

Towards High Throughput and High Accuracy RFID Localization for Logistics Network

B_© Liang 1, 2

Purui Wang ³, Renjie Zhao ⁴, Heyu Guo ¹, Pengyu Zhang ², Junchen Guo ², Shunming Zhu ^{2, 5}, Hongqiang Harry Liu ², Xinyu Zhang ⁴, Chenren Xu ^{1,6}

¹ Peking University ² Alibaba Group ³ Massachusetts Institute of Technology ⁴ University of California San Diego ⁵ Tsinghua University ⁶ Key Laboratory of High Confidence Software Technologies, Ministry of Education (PKU)

Booming ToConsumer Logistics

—Delivery time/Day —Package volume/100 Millions Alibaba Group 阿里巴奥河

QR-code Suffers from Occlusion

RFID → **High Throughput**

Cross Reading Problem → **Low Reliability**

Localization Kills Cross Reading

Do we already have the perfect tagging system?

[1] Luo, Zhihong, et al. 3D backscatter localization for fine-grained robotics. NSDI. 2019.

Challenges

Our Approach

Localization Based on Out-of-band

[2] Ma, Yunfei, Nicholas Selby, and Fadel Adib. Minding the billions: Ultra-wideband localization for deployed rfid tags. MobiCom'17.

Only Use ISM-band Reader

Only Use Wideband Reader

Put ISM-band Reader and Wideband Reader Together

Successful scan and localization

Array + Sniffer for High-precision Localization

System Overview

Hardware Architecture Design

Architecture Candidate 1: Analog

Architecture Candidate 2: Digital

Architecture Design

	Analog	Digital	
Advantages	Low bandwidth requirement High frequency flexibility	Good scalability	

Architecture Design

	Analog
Advantages	Low bandwidth requirement
	High frequency flexibility

Digital

Good scalability

Hardware Platform: RF-Chord

Next Step: Handling Multipath

How Multipath Influences localization

Equivalence Relationship Bridged by Estimate Offset

Coarse-grained estimate + Multipath estimate = Receiving signal = Direct path + Multipath

Coarse-grained estimate - Direct path = Multipath - Multipath estimate = Estimate offset

Key Insight: Multipath Vectors are Dispersive

Algorithm Performance

Towards to Ideal Tagging System

Evaluation Setup

Throughput Evaluation

Reliability Evaluation

Deployment Performance

- RF-Chord meets the requirements of practical logistics networks
 - RF-Chord achieves the throughput of >100 tags/s, 10x improvement comparing to SOTA.
 - The cross-reading rate is 0.003%, 1000x improvement comparing to current RFID readers.

Take-away Messages

- Localization kills RFID cross-reading in logistics network.
- First high-reliability & high-throughput RFID localization system.
- Open source at https://soar.group/projects/rfid/rfchord.

Try our open source code and dataset!