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Unprecedented amount of p=

video camera footage
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Retrospective Video Analytics Pipeline

Challenge: High Compute Overheads - Querying is Expensive & Slow
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Acceleration Strategy: Model-Specific Preprocessing

Preprocessing

Query Execution



Acceleration Strategy: Model-Specific Preprocessing

Query Execution

Preprocessing

Extract model-specific content similarities




Acceleration Strategy: Model-Specific Preprocessing

Extract model-specific content similarities Run model sparingly to label similar content




Acceleration Strategy: Model-Specific Preprocessing

Extract model-specific content similarities Run model sparingly to label similar content




Acceleration Strategy: Model-Specific Preprocessing

Extract model-specific content similarities Run model sparingly to label similar content

=5

¢ ¢ P




Acceleration Strategy: Model-Specific Preprocessing

Extract model-specific content similarities Run model sparingly to label similar content

i,

?l
o
>

¢ ¢ P




Acceleration Strategy: Model-Specific Preprocessing

Extract model-specific content similarities Run model sparingly to label similar content

=5

¢ ¢ P




Acceleration Strategy: Model-Specific Preprocessing

Extract model-specific content similarities Run model sparingly to label similar content

=5

g

¢ ¢ P




Querying Behavior

Implication:
preprocessing model = query model
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Models Behave Differently
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Models Behave Differently
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Models Behave Differently
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Varying bounding . . .
Preprocessing Model: Model 2 Query: Counting # of cars per frame
Query Model: Model 1 Accuracy: avg(100%, 0%, 100%) = 66%
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Query: Counting # Cars per Frame

FRCNN
(VOC)

YOLO.
(VOC)

FRCNN
(coco)| 1377

Query Model

YOLO|

(coco)| 22.:4% 43.1% Query accuracy of preprocessing with YOLO model
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Discrepancies Across Real Models

Query: Counting # Cars per Frame

Accuracy of Full Dataset Analysis

FRCNN
(VOC)

Counting Queries: 16-92%

YOLO.
(VOC)

Bounding Box Queries: 6-54%

FRCNN
(coco)| 1377

Query Model

YOLO|

(coco)| 22.:4% 43.1% Query accuracy of preprocessing with YOLO model

trained on the COCOQO dataset but querying with

FRCNN YOLO FRCNN YOLO FRCNN model trained on the COCQO dataset is 32.8%
(VOC) (VOC)  (COCO) (COCO)

Preprocessing Model



Boggart | baa-grt

How do you preprocess video data to
accelerate retrospective querying with
diverse models?
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Preprocessing Requirements

Relatively cheap to perform
General-purpose and comprehensive
Provide a way to link information across frames
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Preprocessing

Trajectories of Blobs

Frame ID Trajectory ID x1 |yl | x2 | y2
1 1 100 | 200 | 100 | 300
1 2 200 | 600 | 300 | 500
1 3 80 | 120 | 90 | 230
2 1 105 | 205 | 105 | 305
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Preprocessing

Trajectories of Blobs

Frame ID Trajectory ID x1 |yl | x2 | y2

1 1 100 | 200 | 100 | 300

1 2 200 | 600 | 300 | 500

1 3 80 | 120 | 90 | 230

2 1 105 | 205 | 105 | 305
Foreground Blob Keypoint
Extraction Extraction Detection

13

—>

Keypoint
Matching

Trajectory
Stitching



Background

Estimate

Raw Video Foreground (Moving Pixels)
Foregrqund Blob | Keypomt Keypomt Trgjec.tory
Extraction Extraction Detection Matching Stitching
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Foreground (Moving Pixels) Blobs
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Previous Frame

Current Frame

Foregrqund Blob | Keypoi/jt Keypo(nt Trgjec.tory
Extraction Extraction Detection Matching Stitching
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Preprocessing

Trajectories of Blobs

Frame ID Trajectory ID x1 |yl | x2 | y2
1 1 100 | 200 | 100 | 300
1 2 200 | 600 | 300 | 500
1 3 80 | 120 | 90 | 230
2 1 105 | 205 | 105 | 305

Need to tune CV techniques conservatively to comprehensively extract information!

Trajectory
Stitching

Keypoint
Matching

Keypoint

Foreground Blob .
Detection

Extraction Extraction
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Query Execution
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propagate model results to the remaining frames
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Query Execution

ldea: run model on as few frames as possible and use trajectories to
propagate model results to the remaining frames

Challenge: misalignment of blobs with ML model output

@- ML Model

Preprocessing Blobs

model outputs

Imprecise blob
bounding boxes
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Query Execution: New Techniques

ldentify the smallest set of frames on
which to run the model

=) #| i

# of frames on which to run the model
Is influenced by video dynamism

Cluster similar video segments and
profile a small portion of each cluster

23



Query Execution: New Techniques

Correct imprecisions during model result
propagation across the remaining frames

24



Query Execution: New Techniques

Correct imprecisions during model result
propagation across the remaining frames

(X2, y2)

Relative position between an object’s keypoints
and its bounding boxes remain stable over time
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Query Execution: New Techniques

Correct imprecisions during model result
propagation across the remaining frames

K’ 2 2
Z l(xz—xk' > <Y2—Yk' ) l
ax; ~+ ay;
X X2 — A Y2 =1

(X2, y2)
Relative position between an object’s keypoints Search for blob coordinates that
and its bounding boxes remain stable over time maximally preserve these relationships
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Evaluation Methodology

——t,

2020/07/19 13:46:30

96 hours of publicly available camera footage

Query Types: binary classification, Accuracy Targets: 80%, 90%, 95%
counting, bounding box detection

Query Models: 3 architectures,

Objects of interest: cars & people each trained on 2 datasets
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Evaluation Axes

» Query-execution speedups

» Comparison to existing systems

» Performance on downsampled video
» Resource scaling

» Storage costs

» Parameter sensitivity

» Generalizability
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Quel‘y ExeCUtiOn Speed UPS Baseline: run query model on every frame

27



Quel‘y ExeCUtiOn Speed UPS Baseline: run query model on every frame

Query:

- Model: YOLOv3+COCO

- Accuracy Target: 90%

- Query Type: Binary Classification
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Quel‘y ExeCUtiOn Speed UPS Baseline: run query model on every frame

1001 .
< =&
> Query:
c 50 - Model: YOLOv3+COCO
§ - Accuracy Target: 90%
< ) - Query Type: Binary Classification
» 100- ,
5 Binary Class.
:? Result: Boggart returned results that
- _ achieved an accuracy of 93% while
o 50 _ .
O requiring the query model to be run
S on only 5% of the total frames
X e
YOLO
(COCO)
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Quel‘y ExeCUtiOn Speed UPS Baseline: run query model on every frame
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Query Execution Speedups

Accuracy (%)

% of GPU-Hours
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Baseline: run query model on every frame



Accuracy (%)

% of GPU-Hours

Query Execution Speedups

100+

0
o

100

501

Accuracy Target: 80%

——

ol

L 1

i

=5 =
| Il |

[ Binary Class. @ Counting Il Bounding Box

ko

YOLO YOLO FRCNN FRCNN SSD
(COCO) (VOC) (COCO) (VOC) (CoCO) (vVoC)

Query Model

SSD

100+

Accuracy (%)

% of GPU-Hours

Accuracy Target: 90%

U1
o

100

501

[ Binary Class. @ Counting B Bounding Box

Aﬁiﬂmiﬂgq.

YOLO YOLO FRCNN FRCNN SSD  SSD
(COCO) (VOC) (COCO) (VOC) (COCO) (VOoC)

Query Model
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Accuracy (%)

% of GPU-Hours

Accuracy Target: 95%

Baseline: run query model on every frame
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Finer-grained queries and higher accuracy targets -> Run query model on more frames
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Different Object Types — People vs. Cars

100
B People Cars

n (D
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Binary Classification = Counting Bounding Box

Querying for people requires more model inference than querying for cars.
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Comparison to Model-Specific Preprocessing

Query Execution
8

Model: YOLOv3+COCO, Focus I Boggart

Accuracy Target: 90% n 6 - T
3
T 4-
)
> __

Low cost for 221
eneralization : _

Binary Class. Counting Bounding Box
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Comparison to Model-Specific Preprocessing

Preprocessing
Boggart - CPU
Low cost for E GPU
generalization
0 2 4 6 8 10 12 14

Preprocessing Computation (Hours)
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Evaluation Axes

» Query-execution speedups

» Comparison to existing systems

» Performance on downsampled video
» Resource scaling

» Storage costs

» Parameter sensitivity

» Generalizability
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Boggart

» A general-purpose accelerator for retrospective
querying with diverse user-provided models

» |Leverages model-agnostic computer vision
techniques to generate trajectories of areas of motion

» Despite its generality, its speedups match (and most
often, exceed) existing approaches

Source code available at github.com/neilsagarwal/boggart
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