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Deep Learning is Prevalent Today

Image processing
Speech recognition
Machine translation
Intelligent assistants
Autonomous driving
Video analytics
Image/text generation
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DNN Energy Consumption is Skyrocketing
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DNN

GPU

Energy

• Training GPT-3 == 120 years of electricity for a household1

• Re-training is commonplace (e.g. every hour)2

• Performance optimizations oblivious of energy impact

1. U.S. EIA and Google (arXiv ’21)   2. Facebook (HPCA ’18) and Alibaba (NSDI ’22)
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Existing Efforts are not Practical Enough
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• New energy-efficient HW architectures

• New energy-efficient DNN architectures

• Offline profiling and power model fitting
• Confined to GPU power configuration knobs

DNN

GPU

Energy

TPU (ISCA ’17), EDEN (MICRO ’19), LNPU (ISSCC ’19)

MPC (HPCA ’17), ODPP (CCGRID ’20), GPOEO (TPDS ’22)
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SqueezeNext (CVPRW ’18), ChamNet (CVPR ’19), SkyNet (MLSys ’20)



Understanding GPU Energy Consumption
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Energy to Accuracy (ETA)
• Energy needed to reach the user-specified target accuracy
• Energy-counterpart of Time to Accuracy (TTA)
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Understanding GPU Energy Consumption
ETA
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Understanding GPU Energy Consumption
ETA
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GPU sideJob side
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Opportunity for Energy Savings
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Normalized
Energy to Accuracy (ETA)

Measured on an NVIDIA V100 GPU. 
Training terminates when the DNN reaches its original target accuracy.
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Results from training DeepSpeech2 on LibriSpeech on an NVIDIA V100 GPU.
Similar trends found across 6 DL workloads and 4 GPU generations.

Relationship Between Time and Energy
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Time to Accuracy (Seconds)

Energy to Accuracy
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Relationship Between Time and Energy
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Results from training DeepSpeech2 on LibriSpeech on an NVIDIA V100 GPU.
Similar trends found across 6 DL workloads and 4 GPU generations. Motivation |
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Relationship Between Time and Energy
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Results from training DeepSpeech2 on LibriSpeech on an NVIDIA V100 GPU.
Similar trends found across 6 DL workloads and 4 GPU generations.

1. Time and energy minimized by different knobs

2. Efficient time and energy show a trade-off

Motivation |
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Relationship Between Time and Energy
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Results from training DeepSpeech2 on LibriSpeech on an NVIDIA V100 GPU.
Similar trends found across 6 DL workloads and 4 GPU generations. Motivation |

Cost = 𝜂 ⋅ ETA + 1 − 𝜂 ⋅ MaxPower ⋅ TTA

Which yellow point is the best?
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Relationship Between Time and Energy
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Results from training DeepSpeech2 on LibriSpeech on an NVIDIA V100 GPU.
Similar trends found across 6 DL workloads and 4 GPU generations.

Cost = 𝜂 ⋅ ETA + 1 − 𝜂 ⋅ MaxPower ⋅ TTA

Which yellow point is the best?
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An Energy Optimization Framework
for DNN Training

Optimizes the cost
• of an arbitrary DNN model
• on an arbitrary GPU type
• in an efficient manner

without any 
• offline profiling,
• hardware modification, or
• accuracy degradation 14Overview |



❶ Job Submission

JobJobJob

Job

Overall Workflow
Re-training jobs are opportunity for exploration!
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❶ Job Submission

JobJobJob

Overall Workflow
Re-training jobs are opportunity for exploration!
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1. Decoupling Variables

2. Power Limit Optimizer

3. Batch Size Optimizer 
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1. Decoupling Batch Size and Power Limit
ETA

AvgPower#Epochs EpochTimex x

Joule

WattSecond

Power LimitBatch Size
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2. Power Limit Optimizer

Just-in-time online profiler
• Profiles the power and throughput of each power limit
• Five seconds per power limit is enough

Low overhead
• Profile only once for each batch size
• Profiling contributes to the training process

21Method |



3. Batch Size Optimizer

Multi-Armed Bandit
1. Models cost as a Gaussian random variable
2. Automatically controls exploration and exploitation
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A good solution must
1. incorporate the stochasticity of DNN training, and
2. intelligently trade-off exploration and exploitation

Cost = 𝜂 ⋅ ETA + 1 − 𝜂 ⋅ MaxPower ⋅ TTA

Method |



Workloads and GPU Generations
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Task Dataset DNN

Speech Recognition LibriSpeech DeepSpeech2

Question Answering SQuAD BERT

Sentiment Analysis Sentiment140 BERT

Image Classification ImageNet ResNet-50

Image Classification CIFAR-100 ShuffleNet-v2

Recommendation MovieLens-1M NeuMF

GPU Arch

NVIDIA A40 Ampere

NVIDIA V100 Volta

NVIDIA RTX6000 Turing

NVIDIA P100 Pascal

Evaluation |



Zeus in Action

Search Path
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DeepSpeech2 trained on LibriSpeech on an NVIDIA V100 GPU.

Po
w

er
 L

im
it 

(W
)

Batch Size

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100Po

w
er

 L
im

it 
(W

)

Converging
Point

Grid Search Zeus

24Evaluation |



Zeus Leads to Large Benefits

Results obtained on an NVIDIA V100 GPU
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Demo: Stable Diffusion
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https://youtu.be/MzlF5XNRSJY



Conclusion
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• Works without modifying existing hardware

• Works on arbitrary DNN models

• Fully online with JIT profiling and MAB
• Jointly optimizes both job- and GPU-side configurations

DNN

GPU

Energy

Conclusion |



https://ml.energy/zeus


