
This paper is included in the 
Proceedings of the 20th USENIX Symposium on 

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the 
20th USENIX Symposium on Networked 

Systems Design and Implementation 
is sponsored by

Arya: Arbitrary Graph Pattern Mining with 
Decomposition-based Sampling

Zeying Zhu, Boston University; Kan Wu, University of Wisconsin-Madison; 
Zaoxing Liu, Boston University

https://www.usenix.org/conference/nsdi23/presentation/zhu



Arya: Arbitrary Graph Pattern Mining with Decomposition-based Sampling

Zeying Zhu⋆∗, Kan Wu†∗, Zaoxing Liu⋆
⋆Boston University, †University of Wisconsin-Madison

Abstract
Graph pattern mining is compute-intensive in process-
ing massive amounts of graph-structured data. This paper
presents Arya, an ultra-fast approximate graph pattern miner
that can detect and count arbitrary patterns of a graph. Unlike
all prior approximation systems, Arya combines novel graph
decomposition theory with edge sampling-based approxima-
tion to reduce the complexity of mining complex patterns on
graphs with up to tens of billions of edges, a scale that was
only possible on supercomputers. Arya can run on a single
machine or distributed machines with an Error-Latency Pro-
file (ELP) for users to configure the running time of pattern
mining tasks based on different error targets. Our evaluation
demonstrates that Arya outperforms existing exact and ap-
proximate pattern mining solutions by up to five orders of
magnitude. Arya supports graphs with 5 billion edges on
a single machine and scales to 10-billion-edge graphs on a
32-server testbed.

1 Introduction
Graph-structured data have been used to represent relation-
ships between entities in various domains, ranging from social
networks [23, 39], financial transactions [46, 56], and knowl-
edge bases [4]. There are two main categories of tasks in ana-
lyzing graphs: graph computation and graph pattern mining.
Graph computation obtains various properties of a graph, such
as PageRank [59] and connected components [41]. Graph pat-
tern mining is more compute-intensive as it discovers struc-
tural patterns (i.e., subgraphs), such as motif finding [16, 57],
frequent subgraph mining (FSM) [9, 73], and clique count-
ing [21, 40]. These mining tasks are used in various appli-
cations, such as counting patterns of financial fraud [1] and
detecting suspicious activities on social networks [8].

With graph data reaching multi-billion scales [7, 76], there
is an increasing need to mine complex patterns to under-
stand complicated internal relationships [22, 24, 29]. While
many graph frameworks have been developed over the years
based on various system and algorithmic optimizations, min-
ing complex patterns (e.g., more than 5-vertex) in large graphs
remains challenging. The fundamental reason is that pat-
tern mining requires traversing and computing over large
intermediate candidate sets, which grow exponentially with

∗Equal contribution.

the graph size and pattern complexity. For instance, a recent
high-performance mining engine, GraphPi [64], needs several
hours to mine a six-vertex pattern in a graph of 1.2 billion
edges, using the world’s top-10 supercomputer with 1024
compute nodes (24,576 cores). Other general-purpose graph
mining solutions, such as Peregrine [45] and Fractal [33],
need more than a day to mine a six-vertex pattern even in
small graphs (e.g., 1 million edges) on a 4-server testbed (see
details in §7).

To reduce the underlying mining complexity, sampling-
based approximation approaches have been proposed, e.g.,
ASAP [44] leverages a neighborhood sampling approach to
approximate the pattern occurrences. Unfortunately, existing
sampling-based approaches come with two common issues:
(1) When pattern complexity (the numbers of vertices and
edges) grows, the number of required sampling algorithm
trials (called samplers) increases significantly (e.g., 1015 in
mining 5-cliques in a billion-edge graph as shown in §2.1),
making it infeasible to mine complex patterns in large graphs.
(2) Systems like ASAP require developers to define distinct
ways to sample a pattern to cover all possible occurrences.
It might be easy for simple patterns like triangles: we can
randomly pick the first edge, sample the second edge among
the first edge’s neighbors, and wait for the third edge to close
the triangle. But it is challenging to figure out how to sample
complex patterns as there are many distinct sampling ways.

In this paper, we present Arya, an approximate mining
system that can scale to ultra-large graphs (e.g., 10 billion
edges) and mine complex patterns (e.g., 11-vertex). In Arya,
we tackle a general approximate mining problem: Given an
input graph, output the approximated occurrences of an arbi-
trary subgraph. In many applications, an almost-correct result
is sufficient, and the processing time is the key. For instance,
a fintech company estimates the frequency of certain complex
patterns to quantify the trends of online crime and fraud [24].
The chains of (money laundering) transactions form special
patterns and estimating the occurrences of such patterns will
help banks and companies to evaluate their operational risks.

Given that designing faster pattern sampling algorithms
is theoretically difficult [35], Arya takes a new avenue to re-
duce the complexity of the pattern to be sampled. Inspired
by theory advances in graph sampling [14, 34, 36] and graph
decomposition [18], our contribution is to bring theory into
practice by an end-to-end system design that explores the algo-
rithmic potential of approximate graph mining (e.g., systems
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design and optimizations, query accelerations) to meet user
requirements (e.g. mining arbitrary patterns and error-latency
profiles). Backed by decomposition theory, Arya significantly
reduces the inherent approximation complexity of complex
patterns in large dense graphs if the pattern can be properly
decomposed. Arya has two main components: (1) a pattern
decomposer that decomposes a complex pattern into a set of
unique simple subpatterns and (2) a parallel estimation engine
that generates a number of samplers for decomposed subpat-
terns and constructs an estimated frequency for the original
complex pattern.

When designing our pattern decomposer, we need to de-
termine an optimal decomposition of a complex pattern into
simpler subgraphs such that it is sufficiently easier to sample
the decomposed subpatterns and reconstruct the result for
the original pattern. In Arya, we leverage the recent edge-
cover-based graph decomposition [18]. The analysis shows
that by computing the optimal fractional edge cover of a com-
plex pattern (see §2.2), we can decompose the pattern into
a unique collection of unique vertex-disjoint odd cycles and
stars, which can be significantly easier to sample than the
original pattern. With decomposition, Arya also has unique
ways to sample patterns, alleviating the need to explore dif-
ferent sampling methods. Even if a pattern is too simple to
be decomposed (e.g., 2-star), Arya performs no worse than
existing sampling-based systems.

Once a pattern is decomposed, we build a parallel sampling
engine to estimate the pattern occurrence by sampling cycles
and stars separately. By extending the edge sampling theory
from [15, 18], we build odd cycle sampler and star sampler
with massive parallelism and construct the sampler for the
original pattern. Each sampler is essentially a sampling trial
aims to find one instance of the pattern with a fixed probability
p: it merges the sampled odd cycles and stars and tests the
remaining edges to find a potential pattern. If the sampled
pattern can be formed, the sampler outputs 1/p; otherwise
zero. With a sufficient number of independent samplers, we
can obtain an estimated pattern count by averaging the outputs
from all samplers (linearity of expectation). To estimate the
number of samplers required to achieve the desired accuracy,
Arya introduces a heuristic inspired by ASAP [44] to build
the Error-Latency Profile (ELP), which takes an error target as
the input and infers relevant parameters (e.g., the number of
samplers) to configure the graph miner based on bootstrapping
(from a small sample of the graph).

With graph decomposition, edge sampling, and a series of
system optimizations (e.g., probability-aware scheduling and
sampler caching), Arya outperforms any existing graph min-
ing systems in scalability. We implement Arya using Mem-
cached to store graph data structures and optimize the most
frequent queries to it (e.g., neighbor edges and vertices). We
deploy Arya onto three computing scenarios: a single server,
a single server with persistent memory, and a cluster with 4
to 32 servers. Our evaluation demonstrates that Arya outper-

forms GraphPi, a state-of-the-art supercomputer-based graph
miner, by up to 5 orders of magnitude while incurring a less
than 5% error. In addition, Arya outperforms the state-of-the-
art approximate mining system [44] by up to 145× and scales
to graphs with multi-billion edges. For example, Arya can
mine a complex 7-vertex pattern in a 5-billion-edge synthetic
graph in several seconds. We open-source Arya and datasets
in https://github.com/Froot-NetSys/Arya.

In this paper, we make the following contributions.

•We present Arya, an approximate graph miner that scales
to large graphs and complex patterns, leveraging advanced
graph decomposition theory and edge-based sampling. (§3)
•We introduce techniques to quickly sample decomposed

subpatterns and reconstruct the original pattern for approx-
imation, based on the latest cycle/star sampling algorithms.
(§4)
•We extend Arya to various distributed settings for hetero-

geneous graph processing scenarios. (§5)
•We show that Arya mines complex patterns in graphs with

5 billion edges using a single machine and 10 billion edges
using multiple machines, a scale that even supercomputer-
based systems failed to achieve. (§6,§7)

2 Background and Motivation
In this section, we discuss the background of graph pattern
mining and approximate mining algorithms. We then describe
the graph decomposition theory that we leverage.

2.1 Graph Pattern Mining
Problem Definition. Graph pattern mining is to find instances
of a given pattern in a graph or set of graphs. A pattern is an
arbitrary subgraph, which represents user-defined properties
attached to the edges and vertices. Pattern mining algorithms
aim to find all subgraph instances (called embeddings) that
match a given pattern of interest. Such matching is usually
done via iterating all subgraphs that are isomorphic to the
input pattern, which is known to be NP-complete. At a high
level, the compute complexity of an exact pattern mining al-
gorithm is associated with the need to iterate over all possible
embeddings in the graph.
Approximate Graph Pattern Mining. Given the search
complexity of exact mining algorithms, approximation-based
approaches become promising. Approximate analytics is
widely used in solving complex big data [58], network teleme-
try [38, 63], and database problems [11], typically with signif-
icantly lower resource overheads. A common idea to perform
approximation is to sample a subset of the input data uni-
formly at random and perform analytical tasks over the sam-
pled data. For instance, uniform sampling (e.g., NetFlow and
sFlow) has been widely used in monitoring network flows.
• Advanced pattern sampling: There is a large body of the-
oretical work on designing sampling algorithms [44, 47, 60]
to mine specific patterns such as triangles and cliques. The
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main difference between these algorithms is the way to sam-
ple a specific pattern. Intuitively, if a sampling approach can
sample a pattern with a higher probability, a smaller number
of samplers is required to achieve high accuracy (and thus a
shorter completion time). For instance, neighborhood sam-
pling is used in ASAP [44]. The main idea of neighborhood
sampling is to continuously sample neighbor edges until the
pattern can be formed. In mining triangles, each neighbor-
hood sampler starts by sampling an edge uniformly at random
and then sampling the second edge from the neighbor edges
of the first edge. If there is a third edge in the remaining
edges that can form a triangle with the existing two edges,
this sampler successfully samples a triangle. Compared to
the standard sampling approach that has a 1/m3 probability
(sampling three edges uniformly at random), neighborhood
sampling has a larger probability 1/m · c to sample a triangle,
where c is the number of neighbor edges of the first edge.

• Limitations of existing sampling-based systems. While
sampling-based approximation is promising in reducing the
computation in graph pattern mining compared to exact algo-
rithms, two significant issues remain:
(1) Scalability remains an issue in mining complex patterns

in (dense) large graphs for systems like ASAP [44]. In
particular, the number of required samplers can be pro-
hibitively large, leading to high computation and memory
costs. Taking neighborhood sampling as an example, it re-
quires O(m2

fp
) to estimate 4-vertex patterns and O(m3∆

fp
) for

5-vertex patterns, where ∆ is the maximum degree in the
graph and fp is the occurrence of the pattern. From 4-vertex
to 5-vertex, the computation complexity is increased by up
to O(m∆), where the number of edges m can be large (e.g.,
Twitter graph [50] has 1.2 billion edges). This complexity
will be increased dramatically for more complex patterns,
and this observation is confirmed by ASAP that they cannot
scale to more than 5-vertex patterns in their large graphs
evaluated in their 16-server testbed.

(2) Using ASAP, one needs to define how to sample a pattern
using their neighborhood API [44]. While it is straightfor-
ward to sample simple patterns (e.g., triangle), sampling
complex patterns is challenging (e.g., triangle-triangle).
For instance, there is only one way to sample a triangle as
described above, but there are multiple ways to sample a
triangle-triangle (two triangles connected by an edge). It is
challenging for developers to figure out all possible sam-
plers when the pattern is even more complex. If samplers
do not cover all possible ways to sample patterns, we can
see severe underestimations in the final results.

2.2 Approximation with Graph Decomposition
The goal of our system, Arya, is to explore a scalable solution
for mining complex patterns in large graphs. One potential
way to improve the scalability is to continuously design and
develop new sampling techniques that can sample patterns

0.5 0.5

0.5

1.0
(a) 5-House (b) An optimal

edge cover.
(c) Decomposition

Figure 1: An example of decomposing a pattern.

with higher probabilities. However, the fundamental limitation
in this direction is that, we need to sample at least these many
of edges and vertices to form a pattern, which implies an
upper bound on how large the sampling probability can be on
a specific pattern [35].

Instead, Arya aims to take another road to improve the
scalability of approximate pattern mining. The question we
ask is that if we cannot improve the sampling technique fur-
ther, can we instead reduce the complexity of the pattern to
be sampled? We find that, graph decomposition theory [30],
which is a powerful tool to reduce the complexity of graph
matching and coloring problems, can also be applied jointly
with existing sampling techniques to reduce the pattern min-
ing complexity. Recent graph theory advances [18] made a
contribution to proving that any subgraph can be decomposed
as a collection of vertex-disjoint odd cycles and stars by solv-
ing an optimal fractional edge cover problem. This decompo-
sition is a desired property for our purposes, as no matter how
complex the patterns are, they can be decomposed into cycles
and stars (tackling issue (2)), and these two subpatterns are
“easier” cases to be sampled (tackling issue (1)).

Definition 1 ([18]). Denote the fractional edge cover of a
pattern P as P(VP,EP), where VP is the vertex set and EP
is the edge set. P(VP,EP) is a mapping φ : EP→ [0,1] such
that for each v in VP, ∑e∈EP,v∈e φ(e)≥ 1. The fractional edge
cover number is ∑e∈EP φ(e).

The optimal fractional cover is to find a subset of edges in
the pattern (covering all vertices) that minimum the fractional
edge cover number ρ(P) (i.e., min ∑e∈EP φ(e)). Intuitively,
the key insight (detailed proofs in [18]-A.2) is that for any
pattern P, there always exists an optimal fractional cover
that maps weights 0.5 to edges that can form odd cycles and
maps weights 1.0 to edges that do not belong to any odd cy-
cle (in the cover). This result is powerful because it ensures
that we can decompose arbitrary patterns into a collection of
odd cycles and stars. Moreover, the analysis further proves
that this decomposition reaches optimal bounds for sampling
arbitrary patterns, which strengthens our confidence in this
decomposition. Thus, we need to calculate the following lin-
ear programming (LP), and construct odd cycles with edges
of weights 0.5 and stars with edges of weights 1.0:

Minimize ∑
e∈EP

φ(e)

s.t. ∑
e∈EP:v∈e

φ(e)≥ 1,∀v ∈VP
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Figure 2: Overall architecture of Arya.

Figure 1 shows a 5-house example to find the optimal
fraction cover as (b), and we then decompose 5-house into a
three-cycle (if the weight φ of each edge is 0.5) and a 1-star
(if the weight is 1.0).

Challenges. While the decomposition technique has provable
theoretical guarantees, there are several challenges in build-
ing a general, distributed system for large-scale approximate
graph mining. First, to be of practical use, once a pattern is
decomposed into subpatterns, we need a distributed process-
ing engine that optimizes the performance of running a large
number of (subpattern) samplers, e.g., how to schedule the
execution of the samplers and scale to distributed settings
with optimized communication. Second, the graph theory we
leverage assumes homogeneous edges and vertices while real-
world graphs are often associated with properties. Therefore,
the mining queries require predicate matching that envisions
the technique to be property-aware. Finally, as an approxi-
mate processing system, we need to allow users to trade-off
accuracy for running time. We need to understand the rela-
tionship between errors and actual running time in both single
and distributed settings.

3 Arya Overview
We design Arya, an approximate graph pattern mining system
leveraging decomposition-based graph sampling. Figure 2
demonstrates the overall architecture of Arya. Arya provides
three operating modes to adjust to different compute scenarios:
(1) Single machine mode that is optimized for local edge
and vertex queries; (2) distributed with replicated graphs
mode where the graph dataset is replicated entirely to multiple
machines; (3) distributed with partitioned graphs mode that
is developed with distributed KV-store (e.g., Memcached) to
support arbitrarily partitioned graphs across machines. We
provide an overview of different components in Arya and how
users can leverage our system to perform approximate mining
tasks for arbitrary patterns.

Arya workflow. Arya allows users to mine arbitrary patterns
in a graph. As an approximate engine, a user can specify an
input pattern and an error budget as follows:
• Input pattern P: The user defines an arbitrary subgraph

P of the input graph as the pattern to mine in Arya. The
user specifies P (in a text file) by adding a list of edges that
form the pattern. This pattern will then be decomposed into

a collection of odd cycles and stars via Arya decomposer.
Unlike prior approximate mining systems, the user does not
need to define the ways to sample the pattern as Arya will
always sample stars and odd cycles for arbitrary patterns.
• Error budget ε: The user specifies an accuracy target by

setting an error budget ε (e.g., 5%) with a confidence inter-
val (e.g., 95%). Arya is expected to output an approximate
result within ε error in time T .
After specifying the input pattern and the error budget, Arya

first decomposes the pattern via the fractional edge cover LP
solver as 1⃝. For building an ELP, the ELP engine will return
a required number of samplers (and time) for the error budget
ε as 2⃝ using the parallel sampling engine 3⃝; or the user
directly specifies the number of samplers to run. Once the
user approves the estimated time, the sampling engine will
perform the approximation and return the estimated count
with the actual run time as 4⃝. The sampling engine also finds
a set of sampled embeddings as 5⃝.
Sampling vs. Enumeration. While Arya shows tremendous
performance improvements on mining various complex pat-
terns, we observe that Arya works best with the following
two assumptions: (1) The graph is dense such that there are
many pattern occurrences. (2) The decomposed subpatterns
need only a few remaining edges to complete the pattern.
For (1), it is a fundamental argument between determinis-
tic enumeration-based approaches and sampling-based ap-
proaches. When the graph is sparse, it is challenging to find a
pattern via random sampling (like “a needle in a haystack”),
while it is a better case for enumeration. For (2), if the de-
composition of a pattern breaks too many edges, each Arya’s
sampler spends extensive efforts on searching the remaining
edges to complete the pattern, degrading the execution per-
formance. If these two assumptions do not hold, Arya may
experience many failed trials and thus requires more samplers.
Therefore, while Arya supports arbitrary pattern mining, the
actual runtime depends on the above two key conditions.

4 Basic Design
We now present how Arya enables ultra-fast graph pattern
mining by combining pattern decomposition and edge-based
sampling as a theoretical foundation. We focus on the single
machine design in this section and extend it to distributed
settings in the next section.

4.1 Pattern Sampling Algorithms
By leveraging graph decomposition theory (§2.2), a pattern
will be represented as a set of vertex-disjoint odd cycles and
stars. Our pattern sampler is to sample the relevant odd cycles
and stars from the graph and check if there exist remaining
edges that complete the pattern. Thus, we introduce two sam-
pling algorithms based on [15, 18] to sample them separately,
then use them to construct the pattern. In the algorithms, we
denote an odd cycle with 2k+1 edges as C2k+1 (k ≥ 1) and a
star with l petals as Sl .
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Algorithm 1 Odd Cycle Sampler
1: Input:
2: Graph G = (V,E) where |E|= m, an odd cycle C2k+1
3: Output:
4: An instance of C2k+1 and sampling probability Pr[C2k+1]

or 0
5: Sample an edge e1 = (u1,v1) from graph such that

d(u1)≤ d(v1). ▷ sample first edge with an order
6: Sample k− 1 edges e2 = (v2,u2), . . . ,ek = (vk,uk) with

replacement from G. ▷ sample rest edges as the cycle
skeleton

7: Sample a vertex n from the neighbors of u1. ▷ One more
8: Check if there are remaining edges

(v1,u2), . . . ,(vk−1,uk),(vk,n) in G. If succeeds, output
C2k+1 and Pr[C2k+1]; otherwise, 0.

Odd Cycle Sampler. At a high level, our goal here is to
sample odd cycles and we can adopt any cycle sampling algo-
rithms (e.g., neighborhood sampling [61] used in ASAP [44]).
In Arya, we attempt to introduce the algorithm shown in [31]
and [18]: first uniformly sample k edges (with the first edge
having an order based on the degree), a neighbor edge of the
first edge, and then test if there are remaining k edges in the
graph to complete a cycle. Compared to ASAP, it is easier for
Arya’s sampler to sample an odd cycle using edge sampling
since the probability of forming an odd cycle is higher. How-
ever, our empirical results show that the two algorithms are
comparable for cycles (§7). We adopt this algorithm for two
reasons: (1) Easy to support longer odd cycles: compared to
neighborhood sampling, most of its sampling phase involves
only random edge sampling, and thus no need to store nested
neighborhood states (e.g. neighbors of neighbors); (2) Easy
to optimize performance with the hash-based graph structures
presented in §4.2 to accelerate queries.

Specially, we present the odd cycle sampler in Algorithm 1.
First, we sample a special (directed) edge e1 = (u1,v1) whose
first vertex does not have a larger degree than that of the
second vertex (Line 5). Second, we sample another k− 1
edges uniformly at random with replacement (Line 6). Third,
we sample a neighbor edge (n,u1) of u1 as the last hoop of
the cycle (Line 7). Finally, we need to test if there are re-
maining k edges in the graph to complete the odd cycle as
(u1,v1),(v1,u2), . . . ,(uk,vk),(vk,n),(n,u1). Since each sam-
pling step is independent, the overall probability to sample
this odd cycle is Pr[C2k+1] = Pr[e1] ·Pr[e2] · · ·Pr[ek] ·Pr[n] =
1
m (

1
2m )

k−1 1
d(u1)

.

Star Sampler. Intuitively, a star consists of a center vertex
and a few petals, and sampling a star can be straightforward.
There is a broad spectrum of theory work using star samplers
as a main or subroutine in various applications (e.g., spar-
sification, clustering, and matching) [15, 18, 49]. Here, we
adopt a common weighted star sampler as in Algorithm 2
(e.g., [15, 18]). We start by selecting a vertex v1 with proba-

Algorithm 2 Star Sampler
1: Input:
2: Graph G = (V,E) where |E|= m, a star Sl with l pedals
3: Output:
4: An instance of Sl and sampling probability Pr[Sl ] or 0
5: Sample a vertex v1 ∈V with probability dv1/2m for any

v1 ∈V . ▷ weighted center vertex sampling
6: Sample l petal vertices uniformly at random from the

neighbors of v1 without replacement . ▷ sample pedals to
complete

7: Output Sl and Pr[Sl ] if succeeds; otherwise, 0.

bility proportional to its degree d(v1) (i.e., d(v1)
2m ). This step is

to sample centers that are more likely to form stars with mul-
tiple petals. In practice, we optimize the query performance
by performing an edge sampling as the way to sample v1. For
instance, if a graph has 50 edges and a vertex v1 has a degree
of 10, randomly sampling an edge is equivalent to sampling
a vertex that is v1 with a probability of 1/10 because there
are 10 edges in the graph that are incident to v1. This sampled
vertex is used as the star center, and we will then sample l
vertices from v1’s neighbors uniformly at random without
replacement. We will either find such an l-star or return zero
from this step. Overall, the probability to sample a star is
Pr[Sl ] = Pr[v1] ·Pr[petal_vertices] =

dv1
2m

(dv1
l

)
.

Approximation for the Original Pattern. We can sample an
embedding of the original input pattern if and only if all associ-
ated odd cycle samplers and star samplers find their instances.
If any sampler does not successfully form their cycle/star
embedding, we will terminate this sampler for the original
pattern and return zero. Once all the decomposed pattern sam-
plers finish, we need to reconstruct the original pattern P by
merging the cycles/stars and testing if the remaining edges
between the cycles and the stars do exist in the graph to form
the pattern. This is the last step of the whole pattern sampler.
During the testing, we list all the possible remaining edges
and check if they exist in the graph until there are enough
checked edges to complete the pattern. If a complete pattern
can be formed with o odd cycles and s stars, the probability
of the sampler is Pr[P] = Pr[C1] · · ·Pr[Co]Pr[S1] · · ·Pr[Ss]. A
sampler outputs R[P] = 1

Pr[P] if a pattern instance is found;
otherwise, it outputs R[P] = 0.

In summary, Arya runs a number of such pattern samplers
in parallel based on ELP. In the final “reduce” phase, if there
are n samplers and sampler i returns result Ri[P], Arya returns
∑

n
i=1 Ri[P]

n as the final result. This is because Arya’s pattern
sampler finds any possible embedding Pi with Pr[Pi]. Suppose
there are #P embeddings of the pattern, the expected output
of a sampler is E = ∑

#P
i=1

1
Pr[Pi]

·Pr[Pi]+0 · (1−Pr[Pi]) = #P.
With more samplers, the average of the sampler outputs will
be closer to the expected value #P. Therefore, Arya trades
more samplers for better accuracy.
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4.2 Sampler-Friendly Graph Structures
We observe that both odd cycle and star samplers involve
a number of specific queries to the graph data, which are
the major computation bottlenecks in the sampler runtime.
To improve sampler performance, we summarize the most
frequent runtime queries and provide simple, yet effective
data structures to accelerate them.

• Edge sampling: sample an edge e uniformly at random
from the graph.

• Neighbor sampling (v, i): perform a neighborhood sam-
pling on v to obtain the i-th neighbor edge (i≤ d(v)) and
check what vertex is associated with this edge.

• Degree checking v: obtain the degree of vertex v.
• Edge checking (u,v): check if vertices u and v form an

edge in the graph.
Given the nature of the queries above in randomized algo-

rithms, we should optimize data stores to accelerate process-
ing. For instance, an edge sampling query can be implemented
unoptimized as drawing a random number from the edge list
[1 . . .m] and taking a linear traversal to find the exact edge.
Instead, we use two auxiliary data stores for performance im-
provements: (1) An edge array that is grouped by vertex with
the requirement that all neighbor edges of a vertex are stored
consecutively. We observe that many public graph datasets
are already stored in this order [6]. (2) A hash table that maps
vertices to their metadata. Specifically, each vertex has an in-
teger as its ID and its metadata containing the vertex’s degree
and the starting index of the vertex in the edge array.

4.3 Advanced Pattern Mining Features
Beyond approximating the occurrences of a pattern in a graph,
Arya provides users with several advanced features.
Predicate matching. A common way of representing the
graph data is in the form of property graph, where user-
defined properties are attached to the vertices and the edges.
Thus, the real-world queries to a property graph may require
to match patterns satisfying certain predicates. For instance, a
predicate matching query can ask for the count of all 5-House
patterns in the graph where all edges are associated with an
organization or all vertices meet a certain type.

Arya supports three types of predicates—at-least-one,
at-least-percentage, and all. For “at-least-one” or “at-least-
percentage” predicates, users are asked to specify a predicate
that is applied to at least one (or a percentage or all) of the
edges or vertices. Arya can support these predicates since a
new property “subgraph” can be maintained and the same
sampling techniques can be applied. To perform a predicate
matching task, we introduce a conservative sampling stage.
We first create an auxiliary graph that contains only the edges
or the vertices that satisfy the predicate. The odd cycle and
star samplers will sample the first (or a percentage of) edges
or vertices from the auxiliary graph and then perform the
rest of the sampling in the original graph. Different from
the non-predicate-case, we need to refine the sampling rates

Algorithm 3 Error-Latency Profile (δ,ε)
Input: Original graph G with M edges, sampled subgraph
g with m edges (with probability r), pattern P with p edges,
error target ε, and confidence 1−δ.
Output: Number of estimators Ne for G

1: avglast ← inf, rangelast ← inf, Nc← 10,000
2: while True do
3: Run Arya 3 times with Nc samplers on subgraph g
4: avgcur← the average count of the 3 trials.
5: rangecur ← the range (max - min) of the 3 trials.
6: ε̃← |avglast −avgcur|/avgcur
7: if rangelast

avglast
< 10% and ε̃ < ε and rangecur

avgcur
< 10% then

8: C← Nε̃2avgcur
mρ(P) , h← avgcur

9: Break
10: Nc← Nc×2, avglast ← avgcur, rangelast ← rangecur

11: Ne← C·Mρ(P)

hε2
rp δ

▷ ρ(P) is known given P

based on the number of matched edges or vertices stored in
the auxiliary data store. In a simple example, the probability
of sampling the first edge uniformly at random is not 1/m
but 1/m∗, where m∗ is the number of edges that satisfy the
predicate. More details can be seen in Appendix A.
Intermediate state caching (e.g., Motifs). We consider two
scenarios when some intermediate states can be cached and
reused. (a) First, when running multiple mining tasks on the
same graph, different patterns may share one or more decom-
posed subpatterns (i.e., odd cycles and stars). For instance,
the decomposed 5-house and triangle patterns share a 3-cycle
subpattern. Thus, Arya automatically caches the previous sub-
graph samplers (3 cycles) to reuse across patterns. (b) Second,
some patterns share the same sampling steps in their samplers
to form the patterns, e.g., one can sample any 4-motif patterns
(except for 3-star) using two 1-star samplers with different
remaining edges to complete the patterns. Thus, Arya does
not need to sample each 4-motif pattern separately.

4.4 Error Latency Profile (ELP)
Arya allows users to tradeoff accuracy for result latency. As
an approximation system, Arya needs to determine the num-
ber of samplers for expected errors and running time. Arya
uses a heuristic to build the ELP. Our experiments in §7.3
demonstrate the accuracy of the ELP.

According to the mathematical analysis in [18, 30] using
Chebyshev’s inequality, decomposition-based sampling re-
quires O(mρ(P)

#P ) estimators to provide a (1±ε)-approximation
to the ground truth (#P) for any ε > 0, where ρ(P) is the mini-
mum fractional edge cover number of pattern P. Furthermore,
the actual number of required samplers is lower bounded by
Cmρ(P)

#P·ε2δ
with probability 1−δ for some constant C. Thus, our

goal is to estimate C for a particular graph and a pattern. We
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achieve this by using a “sparsified” input graph: we uniformly
sample a subgraph from the original graph with probability r
(e.g., 30%), and determine an approximate number of needed
samplers by running varying numbers of samplers and con-
verging to a stable pattern count. The pseudocode is shown in
Algorithm 3. Line 1 gives an initial number of samplers Nc to
start with. For a given Nc, the algorithm runs Arya 3 times to
obtain the average and range of 3 trails in lines 3 to 5. If the
last and current range difference is small enough and when
using the current average result as the ground truth, the last
average estimated result is within the error target (line 7), we
can exit, calculate an estimated C , and treat the current aver-
age result as the estimated ground truth h (line 8). Otherwise,
ELP exponentially increases Nc (line 10) and proceeds again.
Line 11 calculates Ne, the number of samplers for G, based
on C and δ, ε, M and scaled #P.

5 Scaling Arya to Distributed Settings
In this section, we introduce how Arya is scaled to multiple
machines to support larger graphs and more complex patterns.
Naturally, a graph store can be distributed in the following
three ways: (1) distributed replicated graphs, (2) randomly
partitioned graphs, and (3) arbitrarily partitioned graphs. Arya
is designed to support all these configurations and arbitrarily
partitioned graph is the most challenging one. We introduce
several optimizations to improve Arya’s scalability by up to
4.7× over the basic design.

5.1 Distributed Replicated Graphs
Replicated graphs are a common approach for serving input
data in distributed graph mining systems, such as Fractal [33]
and GraphPi [64]. In Arya, the compute can be distributed
directly across the machines if the graphs are replicated. This
is because each sampler is independent and each machine will
be assigned a subset of required samplers to run on its multiple
CPU cores/threads. Each thread takes one sampler at a time.
Once the samplers are assigned, there is no communication
between machines or samplers until the final aggregation of
the results from all the samplers.

5.2 Distributed Partitioned Graphs
The second scenario is when graphs are partitioned to multiple
machines. G-thinker [72] and Kudu [52] are example mining
systems that assume graphs are partitioned among compute
nodes. Similarly, graphs can also be separated from compute
nodes in real-world scenarios. Meta, for example, has its own
cluster of graph store RIPQ [68]. Arya assumes an API (e.g.,
getedge(edgeID), getAdjList(vertexID)) to access partitioned
graphs and can work with either locally partitioned graphs (as
in G-thinker) or remote graph stores.

In practice, many partitioning strategies are possible.
ASAP [44] requires to partition the graph edges uniformly
at random. Graph partition strategies often depend on the
workloads (e.g., PageRank [59]). In addition, the graphs may

need to be partitioned based on strategies to be compliant
with security and privacy requirements, such as GDPR [3]
and GDPR-Neo4j [5]). Unlike ASAP, Arya makes no assump-
tions about partitioning strategies.

Arya extends its design from replicated graphs to parti-
tioned graphs, with one major challenge to overcome. In
contrast to the replicated graph scenario, a graph is parti-
tioned into slices to compute nodes; each node’s samplers
will have a potentially large number of random accesses to the
graph data stored in other nodes. This poses significant scal-
ing challenges for Arya on partitioned graphs: Arya will be
constrained by network communication overheads. A single
triangle sampler, for example, entails six graph queries (1 edge
sampling, 3 degree checkings, 1 neighbor sampling and 1 edge
checking). Each triangle sampler in the Friendster graph [74]
generates around 6KB network traffic. To count triangles in
Friendster with a 5% error, we will need at least 4 million sam-
plers, which translates to 20 million graph queries and 23GB
of network traffic. The comptation-communication ratio is
approximately c p

(p−1) , where c is a constant depending on
the pattern and graph, and p is the number of partitions. The
detailed analysis is defered to Appendix C. While the interme-
diate state caching technique can help reduce communication
costs, Arya introduces two more techniques for communica-
tion reduction: (1) probability-aware sampler scheduling and
(2) batched sampling and communication.

Technique 1: Probability-aware sampler scheduling. A key
observation we have is that different decomposed subpattern
samplers (e.g., triangle vs. 2-star) have different probabilities
to fail (not finding one). According to our Mico graph profil-
ing, a 2-star sampler has a 0.5% failure probability while a
triangle sampler has a 92% probability to fail. This is because
simpler structures are more likely to be sampled than com-
plex structures in a graph. Based on this observation, we can
save communication overheads if we sample these likely-to-
fail subpatterns earlier. A lot of such samplers will fail early
and we can prune them without running other subpattern
samplers.We note that after decomposition, each subpattern
sampling occurs independently, and thus the order of subpat-
tern sampling has no effect on the original pattern sampling’s
success/failure probability and overall accuracy. Taking the
triangle-2star pattern as an example: for each pattern sampler,
if sampling the triangle first, it is more likely to fail (92%)
and there is no need to sample 2-star in 92% of the cases.
Hence, we schedule subpattern samplers in the order of their
sampling failure probabilities to achieve better performances.

To do so, we must address an important question: how
do we know which subpattern samplers are likely to fail?
The answer depends on the pattern and graph. Given the
static graph, Arya first offline profiles failure probabilities
of popular subpatterns (such as 2-star, triangle) in a small
number of trials. Then each pattern counting task can query
the failure probability profile for any subpattern samplers.
When the failure probability of a subpattern is not in the
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profile, we perform an online profile by letting the first set
(e.g., 10%) of the samplers collect the failure probabilities
information without early pruning. These probabilities will
be used to schedule the remaining samplers. This technique
is applied to all Arya versions.

Now, we analyze the overheads of Arya’s offline and on-
line profiles. The cost of offline failure profiling is minimal
because the overheads are amortized by all queries to the
graph, and profiling is limited to simple common subpatterns.
For example, profiling simple 2- to 5-stars and triangle sub-
patterns for the Friendster graph takes only 220ms even for
less than 5% error results, whereas a single 5-node pattern
query to Friendster can take tens of seconds as we will show
in Figure 5(b).

Arya’s online failure probability profiling trades off early
pruning opportunities in the query’s first 10% samplers for
better subpattern sampling order in its remaining 90% sam-
plers. This approach produces runtime comparable to Arya
with perfect subpattern sampling order pre-knowledge and
significant improvements over Arya with the worst subpattern
sampling order. We use 10% as we found it to be adequate
for accurate simple subpattern failure probability profiling.

If the profiled failure probability is inaccurate (which is
uncommon as subpatterns are simple patterns that are easy to
estimate), Arya may use suboptimal subpattern sampling or-
ders. In this worst case, probability-aware sampling performs
similarly to the case of no early pruning.

Technique 2: Batched sampling/communication. Arya re-
duces overheads from the network stack by using batched
sampling and communication. One Arya thread advances a
batch of samplers at the same time (vs. progress one sam-
pler until it finishes). When a graph query is required in a
sampler, the thread buffers the query and pauses the sampler
before moving on to the next sampler in the batch. When all
of the samplers in the batch are waiting for graph queries,
the thread will begin its batch communication with the graph
store (i.e., send out the queries we buffered, for example, with
Memcached multi-get).

6 Implementation
We build Arya for both single-machine and distributed graph
computing scenarios. The pattern decomposition logic is im-
plemented with Python, and the core components of Arya are
written in C++ with 11K LOC. We open-source Arya at [2].

Pattern Decomposition. Arya takes an arbitrary pattern as
input and outputs a set of stars and odd-cycles via a pattern
decomposition logic. As discussed in §2.2, Arya will find the
optimal fractional cover of the input pattern. We use scipy
linear programming package to find the optimal cover: it
takes only 900ms on a single server to decompose complex
20-vertex patterns and less than 400ms for less complex pat-
terns that have fewer than 10 vertices. This running time is
negligible compared to the total mining time.

Graph Sampler. There are three versions of sampling logic
written in C++: single-machine, distributed replicated graph,
and distributed partitioned graph. The former two versions
access in-process graph stores, while the distributed parti-
tioned graph version accesses remote graph stores (e.g., Mem-
cached) via TCP. To parallelize the samplers, all Arya ver-
sions employ multi-threading. Single-machine version and
distributed replicated graph version use the work-stealing
algorithm dynamically scheduling computations. A commu-
nication thread distributes tasks when the total number of
samplers is smaller than required and uses asynchronous com-
munication primitives for work stealing. Worker threads re-
turn the results from a batch of samplers to the communication
thread when they finish a task. Worker threads then execute
the next batch of samplers. We can configure the granularity
of a sampling task. For distributed partitioned graph imple-
mentation, the master process will initiate samplers on each
machine and collect results from each machine when the
sampling phase is completed. For evaluating ASAP in a fair
setting, we implement ASAP graph samplers using Arya’s
system API (which is faster than Spark used in ASAP), in-
cluding accessing the graph structures and performing edge-
and node-related queries.

7 Evaluation
We evaluate Arya on a variety of open-source and synthe-
sized graphs and compare it to the state-of-the-art approx-
imate mining system (ASAP [44]) and exact mining sys-
tems (Single-machine: Peregrine [45], DwarvesGraph [26],
AutoMine [54]. Distributed: Fractal [33], GraphPi [64], G-
Thinker [72], Kudu [52]). Our experiments demonstrate:
• Compared to single-machine exact mining systems, Arya

is up to 105,365× faster than Peregrine within a 5% loss
of accuracy when counting complex patterns. To the best of
our knowledge, Arya is the first system capable of mining
complex patterns (>6 vertices) on giant graphs.
• Compared to distributed mining systems, Arya outperforms

Fractal by 62× to 56,842× and GraphPi by up to 988×.
• Compared to ASAP, Arya can mine arbitrary patterns in

both single-machine and distributed settings. Arya is up to
145× times faster on a single machine and 55× faster in
distributed settings, with a 5% error target.
• Arya’s probability-aware scheduling and batched sampling

techniques are effective for speeding up Arya by up to
4.7×.

Datasets and baselines. We compare Arya to state-of-the-art
systems using a set of representative graphs as in Table 1. We
obtain the ground truth via running deterministic mining sys-
tems such as GraphPi [64] and Peregrine [45]2. For datasets
used in distributed partitioned graph experiments, the graph

2We are unable to get the mining results of P3 and P4 patterns [64] in
the Twitter graph because all tested deterministic miners including GraphPi
experienced system crashes or their running time exceeded 24 hours.
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Size Graph Nodes Edges Degrees

Medium Mico [37] 100,000 1,080,298 22
Youtube [51] 1,134,890 2,987,624 8

Large Twitter [50] 41.7 million 1.2 billion 36
Friendster [75] 65.5 million 1.8 billion 28

Giant RMAT-5B 500 million 5 billion
RMAT-10B 1 billion 10 billion

Table 1: Graph datasets used in the evaluation. We use the RMAT

model [48] to generate small and giant synthetic graphs. In the RMAT model,

we used default parameters (a,b,c,d) as (0.44,0.22,0.22,0.22).

5-House Triangle-Triangle 3Star-2Star

P25Star-5Cycle7Cycle-2Chain

P3

P4

Figure 3: Evaluated complex patterns.

is partitioned based on node index hash into relatively similar
sizes, and edges belonging to the same node are put into one
partition. Since we do not have access to (single-machine)
Automine, DwarvesGraph, and (distributed) Kudu, we refer to
their performance numbers in a similar setup. Since ASAP is
built on Spark, we reimplement its sampling approach using
our API for a fair comparison.
Hardware testbed. Our experiments are carried out in
three different hardware configurations: (1) Single-machine
DRAM, which has 20 CPU cores and 188 GB of DRAM. (2)
Single-machine PMEM (persistent memory) with additional 4
× 128GB Intel Optane DCPM. (3) Distributed settings with 4
to 32 machines in a cluster, each with the same configuration
as the single-machine-DRAM. The testbed CPUs are Intel
Xeon Silver 4114 clocked at 2.2Ghz per core.
Evaluated patterns. We evaluate both simple patterns (Tri-
angle and 4-Motif) and complex patterns. Most prior systems
did not evaluate patterns larger than 5-vertex while Arya can
mine arbitrary patterns in large graphs. We describe the com-
plex patterns we evaluate in Figure 3.

7.1 Single-Machine Performance
Overall Performance. We first compare Arya to Peregrine,
Automine, Dwarvesgraph, and GraphPi. As shown in Table 2,
we evaluate both simple patterns (triangle, 3-Motif) and com-
plex patterns of up to 11 vertices on medium (Mico) and
large graphs (Friendster). We also mine the extremely com-
plex patterns such as 3Star-2Star. The results show that Arya
significantly outperforms existing systems, particularly in
complex patterns. On Mico, complex patterns (3Star-2Star,
7Cycle-2Star, 5Star-5Cycle) always take longer than 24 hours
or crash. The long running time of Peregrine illustrates that

Pattern Graph System Runtime Error/Speedup

Triangle Mico Arya 22ms 0.74%
Peregrine 46ms 2×
GraphPi 3.5s 159×

Friendster Arya 15ms 1.24%
Peregrine 11.3s 782×
GraphPi 770.5s 51367×

3-Motif Mico Arya 36ms 0.09%
Peregrine 67ms 1.8×
DwarvesGraph 48ms 1.3×
AutoMine 161ms 4.4×
GraphPi 6.86s 190×

Friendster Arya 59ms 0.71%
Peregrine 20.6s 349×
GraphPi 804.4s 13634×

4-Motif Mico Arya 1.0s 0.42%
Peregrine 5.2s 5.2×
DwarvesGraph 1.3s 1.3×
AutoMine 22s 22×
GraphPi 21s 21×

Friendster Arya 13248s 0.76%
Peregrine 2158s 1/6×
DwarvesGraph 4369s 1/3×
GraphPi 4399s 1/3×

3Star-2Star Mico Arya 0.8s N/A
(7 vertices) Peregrine >24h 105365×

GraphPi 2.33s 2.91×
Friendster Arya 287s N/A

Peregrine Crashed N/A
GraphPi 924s 3.22×

7Cycle-2Chain Mico Arya 4s N/A
(9 vertices) Peregrine Crashed N/A

GraphPi Stuck N/A

5Star-5Cycle Mico Arya 211s N/A
(11 vertices) Peregrine >24h 409×

GraphPi Stuck N/A

P3 [64] Mico Arya 11s 2.5%
GraphPi 8.7s 1/1.2×

P4 [64] Mico Arya 6.7s 1.6%
GraphPi 13.3s 2×

Table 2: Single-machine DRAM: Arya vs. Peregrine, Dwarves-
Graph, Automine. This table summarizes runtime of Arya and other

graph engines on various patterns (first column) and graphs (second column).

Arya has a 5% error target.

existing exact mining systems are fundamentally incapable
of mining complex patterns. In contrast, Arya counts 3Star-
2Star in Mico in 0.8s, outperforming Peregrine by 105,365×.
We observe that while GraphPi completes mining star-related
patterns, their results were incorrect, which prevents us to
evaluate Arya’s errors in some cases.

In this setting, we also explore an undesirable scenario for
Arya (and any sampling-based approaches). In the Friendster
graph, the occurrence of 4-Motif is relatively “sparse”, making
sampling-based approaches fundamentally more challenging
to sample patterns. This is due to the “searching a needle in
a haystack” effect and it is an ideal case for traversal-based
solutions. Thus, in this scenario, Arya is running 3 to 6 times
slower than exact mining solutions.

Table 3 shows results for Arya’s intermediate state
caching technique under the scenario when running three
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Mico Triangle-Triangle 5-House Triangle

No Cache 13.3s 4.8s 0.079s

Cache 14.6s 3.0s 0.037s

Speed Up/Down 0.91× 1.6× 21.2×
Youtube Triangle-Triangle 5-House Triangle

No Cache 188.7s 297.9s 0.32s

Cache 198.7s 127.6s 0.011s

Speed Up/Down 0.95× 2.3× 27.9×

Table 3: Arya’s intermediate state caching technique. This table

summarizes runtime and speedup of applying intermediate state caching

technique when mining three patterns consecutively. Since these patterns

share a common subpattern triangle, Arya caches the triangle samples in

mining Triangle-Triangle and reuse them in the 5-House mining. Similarly,

Arya also caches additional triangle samples when mining 5-House. These

cached triangle samples accelerate the Triangle mining task significantly.

Pattern Graph System Runtime

Triangle RMAT-5B Arya (10%) 89s
RMAT-5B Arya (5%) 337s
RMAT-5B Peregrine Crashed

3Star-2Star RMAT-5B Arya (10%) 395s
RMAT-5B Arya (5%) 1583s
RMAT-5B Peregrine Crashed

Table 4: Scaling single-machine Arya to giant graphs with
PMEM. This table summarizes runtime of Arya (10% and 5% error

rates) and Peregrine when mining on RMAT-5B.

mining tasks (Triangle-Triangle, 5-House, and Triangle) on
the same graph. Arya can mine multiple patterns one by one.
Except for the last pattern Triangle, the sampled subpatterns
and their actual sampling probabilities are cached; starting
from the second pattern, we can reuse the cached subpatterns
instead of sampling new ones and thus the running time is
reduced. This experiment shows that when mining multiple
patterns with shared subpatterns, Arya can achieve significant
speedups (e.g., up to 27.9× for the last task) as the perfor-
mance bottleneck is sampler computation and performing
caching has negligible performance overheads.

We add persistent memory into the single machine to
mimic large memory machines. On a giant 5-billion-edge
graph (RMAT-5B), Arya counts triangles in 337 sec and mines
a complex pattern of 7 vertices (3Star-2Star) in less than
30min while Peregrine fails to complete (Table 4).
Arya vs. ASAP. Figure 4 compares the running time of Arya
and ASAP for different error rates. Both approximate sys-
tems, as expected, require more samplers to achieve lower
error rates. However, the performance differences of the two
approaches lie in two key factors: (1) the number of samplers
needed and (2) the running time of each sampler. Compared to
ASAP with the same error rate, Arya usually achieves better
runtime because it requires fewer samplers (due to decom-
position) and/or individual samplers run faster (due to Arya

uses edge sampling while ASAP uses neighborhood sam-
pling and Arya’s system optimizations). For instance, when
the graph is large (e.g., YouTube), the pattern is complex
(e.g., 5-House, Triangle-Triangle), Arya requires fewer sam-
plers, each of which is also faster than that of ASAP. Thus,
for example, Youtube graph and 5-House pattern (Figure 4
(c)), Arya achieves less than a 5% error rate in 1.2s, whereas
ASAP takes 3 min (145× slower). For small dense graphs
(e.g., Mico, Figure 4 (b)), Arya and ASAP have comparable
performances because they require comparable numbers of
samplers, and their samplers have similar running times.

7.2 Scaling Arya on Distributed Settings
Arya can mine graphs that are (a) replicated across servers and
(b) partitioned across servers (e.g., simulating geo-distributed
graphs). We use a cluster with 4 to 32 servers.

7.2.1 Distributed Replicated Graphs

When graphs are replicated across nodes, Arya mines on each
node in parallel and aggregates sampled results in a “reduce”
phase. Many existing systems (e.g., Fractal and GraphPi) scale
to multiple nodes using replicated graphs.
Overall performance. As depicted in Table 5, we compare
Arya to Fractal and GraphPi on a 4-node cluster. In sum-
mary, Arya outperforms both Fractal and GraphPi, especially
when graph is large and pattern is complex. For example,
when mining triangles on the Twitter Graph, Arya achieves a
988× speedup over GraphPi. When the pattern is changed to
Triangle-Triangle (a 6-vertex complex pattern), neither Frac-
tal nor GraphPi can complete execution within a day, whereas
Arya takes only 393 seconds. Overall, our results show that
Arya has a significant advantage when mining complex pat-
terns on large graphs.

Table 6 compares the performance of Arya, GraphPi, and
ASAP (Spark version) on larger clusters. Arya outperforms
both ASAP (by up to 55×) and GraphPi (by up to 1084×) on
simple (e.g., 3-Motif) and complex patterns (e.g. 5-House).
Referring to one of GraphPi’s pattern (P2) mining results
on a world-class supercomputer (up to 1024 nodes), we can
see that approximate graph mining system Arya can achieve
even better performance with only 16 nodes, demonstrating
significantly better scalability.

Scalability in a Cluster. Figure 6 illustrates how Arya scales
as more nodes (or cores) are added to the cluster. The runtime
of Arya decreases as more machines are assigned to it. Arya
can scale for both small and large graphs, whereas GraphPi
cannot scale for larger Twitter graph with more than eight
nodes. We find that the scaling of Arya is slightly worse
than linear scaling. This is due to increased synchronization
overheads of the final results when there are more nodes.

7.2.2 Distributed Partitioned Graphs

Unlike in a replicated graph setup, the graphs are partitioned
across machines, and Arya samplers now require communi-
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(a) Youtube, 4-Chain (b) Mico, 5-House (c) Youtube, 5-House (d) Youtube, Triangle-Triangle

Figure 4: Comparing ASAP and Arya on running time vs. actual errors. This figure compares ASAP (our reimplementation for fairness) and

Arya’s running time (y axis) v.s. estimation errors (x axis, descending order). We report median absolute error rate |%| from 10 runs of each experiment. As

shown, Arya requires fewer samplings and less runtime for the same error rate as ASAP, especially for large graphs and complex patterns.

(a) Batching - Friendster, 8 Nodes (b) Probability-aware sampler
scheduling

Figure 5: Effectiveness of Arya batching and probability-aware sampler scheduling. This figure compares the performance of Arya with and

without 1) batching and 2) probability-aware sampler scheduling techniques. In figure (a), Arya_NoBatch represents Arya without batching. Arya_KBatch

represents Arya with K batched sampling and batched communication. We vary K between 10 and 1000. In figure (b), Arya_NoPruning represents the basic

version of Arya, which samples all sampling blocks and then judges them all together. Arya_Sorted represents Arya when sampling according to the fail

probability of each sampling block and terminating the estimator after any block fails. Arya_ReverseSorted is Arya that does sampling based on fail probability

in a descending order.

(a) Mico, ∆_∆ (b) Twitter, 5-House (c) Friendster, 4-Chain

Figure 6: Scalability of Arya. This figure shows the performance of

Arya when the number of nodes (cores) with replicated and partitioned graphs

varies. We examine both small (Mico) and large (Twitter and Friendster)

graphs, as well as various patterns. The letter ‘T’ indicates that the execution

time exceeds 24 hours. ∆_∆ denotes Triangle-Triangle pattern. (a) and

(b) shows the scalability of replicated-graph version Arya compared with

GraphPi. (c) shows the replicated-graph and partitioned-graph versions

of Arya compared with single-thread Arya showing the COST metric on

Friendster graph and 4-Chain pattern, where “Parti” represents partitioned-

graph version and “Repli” represents replicated-graph version.

cations with remote nodes to obtain the necessary sampled
edges or neighbors of vertices for testing. In this experiment,
graphs are partitioned into machines based on their vertices
and associated edges, and is stored in a Memcached instance
on each machine. For simplicity, we evenly partition the graph
to Memcached nodes.

Effectiveness of Arya Scaling Techniques. We begin by
demonstrating the efficacy of batching and probability-aware
scheduling techniques in improving Arya performance on

partitioned graph setups. As shown in Figure 5 (a), batching
can significantly improve Arya performance on partitioned
graph setups. Batching improves Arya 2-Star, Triangle, and
4-Chain mining by 4.5×, 3.2×, and 4.7×, respectively, on
eight nodes with Friendster graph. Because we’ve found that
batching more than 100 samplers together yields minimal
benefits, we set the default batching size to 100.

Figure 5 (b) shows how probability-aware sampler schedul-
ing can help with Arya mining complex patterns. In this
experiment, we use two nodes and the Mico graph. As an
example, consider the following subpatterns: 2-Stars, trian-
gle, and 5-Cycle. These subpatterns have very different sam-
pling success probabilities: 2-Stars: 99.5%, Triangles: 8%,
and 5-Cycles: 0.09%. When mining complex patterns con-
taining these subpatterns, we can see that Arya samples with
sorted likely-to-fail subpattern samplers and the early prun-
ing achieves up to 2.3× (for 5Cycle-Triangle-2Star) better
performance than no pruning. Arya’s samplers with other
orderings of subpatterns (e.g., ReverseSorted) cannot achieve
comparable performance to fail probability sorted sampling.

McSherry’s COST metric [55]. Figure 6 (c) shows the scal-
ability of Arya’s distributed replicated and partitioned ver-
sions compared with the runtime of a single thread Arya. The
replicated version’s COST is around 2.7 cores because the
MPI implementation uses a master thread to poll results from
worker threads, using at least 1 core. The partitioned version’s
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Pattern Graph System Runtime Error/Speedup

Triangle Mico Arya 0.5s 0.74%
Fractal 145s 278×
GraphPi 5.4s 10×

Youtube Arya 0.55s 0.78%
Fractal 317s 576×
GraphPi 38s 69×

Twitter Arya 3.8s 0.96%
Fractal >24h 22,736×
GraphPi 3755s 988×

4-Motif Mico Arya 3.3s 0.42%
Fractal 205s 62×
GraphPi 33s 10×

Youtube Arya 123s 0.42%
Fractal 29966s 243×
GraphPi 219s 1.8×

Twitter Arya 360s 0.23%
Fractal failed N/A
GraphPi >24h 240×

5-House Mico Arya 0.8s 0.63%
Fractal 1822s 2366×
GraphPi 6.3s 8×

Youtube Arya 18s 0.65%
Fractal 2479s 142×
GraphPi 36s 2×

Twitter Arya 265s 4.06%
Fractal failed N/A
GraphPi >24h 326×

∆_∆ Mico Arya 1.5s 0.71%
Fractal >24h 56,842×
GraphPi 560s 368×

Youtube Arya 15s 1.13%
Fractal >24h 5760×
GraphPi 11696s 779×

Twitter Arya 393s N/A
Fractal failed N/A
GraphPi >24h 220×

Table 5: Distributed replicated graphs (4-nodes).

COST is around 13 cores due to large communication costs
in Memcached. In this version, scaling 1-core to 16-core ex-
periments run on a single machine, and 32-core and 64-core
experiments run on 2 and 4 machines of 16 cores.
Overall performance. Table 7 summarizes Arya’s overall
performance in comparison to G-thinker and Kudu. Kudu is a
system that converts single-machine or distributed replicated
graph mining systems (such as GraphPi and Automine) to
partitioned graph setups. As shown in the table, Arya out-
performs all existing exact graph mining systems on small
(e.g., Mico) and large (Friendster) graphs, mining simple (e.g.,
2-Star) and complex patterns (e.g., Triangle-2Star). The im-
provement is most noticeable on complex patterns. G-thinker,
for example, fails to execute both Triangle-1Star and Triangle-
2Star on a small Mico graph within a day; however, Arya can
finish in seconds, yielding a speedup of more than 44000×.
Mining 10-billion edges graph on a large cluster. Table 8

Pattern Graph System Runtime Error/Speedup

3-Motif Twitter Arya, 16 × 8 2.8s 0.34%
ASAP, 16 × 8 150s 55×
GraphPi, 16 × 8 2971s 1084×

5-House Twitter Arya, 16 × 16 60s 4.06%
ASAP, 16 × 16 738s 12×
GraphPi, 16 × 16 > 24h 1440×

∆_∆ Twitter Arya, 16 × 20 100s N/A
GraphPi, 16 × 20 > 24h 864×

P2 [64] Twitter Arya, 16 × 20 856s N/A
GraphPi, 16 × 20 23.2h 98×
GraphPi, 128 × 24 10000s 12×
GraphPi, 1024 × 24 3000s 3.5×

P4 [64] Twitter Arya, 16 × 20 1600s N/A
GraphPi, 16 × 20 > 24h 54×

Table 6: Comparing Arya, GraphPi, and ASAP on larger clus-
ters. This table presents Arya/ASAP/GraphPi runtime on different clusters.

The “system” column indicates system, the number of machines × the num-

ber of cores per machine. Arya is set to a 5% error target. GraphPi, 128 ×
24 and 1024 × 24 results are picked from GraphPi paper [64].

Pattern Graph System Runtime Error/Speedup

2-Star Friendster Arya 4 Nodes 0.58s 0.70%
G-thinker 4 Nodes 52.4s 90×
Arya 8 Nodes 0.64s 0.70%
G-thinker 8 Nodes 30.8s 48×

Triangle Friendster Arya 4 Nodes 0.94s 1.24%
G-thinker 4 Nodes 99s 105×
Arya 8 Nodes 0.76s 1.24%
G-thinker 8 Nodes 58s 76×
Kudu-GraphPi 8 Nodes 79s 104×
Kudu-Automine 8 Nodes 84s 110×

Triangle-1Star Mico Arya 2 Nodes 1.93s 0.95%
(5 vertices) G-thinker 2 Nodes >24h 44766×

Triangle-2Star Mico Arya 2 Nodes 1.73s 0.40%
(6 vertices) G-thinker 2 Nodes Crashed N/A

Table 7: Distributed Partitioned Graphs: Arya vs. G-thinker
vs. Kudu-GraphPi, Kudu-Automine. This table compares Arya and

G-thinker and Kudu performance on partitioned graphs. The system column

indicates both system name and how many nodes the graph is partitioned to.

shows the Arya runtime with 32 nodes mining patterns on a
10 billion edges graph (RMAT-10B). As shown in the table,
Arya can mine huge graphs quickly. It completes triangle
counting in 22 minutes for a 5% error rate and 358s for a
10% error rate. When mining 4-Chain, we see similar levels
of speed. Arya can mine complex patterns even though it
requires more time of sampling on a huge graph; for example,
for a pattern with 7 vertices like 3Star-2Star, Arya finishes in
4.2h with a 10% error rate.

7.3 Effectiveness of Arya ELP
Finally, we evaluate the effectiveness of Arya Error-Latency
Profiling. In this experiment, we compare the actual error vs.
the predicted error from Arya ELP given a variety of amount
of samplers. The Arya runtime is proportional to the number
of samplers. As depicted in Figure 7, we investigate various
patterns (Triangle and 3-Star) on various graphs (Youtube,
Friendster, Twitter). We build the error profile by running
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Pattern Graph System Runtime

Triangle RMAT-10B Arya (10%) 358s
RMAT-10B Arya (5%) 1275s

4-Chain RMAT-10B Arya (10%) 171s
RMAT-10B Arya (5%) 688s

3Star-2Star RMAT-10B Arya (10%) 4.2h
RMAT-10B Arya (5%) 16.5h

Table 8: Arya mining 10-billion edges huge graph. This table

summarizes runtime of Arya (10% and 5% error rate) when mining on RMAT-

10B on a 32-node cluster.

(a) Youtube, Triangle (b) Friendster, Triangle (c) Twitter, Triangle

(d) Youtube, 3_Star (e) Friendster, 3_Star (f) Twitter, 3_Star

Figure 7: Relative errors vs. number of estimators for YouTube,
Friendster, and Twitter graphs. Actual error is obtained by compare

Arya results with ground truth, and profiled error is the error estimated by

ELP given a number of samplers.

different numbers of samplers. We run ten trials for each
x-axis value and report the median and variance error bars.
As we can see, Arya ELP yields good upper bounds for the
required error targets.

8 Related Work
Single-machine mining systems. A number of single ma-
chine exact mining systems have been proposed [26, 28, 43,
45, 54, 70]. These systems leverage a wide spectrum of sys-
tem optimizations to prune the intermediate state and accel-
erate the subgraph exploration process. For instance, Pere-
grine [45] focuses on pattern-aware techniques to reduce the
exploration of unnecessary subgraphs. Essentially, it prunes
the incomplete subgraphs early if they cannot later form the
pattern. Automine [54] and RStream [70] use guided explo-
ration strategies but reduce memory usage. The fundamental
performance bottleneck of these exact systems is that regard-
less of how optimized the exploration techniques are, one must
still explore all the patterns in the graph. When the pattern
occurrences are dense in the graph, this bottleneck will be
significant. Arya leverages decomposition-based sampling,
which significantly reduces exploration complexity. Another
related work is DwarvesGraph [26], which also uses a type
of pattern composition to count the decomposed subpatterns
separately and thus reduces the overall computation. How-
ever, DwarvesGraph’s decomposition technique cannot be

applied with sampling techniques to further reduce search
complexity. Some related architecture works leverage dif-
ferent architectures and hardware to accelerate enumerating
graph patterns [27, 62, 65–67], while Arya and compared
baselines run on general-purpose CPUs.

Distributed mining systems. To scale graph mining tasks
on larger graphs, a wide range of distributed mining systems
are proposed [10, 17, 25, 33, 53, 64, 69, 72]. Recent sys-
tems such as Fractal [33] and GraphPi [64] focused on sup-
porting general-purpose mining tasks. Fractal extends the
“embedding-aware” processing model by introducing the con-
cept of fractoids and reduces the complexity of its depth-
first search exploration. GraphPi is a high-performance graph
miner that optimizes computation and communication over-
heads by introducing a 2-cycle-based automorphism elimina-
tion algorithm. GraphPi scales to supercomputers (up to 1024
compute nodes) to support complex pattern mining in large
graphs. Arya’s decomposition-based sampling technique fur-
ther improves the scalability by several orders of magnitude.

Graph approximation theory. There have been rich efforts
from theory community to analyze and propose approximate
graph algorithms for various graph analytical tasks [12, 13, 18–
20, 32, 42, 60, 71]. Among these efforts, only a small subset
of them are used in graph systems. None of them are aimed
at distributed scenarios, nor do they introduce methods to
understand the real-world performance of the algorithms. To
bring theory into practice, we entail careful understanding of
the algorithmic tradeoffs and the actual computation scenarios.
We leverage this rich theoretical foundation to further improve
the sampling-based approximate systems and propose a series
of sampling-friendly optimizations.

9 Conclusions

We observe that existing graph pattern mining systems cannot
scale to complex pattern mining over large graphs as they
fail to cope with the explosively growing mining complexity.
We propose Arya as an approximate graph miner that com-
bines graph decomposition theory with sampling techniques
to achieve optimized mining complexity over arbitrary pat-
terns. Arya can deal with large billion-level graphs even in a
single machine and can scale to larger graphs in distributed
settings. Our evaluation demonstrates that Arya outperforms
state-of-the-art mining systems by up to five orders of magni-
tude. We posit that Arya can potentially be applied to extreme
mining scenarios (e.g., trillion edges) on a small computing
base, and we plan to explore this for future work.
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A More Details on Predicate Matching
In predicate “all”, queries specify a predicate that is applied

to every edge or vertex. For instance, one can query “5-House
patterns where all edges have the property NSDI”. To support
such a query, Arya introduces a conservative sampling stage
to generate a new graph (of edges and their vertices) from
the original graph, where the predicate condition is applied to
every edge; and in the sampling phase, Arya runs only on this
new property graph. This step ensures that “all” edges match
the predicate.

In predicate “at-least-one”, queries specify a predicate that
is applied to at-least one edge or vertex. For example, one
such query is “5-House patterns where at-least-one edge has
a weight > 66”. To support such predicate queries, we change
the runtime workflow to take two passes on the graph. In the
first pass, edges matching the predicate of weight > 66 are
generated as a new graph. In the second pass, every sampler
picks the first edge randomly from the new graph. This en-
sures that the pattern found by the sampler (if it does find
one) meets the predicate. For the rest of the edges, the sam-
pler continues sampling on the original graph, which can add
zero or more edges that satisfy the predicate. If a duplicated
edge is found, we disregard this sampler. This ensures that the
probability analysis of Arya to estimate the error still holds.

Similarly, in the predicate “at-least-percentage”, we use
the two-pass approach as in the predicate “at-least-one”. The
only difference is we need to sample a percentage of edges
from the newly generated graph.

B Detailed Explanation of Sampling Algo-
rithms

In this section, we introduce the data structures and prob-
ability calculation used in the decomposition sampling. Al-
gorithm 4 and Algorithm 2 describe the building blocks of
decomposition sampling in our implementation as [18]. We
use sampler trees as sampling data structures for maintaining
the (inverse) probability. Figure 8 shows a (2k+1)-odd cycle
sampler tree and an l-star sampler tree representation. Each
subpattern (an odd cycle or a star) always has a two-layer
sampler tree structure. The first layer is a root node, the sec-
ond layer contains one or more nodes as leaves and we assign
the inverse probability to each leaf.

Odd Cycle Sampler Tree. In Figure 8 (a), e1, ...,ek in the
cycle sampler tree root denotes first k edges sampled in Algo-
rithm 4 (line 5 and 6) and n1, ...,nb in b leaves denotes vertices
sampled in line 7 and 8 where b = ⌈d(u1)/

√
m⌉. This set of

nodes and edges can potentially form at most b (2k + 1)-
odd cycles in the original graph which are represented in b
branches in the cycle sampler tree. The inverse probability
of one leaf i is Pri[C2k+1] = Pr[e1] ·Pr[e2] . . .Pr[ek] ·Pr[ni] =
1
m (

1
2m )

k−1 1
d(u1)

if the root edges and the node in the leaf can

Algorithm 4 Odd Cycle Sampler Tree
1: Input:
2: Graph G = (V,E) where |E|= m, an odd cycle C2k+1
3: Output:
4: A set consisting of C2k+1 or 0
5: Sample an edge e1 = (u1,v1) from graph such that

d(u1)≤ d(v1). ▷ sample first edge with an order
6: Sample k−1 edges e2 . . .ek with replacement from G. ▷

sample rest edges as the cycle skeleton
7: for i = 1 to ⌈d(u1)/

√
m⌉ do ▷ Sample last hoop edge

8: Sample a vertex ni from the neighbors of u1.
9: Test if there are edges in G to complete an odd cycle.

form an odd cycle; otherwise, the inverse probability is de-
fined as Pri[C2k+1] = 0.

Star Sampler Tree. In Figure 8 (b), v in the root node is the
central vertex of the star and v1, ...,vl in the leaf node are l
petals. The inverse probability of the leaf is Pr[Sl ] = Pr[v] ·
Pr[petal_vertices] = dv

2m

(dv
l

)
, where m is the total number of

edges in graph G.

Approximation for the Original Pattern. Supposing a pat-
tern P consists of o odd cycles C2k1+1, ...,C2ko+1 and s stars
S1, ...,Ss, and z = 2o+ 2s. A pattern-sampler tree will be a
z-level tree which consists of odd cycle sampler subtrees and
star sampler subtrees. To obtain the final pattern-sampler
tree, we run subpattern samplers in some order. The pattern-
sampler tree keeps extending two new layers by connecting
each last-layer leaf-node to a new subpattern subtree root. A
final sampler tree is shown in Figure 9 (a). We also show a
5-House sampler tree example in Figure 9 (b). As 5-House
is decomposed into a triangle and an 1-star (see Figure 1),
the first two layers of 5-House sampler tree represent a tri-
angle sampler tree, and for the last two layers each branch
represents a 1-star sampler tree.

A path from the root to a leaf in the pattern sampler
tree forms a potential pattern. If path j passes connectiv-
ity test with remaining edges, the probability of the path
is Pr[Pj] = Pr[C1

j ] . . .Pr[Co
j ]Pr[S1

j ] . . .Pr[Ss
j] because subpat-

terns are sampled independently. The output of a sampler path
is R[Pj] =

1
Pr[C1

j ]...Pr[Co
j ]Pr[S1

j ]...Pr[Ss
j ]

if it forms a pattern after

testing; or R[Pj] = 0 if it’s not. The estimated pattern num-
ber outputs by a pattern sampler tree is the average of each

path’s estimation output, which is R[P] =
∑

w
j=1 R[Pj ]

w supposing
we have w final-layer leaves. We aggregate results from all
pattern sampler trees as their average number ∑

n
i=1 Ri[P]

n , sup-
posing there are n sampler trees and tree i outputs Ri[P]. [18]
proves the expectation estimated by Ri[P] is the number of
pattern P in graph G (denoted as #P) and variance is bounded.
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Figure 8: Subpattern sampler trees used in decomposition. This

figure shows (2k+1)-odd-cycle sampler tree and l-star sampler tree each

corresponding to Algorithm 4 and 2.

C Computation-Communication Ratio Analy-
sis in Partitioned-graph Setting

In this section, we calculate computation-communication
ratio based on sampler tree implementation. In terms of com-
putation cost, in an l-star sampler, we sample l neighbors ran-
domly and thus the contribution to computation cost is Θ(l).
In a (2k + 1)-odd cycle sampler, we sample an edge from
the graph first, which is Θ(1), and then sample k−1 edges
with cost Θ(k−1). And then we sample ⌈d(u1)/

√
m⌉ vertices

from the first node u1’s neighbors, which costs Θ(d(u1)/
√

m),
where m is the number of edges in the large graph and d(u1)
is the degree of the start vertex of the first sampled edge. Let
∆ denote the average degree of the large graph. Testing com-
pleteness of these ⌈d(u1)/

√
m⌉ cycles needs to test k edges,

whose cost is Θ(k ·∆) after amortizing since our neighbor
checking goes through all the neighbors of the start vertex.
We also test the remaining edges of the entire pattern con-
necting each subpattern, and the computation cost is Θ(x ·∆)
supposing there are x remaining edges. Supposing the pat-
tern contains s stars and o odd cycles, the total computation
cost for one sampler is ∑

s
j l j +∑

o
i (ki +

∆√
m + ki ·∆)+ x ·∆ by

amortizing the degrees among multiple sampling trials.
Supposing we have p partitions (p ≥ 2). In our evalua-

tion, we partition the vertices nearly uniformly by hashing
the vertices to a machine, the probability of a sampler may
not have a vertex’s neighbors locally is p−1

p . For an l-star
sampler, if the central vertex of this star is local to the ma-
chine running the sampler algorithm, the communication cost
is 0 because we have all the neighbors of a vertex belong-
ing to the partition stay in the same machine; Otherwise,
the communication cost is Θ(d(ucentral)). Therefore, the l-
star sampler communication cost is Θ( p−1

p d(ucentral)). For a
(2k+1)-cycle sampler, we first sample an edge, if this edge is
not local, we will retrieve all the neighbors for the start vertex.
When sampling the next k edges, we may retrieve the neighbor
list of a vertex for each edge. Thus the communication cost
is Θ( p−1

p k ·∆)). To test these k edges and a neighbor of the
first vertex form a cycle, we need to test the connectivity of k
remaining edges in the (2k+1)-cycle, which cost is p−1

p k ·∆.
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(a) A pattern sampler tree

#
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!!

"! " '()!)
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(b) 5-House sampler tree

Figure 9: Pattern sampler trees. Dotted lines represent there can be

multiple other odd cycles or stars in the middle of the layers. Solid lines are

connecting root and leaves in a subpattern sampler subtree or from a last

cycle leaf node to a first star root node. The blue lines form a path from the

root to a last-layer leaf. The labels of some nodes are omitted in the figure.

Plus the x remaining-edge test of the entire pattern, the total
communication cost is p−1

p (∑o
i 2ki ·∆+∑

s
j ∆+ x ·∆).

Therefore, the computation-communication cost of parti-

tioned Arya is p
p−1 ·

∑
s
j l j+∑

o
i ki+∑

o
i (

1√
M
+ki)·∆+x·∆

(∑o
i 2ki+s+x)·∆ , which is ap-

proximately c p
p−1 where c is a constant related to the pattern

and the graph. This communication cost can be reduced by
using batching technique mentioned in Section 5.2.
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