
Hao Li1, Yihan Dang1, Guangda Sun1,2, Guyue Liu3,

Danfeng Shan1, Peng Zhang1

LemonNFV: Consolidating
Heterogeneous Network Functions at

Line Speed

Virtualized Network Function (VNF)

2

DPI Firewall NATIDS

ACL VPN
Load

Balancer

Icon by ColourCreatype on freeicons.io

Virtualized Network Function (VNF)

2

NATIDS Load
Balancer

Icon by ColourCreatype on freeicons.io

XX

Heterogeneous NFs Are Not Interoperable

3

Programming language Execution model State & Packet Abstraction

Different shapes signify different vendors, and thus interfaces, abstractions, etc.

XX

Heterogeneous NFs Are Not Interoperable

3

Click
[ToCS ‘00]

Snort
[LISA ‘99]

NetBricks
[OSDI ‘16]

Programming language Execution model State & Packet Abstraction

Different shapes signify different vendors, and thus interfaces, abstractions, etc.

XX

Heterogeneous NFs Are Not Interoperable

3

Click
[ToCS ‘00]

Snort
[LISA ‘99]

NetBricks
[OSDI ‘16]

Programming language Execution model State & Packet Abstraction

Different shapes signify different vendors, and thus interfaces, abstractions, etc.

Metron
[NSDI ‘18]

FastClick
[ANCS ‘15]

OpenNetVM
[HotMB ‘16]

NFVnice
[SIGCOMM ‘17]

Vigor
[SOSP ‘19]

mOS
[NSDI ‘17]

Stateless
[NSDI ‘17]

OpenNF
[SIGCOMM ‘14]

XX

Heterogeneous NFs Are Not Interoperable

3

Click
[ToCS ‘00]

Snort
[LISA ‘99]

NetBricks
[OSDI ‘16]

Programming language Execution model State & Packet Abstraction

Different shapes signify different vendors, and thus interfaces, abstractions, etc.

Metron
[NSDI ‘18]

FastClick
[ANCS ‘15]

OpenNetVM
[HotMB ‘16]

NFVnice
[SIGCOMM ‘17]

Vigor
[SOSP ‘19]

mOS
[NSDI ‘17]

Stateless
[NSDI ‘17]

OpenNF
[SIGCOMM ‘14]

How can heterogeneous NFs interoperate?

VM Hypervisor

Solution 1: Virtualization

4

VMVM VM

NF1 NF2 NF3

Host OS

NIC

pkt in pkt out

Dilemma: Context Switch vs Inter-Core Traffic

5

Dilemma: Context Switch vs Inter-Core Traffic

• Scheduling instances on the same core

• Related Work: Quadrant [SoCC ‘22]
• Reportedly 41.4% more latency[1]

5

packets

core 0
Cache

VM

NF1 NF2

VM

miss hit

Context Switch

[1] J. Wang, T. Lévai, Z. Li, M. A. M. Vieira, R. Govindan, and B. Raghavan. Quadrant: a cloud-deployable NF virtualization platform. In SoCC ’22

Dilemma: Context Switch vs Inter-Core Traffic

• Scheduling instances on the same core

• Related Work: Quadrant [SoCC ‘22]
• Reportedly 41.4% more latency[1]

5

packets

core 0
Cache

VM

NF1 NF2

VM

packets

core 0Cache

VM

NF1 NF2

VM

packets

core 1Cache

miss hit miss miss

Context Switch

• Pinning instances on dedicated cores

• Related Work: OpenNetVM [HotMB ‘16]
• Reportedly at least 121.2% more latency[2]

[1] J. Wang, T. Lévai, Z. Li, M. A. M. Vieira, R. Govindan, and B. Raghavan. Quadrant: a cloud-deployable NF virtualization platform. In SoCC ’22

[2] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu. NFP: Enabling Network Function Parallelism in NFV. In SIGCOMM ‘17

queue

packets

core 0Cache

VM

NF1 NF2

VM

packets

core 1Cache

miss miss

queue

Dilemma: Context Switch vs Inter-Core Traffic

• Scheduling instances on the same core

• Related Work: Quadrant [SoCC ‘22]
• Reportedly 41.4% more latency[1]

6

packets

core 0
Cache

VM

NF1 NF2

VM

miss hit

Context Switch

• Pinning instances on dedicated cores

• Related Work: OpenNetVM [HotMB ‘16]
• Reportedly at least 121.2% more latency[2]

[1] J. Wang, T. Lévai, Z. Li, M. A. M. Vieira, R. Govindan, and B. Raghavan. Quadrant: a cloud-deployable NF virtualization platform. In SoCC ’22

[2] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu. NFP: Enabling Network Function Parallelism in NFV. In SIGCOMM ‘17

Virtualization approaches are hard to reach line rate

7

Solution 2: Consolidation

7

Solution 2: Consolidation

core 0

NIC

process

NF1 NF2 NF3

Memory Access

Control Flow

• Fusing all NFs into one process

• No context switching or inter-core
traffic

packets

Cache

miss hit hit

7

Solution 2: Consolidation

core 0

NIC

process

NF1 NF2 NF3

Memory Access

Control Flow

• Fusing all NFs into one process

• No context switching or inter-core
traffic

• Requiring huge code modification on
heterogeneous NFs

packets

Cache

miss hit hit

Problem #1: Namespace Conflict

8

core 0

Shared Heap

NIC

process

Name Relation

Name Conflict

NF1 NF2 NF3

buf.store(pkt) buf.append(event)

Problem #1: Namespace Conflict

8

core 0

Shared Heap

NIC

process

Name Relation

Name Conflict

NF1 NF2 NF3

buf.store(pkt) buf.append(event)

Code Modification
check and replace every

occurrence of conflicting names

Problem #2: Private Control Flow

9

core 0

Shared Heap

NIC

process

Name Conflict

Infinite Loop

NF1 NF2 NF3

Control Flow

Name Relation

X X

Problem #2: Private Control Flow

9

core 0

Shared Heap

NIC

process

Name Conflict

Infinite Loop

NF1 NF2 NF3

Control Flow

Name Relation

X X

Code Modification
find and extract packet

processing logic, and rewrite it
without loop

Problem #3: Illegal Memory Access

10

core 0

Shared Heap

NIC

process

Illegal Access

NF1 NF2 NF3

Infinite Loop

Name Conflict

Memory Access

Control Flow

Name Relation

X X

Problem #3: Illegal Memory Access

10

core 0

Shared Heap

NIC

process

Illegal Access

NF1 NF2 NF3

Infinite Loop

Name Conflict

Memory Access

Control Flow

Name Relation

X X

Code Modification
find and instrument every

memory access with bound
checking

Problem #3: Illegal Memory Access

10

core 0

Shared Heap

NIC

process

Illegal Access

NF1 NF2 NF3

Infinite Loop

Name Conflict

Memory Access

Control Flow

Name Relation

X X

Code Modification
find and instrument every

memory access with bound
checking

Direct Consolidation Forces Huge Code Modification

Takeaway on Two Approaches

11

Consolidation

Virtualization

Heterogeneous

Homogeneous

VM VM VM

Func.
Call

Too Much
Performance Penalty

Too Much
Code Modification

Func.
Call

Our Insight

12

Consolidation

Virtualization

Heterogeneous

Homogeneous

VM VM VM

Our Approach
Fast and

Minimum Effort

Too Much
Performance Penalty

Too Much
Code Modification

Func.
Call

Func.
Call

Our Insight

12

Consolidation

Virtualization

Heterogeneous

Homogeneous

VM VM VM

Our Approach LEMON
Fast and

Minimum Effort

Too Much
Performance Penalty

Too Much
Code Modification

Func.
Call

Func.
Call

LemonNFV Overview

13

Trampolines

LEMON Scheduler
Isolation

Enforcement

LEMON Loader Migration ManagerControl Plane

Data Plane

Hypervisor Thread

Worker Thread

Process

Hardware NIC

LEMON1 LEMON2 LEMON3

LemonNFV Overview

13

Trampolines

LEMON Scheduler
Isolation

Enforcement

LEMON Loader Migration ManagerControl Plane

Data Plane

Hypervisor Thread

Worker Thread

Process

Hardware NIC

LEMON1 LEMON2 LEMON3

Load/Unload LEMON instances
Perform symbol interposition

LemonNFV Overview

13

Trampolines

LEMON Scheduler
Isolation

Enforcement

LEMON Loader Migration ManagerControl Plane

Data Plane

Hypervisor Thread

Worker Thread

Process

Hardware NIC

LEMON1 LEMON2 LEMON3

Load/Unload LEMON instances
Perform symbol interposition

Migrate flows among instances

LemonNFV Overview

13

Trampolines

LEMON Scheduler
Isolation

Enforcement

LEMON Loader Migration ManagerControl Plane

Data Plane

Hypervisor Thread

Worker Thread

Process

Hardware NIC

LEMON1 LEMON2 LEMON3

Load/Unload LEMON instances
Perform symbol interposition

Migrate flows among instancesPlease refer to our paper for more details!

The LEMON Abstraction
(LEast Modified network functiON)

14

The LEMON Abstraction
(LEast Modified network functiON)

14

Unmodified, recompiled NF
ELF

The LEMON Abstraction
(LEast Modified network functiON)

14

Unmodified, recompiled NF deps
ELF

Resolve Name Conflicts
Automatically & Correctly

The LEMON Abstraction
(LEast Modified network functiON)

14

Unmodified, recompiled NF

receive_pkt send_pkt

v_receive_pkt v_send_pkt

deps
ELF

Find and Schedule Infinite Loops

Resolve Name Conflicts
Automatically & Correctly

redirected

The LEMON Abstraction
(LEast Modified network functiON)

14

Unmodified, recompiled NF

malloc free

receive_pkt send_pkt

c_malloc c_free

v_receive_pkt v_send_pkt

deps

LEMON

ELF

Detect and Prevent Illegal Memory Accesses

Find and Schedule Infinite Loops

Resolve Name Conflicts
Automatically & Correctly

redirected

redirected

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it
• Using RX/TX as scheduling points

• Calling TX saves context and returns to
the trampolines

• The trampolines select the next LEMON
and restore its (post-TX) context

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it
• Using RX/TX as scheduling points

• Calling TX saves context and returns to
the trampolines

• The trampolines select the next LEMON
and restore its (post-TX) context

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it
• Using RX/TX as scheduling points

• Calling TX saves context and returns to
the trampolines

• The trampolines select the next LEMON
and restore its (post-TX) context

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Not Taken

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it
• Using RX/TX as scheduling points

• Calling TX saves context and returns to
the trampolines

• The trampolines select the next LEMON
and restore its (post-TX) context

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Not Taken Not Taken

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it
• Using RX/TX as scheduling points

• Calling TX saves context and returns to
the trampolines

• The trampolines select the next LEMON
and restore its (post-TX) context

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Not Taken Not Taken

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it
• Using RX/TX as scheduling points

• Calling TX saves context and returns to
the trampolines

• The trampolines select the next LEMON
and restore its (post-TX) context

Restore &
Continue

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Not Taken

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it
• Using RX/TX as scheduling points

• Calling TX saves context and returns to
the trampolines

• The trampolines select the next LEMON
and restore its (post-TX) context

Restore &
Continue

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Not Taken

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it
• Using RX/TX as scheduling points

• Calling TX saves context and returns to
the trampolines

• The trampolines select the next LEMON
and restore its (post-TX) context

Restore &
Continue

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Not Taken

2nd time 1st time

Scheduling the LEMONs with Customized I/O

15

LEMON1

Hardware NIC

packets

RX
(Cust.)

TX
(Cust.)

Process

Trampolines

• By default, NFs process packets in an
infinite loop
• RX/TX talks directly to NIC

• Customized I/O does not modify the
loop but schedules it
• Using RX/TX as scheduling points

• Calling TX saves context and returns to
the trampolines

• The trampolines select the next LEMON
and restore its (post-TX) context

• All LEMONS access packets from buffer
inside the trampolines

Restore &
Continue

LEMON2

RX
(Cust.)

TX
(Cust.)

Process

Not Taken

2nd time 1st time

Preventing Illegal Memory Accesses

16

Private Components

LEMON1
Code

• The design of LEMON creates bounded
memory regions
• Private heap, stack and dependencies

instead of shared ones

• Accesses outside its own region is illegal

image: Flaticon.com by Freepik

LEMON2
Code

Icon by Muhammad Haq on freeicons.io

Preventing Illegal Memory Accesses

16

Private Components

LEMON1
Code

• The design of LEMON creates bounded
memory regions
• Private heap, stack and dependencies

instead of shared ones

• Accesses outside its own region is illegal

• Bounded memory is efficiently
isolated by domain switching
• LemonNFV uses Intel® Protection Key for

Userspace (PKU)

• Restrict access before switching to
LEMONs, and relax it before switching
back to trampolines

Trampolines

image: Flaticon.com by Freepik

LEMON2
Code

Restrict to
Domain 1

Relax
Restrict to
Domain 2

Relax

Prot.
Domain 1

Prot.
Domain 2

Icon by Muhammad Haq on freeicons.io

Design Takeaway

17

Consolidation

Virtualization

Heterogeneous

Homogeneous

VM VM VM

Our Approach LEMON

Transparent to Users
Memory Isolation

High Performance
Func.
Call

Func.
Call

Intra-process Execution

Scheduling and Isolation

Evaluation

• Effort of LemonNFV to consolidate heterogeneous NFs

• Performance compared with State-Of-The-Art NFV systems

18

Minimum LOC Modification to Interoperation

19

LemonNFV consolidates heterogeneous NFs without much effort (LOC)

NF Framework Language I/O NF LOC Framework
LOC

Modified
LOC

IDS Rubik C DPDK 337 31K 2

NAT FastClick C++ DPDK 94 331K 2

ACL NetBricks Rust DPDK 401 58K 8

CT mOS C libpcap 325 139K 4

DPI nDPI C libpcap 4498 121K 2

Heterogeneity of Real World NFs
Huge Code Base

Of Real World NFs
Effort of
LemonNFV

Comparing Performance with State-Of-The-Art

20

NFVnice: SOTA in virtualization

FastClick: SOTA in consolidation

+88% throughput, -58% latency

-4.1% throughput, +4.9% latency

LemonNFV consolidates heterogeneous NFs with minor overhead

Virt.

Cons.
Virt.

Cons.

LEMON

LEMON

Summary

• Virtualization nor direct consolidation
achieves heterogeneous NF interoperation

• Virtualization overhead

• Effort of code modification

21

Summary

• Virtualization nor direct consolidation
achieves heterogeneous NF interoperation

• Virtualization overhead

• Effort of code modification

• LemonNFV consolidates NFs with minor
overhead and effort

• Designs a unique abstraction LEMON

• Schedules and isolates LEMONs inside one
process

21

22

Yihan Dang

yhdang@stu.xjtu.edu.cn

Please Read Our Paper for More Details!

	Introduction
	幻灯片 1: LemonNFV: Consolidating Heterogeneous Network Functions at Line Speed
	幻灯片 2: Virtualized Network Function (VNF)
	幻灯片 3: Virtualized Network Function (VNF)
	幻灯片 4: Heterogeneous NFs Are Not Interoperable
	幻灯片 5: Heterogeneous NFs Are Not Interoperable
	幻灯片 6: Heterogeneous NFs Are Not Interoperable
	幻灯片 7: Heterogeneous NFs Are Not Interoperable

	Virtualization
	幻灯片 8: Solution 1: Virtualization
	幻灯片 9: Dilemma: Context Switch vs Inter-Core Traffic
	幻灯片 10: Dilemma: Context Switch vs Inter-Core Traffic
	幻灯片 11: Dilemma: Context Switch vs Inter-Core Traffic
	幻灯片 12: Dilemma: Context Switch vs Inter-Core Traffic

	Consolidation
	幻灯片 13: Solution 2: Consolidation
	幻灯片 14: Solution 2: Consolidation
	幻灯片 15: Solution 2: Consolidation
	幻灯片 16: Problem #1: Namespace Conflict
	幻灯片 17: Problem #1: Namespace Conflict
	幻灯片 18: Problem #2: Private Control Flow
	幻灯片 19: Problem #2: Private Control Flow
	幻灯片 20: Problem #3: Illegal Memory Access
	幻灯片 21: Problem #3: Illegal Memory Access
	幻灯片 22: Problem #3: Illegal Memory Access

	Design
	幻灯片 23: Takeaway on Two Approaches
	幻灯片 24: Our Insight
	幻灯片 25: Our Insight
	幻灯片 26: LemonNFV Overview
	幻灯片 27: LemonNFV Overview
	幻灯片 28: LemonNFV Overview
	幻灯片 29: LemonNFV Overview
	幻灯片 30: The LEMON Abstraction (LEast Modified network functiON)
	幻灯片 31: The LEMON Abstraction (LEast Modified network functiON)
	幻灯片 32: The LEMON Abstraction (LEast Modified network functiON)
	幻灯片 33: The LEMON Abstraction (LEast Modified network functiON)
	幻灯片 34: The LEMON Abstraction (LEast Modified network functiON)
	幻灯片 35: Scheduling the LEMONs with Customized I/O
	幻灯片 36: Scheduling the LEMONs with Customized I/O
	幻灯片 37: Scheduling the LEMONs with Customized I/O
	幻灯片 38: Scheduling the LEMONs with Customized I/O
	幻灯片 39: Scheduling the LEMONs with Customized I/O
	幻灯片 40: Scheduling the LEMONs with Customized I/O
	幻灯片 41: Scheduling the LEMONs with Customized I/O
	幻灯片 42: Scheduling the LEMONs with Customized I/O
	幻灯片 43: Scheduling the LEMONs with Customized I/O
	幻灯片 44: Scheduling the LEMONs with Customized I/O
	幻灯片 45: Scheduling the LEMONs with Customized I/O
	幻灯片 46: Preventing Illegal Memory Accesses
	幻灯片 47: Preventing Illegal Memory Accesses
	幻灯片 48: Design Takeaway

	Evaluation
	幻灯片 49: Evaluation
	幻灯片 50: Minimum LOC Modification to Interoperation
	幻灯片 51: Comparing Performance with State-Of-The-Art

	Summary
	幻灯片 52: Summary
	幻灯片 53: Summary
	幻灯片 54: Please Read Our Paper for More Details!

