Boggart: Iowards General-Purpose Acceleration of **Retrospective Video Analytics**

Neil Agarwal, Ravi Netravali **PRINCETON** UNIVERSITY

April 18, 2023

NSDI 2023

Unprecedented amount of video camera footage

After-the-fact analysis

Retrospective Video Analytics

NY 0 0 LA

Sports Analysis

Retrospective Video Analytics Pipeline

Challenge: High Compute Overheads \rightarrow Querying is Expensive & Slow

Preprocessing

Query Execution

Preprocessing

Extract model-specific content similarities

Query Execution

Preprocessing

Extract model-specific content similarities

Query Execution

Preprocessing

Extract model-specific content similarities

Query Execution

Preprocessing

Extract model-specific content similarities

...

Query Execution

Preprocessing

Extract model-specific content similarities

...

Query Execution

Preprocessing

Extract model-specific content similarities

...

Query Execution

Preprocessing

Extract model-specific content similarities

...

Query Execution

Querying Behavior

Previously

Implication: preprocessing model = query model

Today

Querying Behavior

Previously

Implication: preprocessing model = query model

Time

Implication: preprocessing model ≠ query model

Model 1

Model 2

Models find different objects

Models find different objects

Objects are labeled differently

Objects are labeled differently

Preprocessing Model: Model 2 **Query Model:** Model 1

Objects are labeled differently

Preprocessing Model: Model 2 Query Model: Model 1

Objects are labeled differently

Query: Counting # of cars per frame **Accuracy**: avg(100%, 0%, 100%) = **66%**

Discrepancies Across Real Models

Discrepancies Across Real Models

Query: Counting # Cars per Frame

Query Model	FRCNN (VOC)	100%	72.8%	82.6%	65.9%
	YOLO (VOC)	57.8%	100%	90.0%	84.1%
	FRCNN (COCO)	15.7%	25.3%	100%	32.8%
	YOLO (COCO)	22.4%	43.1%	60.1%	100%
	L	FRĊNN (VOC)	YOLO (VOC)	FRĊNN (COCO)	YOLO (COCO)

Preprocessing Model

Query accuracy of preprocessing with YOLO model trained on the COCO dataset but querying with FRCNN model trained on the COCO dataset is 32.8%

Discrepancies Across Real Models

Query: Counting # Cars per Frame

Query Model	FRCNN (VOC)	100%	72.8%	82.6%	65.9%
	YOLO (VOC)	57.8%	100%	90.0%	84.1%
	FRCNN (COCO)	15.7%	25.3%	100%	32.8%
	YOLO (COCO)	22.4%	43.1%	60.1%	100%
	L	FRĊNN (VOC)	YOLO (VOC)	FRĊNN (COCO)	YOLO (COCO)

Preprocessing Model

Accuracy of Full Dataset Analysis

Counting Queries: 16-92%

Bounding Box Queries: 6-54%

Query accuracy of preprocessing with YOLO model trained on the COCO dataset but querying with FRCNN model trained on the COCO dataset is 32.8%

How do you preprocess video data to accelerate retrospective querying with diverse models?

baa · grt

Relatively cheap to perform

Relatively cheap to perform

Provide a way to link information across frames

Classical Computer Vision Techniques

12

Classical Computer Vision Techniques

Classical Computer Vision Techniques

Preprocessing

Extracting trajectories of areas of motion

Classical Computer Vision Techniques

Preprocessing

Extracting trajectories of areas of motion

- Can be leveraged to comprehensively & generically extract info from a video
- Less accurate than ML

Classical Computer Vision Techniques

Preprocessing

Extracting trajectories of areas of motion

Can be leveraged to comprehensively & generically extract info from a video
Less accurate than ML

Query Execution

Model-specific labeling & propagation

Extracting trajectories of areas of motion

Can be leveraged to comprehensively & generically extract info from a video
Less accurate than ML

Query Execution

Model-specific labeling & propagation

Preprocessing

Trajectories of Blobs

Frame ID	Trajectory ID	x1	y1	x2	y2
1	1	100	200	100	300
1	2	200	600	300	500
1	3	80	120	90	230
2	1	105	205	105	305
		•••			

Preprocessing

Trajectories of Blobs

Frame ID	Trajectory ID	x1	y1	x2	y2
1	1	100	200	100	300
1	2	200	600	300	500
1	3	80	120	90	230
2	1	105	205	105	305
		•••	•••		

Raw Video

Background Estimate

Foreground (Moving Pixels)

Foreground (Moving Pixels)

Blobs

Foreground Extraction

Blob Extraction

Keypoint Detection

Keypoint Matching

Trajectory Stitching

Foreground Extraction

Keypoint Detection

Trajectory

Stitching

Matching

KeypointKeypointTrajectoryDetectionMatchingStitching

Preprocessing

Trajectories of Blobs

Frame ID	Trajectory ID	x1	y1	x2	y2
1	1	100	200	100	300
1	2	200	600	300	500
1	3	80	120	90	230
2	1	105	205	105	305
		• • •			

Need to tune CV techniques conservatively to comprehensively extract information!

Boggart's Insight

Classical Computer Vision Techniques

Preprocessing

Trajectories of areas of motion

- Can be leverage to comprehensively & generically extract info from a video
- Less accurate than ML

Query Execution

Model-specific labeling & propagation

Boggart's Insight

Classical Computer Vision Techniques

Preprocessing

Trajectories of areas of motion

Can be leverage to comprehensively & generically extract info from a video
Less accurate than ML

Model-specific labeling & propagation

Idea: run model on as few frames as possible and use trajectories to propagate model results to the remaining frames

Idea: run model on as few frames as possible and use trajectories to propagate model results to the remaining frames

Challenge: misalignment of blobs with ML model output

Idea: run model on as few frames as possible and use trajectories to propagate model results to the remaining frames

Challenge: misalignment of blobs with ML model output

Preprocessing Blobs

Idea: run model on as few frames as possible and use trajectories to propagate model results to the remaining frames

Challenge: misalignment of blobs with ML model output

Idea: run model on as few frames as possible and use trajectories to propagate model results to the remaining frames

Challenge: misalignment of blobs with ML model output

Identify the smallest set of frames on which to run the model

Identify the smallest set of frames on which to run the model

Correct imprecisions during model result propagation across the remaining frames

Identify the smallest set of frames on which to run the model

Correct imprecisions during model result propagation across the remaining frames

Identify the smallest set of frames on which to run the model

Correct imprecisions during model result propagation across the remaining frames

of frames on which to run the model is influenced by video dynamism

Identify the smallest set of frames on which to run the model

Correct imprecisions during model result propagation across the remaining frames

of frames on which to run the model is influenced by video dynamism

Cluster similar video segments and profile a small portion of each cluster

Identify the smallest set of frames on which to run the model

Correct imprecisions during model result propagation across the remaining frames

Identify the smallest set of frames on which to run the model

Correct imprecisions during model result propagation across the remaining frames

Relative position between an object's keypoints and its bounding boxes remain stable over time

Identify the smallest set of frames on which to run the model

Correct imprecisions during model result propagation across the remaining frames

Relative position between an object's keypoints and its bounding boxes remain stable over time

$$(ax_k, ay_k) = \left(\frac{x_2 - x_k}{x_2 - x_1}, \frac{y_2 - y_k}{y_2 - y_1}\right)$$
$$\sum_{k'}^{K'} \left[\left(\frac{x_2 - x_{k'}}{x_2 - x_1} - ax_k\right)^2 + \left(\frac{y_2 - y_{k'}}{y_2 - y_1} - ay_k\right)^2 \right]$$

Search for blob coordinates that maximally preserve these relationships

Evaluation Methodology

96 hours of publicly available camera footage

Query Types: binary classification, counting, bounding box detection

Objects of interest: cars & people

Accuracy Targets: 80%, 90%, 95%

Query Models: 3 architectures, each trained on 2 datasets

Evaluation Axes

- Query-execution speedups
- Comparison to existing systems
- Performance on downsampled video
- Resource scaling
- Storage costs
- Parameter sensitivity
- Generalizability

Evaluation Axes

Query-execution speedups

Comparison to existing systems

- Performance on downsampled video
- Resource scaling
- Storage costs
- Parameter sensitivity
- Generalizability

Query Execution Speedups

Baseline: run query model on every frame

Query:

- Model: YOLOv3+COCO
- Accuracy Target: 90%
- Query Type: Binary Classification

Query Execution Speedups

Baseline: run query model on every frame

Query:

- Model: YOLOv3+COCO
- Accuracy Target: 90%
- Query Type: Binary Classification

Result: Boggart returned results that achieved an accuracy of 93% while requiring the query model to be run on only 5% of the total frames

Accuracy Target: 80%

Accuracy Target: 90%

Query Model

Accuracy Target: 95%

Query Model

Boggart consistently meets specified accuracy targets while requiring a fraction of the compute!

Accuracy Target: 90%

Accuracy Target: 95%

Query Execution Speedups

Accuracy Target: 80%

Baseline: run query model on every frame

Accuracy Target: 90%

Query Model

Accuracy Target: 95%

Query Model

Finer-grained queries and higher accuracy targets -> Run query model on more frames

Accuracy Target: 90%

SSD

Accuracy Target: 95%

Querying for people requires more model inference than querying for cars.

Focus (OSDI '18) leverages model-specific preprocessing to accelerate binary classification queries.

Focus (OSDI '18) leverages model-specific preprocessing to accelerate binary classification queries.

Model: YOLOv3+COCO, **Accuracy Target**: 90%

Low cost for generalization

Query Execution

Focus (OSDI '18) leverages model-specific preprocessing to accelerate binary classification queries.

Evaluation Axes

- Query-execution speedups
- Comparison to existing systems
- Performance on downsampled video
- Resource scaling
- Storage costs
- Parameter sensitivity
- Generalizability

- A general-purpose accelerator for retrospective querying with diverse user-provided models
- Leverages model-agnostic computer vision techniques to generate trajectories of areas of motion
- Despite its generality, its speedups match (and most often, exceed) existing approaches

Source code available at github.com/neilsagarwal/boggart