe Network

Worker
Machine

Remote
Graph Store

Dispatching
Thread 0

Dispatching
Thread 1

Dispatching
Thread 2

Processing
Thread 0

Processing
Thread 1

Processing
Thread 2

GPU
Cache
Buffer

GPU
Cache
Buffer

Cache Query
Queue

②
③

④
⑤

Remote
Graph Store

⑥
Subgraphs
of Worker 0

Subgraphs
of Worker 1

Subgraphs
of Worker 2

①

GPU 1
Cache Map

GPU 2
Cache Map

Feature Cache Engine

14

Maximizing cache size to increase cache hit ratios
• Insight: GNN model is small and shallow, hence, large memory is unused

• Two-level cache jointly using large and free CPU and multiple GPU memory

Multi-GPU Cache
• Use NVLink for high-bandwidth and low latency inter-

GPU communication and alleviate traffic in PCIe links

• Cache workflow which guarantees consistency of

mutable cache buffers on dynamic cache policy

Graph Partition Module

15

Partition Workflow
• Multi-level Coarsening

• Use multi-source BFS to preserve connectivity

• Merge small blocks to reduce block numbers

• Block Collection and Assignment

• Apply a greedy assignment heuristics to each block

• Uncoarsening

• Map blocks to nodes of original graphs

This algorithm has low time complexity and is friendly to billion-node graphs

Block
Generator 0

Block
Generator 1

Block
Assigner

Multi-level
Coarsening

Blocks Collection
& Assignment Uncoarsening

Graph Data in HDFS

1

2

3

Graph Partition Module

16

Assignment Heuristic
• We propose a new heuristic for assigning blocks by considering GNN requirements

Multi-hop Block Neighbor
Assign the current block to a
partition with the maximum

number of neighbors

Training Node Penalty
Enforce each partition has

the same number of
training nodes.

Node Penalty
Balance the number of
nodes among different

partitions

GNN Training Pipeline

17

Asynchronous Pipeline Stages
• We divide GNN training into 8 asynchronous pipeline stages

2. Construct
Subgraphs

3. Send
Subgraphs

3. Receive
Subgraphs

4. Process
Subgraphs

5. Execute
Cache Logic

8. Compute
GNN Model

1. Process
Sampling
Requests

CPU GPU Network PCIe

6. Move
Subgraphs

to GPU

Graph
Store

Worker
Machine

7. Move
Features
to GPU

Compete for CPUs
on graph store servers

Compete for CPUs
on worker machines

Compete for PCIe bandwidth
on worker machines

If all processes freely compete for resources,

resource contention leads to poor performance!

GNN Training Pipeline

18

Profiling-based Resource Allocation
• Profile the execution time of each stage and assign isolated resources to them

Optimization Goal: minimize the maximal completion time of all stages

Constraints: the resource capacity of CPU cores and PCIe bandwidth, 𝐶!" , 𝐶#$, 𝐵%&'(

Assumption: linear acceleration for all stages except caching.
For caching stage, use a fitting function 𝑓 𝑐) = ⁄𝑎 𝑐) + 𝑑

Evaluation of BGL

19

Experimental Environment
• 4 GPU severs: 8 V100 GPU (with NVLink v2), 96 CPU cores, 356GB DRAM

• 32 CPU servers: 96 CPU cores, 480GB DRAM, connected with 100Gbps NIC

Systems
• Compared BGL against Euler, DGL, PyG, PaGraph

Graphs
• Three graphs from million to billion nodes

GNN Model
• GCN, GraphSAGE, GAT, three layer (128 hidden)

• Batch size 1000, fanout {5,10,15}

Overall Performance

20

BGL outperforms all other systems, and the geometric mean of
speedups over PaGraph, PyG, DGL and Euler is 1.91x, 3.02x, 7.04x

and 20.68x, respectively.

Improvements of Feature Cache Engine

21

BGL achieves highest cache hit ratios
• PO+FIFO improves 20% cache hit ratios on Ogbn-papers

compared with PaGraph static cache policy

BGL reduces the feature retrieving time
• The reduction is 98%, 88% and 57% for Euler, DGL and

PaGraph respectively

Improvements of Graph Partition Algorithm

22

BGL reduces sampling time and partitioning time
• BGL reduces 10%-20% sampling time during GNN training

• BGL reduces the cross-partition communication of sampling from 25% to 44%

• The execution time of BGL is faster than well-optimized GMiner, with 20%

reduction

Improvements of Resource Isolation

23

BGL achieves best performance after resource isolation
• The speedup is 2.7x, compared to the naïve resource allocation strategy

• BGL without resource isolation is even worse than PaGraph in Ogbn-products

Scalability to Multiple Worker Machines

24

BGL has good scalability when scaling to multiple machines
• BGL achieves 76% of linear scalability

• Feature cache engine cannot share GPU memory across machines due to

NVLink v2. This fact limits the BGL scalability

Impact of Hyper Parameters

25

BGL is robust to different hyper parameters
• The speedup is 10.44x and 7.50x for Euler and DGL, respectively

Model Accuracy

26

BGL achieves the same accuracy as the original DGL but faster

Conclusion

27

• We find the performance of existing GNN training systems

are limited by the data I/O and preprocessing bottleneck

• We propose BGL to alleviate preprocessing bottleneck
• Feature cache engine to reduce the traffic of feature retrieving

• Novel graph partition algorithm to reduce the traffic of subgraph sampling

• Profiling-based resource allocation to reduce resource contention

• BGL outperforms four state-of-the-art systems
• The improvements ranges from 1.91x to 20.68x

• We will open source BGL on github
• https://github.com/leodestiny/BGL_NSDI2023

https://github.com/leodestiny/BGL_NSDI2023

Q&A

28

Thanks everyone for listening!

