= o kB F IR

A% Eﬁ
&5/, THE UNIVERSITY OF HONG KONG I L Byte Dance

-} Cornell University

Q% g . . .
g Tsinghua University

BGL: GPU-Efficient GNN Training by
Optimizing Graph Data I/O and Preprocessing

Tianfeng Liu*, Yangrui Chen*, Dan Li, Chuan Wu, Yibo Zhu, Jun He
Yanghua Peng, Hongzheng Chen, Hongzhi Chen, Chuanxiong Guo

tianfeng.leo@gmail.com

April 17, 2023

GNN: Deep Learning on Graphs

(o)
@

Input Graph

:
goﬁ

»| RelU

(o)
@

fg
_ -y

Hidden Layer

:
gg(yo

»| RelU

&g
- ey

Hidden Layer

e e ——
Y

Rd

Node Prediction
Link Prediction
Graph Generation

GNN Training on Large-scale Graphs

Sampling-based GNN Training

« Full-batch training needs large memory to load the entire graphs, which
cannot scale to very large graphs, such as billion-node graphs

« Existing training systems adopt the sampling-based training method,
which samples a subgraph from original graphs and constructs a mini-
batch as the input of GNN model

O/O h?

o© Ay

Architecture of Sampling-based Training

Components and stages of sampling-based training

Graph Store

KEraph Structure Features \

o

_ o©

@ Feature

@ Subgraph sampling

Retrieving

Worker

/

~

% -

|® Model

Sampler

[E— [E—
g
i [
[E—
[E—

-

Mini-batch /

Computation

We refer to the first two stages as Data I/O and Preprocessing

Data I/O and Preprocessing Bottleneck

Existing systems suffer from preprocessing bottleneck

« 87% and 82% of the training time were spent in data I/O and preprocessing
by Euler and DGL, respectively

« The maximum GPU utilization of DGL and Euler is 15% and 5%, respectively

= DGL - Euler
Euler1
9
C
Il {
0 20 40 60

Jury
w

=
o

A Subgraph Sampling

GPU Utilization (%)

DGL

wv

KNI Feature Retrieving
@A Model Computation

1
100 200 300 400 0 80 100 120
Training Time (ms) Time (s) 5

Data I/O and Preprocessing Bottleneck

A huge gap between preprocessing and model computation

A

400

Shallow GNN model and low FLOPS
Three layers with 256 hidden neurons
20ms for V100 to compute a mini-batch

Large data size of one mini-batch
Each mini-batch has 200MB data
Limited by network and PCle bandwidth

60

Mini-batches per second

Preprocessing Speed Model Computation Speed
PCle 3.0 x16 P3dn.24xlarge
100Gbps NIC 8 V100 GPU

Challenge #1 in Removing Bottleneck

Graph Store

Ineffective caching for node feature retrieving 2@(

« Node feature retrieving renders the biggest bottleneck

97% of data in mini-batches are node features [@
« PaGraph[SoCC 20] adopts a static cache policy to reduce the traffic volume

« Cache node features of high degree nodes

Tradeoff between static cache policy and dynamic cache policy

« Static cache policy has small cache overheads, but low cache hit ratios

« Dynamic cache policy has high hit ratios, but large cache overheads

Can we achieve a good trade-off between hit ratios and overheads?

7

Challenge #2 in Removing Bottleneck

Existing partition algorithm is not scalable and friendly for GNN

Graph Partition Module |

« Subgraph sampling renders another major bottleneck

\ Graph Partition i
Graph Store Server) Cross-Partition 4 Graph Store Server
Graph Store < Graph Store
L4 e 0 ° f—) Sampler <€ Sampler ﬂ
Goal of ideal graph partition algorithm I_,) G |
* P re S e rve m u |ti N h o p C o n n e Ct i Vity Partition Scalability to Balanced Multi-hop
Algorithms Giant Graphs | Training Nodes | Connectivity
 Balance training nodes Random230| 4 | /| &
METIS [32] & X ’ v ‘ v
° 11 _ ParMETIS [33]
Scale to billion-node graphs T R A
PaGraph [38] | X | v | v

We need an algorithm which is scalable and friendly to subgraph sampling

8

Challenge #3 in Removing Bottleneck

Training pipeline of GNN is much more complex than DNN

« Different stages consume different CPU/PCle/Network resources

‘ CPUC) GPU~ Network /7 PCle ‘

Graph Worker
Store Machine
R

6. Move

ocess
—>» Subgraphs
s AN —
8. Compute,

GNN Mode/

1. Process
3 2. Construct
Sampling —>» Subgraphs
Requests

3. Send

) 3. Receive
Subgraphs Subgraphs’

Different data preprocessing stages contend for resources

« If all stages freely compete for resources, contention leads to poor performance

« Existing training systems largely ignore this problem

We need to alleviate resource contention and balance time of stages
9

Overview of BGL

Feature cache engine with algorithm-system co-design for Challenge #1

« Proximity-aware ordering to improve temporal locality

« Multi-GPU cache supporting dynamic cache @ @Di“ﬁ,’;ﬂfﬁ@fph@ @
New graph partition algorithm for Challenges #2 Graph Partition Module |

Graph Partition

« Multi-level coarsening to reduce the size of graph Sragh Sore Sarve Yot Graph staro Sorver
« New partitioning heuristic considering both multi-hop &fammer < s,amp'eri]
.. .. . _ Sampler j—‘ ‘—)(Sampler
connectivity and training workload balancing amot ! JP |m
Resource isolation for Challenges #3 s ezl

GPU ! GPU
IVLINK,| [)
ronzathy || WorkerJ Worker

Worker Machine

« Formulate as an optimization problem

« Assign isolated resources to minimize the maximal time of

each stages

10

Feature Cache Engine

Which dynamic cache policy should use?
« We implement three popular polices, FIFO, LRU, LFU, whose operations are 0(1)

LRU and LFU have intolerable cache overhead, much higher than computation time
A

100

B Cache Hit Ratio
XA Cad

80

60

40

(_Zache Hit Ratio (%)
Cache Overhead (ms)

FIFO meets the
throughput requirement, ¢
but cache hit ratio is low N T

We propose proximity-
aware ordering (PO) to
pOLEIED’ improve FIFO hit ratios

ol R BT

|

GPU computation time per batch

11

Feature Cache Engine

Proximity-aware ordering

Change the order of selecting training nodes
« Select training nodes in traversal-based ordering, such as BFS order
Insight
« Each node appears more than once among different mini-batches
« Reuse data by caching features in nearby batches (a.k.a., temporal locality)

« BFS improves the chance of appearance of the same nodes in nearby batches

‘ O Training Nodes O Other Nodes {)1-hop Subgraph [Cache Miss Cache Hit ‘

@ [7[efafol TTTTT] @ [7lefsfol TTTTT]

@ [7[e]s]o[7]re[8[13]5]2] ®@ [7[s[a[ol1[el2[T 1] .

O COLEEENEGE ¢ CESIEEEE o) PO improves FIFO
@),
@

@ [s[2[i]4[iofe[[3]6 9] 10%4561116 .
é (EIECEEEE & EECE cache hits from 8 to 14

N @ [e[iTa e [o]eli7[2]i5[14] @ [+[5]e[n16[718[13]15]14]
(a) A Sample Graph with (b) Cache using Random (c) Cache using Proximity- aware 12

n
6 Training Nodes Ordering {@ @ é (0]O]ITE Ordering {@ @ O @ @ @

Feature Cache Engine

Trade-off between temporal locality and model convergence

Traversal-based ordering improves temporal locality but harms convergence

Random ordering guarantees convergence but has poor temporal locality

PO balances the above trade-off based on SGD property

Insight : SGD is robust enough, hence, slightly relaxing IID assumption does not

inﬂuence Convergence rate (Batch 0 Batch 1 Batch 2| Batch 3 Batch 4)
SEQO0 (8/9/0/1/2/3 4/5/6|7

Introduce two types of randomness >
SEQ1|4 5|6 7|8 9|01|2 3|
« Multiple sequences with random BFS roots SEQ2 617 819 011 2]3 4[5

seQ3 2345|6718l 9fl0]1

« Circularly shifting each BFS sequences

SEQ4 |0|1/2|3|4|l5|6|/7/819
|\ L J J J

J J

13

Feature Cache Engine

Maximizing cache size to increase cache hit ratios

« Insight: GNN model is small and shallow, hence, large memory is unused

« Two-level cache jointly using large and free CPU and multiple GPU memory

Remote Remote

NVLink PCle Network Graph Store Graph Store

Multi-GPU Cache se smm mE
@
» Use NVLink for high-bandwidth and low latency inter-| li@ oy
GPU communication and alleviate traffic in PCle links | M\% @
 Cache workflow which guarantees consistency of i i ¢®
mutable cache buffers on dynamic cache policy o % o

14

Graph Partition Module

Partition Workflow

« Multi-level Coarsening

Graph Data in HDFS

« Use multi-source BFS to preserve connectivity

| o |
« Merge small blocks to reduce block numbers Block Coarsening Block

Generator 0 RS Generator 1

L,
1 \ Ry N
VAR
ATy
P .
| O\é
N g
Uncoarsening

« Block Collection and Assignment

\

A}
@ B0
Blocks Collection
& Assignment

Block
Assigner

« Apply a greedy assignment heuristics to each block :

« Uncoarsening

« Map blocks to nodes of original graphs

This algorithm has low time complexity and is friendly to billion-node graphs

15

Graph Partition Module

Assignment Heuristic

« We propose a new heuristic for assigning blocks by considering GNN requirements

max{(Z|P(i)ﬂl"f(B)|) : (1 — |7;j(;)|> :

ick] i

4 | N

Multi-hop Block Neighbor Training Node Penalty Node Penalty
Assign the current block to a Enforce each partition has Balance the number of
partition with the maximum the same number of nodes among different

number of neighbors training nodes. partitions

16

GNN Training Pipeline

Asynchronous Pipeline Stages

« We divide GNN training into 8 asynchronous pipeline stages

CPUC) GPU Network /7 PCle ‘

/ Graph Worker
Store Machine 4. Process 6. Move
¥ sub h =D Subgraphs
grapns to GPU
1. Process 2 Construct 3. Send 4 Recei e B
Sampling —%; ZONStruct | . Sen . Receive 8. Compul
Requests Subgraphs Subgraphs Subgraphs P NN Mode
sEete P [Features
Cache Logic to GPU
xf \
Compete for CPUs Compete for CPUs

on graph store servers

on worker machines

Compete for PCle bandwidth
on worker machines

If all processes freely compete for resources,

resource contention leads to poor performance! v

GNN Training Pipeline

Profiling-based Resource Allocation
« Profile the execution time of each stage and assign isolated resources to them
Optimization Goal: minimize the maximal completion time of all stages

Assumption: linear acceleration for all stages except caching.
For caching stage, use a fitting function f(c,) = a/c, +d

LD, D

CI,CZ, ne,c37b1af(4

~—’

Dyt
i’ Tgpu }

s.t. c1+cp<Cgs, c3+ca<Cym, by +bp < Bpcie

$

Constraints: the resource capacity of CPU cores and PCle bandwidth, C;s, Cim, Bpcie

min max {

18

Evaluation of BGL

Experimental Environment
4 GPU severs: 8 V100 GPU (with NVLink v2), 96 CPU cores, 356GB DRAM

32 CPU servers: 96 CPU cores, 480GB DRAM, connected with 100Gbps NIC

Systems

Compared BGL against Euler, DGL, PyG, PaGraph

Graphs

Three graphs from million to billion nodes

GNN Model

GCN, GraphSAGE, GAT, three layer (128 hidden)
Batch size 1000, fanout {5,10,15}

Ogbn-
products

Ogbn-
papers

User-Item

Nodes

Edges

Feature Dimension
Classes

Training Set
Validation Set

Test Set

2.44M
123M
100
47
196K
393K
221IM

111M
1.61B
128
172
1.20M
125K
214K

1.2B
13.7B
96

2
200M
10M
10M

19

Overall Performance

o) o
& B8 culer B8 pyc Ml PaGraph Ell BGL 3 B8 euler B8 Py Ml PaGraph Ell BGL 3 B8 euler B8 Py PaGraph Il BGL o
= =~ = 2 N
@ o o 10 sz DGL —-N
28 585 o0 L o
3210 >a Sa]
33 = S L
o0 o0 S 2l
3 3 3
224 £210! 22
© © o
Fa [o
= = 3
2 2 2
= 1 4 "8 5107 1 2 4 8 = 2
of GPUs # of GPUs # of GPUs

BGL outperforms all other systems, and the geometric mean of
speedups over PaGraph, PyG, DGL and Euler is 1.91x, 3.02x, 7.04x
and 20.68x, respectively.

Figure 11: Training throughput of 3 GNN models on Ogbn-papers in log scale. Numbers above bars are speedups of BGL over other systems.

S 103 9 103 g 5
a B culer @ pGLIEN PaGraph Bl BGL m @ 8 culer @ pGLEN PaGraph Bl BGL a B8 culer PN 0oL BN PaGraph B BGL a
P]) o i
P ~ il -] P i
>4 © < >4 5o
Qe S e Qe o
55 10! o 53 10t 55
g2 o g® gz
£3 o = =
2 o g :
< -1 D' = =1 =
= 1 2 4 8 gl =
of GPU # of GPUs # of GPUs
(a) GraphSAGE (1.42x - 14.16x) (b) GCN (1.38x - 12.08x) (c) GAT (1.31x - 29.73%)

Figure 12: Training throughput of 3 GNN models on User-Item in log scale. Numbers above bars are speedups of BGL over other systems.

Improvements of Feature Cache Engine

BGL achieves highest cache hit ratios

PO+FIFO improves 20% cache hit ratios on Ogbn-papers

compared with PaGraph static cache policy

BGL reduces the feature retrieving time

The reduction is 98%, 88% and 57% for Euler, DGL and
PaGraph respectively

Cache Hit Ratio (%)

Retrieving time (ms)

60

P d
5:, —& - Static(PaGraph)
-e- FIFO

102,

Ju
o
-

2.5 5 10 20 40 80
Cache Size (%)

[& -@ L 9
—&— Euler —&— PaGraph
DGL —=— BGL

of GPUs

21

Improvements of Graph Partition Algorithm

BGL reduces sampling time and partitioning time
« BGL reduces 10%-20% sampling time during GNN training
« BGL reduces the cross-partition communication of sampling from 25% to 44%

« The execution time of BGL is faster than well-optimized GMiner, with 20%

reduction
1.0
’J | Ran.dom ¥ BGL S BB Random EEE BGL G 104 EEE Random I BGL
g 8001 B4 GMiner s c GMiner Q GMiner
;s S f_i 0.75 ‘w’
28 o0o 35 250
+J n ~)
() o €S 05
2400 5 g S
R s € 3 102
£ 200 25025 2
-
n =]
o

(S)gbn—products Ogbn-papers User-ltem Ogbn-products Ogbn-papers User-ltem Ogbn-products Ogbn-papers User-Item

22

Improvements of Resource Isolation

BGL achieves best performance after resource isolation

« The speedup is 2.7x, compared to the naive resource allocation strategy

« BGL without resource isolation is even worse than PaGraph in Ogbn-products

Jmm Euler = BGL w/o isolation
=1 DGL == BGL
== PaGraph

= =
o o
N w

=
o
s

Throughput
(thousand samples/sec)

0.
Ogbn-products Ogbn-papers

23

Scalability to Multiple Worker Machines

BGL has good scalability when scaling to multiple machines
« BGL achieves 76% of linear scalability

« Feature cache engine cannot share GPU memory across machines due to
NVLink v2. This fact limits the BGL scalability

%’3800_‘_ Euler DGL —— BGL
wn
7
o
53600
S5
8 5 400
Ec
3 200
c
=
0.4 —— —— —A
1(4) 2(8) 3(12) 4(16)

of worker machines (#GPUs) 24

Impact of Hyper Parameters

BGL is robust to different hyper parameters

The speedup is 10.44x and 7.50x for Euler and DGL, respectively

=
o
w

EEE Euler BX DGL @4 BGL

=
o
N

=
o
-

Throughput
(thousand samples/sec)

10

Ogbn-papers User-ltem

(a) BS 1000, 3 hops, FO {10,10,10}.

=
o
w

EEE Euler BX DGL @4 BGL

Throughput
(thousand samples/sec)

=

o

=
o
s

0l
Ogbn-papers User-ltem

(b) BS 500, 2 hops, FO {10,25}.

25

Model Accuracy

BGL achieves the same accuracy as the original DGL but faster

0.80

Test accuracy
°o o o
(=2} ~ ~
o o wv

o
o
=)

- DGL
- BGL

(a) GraphSAGE on Ogbn-products

0.5

Test accuracy
I o © o
—_ N w S

e
=)

500 1000 1500 2000 2500
Time (second)

e~

- DGL
~ BGL

0 2000 4000 6000 8000
Time (second)

(d) GAT on Ogbn-papers

0.80

e
<
w

e
~
=)

o
o
=3

Test accuracy
=}
(=2
w

= DGL
— BGL

0 1000 2000 3000 4000 5000

Time (second)

(b) GAT on Ogbn-products

0.9

o
©

Test accuracy
o
~

0.6

0,50

-

— DGL
~—— BGL

200 400 600 800
Time (hour)

(e) GraphSAGE on User-Item

0.5

Test accuracy
o o o
N w &

it
-

- DGL
~ BGL

.0
00

(c) GraphSAGE on Ogbn-papers

1000 2000 3000 4000 5000
Time (second)

0.9

Test accuracy
o o
~ -]

o
o

-

—— DGL

- BGL

o
n

200 400 600 800
Time (hour)

(f) GAT on User-Item

26

Conclusion

« We find the performance of existing GNN training systems
are limited by the data I/O and preprocessing bottleneck

« We propose BGL to alleviate preprocessing bottleneck
« Feature cache engine to reduce the traffic of feature retrieving
« Novel graph partition algorithm to reduce the traffic of subgraph sampling
« Profiling-based resource allocation to reduce resource contention

- BGL outperforms four state-of-the-art systems

« The improvements ranges from 1.91x to 20.68x

« We will open source BGL on github
+ https://github.com/leodestiny/BGL_NSDI2023 :

https://github.com/leodestiny/BGL_NSDI2023

Thanks everyone for listening!

Q&A

