
Waverunner: An Elegant Approach to
Hardware Acceleration of State Machine Replication

Reza Alimadadi, Hieu Mai, Shenghsun Cho, Michael Ferdman, 
Peter Milder, Shuai Mu



Hardware Support for Distributed Systems

• Distributed protocols are at the core of many critical systems
– Cloud infrastructure coordination services (e.g., Chubby)

– Large-scale distributed databases (e.g., Spanner)

• In these systems, protocol handling incurs massive perf. overheads
– Beyond network latency, messages must cross PCIe and reach software

– Beyond software logic, CPU must parse, process, and generate packets

• Hardware accelerators hold the key to high performance
– Reach high throughputs at minimal latencies

– Pose major programmability challenges
• Every change requires hardware development

Our goal: Hardware accelerator performance, Software flexibility



Waverunner: Elegant Distributed Protocol Acceleration

• Two existing approaches to resolve performance challenge
– Leave implementation in software, minimize overheads

– Move everything to hardware, pay programmability cost

• We present a new hybrid software/hardware approach
– Leave all the complexity in software

– Design way to move only simplest common operations to hardware

• Our Waverunner prototype accelerates off-the-shelf software
– Take off-the-shelf complex Raft protocol & application (e.g., Memcached)

– Move only the most common function to hardware (~200 lines of code)

– Achieve 100Gbps line-rate at 1.8μs tail latency

Hardware speeds with mostly unmodified Raft software



Outline

• Introduction
• Distributed Protocol Performance
• Waverunner Design
• Result Highlights
• Conclusions



Distributed Protocol Performance Overheads

• Traditional software has one NIC-CPU round-trip

• Distributed protocol incurs many “extra” round-trips
– Modern networks are fast: network hops not so bad

– Multiple (4 here) extra PCIe traversals

– Large amount of extra CPU work

• Overheads reduce performance
– CPU is busy processing packets, throughput drops

– PCIe crossings and software interaction adds latency

NICClient

Server

NICClient

NIC

Leader

Replica



Existing Hardware Acceleration Techniques

• Kernel bypass to avoid OS overheads
– Passes data directly between NIC and software (e.g., DPDK, RDMA)

– Improves throughput and latency

– Leaves CPU as the bottleneck for processing all protocol packets

• FPGA hardware for bespoke accelerators
– Re-implements entire protocol and application in hardware (e.g., ZABFPGA)

– Achieves line rate throughput and minimal latency

– Eliminates ability to evolve or bugfix system
• Any change takes several hours to build



Waverunner Insight
• Possible to partition distributed protocol into two parts

– Complex software logic (90% of Raft code) 
• Leader election, failure recovery, etc.

• Too rare to meaningfully impact performance

– Simple common routines (10% of Raft code) 
• Broadcast to replicas, commit on quorum, etc.

• We build Waverunner accelerator based on (these) observations
– Repetitive common case is handled in hardware

• Maximum throughput, minimum latency, no CPU involvement for protocol handling

• Application handles only the client requests (like traditional software)

– Any deviation from the common case switches to software
• Waverunner passes all unknown/unhandled messages to software

• Waverunner detects error conditions, but punts to software to handle them

Make the common case fast, and the uncommon case correct



M

A

C

P

C

I

e

Waverunner Hardware Design

• Based on a conventional NIC

• Adds three new Raft-specific hardware components
– Packet Filter

• Identifies common Raft packets and instructs Protocol Handler to process them

– Protocol Handler
• Raft logic for handling client requests on leader and leader requests on followers

– Packet Generator
• Used by Protocol Handler to initiate packet transmission

• Protocol Handler: ~200 lines of C++
– Simple code, HLS-translated to hardware

Packet 

Filter

Protocol 

Handler

Packet 

Generator



Waverunner Software Design

• Waverunner operates in full-software and accelerated modes
– In full-software mode, CPU executes all Raft functionality

• Leader election, failure recovery, etc.

– In accelerated mode, CPU runs “commit” message handler
• Switches to full-software mode if failure is detected

• Waverunner integrated with real-world applications
– Memcached, Redis, and simple K-V hash (std::map<>)

– Requests forwarded to application without OS involvement (similar to DPDK)



Outline

• Introduction
• Distributed Protocol Performance
• Waverunner Design
• Result Highlights
• Conclusions



Experimental Setup

• Three Linux servers
– Xilinx U280 FPGA with two 100G ports

– Mellanox ConnectX-4 (100G NICs)

• Eight client hosts
– Each with ConnectX-4 Lx (2x 25G NICs)

• Open-loop clients bombard leader with min-size requests
– 32 Bytes payload (133 Bytes packet size)

– Perform no batching at client



Replication Latency

Waverunner reaches 100G line rate (85.5G goodput) with min latency

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

La
te

n
cy

 (
µ

s)

Throughput (Mpps)

99th DPDK Raft

90th DPDK Raft

50th DPDK Raft

50th Mu

99th Waverunner

90th Waverunner

50th Waverunner



End-to-End Application Throughput

Memcached and Redis achieve 20Mpps, 14x higher than non-accelerated

0

5

10

15

20

25

30

1 2 4 8 16 32

Th
ro

u
gh

p
u

t 
(M

p
p

s)

Number of Server Threads

WR+K-V Hash WR+Memcached WR+Redis



End-to-End Application Latency

Waverunner latency under 12.5μs, 3.5x better than non-HA application

0

10

20

30

40

50

60

70

8 16 32 64 128 256 512 1024

La
te

n
cy

 (
µ

s)

Value Size (Bytes)

WR+Memcached WR+Redis Memcached Redis



Conclusions

• Distributed protocol handling incurs massive perf. overheads
– Software implementations too slow, hardware implementations too inflexible

• We developed Waverunner: elegant hybrid software/hardware approach 
– Handles simple common operations in hardware
– Leaves everything else (infrequent and complex operations) in software

• Waverunner runs Raft protocol w/min-size packets
– 100Gbps and constant tail latency, using only ~200 lines of C++ hardware code



Backup Slides



CPU Cycle Analysis

Usage Ratio (%)

Control Plane Data Plane Application

Our Raft ~0 (1e-8) 88 12

NuRaft ~0 (1e-4) 92 8

etcd ~0 (1e-4) 72 28



Waverunner Hardware Detailed



Replication Latency


	Slide 1: Waverunner: An Elegant Approach to Hardware Acceleration of State Machine Replication
	Slide 2: Hardware Support for Distributed Systems
	Slide 3: Waverunner: Elegant Distributed Protocol Acceleration
	Slide 4: Outline
	Slide 5: Distributed Protocol Performance Overheads
	Slide 6: Existing Hardware Acceleration Techniques
	Slide 7: Waverunner Insight
	Slide 8: Waverunner Hardware Design
	Slide 9: Waverunner Software Design
	Slide 10: Outline
	Slide 11: Experimental Setup
	Slide 12: Replication Latency
	Slide 13: End-to-End Application Throughput
	Slide 14: End-to-End Application Latency
	Slide 15: Conclusions
	Slide 16
	Slide 17: CPU Cycle Analysis
	Slide 18: Waverunner Hardware Detailed
	Slide 19: Replication Latency

