M A

) CEUS

Understandlng and Optimizing
GPU Energy Consumption of DNN Training

\/ N
N

Jae-Won Chung
April 17,2023

Work done in collaboration with Jie You and Mosharaf Chowdhury

UNIVERSITY OF

X SymbioticlLab MICHIGAN



Deep Learning Is Prevalent loday

Image processing
Speech recognition

Machine translation T=S5LA
Intelligent assistants
Autonomous drivin - .
| e stability.ai
Video analytics
|mage/text generatlon Deep Learning is X Q& He{Ho| CHMILICE.
prevalent tOday. oneulnal dibleoning-i daeseibnida. O A I
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DNN Energy Consumption is Skyrocketing

[ DNN J * Re-training is commonplace (e.g. every hour)?

¥

[ GPU J * Training GPT-3 == 120 years of electricity for a household'

\ 4

[ Eﬂergy J * Performance optimizations oblivious of energy impact

|.US. EIA and Google (arXiv 21) 2. Facebook (HPCA '18) and Alibaba (NSDI 22)
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Existing Efforts are not Practical Enough

New energy-efficient DNN architectures
SqueezeNext (CVPRW '[8), ChamNet (CVPR '19), SkyNet (MLSys 20)

{ DNIN J
\ 4

GPU * New energy-efficient HW architectures
TPU (ISCA'17), EDEN (MICRO '19), LNPU (ISSCC '19)

{ Energy J

* Offline profiling and power model fitting

Confined to GPU power configuration knobs
MPC (HPCA '17), ODPP (CCGRID "20), GPOEO (TPDS "22)
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Understanding GPU Energy Consumption

Energy to Accuracy (ETA)
* Energy needed to reach the user-specified target accuracy
* Energy-counterpart of lime to Accuracy (T TA)
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Understanding GPU Energy Consumption

[ ETA 1

Joule

= [ TTA } X [Angower}
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Understanding GPU Energy Consumption

[ ETA J

Joule

= { #Epochs} X {EpochTime} X {Angovver}

Second Watt

{ Batch Size 1 {Power Limit}

Job side GPU side




Opportunity for Energy Savings

Sweep of feasible batch sizes and power limits

Normalized
Energy to Accuracy (ETA)

1.0
0.8
0.6
0.4
0.2
0.0

------- Default . Best power limit
I Best batch size Best of both

24 ~75%
energy
reduction

Measured on an NVIDIAV 100 GPU.
Training terminates when the DNN reaches its original target accuracy.
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Relationship Between Time and Energy

* Feasible A Default Pareto Front
le/

Energy to Accuracy (¢ = L
(Joules) '
0.4
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Time to Accuracy (Seconds)

Results from training DeepSpeech?2 on LibriSpeech on an NVIDIAV 00 GPU.
Similar trends found across 6 DL workloads and 4 GPU generations. Motivation | 9



Relationship Between Time and Energy

* Feasible A Default Pareto Front
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Relationship Between Time and Energy

* Feasible A Default Pareto Front
le/
10 A
b A
5 09 -
N ®
a9 . L .
C 08 7 4250w ‘ |. Time and energy minimized by different knobs
9 g7 | 5628w - | |
<O | 48, 200W 2. Efficient time and energy show a trade-off
+
> 06 - 48, 175W
S 48, 150W
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Results from training DeepSpeech?2 on LibriSpeech on an NVIDIAV 00 GPU.
Similar trends found across 6 DL workloads and 4 GPU generations. Motivation | 11



Relationship Between Time and Energy

* Feasible A Default Pareto Front
le/
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Results from training DeepSpeech?2 on LibriSpeech on an NVIDIAV 00 GPU.
Similar trends found across 6 DL workloads and 4 GPU generations. Motivation | 12



Relationship Between Time and Energy

* Feasible A Default Pareto Front
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Results from training DeepSpeech?2 on LibriSpeech on an NVIDIAV 00 GPU.
Similar trends found across 6 DL workloads and 4 GPU generations. Motivation | 13



EU s An Energy Optimization Framework
for DNN Training

Optimizes the cost
* of an arbitrary DNN model
* on an arbitrary GPU type
* In an efficient manner

without any
 offline profiling,
* hardware modification, or
* accuracy degradation Overview | 14




Overall Workflow

Re-training jobs are opportunity for exploration!

Job

€ Job Submission 1

____________________

Zeus © Optimization

[

| |
: Power Limit Optimizer | | Batch Size Optimizer | |
I |
| |
: /
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- o o e o o e o e e e e e Ee e om0

@ Observation €@ Execution

GPU A cry A DNN DNN
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Power | Power | Training Training
Config | Stats | Stats Config

[ NVML J [ DL Execution Engine J

GPU
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Overall Workflow

Re-training jobs are opportunity for exploration!

Job
€ Job Submission 1
7 ous @ Optimization |. Decoupling Variables

{Power Limit Optmzej [Batch Size Optmzej 2 Power lel—t Optimizer
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|. Decoupling Batch Size and Power Limit

. ETA

Joule

= { #Epochs} X [EpochTime} X {Angovver}

Watt
!/ Batch Size \: " ' ' online !/Power |_|m|:[\:
: Optimicer { Batch Size J {Power lelt}“““‘:\ Optimizer

________
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2. Power Limit Optimizer

Just-in-time online profiler
* Profiles the power and throughput of each power limit
* [ve seconds per power limit Is enough

Low overhead
* Profile only once for each batch size
* Profiling contributes to the training process
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3. Batch Size Optimizer

A good solution must

|. Incorporate the of DNN training, and

2. intelligently exploration and exploitation
! Cost =1 -ETA+ (1 - ) - MaxPower - TTA
Multi-Armed Bandit .. e ’

|. Models ‘as a Gaussian random variable
2. Automatically controls exploration and explortation

Method | 22



Workloads and GPU Generations

Task Dataset DNN

GPU

Arch

Speech Recognition LibriSpeech DeepSpeech? NVIDIA A40 Ampere

Question Answering SQUAD BERT NVIDIAVI00 Volta
Sentiment Analysis Sentiment |40 BERT NVIDIA RTX6000  Turing
Image Classification ImageNet ResNet-50 NVIDIA P100 Pascal

Image Classification CIFAR-100 ShuffleNet-v2

Recommendation MovielLens- M NeuMF
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Zeus In Action

Grid Search
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DeepSpeech? trained on LibriSpeech on an NVIDIAV 100 GPU.
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Zeus Leads to Large Benefits

[ — - .
Default Grid Search Zeus Already time-optima
| 1 \
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15 ~ 76% energy reduction
Up to 60% time reduction

Results obtained on an NVIDIAV 100 GPU
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Demo: Stable Diffusion

https://youtu.be/MzIF5XNRSJY
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Conclusion

{ DNN J * Works on arbrtrary DNN models

\ 4
{ GPU }
\ 4

{ Energy J

Works without modifying existing hardware

Fully online with JIT profiling and MAB
Jointly optimizes both job- and GPU-side configurations

Conclusion | 27
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