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• Accesses outside its own region is illegal

• Bounded memory is efficiently 
isolated by domain switching
• LemonNFV uses Intel® Protection Key for 

Userspace (PKU)

• Restrict access before switching to 
LEMONs, and relax it before switching 
back to trampolines

Trampolines

image: Flaticon.com by Freepik

LEMON2
Code 

Restrict to
Domain 1

Relax
Restrict to
Domain 2

Relax

Prot.
Domain 1

Prot.
Domain 2

Icon by <a href="https://freeicons.io/profile/823">Muhammad Haq</a> on <a href="https://freeicons.io">freeicons.io</a>



Design Takeaway

17

Consolidation

Virtualization

Heterogeneous

Homogeneous

VM VM VM

Our Approach LEMON

Transparent to Users
Memory Isolation

High Performance
Func.
Call

Func.
Call

Intra-process Execution

Scheduling and Isolation



Evaluation

• Effort of LemonNFV to consolidate heterogeneous NFs

• Performance compared with State-Of-The-Art NFV systems
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Minimum LOC Modification to Interoperation
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LemonNFV consolidates heterogeneous NFs without much effort (LOC)

NF Framework Language I/O NF LOC Framework 
LOC

Modified 
LOC

IDS Rubik C DPDK 337 31K 2

NAT FastClick C++ DPDK 94 331K 2

ACL NetBricks Rust DPDK 401 58K 8

CT mOS C libpcap 325 139K 4

DPI nDPI C libpcap 4498 121K 2

Heterogeneity of Real World NFs
Huge Code Base

Of Real World NFs
Effort of 
LemonNFV



Comparing Performance with State-Of-The-Art
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NFVnice: SOTA in virtualization

FastClick: SOTA in consolidation

+88% throughput, -58% latency

-4.1% throughput, +4.9% latency

LemonNFV consolidates heterogeneous NFs with minor overhead

Virt.

Cons.
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Summary

• Virtualization nor direct consolidation 
achieves heterogeneous NF interoperation

• Virtualization overhead

• Effort of code modification
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Summary

• Virtualization nor direct consolidation 
achieves heterogeneous NF interoperation

• Virtualization overhead

• Effort of code modification

• LemonNFV consolidates NFs with minor 
overhead and effort

• Designs a unique abstraction LEMON

• Schedules and isolates LEMONs inside one 
process
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