
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Zeus: Understanding and Optimizing GPU Energy
Consumption of DNN Training

Jie You, Jae-Won Chung, and Mosharaf Chowdhury, University of Michigan
https://www.usenix.org/conference/nsdi23/presentation/you

Zeus: Understanding and Optimizing GPU Energy Consumption of DNN Training

Jie You∗ Jae-Won Chung∗ Mosharaf Chowdhury

University of Michigan

Abstract

Training deep neural networks (DNNs) is becoming increas-

ingly more resource- and energy-intensive every year. Unfor-

tunately, existing works primarily focus on optimizing DNN

training for faster completion, often without considering the

impact on energy efficiency.

In this paper, we observe that common practices to improve

training performance can often lead to inefficient energy us-

age. More importantly, we demonstrate that there is a tradeoff

between energy consumption and performance optimization.

To this end, we propose Zeus, an optimization framework to

navigate this tradeoff by automatically finding optimal job-

and GPU-level configurations for recurring DNN training

jobs. Zeus uses an online exploration-exploitation approach

in conjunction with just-in-time energy profiling, averting the

need for expensive offline measurements, while adapting to

data drifts over time. Our evaluation shows that Zeus can im-

prove the energy efficiency of DNN training by 15.3%–75.8%

for diverse workloads.

1 Introduction

Deep neural networks (DNNs) have received ubiquitous adop-

tion in recent years across many data-driven application do-

mains such as computer vision [20, 38, 65], natural language

processing [21, 57], personalized recommendation [32, 39],

and speech recognition [33]. To effectively support such

growth, DNN models are predominantly trained in clusters of

highly parallel and increasingly more powerful GPUs [15,70].

However, growing demand for computation ultimately

translates to greater energy demand. For instance, train-

ing the GPT-3 model [13] consumes 1,287 megawatt-hour

(MWh) [75], which is equivalent to 120 years of electricity

consumption for an average U.S. household [1]. This trend

continues to grow: Meta reports an increasing electricity de-

mand for AI, despite a 28.5% operational power footprint re-

duction [96]. Yet, existing literature on DNN training mostly

ignores energy efficiency [83].

We observe that common performance optimization prac-

tices for DNN training can lead to inefficient energy usage.

For example, many recent works prescribe large batch sizes

for higher training throughput [29,84]. However, we show that

maximizing raw throughput may come at the cost of lower

∗Equal contribution.

energy efficiency. Similarly, modern GPUs allow the configu-

ration of a power limit that caps its maximum power draw, but

existing solutions often ignore it. Our analysis of four genera-

tions of NVIDIA GPUs shows that none of them are entirely

power proportional, and drawing maximum power gives di-

minishing return. Indeed, carefully choosing the right batch

size and GPU power limit can reduce energy consumption by

23.8%–74.7% for diverse workloads (§2.2).

Unfortunately, reducing energy consumption is not entirely

free – we discover that there is a tradeoff between energy con-

sumption and training time for a given target accuracy (§2.3).

Our characterization of the energy-time Pareto frontier high-

lights two notable phenomena. First, for a given training job,

all Pareto-optimal configurations provide varying amounts of

energy reductions in comparison to blindly using the maxi-

mum batch size and GPU power limit. Second, the amount

of reduction in energy consumption often has a non-linear

relationship with the increase of training time. This raises a

simple question: how do we automatically identify and navi-

gate the tradeoff between energy consumption and training

time for DNN training?

In this paper, we present Zeus to address this question.

Zeus is a plug-in optimization framework that automatically

configures the batch size and GPU power limit to minimize

the overall energy consumption and training time for DNN

training jobs (§3). Unlike some recent works that only con-

sider GPU-specific configurations [11, 87], Zeus simultane-

ously considers job- and GPU-related configurations. More-

over, it does not require per-job offline profiling or prediction

model training [90, 101], both of which can be prohibitive in

large clusters with heterogeneous hardware and time-varying

workloads [94]. Instead, Zeus takes an online exploration-

exploitation approach tailored to the characteristics of DNN

training workflows. That is, as new data flow into the pipeline,

models need to be periodically re-trained [37], manifesting

itself as recurring jobs in production clusters [37, 94]. Lever-

aging this fact, Zeus automatically explores various configu-

rations, measures corresponding gains or losses, and continu-

ously adjusts its actions based on its measurements (§4).

Designing such a solution is challenging due to two sources

of uncertainty in DNN training. First, due to the random-

ness introduced from DNN parameter initialization and data

loading, the energy consumed until a DNN reaches its tar-

get accuracy varies even when training is run with the exact

same configuration [19, 82]. Thus, evaluating a configura-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 119

tion only once does not provide sufficient information about

its expected energy consumption. Second, since both DNN

models and GPUs have diverse architectures and unique en-

ergy characteristics [93], offline profiling results do not easily

generalize to other DNNs and GPUs. Aggravating these chal-

lenges is the large size of the possible configuration space,

with each configuration taking hours or even days to evaluate.

Zeus can efficiently determine the optimal set of knobs in

the configuration space by decoupling the optimization of

batch size and power limit without losing optimality. Specif-

ically, it captures the stochastic nature of DNN training by

formulating the batch size optimization problem as a Multi-

Armed Bandit (MAB) and runs online optimization under ran-

dom observations using the Thompson Sampling policy [88].

Additionally, Zeus’s just-in-time (JIT) energy profiler finds

the optimal power limit while training is running, making

Zeus a completely online optimization framework.

We have implemented Zeus and integrated it with Py-

Torch [74] (§5). Evaluation on a diverse workload consisting

of speech recognition, image classification, NLP, and recom-

mendation tasks shows that Zeus reduces energy consumption

by 15.3%–75.8% and training time by 60.6% w.r.t. simply

selecting the maximum batch size and maximum GPU power

limit. Zeus converges to optimal configuration among avail-

able ones quickly and can adapt to data drift effectively. Zeus’s

benefits expand to multi-GPU settings as well (§6).

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to charac-

terize the energy consumption vs. performance tradeoff

for DNN training in terms of job- and GPU-specific con-

figuration parameters.

• We present an online optimization framework that can

learn from and adapt to workload dynamics over time.

• We implement and evaluate the optimizer in Zeus that

integrates with existing DNN training workflows with

little code change and negligible overhead, while enabling

large benefits.

Zeus is open-source and available on GitHub.2

2 Motivation

In this section, we present an overview of energy consumption

characteristics of DNN training on GPUs, opportunities for

reducing energy consumption, and conclude with characteriz-

ing the tradeoff between reducing energy consumption and

improving training performance.

2.1 DNN Training

Modern DNNs are trained by going over a large dataset mul-

tiple times, where each pass over the dataset is termed an

epoch [28]. One epoch of training consists of thousands

of iterations of gradient descent over equally sized mini-

2https://github.com/SymbioticLab/Zeus

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

Figure 1: Energy usage normalized against baseline for DNN

training, measured on NVIDIA V100 GPU. Baseline uses maxi-

mum power limit and the default batch size presented in the origi-

nal model publication when available or the maximum batch size

which can consistently reach the target metric.

batches, with the batch size affecting model accuracy,3 train-

ing throughput, and energy consumption. The performance of

DNN training is often measured in terms of time-to-accuracy

(TTA) for a given target accuracy [19], and increasing training

throughput (or precisely goodput [77]) leads to lower TTA.

Modern DNNs are predominantly trained on increasingly

more powerful GPUs, consuming more energy in the pro-

cess [4, 75, 96]. Recent benchmarks show that GPUs are re-

sponsible for around 70% of the total energy consumption

during DNN training [22, 41].

In production GPU clusters, as new data flow into the ma-

chine learning pipeline, DNNs need to be periodically re-

trained at intervals as short as every hour [37]. This need

manifests itself as recurring jobs in the GPU cluster [37, 94].

2.2 Opportunities for Improving Energy Efficiency

We highlight two job and hardware configurations that can

cause sizable energy inefficiency in DNN training: (1) batch

size and (2) power limit of the GPU.

Impact of batch size on energy efficiency. The size of each

mini-batch during DNN training (batch size) determines how

many samples are processed in one iteration. The higher it is,

the faster we can go over the entire input dataset.

We observe across diverse DNN training workloads that

common choices of batch size can lead to more energy con-

sumption for the same target accuracy. Specifically, we per-

formed a sweep over a large range of valid batch sizes (from

8 to the maximum batch size that fits in GPU memory) for

six deep learning workloads including computer vision (CV),

natural language processing (NLP), recommendation, and

speech recognition on an NVIDIA V100 GPU (Figure 1).4

Section 6.1 provides details on workloads and methodology.

We find that the energy-optimal batch size (Batch Size Opt. in

Figure 1) can lead to 3.4%–65.0% lower energy consumption

than the default choice for the same target accuracy.

3In this paper, we specifically consider the validation accuracy of the

model, which captures how well the model generalizes to unseen data.
4We measure GPU power consumption using NVML [2].

120 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SymbioticLab/Zeus

0 20000 40000 60000 80000
Training Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

1e7

Avg
Pow

er=
90 W

att

Av
gP
ow
er
=2

10
W
at
t

Feasible
Baseline
Pareto Front

(a) Energy-Time Tradeoff

40000 50000 60000
Training Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e7
192, 250W

32, 100W48, 125W48, 150W
48, 175W

48, 200W

56, 225W
48, 250W

Baseline
Pareto Front

(b) Pareto Front Zoom-in

Figure 2: DeepSpeech2 trained with LibriSpeech on NVIDIA V100: (a) ETA vs. TTA. The red dots indicate all feasible configurations. The

two gray dotted lines indicate two boundaries characterized by average power consumption. The green line indicates the Pareto frontier

over all configurations. (b) Zoom-in view on the Pareto frontier in (a), with batch size and power limit annotated on each data point.

Impact of GPU power limit on energy efficiency. Setting

a GPU’s power limit will have the device internally trigger

dynamic voltage and frequency scaling (DVFS) such that its

power draw does not exceed the power limit [69]. If not set

manually, the power limit is at the maximum by default. We

performed a sweep over a wide range of GPU power lim-

its5 for the aforementioned setup. We found that the optimal

energy consumption (Power Limit Opt. in Figure 1) may hap-

pen at a lower power limit than the maximum and can reduce

energy consumption by 3.0%–31.5%.

Joint optimization. As Figure 1 shows, we can achieve

even more energy savings (23.8%–74.7% reduction) if we

jointly optimize both configurations. Note that we observed

similar opportunities for reducing energy consumption for

other generations of GPUs as well (Figure 15 in Appendix A).

2.3 Energy-Performance Tradeoffs

Opportunities for reducing DNN training energy consumption

comes with a cost. When optimized for energy efficiency,

DNN training performance (time-to-accuracy, or TTA) may

be impacted. In the following, we characterize this tradeoff.

We define the energy consumption of DNN training until it

reaches its target accuracy as its energy-to-accuracy (ETA):

ETA(b, p) = TTA(b, p)×AvgPower(b, p), (1)

where p denotes the GPU power limit, b the batch size, and

AvgPower(b, p) the average power consumption during train-

ing with configuration (b, p). Similar to TTA, ETA captures

the end-to-end goal of DNN training.

Note that AvgPower(b, p) is not the same as the GPU

power limit. When changes in configuration (b, p) lead to

5From the minimum to the maximum power limit allowed by NVIDIA

System Management Interface [3]; from 100W to 250W for NVIDIA V100.

an increase in TTA, ETA does not always follow because

AvgPower(b, p) can decrease more. This motivates us to in-

vestigate the tradeoff between ETA and TTA.

Tradeoff between ETA and TTA. We characterize and

elaborate on this tradeoff using DeepSpeech2 trained on Lib-

riSpeech as an example (Figure 2). It shows a scatter plot of

(TTA, ETA) for the batch size and power limit sweep exper-

iments in Section 2.2. We observe similar results for other

workloads as well (Figure 16 in Appendix B).

Let us start with Figure 2a, where each data point denotes

the (TTA, ETA) of training the model for a certain configu-

ration.While sweeping the configurations, we focus on the

boundary of all feasible (TTA, ETA) pairs. We find them to be

bounded by two straight lines characterizing the average GPU

power consumption. When the GPU is under heavy load, the

(TTA, ETA) data points appear closer to 210W. On the other

hand, when the GPU is under lighter load, its average power

consumption tends closer to 90W, which is close to the GPU’s

idle power consumption of 70W. More importantly, we find

a curve along which all (TTA, ETA) pairs achieves Pareto

optimality [16], for which we cannot improve ETA without

sacrificing TTA, and vice versa.

Now let us take a closer look at the Pareto frontier in Fig-

ure 2b, with the configurations used during training annotated

along each data point. We highlight two takeaways:

1. These results show that baseline configurations can lead

to suboptimal energy efficiency (§2). Moreover, it shows

that blindly going for high batch size and power limit

configurations can lead to suboptimal TTA as well.

2. There exists a tradeoff between ETA and TTA, with differ-

ent optimums for each. The configuration optimizing the

ETA (b =32, p =100W) is different from that optimizing

TTA (b =48, p =250W).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 121

3 Zeus Overview

Zeus is an optimization framework that navigates the ETA-

TTA tradeoff by automatically configuring the batch size and

GPU power limit of recurring DNN training jobs. It enables

developers to optimize energy and/or performance metrics

using a single knob.

3.1 Optimization Metric

Defining a good cost metric for users to express their prefer-

ence in this tradeoff is critical in designing Zeus. We propose

a simple cost metric:

C(b, p;η) = η ·ETA(b, p)+(1−η) ·MAXPOWER ·TTA(b, p)
(2)

Here η is the parameter specified by the user to express

the relative importance of energy efficiency and training per-

formance (throughput). When η = 0, we are only optimizing

for time consumption, whereas when η = 1, we are only opti-

mizing for energy consumption. MAXPOWER is the maximum

power limit supported by the GPU, a constant introduced to

unify the units of measure in the cost metric.

3.2 Challenges in Picking the Optimal Configuration

Combining Equations 1 and 2, we have:

C = (η ·AvgPower(b, p)+(1−η) ·MAXPOWER) ·TTA(b, p).
(3)

Picking the optimal configuration(s) to minimize the

energy-time cost C for DNN training is challenging because

the search space [b× p] is large and obtaining the cost of

each configuration is difficult. This is because it is hard to

determine the value of both AvgPower(b, p) and TTA(b, p)
efficiently, as explained below.

• Complex power consumption model: The total energy

consumption of a GPU is affected in a non-linear fashion

by both the characteristics of the workload such as the

number of instructions and memory accesses, as well as

the GPU hardware configurations such as the frequency

and voltage of the cores and memory on board [6, 46].

Existing efforts estimate GPU energy consumption based

on instruction- or kernel-level information [43,64], which

are architecture-specific and workload-dependent.

• Stochastic nature of DNN training: Modeling and pre-

dicting the duration for training a specific model to target

accuracy (TTA) is known to be difficult [31]. Moreover,

the randomness introduced during model initialization

and data loading leads to variations of TTA, even when

the same job is run on the same GPU with the same con-

figuration – TTA variations can be as large as 14% [19].

Fortunately, DNN training jobs often recur in production

clusters [37, 94]. This provides opportunities for empirical

estimation through repeated measurements across recurrences

of the same training job.

Zeus

Batch Size
Optimizer

Bandit

DL Execution Engine

GPU

NVML

Job2 Job3Job1

Optimization Metric
ETA & TTA

DNN

Training

Stats

DNN

Training

Config

GPU

Power

Config

GPU

Power

Stats

x Optimization

y Execution

w Job Submission

z Observation

Power Optimizer

JIT
Profiler

Figure 3: Zeus Workflow.

3.3 Architectural Overview

At a high-level, Zeus takes an online exploration-exploitation

approach to minimize the aggregate cost of recurrent DNN

training jobs. Zeus addresses the aforementioned challenges

with two key components:

1. A just-in-time (JIT) online profiler, which efficiently pro-

files the energy characteristics of the training job online.

2. Multi-Armed Bandit (MAB) with Thompson sampling,

which allows us to embrace the stochastic nature of DL

training and optimize under uncertainty while also adapt-

ing to changing workloads such as data drift.

The combination of the JIT profiler and MAB makes Zeus

a fully online solution, allowing it to immediately begin opti-

mizing for incoming jobs.

Workflow of Zeus. Figure 3 shows an overview of the high-

level workflow of Zeus. In a production environment, users

submit 1 recurrent DNN training jobs (a tuple of data, model,

optimizer, and the target validation metric) to Zeus, along with

a set of feasible batch sizes B and power limits P to explore.

Zeus then predicts 2 the optimal batch size and power limit

configuration based on past execution history, and launches

3 the training job with that configuration. During and after

the training process, 4 statistics about DNN training (e.g.,

validation metric) and GPU power consumption are collected

and fed back to the Zeus optimizer. The Zeus optimizer learns

from the feedback and adjusts its internal states. The train-

ing job will be terminated upon either reaching target metric

or exceeding a stopping threshold determined by Zeus. The

whole process is an automated feedback loop that minimizes

the key objective of energy-time cost.

Building Zeus requires both algorithm design and systems

support. Next we describe the core optimization algorithm

details (§4) and Zeus implementation highlights (§5).

122 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 Zeus Algorithm Design

In this section, we delve into the details of how Zeus selects

the best batch size and GPU power limit to optimize the over-

all cost of recurrent DNN training tasks. We first present the

optimization problem formulation and how we decouple the

optimizations of batch size and power limit (§4.1). Next, we

show how to optimize power limit (§4.2) and batch size (§4.3)

under the decoupled framework. We conclude by discussing

how we address common challenging scenarios (§4.4).

4.1 Problem Formulation

The objective of Zeus is to minimize the cost of a recurring

job by automatically exploring the feasible set of batch sizes

B and power limits P . In essence, we neither want to incur

too much cost searching for the optimal configuration, nor

do we want to miss it. Minimizing the cumulative cost of the

job over recurrences captures the implicit tradeoff between

exploration and exploitation. Put formally in terms of the cost

function defined by Equation 2, our objective becomes

min
b,p

T

∑
t=1

C(bt , pt ;η)

s.t. bt ∈ B, pt ∈ P ,∀t ∈ [1,T],

(4)

where bt and pt respectively denote the batch size and power

limit chosen at the tth recurrence of the job, and b and p are

vectors of length T .

This is a challenging problem without modification, mainly

because the size of the search space can be in the order of hun-

dreds, and each value of C(b, p;η) inside the search space can

only be obtained by running DNN training until it reaches the

target metric. However, further expanding the cost function

(Equation 3) allows us to decouple the exploration of batch

size and power limit, making the problem more tractable:

C(b, p;η)

= (η ·AvgPower(b, p)+(1−η) ·MAXPOWER) ·TTA(b, p)

= Epochs(b) ·
η ·AvgPower(b, p)+(1−η) ·MAXPOWER

Throughput(b, p)
.

(5)

where Epochs(b) denotes the number of epochs needed to

reach the target, and Throughput(b,p) epochs per second.

We find two key insights that allow the decoupling of batch

size b and power limit p:

1. Given b, AvgPower(b, p) and Throughput(b, p) can be

profiled quickly during training for all possible choices

of p. This is due to the iterative nature of DNN training,

yielding stable power and throughput estimations even

with a small number of iterations.

2. Epochs(b) is not affected by the choice of p as changing

the power limit does not change what is computed.

This implies that the optimal power limit, given any batch

size, can be determined independently based on online profil-

ing. Moreover, since any choice of batch size is automatically

accompanied by the optimal power limit, our search space is

reduced to the set of batch sizes B .

Formally put, we have decoupled the problem in Equation 4

into an equivalent two-level optimization problem

min
b∈BT

T

∑
t=1

Epochs(bt) ·EpochCost(bt ;η) (6)

where

EpochCost(bt ;η)

= min
pt∈P

η ·AvgPower(bt , pt)+(1−η) ·MAXPOWER

Throughput(bt , pt)
.

(7)

When a job arrives, Zeus will first decide which batch

size to use based on Equation 6 (§4.3). Then, based on the

batch size, Zeus will pick the optimal power limit based on

Equation 7 (§4.2).

4.2 Optimizing the Power Limit

We start with how Zeus determines the optimal power limit

based on Equation 7, given a choice of the batch size. As

highlighted earlier, we leverage the iterative nature of DNN

training and the recurrent nature of jobs in production DNN

training workflows.

When a job with batch size decision b is submitted, our just-

in-time (JIT) profiler is triggered and checks if this batch size

had been profiled before. For an unseen batch size b, it pro-

files AvgPower(b, p) and Throughput(b, p) for all possible

power limits p during the first epoch of the job by partitioning

the epoch into slices at iteration boundaries and dynamically

changing the GPU power limit for each slice. The profile in-

formation is fed back to Zeus, and the optimal power limit

of the batch size is determined by solving Equation 7. The

rest of the epochs are executed with the optimal power limit.

Our online JIT profiling approach consumes strictly less time

and energy compared to offline profiling before running the

job, because the profiling process itself contributes to training

without affecting its accuracy. We show that JIT profiling

incurs negligible overhead in Section 6.5.

4.3 Optimizing the Batch Size

Now we focus on how Zeus determines the batch size bt for

each job recurrence t that optimizes Equation 6. As seen in

Section 4.2, EpochCost(bt;η) is a cheap and deterministic

function that identifies the optimal power limit for any batch

size bt and returns the optimal cost of one epoch. Thus, we

may limit our exploration to choosing the optimal batch size

because whichever batch size we choose, the optimal power

limit will accompany it.

Due to the unpredictable and stochastic nature of DNN

training, picking out the optimal batch size without adequate

exploration is difficult. Hence, a good solution must (1) in-

corporate such nature of DNN training into its exploration

process, and (2) intelligently tradeoff the cost of exploring for

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 123

Input: Batch sizes B

Belief posterior parameters µ̂b and σ̂2
b

Output: Batch size to run b∗

Function Predict(B , µ̂b, σ̂2
b):

1 foreach batch size b ∈ B do

/* Sample from the belief distribution */

2 Sample θ̂b ∼N (µ̂b, σ̂
2
b)

3 end

/* Select the arm with smallest mean cost sample */

4 b∗← argminb θ̂b

Algorithm 1: Gaussian Thompson Sampling: Choosing

the next batch size to run (Predict)

potentially better batch sizes and the gain of exploiting batch

sizes that are already known to be good.

Grid search is suboptimal. We argue that exhaustively go-

ing through all batch sizes and selecting the one with the

smallest cost is still suboptimal due to the stochastic nature of

DNN training. That is, because the cost of a DNN training job

can differ even when executed with the exact same configura-

tions, it must be modeled as a cost distribution with unknown

mean and variance. Although performing several trials for

each batch size may yield a better estimation of the mean cost,

such a strategy leads to high exploration cost because it does

not quickly rule out obviously suboptimal batch sizes.

Multi-Armed Bandit formulation. Zeus aims to explore

the cost of different batch sizes and converge to the optimal

batch size, while not incurring too much exploration cost.

Zeus formulates the problem as a Multi-Armed Bandit

(MAB) with T trials and B arms, where each trial corresponds

to a recurrence of the job and each arm to a batch size in B .

MAB is a good fit to our problem scenario in that it captures

the stochasticity of DNN training by modeling the cost of

each batch size as a random variable. Specifically, we choose

the Gaussian distribution [81] due to its representational flexi-

bility. The objective of the MAB formulation is to minimize

the cumulative cost regret defined as

T

∑
t=1

Regret(bt ;η) (8)

where the regret of choosing bt is defined as

Regret(bt ;η)

= Epochs(bt) ·EpochCost(bt ;η)−min
b,p

Cost(b, p;η).

(9)

Minimizing cumulative cost regret aligns with our objective

in Equation 6.

Thompson Sampling. We adopt the Thompson Sam-

pling [81] policy for the MAB formulation to tradeoff ex-

ploration and exploitation, not only because it is known to

Input: Batch size b and observed cost C

Previous cost observations Cb for b

Belief prior parameters µ̂0 and σ̂2
0

Output: Belief posterior parameters µ̂b and σ̂2
b

Function Observe(b, C, Cb, µ̂0, σ̂2
0):

/* Add the most recent cost observation to history */

1 Cb← Cb∪{C}
/* Compute the variance of the cost */

2 σ̃2←Var (Cb)
/* Compute the belief distribution’s posterior variance */

3 σ̂2
b←

(

1

σ̂2
0

+ |Cb|
σ̃2

)−1

/* Compute the belief distribution’s posterior mean */

4 µ̂b← σ̂2
b

(

µ̂0

σ̂2
0

+ Sum(Cb)
σ̃2

)

Algorithm 2: Gaussian Thompson Sampling: Updating

the belief distribution (Observe)

perform well in practice [17, 81] and had successful adoption

recently [58, 67], but also because its modeling assumptions

fit our problem scenario well.

At a high level, Thompson Sampling is an online procedure

that refines its belief about the mean cost of each arm (batch

size) based on experience. At each recurrence, the belief is

used to pick the arm with the lowest estimated mean cost

(Algorithm 1), and the belief is updated based on the actual

cost observed (Algorithm 2).

Specifically, the cost distribution is modeled as a Gaussian

distribution with unknown mean θb. Then, the belief about θb

is modeled with its conjugate prior distribution, which is also

a Gaussian distribution [24]. That is, θb ∼N (µ̂b, σ̂
2
b). Here

it is important to note that 1/σ̂2
b can be thought as of how

confident the policy is in its belief about that arm, with the

confidence increasing as it accumulates more observations of

the cost of choosing that arm. Then, Thompson Sampling au-

tomatically balances exploration and exploitation by choosing

the arm with the smallest mean cost sample θ̂b ∼N (µ̂b, σ̂
2
b)

(Algorithm 1). With low confidence (high variance), θ̂b will

be dispersed across a wider range of costs, having higher

chances of getting chosen even if some of its initial observa-

tions showed high cost. In contrast, when the arms observed

a lot of cost samples and the confidence is high (low vari-

ance), θ̂b is likely to be centered around the mean observed

cost, allowing the exploitation of arms that are known to be

good. After the actual cost of an arm is observed, the belief

parameters of that arm are updated using the Bayes Rule [81]

(Algorithm 2).

The belief prior parameters µ̂0 and σ̂2
0 reflect prior belief

about the mean cost of using the batch size for training and

the confidence of such belief. Hence, the choice of prior pa-

rameters serve as a way to initialize the arms such that they

reflect prior knowledge about the cost of each arm. If such

124 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Recurrences

C
h
o

s
e

n
 B

a
tc

h
 S

iz
e Exploration With Pruning Thompson Sampling

Early

Stopped

Figure 4: An example of batch sizes chosen by Zeus for a recurring

job. Each point is a recurrence. During pruning, Zeus explores

each batch size 2 times in order to observe the cost variance (Line 2

in Algorithm 2).

information is not available, which is our default assumption,

it is also possible to initialize the arms with a flat prior that

assumes no prior knowledge – in our case, this is a Gaussian

distribution with zero mean and infinite variance.

In contrast to grid search, our formulation using MAB and

Thompson Sampling meets the two requirements mentioned

earlier. That is, MAB inherently incorporates the stochastic

nature of DNN training in that it models cost as a random

variable. Moreover, Thompson Sampling can quickly rule

out batch sizes that are obviously suboptimal because the

probability of a smaller mean cost being sampled from an

arm that observed noticeably large cost is low.

4.4 Extensions for Challenging Scenarios

Handling unknown cost variance. Unlike conventional

Gaussian Thompson Sampling applications, we may not as-

sume that the variances of the cost of each arm are known.

That is, the cost variance (i.e., how much the cost will fluctu-

ate even when training is run with the same batch size) is not

known before any observation. Moreover, the cost variance

depends not only on the batch size, but also on the DNN’s

robustness to the randomness in parameter initialization and

data loading, making it difficult to quantify at the time the

MAB is constructed. Hence, our approach is to learn the cost

variance as we observe cost samples (Line 2 in Algorithm 2).

Handling stragglers during exploration. There may be

cases where an exploratory job does not reach the target metric

within a reasonable amount of cost, especially during the

earlier exploration stage. To handle this, we employ early

stopping and pruning. The intuition is that if a batch size does

not reach the target metric even after incurring an exceedingly

large cost, it is highly unlikely to be the optimal one.

For early stopping, we define a cost threshold β ·mint Ct ,

meaning that when the cost of the current job is to exceed β
times the minimum cost observed so far, we stop the job and

retry with another batch size. Here β is a parameter to account

for the stochastic nature of DL training. By default, we choose

β = 2, with which we should be able to tolerate variations of

TTA between different runs of the same configuration, which

is usually less than the 14% [19].

For pruning, as illustrated in Figure 4, we begin with the

default batch size provided by the user and first try smaller

batch sizes until we meet the minimum batch size or a batch

10 100
Batch Size

0.0

0.5

1.0

E
TA

 (J
)

1e7

Error margin

Figure 5: ETA of each batch size for DeepSpeech2 trained on

LibriSpeech. Plots for rest of the workloads are in the Appendix C.

Input: Set of batch sizes B

Default batch size b0

Belief prior parameters µ̂0 and σ̂2
0

/* Exploration With Pruning */

1 Recurrence t← 0

2 repeat 2 times

3 Explore b0

4 Explore b < b0 until convergence failure

5 Explore b > b0 until convergence failure

6 B ←{b : b converged}
7 b0← b with smallest cost observed

8 t← t + |B|

9 end

/* Thompson Sampling */

10 while t ≤ T do

11 b∗← Predict(B, µ̂b, σ̂
2
b ∀b ∈ B)

12 Run job with batch size b∗ and add cost to Cb

/* Update our belief of the mean cost */

13 µ̂b, σ̂
2
b← Observe(b,Cb, µ̂0, σ̂

2
0)

14 t← t +1

15 end

Algorithm 3: Gaussian Thompson Sampling Batch Size

Optimizer.

size that fails to reach the target metric before the early stop-

ping threshold. The same process is repeated for batch sizes

larger than the default batch size. Then, only the batch sizes

that reached the target metric are kept in the batch size set

we explore. After performing an initial round of pruning, the

default batch size is updated to be the one with the smallest

cost observed, and we perform pruning once more starting

from the new default batch size.

The intuition behind our batch size pruning approach is the

convexity we observe in the BS-ETA curve around the optimal

batch size (See Figure 5). Moreover, pruning allows Zeus to

quickly rule out batch sizes that are noticeably suboptimal

(typically too large, leading to more training epochs and loss

of accuracy [27, 49], or too small, yielding gradients that are

too noisy [80]), thus cutting down the cost of exploration.

The overall process is depicted in Algorithm 3.

Handling concurrent job submissions. Classic multi-

armed bandit scenarios assume that the MAB immediately

observes the cost of pulling an arm. However, in a DNN

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 125

training cluster, recurring jobs may overlap in their execution

when a later job starts before the completion of an earlier job.

In this case, the MAB does not get to observe the cost of the

earlier job at the time it has to decide the batch size for the

later job. For deterministic policies like [8, 56], this leads to

duplication exploration of the same batch size back-to-back,

reducing the efficiency of exploration.

However, Thompson Sampling naturally mitigates this

problem without modification because deciding the next batch

size to explore (Predict) is a random function. That is, be-

cause Thompson Sampling samples the estimated mean cost

from each arm’s belief distribution and returns the arm with

the lowest sampled value, concurrent jobs can run different

batch sizes even if there was no information gained between

the invocations of Predict. This is especially the case during

the early stage of Thompson Sampling when the arms’ belief

distributions have large variances (low confidence), losing

little exploration efficiency.

During the short initial pruning phase, we run concurrent

job submissions with the best-known batch size at that time.

As the best batch size constantly updates throughout the ex-

ploration stage, this strategy fairly distributes the additional

exploration opportunities from concurrent job submissions to

batch sizes that are known to converge. We evaluate Zeus’s ef-

ficacy on handling concurrent job submissions in Section 6.3.

Handling data drift. In production training clusters, the

data on which the model is trained shifts, which is one of

the reasons why re-training is triggered [61, 63]. The impli-

cation of drift in the perspective of the MAB is that the cost

distribution of each arm is non-stationary.

Thompson Sampling allows a simple modification that

allows us to handle non-stationary cost distributions. Since

older cost observations become less and less relevant, we only

operate on a window of N most recent cost observations [10],

and the belief distributions will not take old observations into

account. Unlike exponential decay, windowing also allows the

cost variance of the most recent observations to be estimated

directly. When old history entries are evicted, computing

the new parameters of the arm is also cheap thanks to the

conjugate prior property. This way, Zeus transparently adapts

to data drifts in an online manner, as we show in Section 6.4.

5 Zeus Implementation

Zeus is implemented as a Python library that can be imported

into DNN training scripts. The ZeusDataLoader class in-

tegrates with PyTorch [74]. The class profiles power and

throughput online by slicing epochs in iteration boundaries

and invoking the NVML [2] library for power limit configu-

ration and profiling. We have observed that five seconds of

profiling for each power limit is enough to yield stable results.

With the information, the optimal power limit can be automat-

ically determined and applied. Moreover, ZeusDataLoader

monitors the cost incurred by training and early stops the job

if needed. Listing 1 shows an example training loop integrated

1 from zeus import ZeusDataLoader

2

3 train_loader = ZeusDataLoader(

4 train_set, batch_size, max_epochs, target_metric)

5 eval_loader = ZeusDataLoader(eval_set, batch_size)

6

7 for epoch in train_loader.epochs(): # may early stop

8 for batch in train_loader:

9 # Learn from batch

10 for batch in eval_loader:

11 # Evaluate on batch

12 train_loader.report_metric(validation_metric)

Listing 1: Zeus Integration Example

with Zeus.

Observer Mode. ZeusDataLoader supports Observer

Mode, where it profiles the power consumption and through-

put of each power limit and determines the optimal one, but

keeps the power limit at the maximum. By doing so, with-

out affecting time or energy consumption, ZeusDataLoader

reports how much time and energy the job would have con-

sumed if the power limit were the optimal one, allowing the

user to get an idea of the impact of using Zeus. We believe that

such a feature can encourage Zeus’s adoption by informing

users of its potential savings.

6 Evaluation

We evaluate Zeus’s effectiveness in terms of navigating the

energy-time tradeoff. Our key findings are as follows:

1. Zeus reduces energy consumption by 15.3%–75.8%. It

achieves this by trading off small performance for jobs

that are already throughput-optimal; otherwise, it reduces

training time by up to 60.1% too (§6.2).

2. Zeus quickly converges to optimal configurations (§6.2).

3. Zeus can handle workloads with data drift (§6.4) and

overall incurs low overhead (§6.5).

4. Zeus scales to multi-GPU settings (§6.6) and provides

consistent savings across four generations of GPUs (§6.7).

6.1 Experimental Setup

Testbed Setup. We evaluate Zeus with four generations of

NVIDIA GPUs as specified in Table 2.

Workloads. Table 1 summarizes our workloads. The de-

fault batch size (b0) is chosen from the original model publi-

cation when available; otherwise, it is set to be the maximum

batch size which consistently achieves the target accuracy.

In terms of learning rate, models trained with the

Adadelta [99] optimizer do not require an initial learning

rate. For optimizers that do require an initial learning rate, we

made our best effort in choosing a batch size and learning rate

pair that achieves reasonable accuracies by experimenting

with values from the original publication of the model and

those discovered by popular DL frameworks [95].

After collecting the initial batch size and learning rate pairs,

126 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Task Dataset Model Optimizer b0 Target Metric

Speech Recognition LibriSpeech [73] DeepSpeech2 [33] AdamW [62] 192 WER = 40.0%

Question Answering SQuAD [79] BERT (QA) [21] AdamW [62] 32 F1 = 84.0

Sentiment Analysis Sentiment140 [26] BERT (SA) [21] AdamW [62] 128 Acc. = 84%

Image Classification ImageNet [20] ResNet-50 [38] Adadelta [99] 256 Acc. = 65%

Image Classification CIFAR-100 [53] ShuffleNet-v2 [65] Adadelta [99] 1024 Acc. = 60%

Recommendation MovieLens-1M [34] NeuMF [39] Adam [51] 1024 NDCG = 0.41

Table 1: Models and datasets used in our evaluation. The provided target metrics is the target for each training job. Here b0 denotes the

default batch size presented in the original work when feasible, otherwise we choose the maximum batch size which can consistently reach

the target. The BERT(QA) and BERT(SA) means fine-tuning BERT on the tasks of question answering and sentiment analysis, respectively.

Node GPU Specification Host Specification

HPE Apollo

6500 Gen10 Plus

A40 × 4

Model A40 PCIe CPU AMD EPYC 7513

VRAM 48GB RAM 512GB DDR4-3200

mArch. Ampere Disk 960GB NVMe SSD

CloudLab [23]

r7525

V100 × 2

Model V100 PCIe CPU AMD EPYC 7542

VRAM 32GB RAM 512GB DDR4-3200

mArch. Volta Disk 2TB 7200rpm HDD

Chameleon

Cloud [48]

RTX6000

Model RTX6000 CPU Xeon Gold 6126

VRAM 24GB RAM 192GB

mArch. Turing Disk 256GB SSD

Chameleon

Cloud [48]

P100 × 2

Model P100 CPU Xeon E5-2670 v3

VRAM 16GB RAM 128GB

mArch. Pascal Disk 1TB HDD

Table 2: Hardware used in the evaluation.

when we scale the batch size, we applied Square Root Scal-

ing [42] for adaptive optimizers such as Adam [51] following

recent theoretical results [30].

Baselines. We compare against the following baselines:

1. Default (b = b0, p = MAXPOWER). This is often the default

configuration used by practitioners, where the GPU power

limit is set to, or rather not changed from, the maximum.

This is the most conservative baseline with no exploration.

2. Grid Search with Pruning. This one tries out one configu-

ration of (b, p) for each recurrence of the job and selects

the best one. We optimize naïve grid search by having it

prune out batch sizes that failed to reach the target metric.

Metric. Our primary metrics are ETA (energy consumption)

and TTA (training time). Ideally, we want to reduce both; but

due to their tradeoff, sometimes it may not be possible to

simultaneously do both.

Defaults. All experiments are done on NVIDIA V100

GPUs, unless otherwise mentioned. By default, we highlight

η = 0.5 to strike a balance between ETA and TTA. Later, we

sweep η from 0 to 1 (§6.7). The early-stopping threshold β is

set to 2, and we also sweep β from 1.5 to 5 (§6.7).

Methodology. Due to resource constraints and environmen-

tal concerns, we cannot afford to repeatedly train all of our

workloads with various configurations end-to-end hundreds

of times sequentially. However, similar to how Zeus decou-

ples the exploration of batch size and power limit, we may

apply the same decoupling in our experimentation. That is,

we instead take a trace-driven approach, where we collect two

kinds of trace data:

1. Training trace. We train all possible combinations of mod-

els and batch sizes until convergence and record the num-

ber of epochs the model took to reach its target accuracy.

We repeat this with four different random seeds for every

combination to capture the stochasticity in DNN training.

2. Power trace. We use our JIT profiler to collect the through-

put and average power consumption of all possible com-

binations of model, batch size, and power limit.

We then replay these traces when we need to train a model

and reconstruct its TTA and ETA values in order to evaluate

the decisions made by Zeus and baselines. Moreover, since

we have access to all the possible choices and their outcomes,

we also know the optimal choice. Therefore, with the traces,

we can evaluate the regret achieved by Zeus and baselines.

Note that Zeus does not directly learn from these traces

(which would be offline-profiling), but instead only learns

from the replay of these traces in an online fashion.

While the aforementioned trace-driven method is used

widely throughout our evaluation, we run Zeus end-to-end for

the evaluation of handling data drift (§6.4) because it is more

expensive to construct the trace for the drifting dataset.

6.2 Zeus Performance

In this section, we evaluate the performance of Zeus in terms

of energy consumption and training time as well as the con-

vergence characteristics of our Multi-Armed Bandit algo-

rithm. Each experiment is run across multiple recurrences

of DNN training jobs. We select the recurrence number to be

2 · |B| · |P |, so that the Grid Search baseline finishes explo-

ration and also has plenty of chances to exploit its choice.

Improvements in ETA. Figure 6a shows the energy con-

sumption (ETA) of the last five recurrences of Zeus and Grid

Search w.r.t. the Default baseline, aiming to compare the fi-

nal point each approach converged to. Zeus reduces energy

consumption (ETA) by up to 15.3%–75.8% w.r.t. the baseline.

This is also comparable to the reduction we found by exhaus-

tively searching through all the configurations in Section 2 as

well as by using Grid Search.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 127

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)
Default Grid Search Zeus

(a) Energy Consumption

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(b) Training Time

Figure 6: Zeus reduces energy consumption for all workloads. (a)

energy consumption, (b) training time of each workload, normal-

ized by the Default baseline. Results are computed with the last

five recurrences, capturing the knobs each method converged to.

0 100
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(a) DeepSpeech2

0 25 50
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(b) ResNet-50

Figure 7: Cumulative regret of Zeus vs. Grid Search for (a) Deep-

Speech2 and (b) ResNet-50.

Tradeoff with TTA. Figure 6b shows the time consumption

(TTA) of the last five recurrences of Zeus and Grid Search

w.r.t. the Default baseline. Even though Zeus reduces training

time by up to 60.1%, for some workloads TTA is increased

by 12.8% (Figure 6b). This is due to the tradeoff between

ETA and TTA, which is the central focus of this paper. This is

especially true for workloads with a b0 tuned for minimizing

training time, where there is little room for TTA improvement.

Cumulative regret. While Zeus and Grid Search perform

close to each other, Zeus uses significantly smaller amount

of resources to converge. As a bandit-based solution, the

effectiveness of our algorithm can be quantified via regret,

the difference between the decision selected and the optimal

choice (Equation 9 in Section 4.3).

Figure 7 shows the cumulative regret of Zeus and Grid

Search for DeepSpeech2 and ResNet-50. The optimal con-

figuration is identified separately by an exhaustive parame-

ter sweep. We observe that in both workloads, Zeus is able

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(a) Zeus

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(b) Grid Search

Figure 8: Search paths of (a) Zeus and (b) Grid Search for Deep-

speech2. The heatmap in the background shows the regret of each

(Batch Size, Power Limit) configuration. Darker background de-

notes lower regret and therefore better configuration. The colored

line with shifting color shows the search path, with darker color

being later recurrences.

to achieve better regret from the first job recurrence. Zeus

reaches the plateau in the cumulative regret earlier than Grid

Search, which means it converges to the optimal solution ear-

lier. We observe similar results for other workload as well

(Appendix D). In the worst case, Grid Search results in 72×
more cumulative regret than Zeus until convergence.

Convergence to a Pareto-optimal configuration. Despite

having no information about the application beforehand, Zeus

learns the energy characteristics of it online in a few itera-

tions. Figure 8 shows the search path of Zeus and Grid Search

during training DeepSpeech2. Due to the decoupling in the

optimization of power limit and batch size, Zeus explores the

configuration space more efficiently and converges to the opti-

mal configuration much faster. We observe similar results for

other workloads (see Appendix E). Moreover, in Figure 8b we

observe that Grid Search may not even converge to optimal

configuration. This is due to the stochastic nature of DNN

training, with even the same batch size yielding different en-

ergy and time consumptions. Hence, Grid Search may choose

a suboptimal configuration when a suboptimal configuration

luckily yields good energy and time consumptions.

6.3 Trace-Driven Simulation Using the Alibaba Trace

Here we evaluate how Zeus can save energy and time con-

sumption for DNN training in large clusters. We run trace-

128 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)
Default Grid Search Zeus

(a) Energy Consumption

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(b) Training Time

Figure 9: Zeus reduces energy consumption for all jobs in the

Alibaba cluster trace [94], compared to Grid Search and Default.

(a) Energy consumption with Zeus comparing against baselines,

(b) Training time of each type of workload. Both are normalized

by the Default baseline.

driven simulation using the Alibaba GPU cluster trace [94]

which contains over 1.2 million jobs spanning a period of two

months. The Alibaba GPU cluster trace is suitable for our

evaluation for two reasons. First, the trace identifies groups

of recurring jobs, and each job is annotated with its group ID.

Second, jobs within the same group show overlap in their ex-

ecution, allowing us to evaluate Zeus’s capability of handling

concurrent job submissions with Thompson Sampling.

In order to assign job groups to the workload (Table 1)

that best resembles its runtime, we remove jobs that did not

successfully terminate and run K-Means clustering [36] on

the mean job runtime of each group to form six clusters. Then,

we match the six clusters with our six workloads in the order

of their mean runtime. When running simulation, in order

to capture the intra-cluster runtime variation of each job, we

scale the job runtime with the ratio of the job’s original run-

time to its cluster’s mean runtime. We compare Zeus with

Default and Grid Search and plot the results in Figure 9.

Figure 9a shows the cumulative energy consumption of

training using all three approaches. Zeus outperforms both

baselines for workloads of all types and sizes. Note that there

are scenarios where the Grid Search performs worse than

Default, due to it wasting too much energy and time during

the exploration stage. Thanks to Zeus’s early stopping and

quick online power optimization, its energy and time cost

during the exploration stage is significantly reduced. Across

all the models, Zeus reduces training energy usage by 7%–

52%. Figure 9b shows the training time using Zeus to be

increased by at most 16%, and in many cases even decreased

by up to 33%. Finally, similar to earlier experiments, Zeus

0 10 20 30 40
Slice Index

0.0

0.5

1.0

E
TA

 (J
)

1e6

0

1

2

3

4

TT
A

(s
)

1e3

0

200

400

B
at

ch
 S

iz
e

C
ho

se
n

ETA TTA Batch Size Chosen

Figure 10: Energy and time consumption of training BERT with

Zeus on Capriccio and the batch size chosen for each slice.

had significantly lower cumulative regret than Grid Search.

6.4 Handling Data Drift

While there are previous works that attempt to identify and

address data drift in general ML settings [63], existing datasets

are classification tasks based on small feature vectors [12,35],

completely synthetic [25, 44], or private [66].

Therefore, we create and open-source a new sentiment

analysis dataset called Capriccio that is suitable for evaluating

DNN models. Capriccio consists of 1.6 million tweets over

three months from the Sentiment140 [26] dataset, labeled

with sentiment scores and the timestamp of the tweet. We

emulate data drift by capturing a sliding window of 500,000

tweets (roughly the amount of tweets in one month) at a time

and moving the window forward by each day, generating 38

slices. We skip empty dates to avoid having identical slices.

We train BERT [21] on Capriccio with Zeus configured

with a window size of 10, roughly corresponding to a time

frame of two weeks on Twitter. We plot the selected batch

size for each recurrence (slice) and its corresponding ETA

and TTA of training in Figure 10. It can be seen that spikes in

ETA and TTA (signaling that the current batch size may no

longer be optimal) trigger the exploration of a batch size that

is different from the one previously converged to.

6.5 Overhead of JIT Profiling

Measurements with the Deepspeech2 model using the default

batch size b0 show that JIT profiling results in a 0.01% in-

crease in energy consumption and a 0.03% increase in time

consumption. Such a tiny overhead is possible because the

time needed to profile all power limits is very small (less than

one minute) while one epoch of training spans hours (which is

typical for DL workloads). Measurements on ShuffleNet-v2,

which has much shorter epoch duration, show that JIT profil-

ing results in a 0.6% increase in terms of time consumption

and a 2.8% reduction in energy consumption.

6.6 Scaling to Multi-GPU

While the primary focus of this paper is on single-GPU set-

tings, in this section, we show that Zeus can be extended

to single-node multi-GPU training settings by profiling the

power consumption of all GPUs that participate in training.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 129

40000 45000 50000 55000 60000
TTA (s)

6

7

8
E

TA
 (J

)
1e6

·=0.0
·=0.1
·=0.2
·=0.3
·=0.4
·=0.5

·=0.6
·=0.7
·=0.8
·=0.9
·=1.0
Pareto Front

Figure 11: Pareto Front of DeepSpeech2 and how η navigates it.

2 3 4
Early-Stopping Threshold (³)

0.9

1.0

1.1

1.2

1.3

1.4

R
el

at
iv

e
C

um
m

ul
at

iv
e

E
TA

(n
or

m
al

iz
ed

 b
y
³
=
2.
0) DeepSpeech2

BERT (QA)
BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF
Geometric mean

Figure 12: Relative cumulative energy consumption of Zeus across

all jobs, w.r.t. the early-stopping threshold β.

Extensions to distributed multi-GPU setups that involve net-

work communication is a potential future work.

Extending to multi-GPU allows us to compare our energy

and time consumption with Pollux [77], a state-of-the-art dis-

tributed cluster scheduler that dynamically tunes the batch size

during DNN training in order to maximize goodput. Training

DeepSpeech2 on LibriSpeech on four NVIDIA A40 GPUs,

Zeus consumes 12% more time but 21% less energy, com-

paring favorably. We especially note that while Pollux does

not take energy into account, Zeus allows the user to select a

different energy-time tradeoff point (e.g., speed up training

but consume more energy) by selecting an appropriate η.

6.7 Sensitivity Analysis and Ablation Studies

Impact of η. To characterize the impact of η as defined in

Equation 2, we perform a sweep of 0≤ η≤ 1 when training

DeepSpeech2 and plot the resulting optimal (TTA, ETA) in

Figure 11. We also plot the corresponding Pareto Front for

reference. We observe that the resulting (TTA, ETA) data

points fall closely to the Pareto Front. Moreover, we plot the

lines along which the C in Equation 2 is a constant, shown as

the dotted lines. As expected, these lines form an envelope

around the Pareto Front. Additional sensitivity analysis for η
can be found in Appendix F.

Impact of early-stopping threshold β. To study impact of

the early-stopping threshold β, we sweep β from 1.5 to 5 and

measure the cumulative ETA across all jobs. We calculate the

difference in ETA relative to our default choice of β = 2.0,

and plot the result of all jobs as well as a geometric mean

across all jobs in Figure 12. The result shows that the default

Zeus w/o
Early

Stopping

Zeus w/o
Pruning

Zeus w/o
 JIT Profiler

0.0

0.5

1.0

1.5

E
TA

(n
or

m
al

iz
ed

 b
y

Ze
us

)

Figure 13: Performance break-

down of Zeus.

A40
V100

RTX6000
P100

0.0

0.5

1.0

E
TA

(n
or

m
al

iz
ed

 b
y

D
ef

au
lt)

Default
Grid Search

Zeus

Figure 14: Normalized ETA

w.r.t. GPU models.

β = 2.0 chosen by Zeus achieves the lowest geometric mean

across all jobs. The intuition behind this is that when β is too

low, Zeus prematurely stops exploratory runs, reducing the

effectiveness of exploration. In contrast, when β is too high,

it dilutes the benefit of early stopping which leads to inflated

exploration cost.

Impact of individual components. In order to show the

gains from each component, we show the degradation of re-

moving one component from Zeus: no early stopping (setting

β to infinity), no pruning (keeping a batch size that didn’t

reach the target accuracy), and no JIT profiling (profiling each

power limit in different recurrences). Figure 13 shows the

slowdown relative to Zeus after disabling these components.

We observe that the Zeus benefits mostly from early stopping.

Impact of GPU models. Figure 14 shows the geometric

mean of ETA normalized against Default across all jobs. Zeus

achieves consistent ETA reductions across four generations

of NVIDIA GPUs. See Appendix G for all results.

7 Discussion

Choice of configuration knobs. In this paper, we pick the

batch size and GPU power limit as the configuration knobs

for Zeus to optimize. We choose these two to strike a balance

in the tradeoff between the granularity of control and the size

of the search space. For instance, one can set the frequency

and voltage for individual components on the GPU for more

fine-grained control and potentially higher energy efficiency,

but this would result in prolonged exploration in the bigger

search space. In contrast, we choose the GPU power limit,

which effectively controls both frequency and voltage via

DVFS and reduces the search space.

On the DL job configuration side, we pick the batch size

as the knob for a similar reason. Changing the batch size

has a broader impact on energy consumption of end-to-end

DNN training, because it affects both the training time and the

average power consumption during training. In comparison,

other candidate configuration knobs such as learning rate fall

short because they only affect the training time.

Hyperparameter optimization. Hyperparameter optimiza-

tion is an important workload, where many DL training jobs

(trials) are submitted with specific hyperparameters chosen

from a user-defined search space [9, 59, 60, 98]. If the users

130 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

submit these trials with a specific batch size, they can specify

the feasible batch size set B to only contain that single batch

size. In this case, Zeus can still reduce energy consumption

by searching for the optimal GPU power limit.

Supporting distributed training. Zeus currently only sup-

ports single-node training, but it can easily be extended to

support distributed scenarios. Since the same type of GPU

will have the same time and power consumption characteris-

tics, we can apply the same power limit configuration across

all GPUs to avoid stragglers. The definition of cost can be

extended to sum over the time and energy consumption of all

GPUs participating in training, and all other components in

our solution can remain identical.

Supporting heterogeneous GPUs. Our solution assumes

that the training job runs on the same type of GPU across all

of its recurrences. However, in practice, this may not always

be possible due to varying resource contention or availability.

It is straightforward to add support for heterogeneous GPUs

under our formulation. That is, cost values observed from one

GPU can be translated to values that represent the charac-

teristics of another GPU. As shown in Equation 6, energy-

time cost can be written as the product of Epochs(b) and

EpochCost(b;η). Here, the former term is independent with

the choice of the GPU. Moreover, the latter term can be

quickly profiled on any GPU because it consists of only

AvgPower(b, p) and Throughput(b, p). Thus, we can obtain

cost values that represent the new GPU by quickly profiling

EpochCost(b;η) for each batch size on the new GPU and

multiplying it with Epochs(b) observed from the previous

GPU. These translated cost observations can then be used to

learn a new MAB that specializes on the new GPU.

8 Related Work

DNN training. A large body of recent studies focus on

creating fast kernels for tensor operations [18, 45, 92, 100],

efficiently placing data and/or computation [55,72,78,97], and

optimizing communication [76, 91]. However, most of them

optimize for TTA and are oblivious of their energy impact.

These works can be applied together with Zeus, potentially

accelerating training while making it energy efficient.

Another recent effort in reducing TTA (without considering

energy) in multi-GPU DNN training settings is Pollux [77].

Pollux dynamically changes the batch size during training

based on the Gradient Noise Scale (GNS) [68]. However,

GNS does not theoretically capture the generalization of the

model [68] and can only be efficiently approximated when

there are more than one GPUs participating in training. Zeus,

on the other hand, optimizes and trades off TTA and ETA by

tuning the batch size across job recurrences and does not alter

the model’s convergence characteristics.

Energy measurement for Deep Learning. A recent line

of research has analyzed the energy consumption [75] as well

as the environmental impact [54, 85] for training large DNN

models inside a cluster. On the device-level, benchmarking

efforts have been made to understand the energy efficiency

and performance of training DNN on GPUs and other accel-

erators [93]. Several Python frameworks have been built for

measurement [14, 40] and prediction [5] of energy consump-

tion for DNN training. Zeus takes a similar software-based

approach to measure power consumption via NVML [2], in

order to perform JIT profiling of DNN training jobs.

Energy optimization for Deep Learning. Existing work

has investigated energy-accuracy tradeoff in the context of

DNN inference with new neural network architecture [89]

and algorithm-hardware co-design [86], and training strate-

gies such as warm-start [7] and gradient-matching-based data

subset selection [50]. Other works optimize energy for DNN

training on multiple GPUs with scheduling [47] and task map-

ping [52]. Zeus complements these solutions as it can be

plugged in transparently into these frameworks.

Several works have studied the impact of GPU dynamic fre-

quency and voltage scaling (DVFS) and power configuration

on the energy consumption and performance of DNN train-

ing [11, 52, 87, 90, 101], wherein they focus on the tradeoff

between the transient metric of system throughput and power

consumption. While these work rely on offline modeling and

profiling, Zeus focuses on a more realistic end-to-end metric

of energy-to-accuracy and is fully online.

BatchSizer [71] introduces batch size as a control knob

to optimize for energy efficiency of DNN inference. Zeus

focuses on DNN training, and takes a holistic approach, opti-

mizing both GPU and job configurations together.

9 Conclusion

In this work, we sought to understand and optimize the energy

consumption of DNN training on GPUs. We identified the

tradeoff between energy consumption and training time, and

demonstrated that common practices can lead to inefficient

energy usage. Zeus is an online optimization framework for

recurring DNN training jobs that finds the Pareto frontier

and allows users to navigate the frontier by automatically

tuning the batch size and GPU power limit of their jobs. Zeus

outperforms the state-of-the-art in terms of energy usage for

diverse workloads and real cluster traces by continuously

adapting to dynamic workload changes such as data drift.

We earnestly hope that Zeus will inspire the community to

consider energy as a first-class resource in DNN optimization.

Acknowledgements

Special thanks to CloudLab and Chameleon Cloud for making

Zeus experiments possible. We would also like to thank the

reviewers, our shepherd Jayashree Mohan, and SymbioticLab

members for their insightful feedback. We also thank our col-

league Rui Liu for his helpful suggestions. This work is in part

supported by NSF grants CNS-1909067 and CNS-2104243

and a grant from VMWare. Jae-Won Chung is additionally

supported by the Kwanjeong Educational Foundation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 131

References

[1] How much electricity does an American home

use? https://www.eia.gov/tools/faqs/faq.

php?id=97&t=3.

[2] NVIDIA Management Library (NVML).

https://developer.nvidia.com/

nvidia-management-library-nvml.

[3] NVIDIA System Management Inter-

face. https://developer.nvidia.com/

nvidia-system-management-interface.

[4] Thomas Anderson, Adam Belay, Mosharaf Chowd-

hury, Asaf Cidon, and Irene Zhang. Treehouse: A case

for carbon-aware datacenter software. In HotCarbon,

2022.

[5] Lasse F. Wolff Anthony, Benjamin Kanding, and

Raghavendra Selvan. Carbontracker: Tracking and pre-

dicting the carbon footprint of training deep learning

models. ICML Workshop on Challenges in Deploying

and monitoring Machine Learning Systems, 2020.

[6] Yehia Arafa, Ammar ElWazir, Abdelrahman ElKa-

nishy, Youssef Aly, Ayatelrahman Elsayed, Abdel-

Hameed Badawy, Gopinath Chennupati, Stephan

Eidenbenz, and Nandakishore Santhi. Verified

instruction-level energy consumption measurement for

NVIDIA GPUs. In Proceedings of the 17th ACM In-

ternational Conference on Computing Frontiers, 2020.

[7] Jordan Ash and Ryan P Adams. On warm-starting

neural network training. NeurIPS, 2020.

[8] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.

Finite-time analysis of the multiarmed bandit problem.

Machine learning, 47(2):235–256, 2002.

[9] James Bergstra, Rémi Bardenet, Yoshua Bengio, and

Balázs Kégl. Algorithms for hyper-parameter opti-

mization. NeurIPS, 2011.

[10] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochas-

tic multi-armed-bandit problem with non-stationary

rewards. NeurIPS, 2014.

[11] Srikant Bharadwaj, Shomit Das, Yasuko Eckert, Mark

Oskin, and Tushar Krishna. Dub: Dynamic underclock-

ing and bypassing in NoCs for heterogeneous GPU

workloads. In 2021 15th IEEE/ACM International

Symposium on Networks-on-Chip (NOCS), 2021.

[12] Albert Bifet, Geoff Holmes, Bernhard Pfahringer,

Philipp Kranen, Hardy Kremer, Timm Jansen, and

Thomas Seidl. Moa: Massive online analysis, a frame-

work for stream classification and clustering. In Pro-

ceedings of the first workshop on applications of pat-

tern analysis, 2010.

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child,

Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens

Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz

Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. Language models

are few-shot learners. In NeurIPS, 2020.

[14] Qingqing Cao, Aruna Balasubramanian, and Niranjan

Balasubramanian. Towards accurate and reliable en-

ergy measurement of NLP models. In Proceedings of

SustaiNLP: Workshop on Simple and Efficient Natural

Language Processing, 2020.

[15] Maurizio Capra, Beatrice Bussolino, Alberto Marchi-

sio, Guido Masera, Maurizio Martina, and Muhammad

Shafique. Hardware and software optimizations for

accelerating deep neural networks: Survey of current

trends, challenges, and the road ahead. IEEE Access,

8:225134–225180, 2020.

[16] Yair Censor. Pareto optimality in multiobjective prob-

lems. Applied Mathematics and Optimization, 4(1):41–

59, 1977.

[17] Olivier Chapelle and Lihong Li. An empirical evalua-

tion of thompson sampling. NeurIPS, 2011.

[18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin

Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,

Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An

automated end-to-end optimizing compiler for deep

learning. In OSDI, 2018.

[19] Cody Coleman, Daniel Kang, Deepak Narayanan,

Luigi Nardi, Tian Zhao, Jian Zhang, Peter Bailis, Kunle

Olukotun, Chris Ré, and Matei Zaharia. Analysis of

dawnbench, a time-to-accuracy machine learning per-

formance benchmark. ACM SIGOPS Operating Sys-

tems Review, 2019.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical

image database. In CVPR, 2009.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. BERT: Pre-training of deep bidi-

rectional transformers for language understanding. In

Proceedings of the 2019 Conference of the North Amer-

ican Chapter of the Association for Computational

Linguistics (NAACL), 2019.

132 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

[22] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes,

Erika Odmark, Roy Schwartz, Emma Strubell, Alexan-

dra Sasha Luccioni, Noah A. Smith, Nicole DeCario,

and Will Buchanan. Measuring the carbon intensity of

AI in cloud instances. In ACM Conference on Fairness,

Accountability, and Transparency, 2022.

[23] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,

Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,

Mike Hibler, David Johnson, Kirk Webb, et al. The

design and operation of CloudLab. In ATC, 2019.

[24] Daniel Fink. A compendium of conjugate priors. 1997.

[25] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro

Rodrigues. Learning with drift detection. In Brazilian

symposium on artificial intelligence, 2004.

[26] Alec Go, Richa Bhayani, and Lei Huang. Twitter senti-

ment classification using distant supervision. Stanford

CS224N project report, 2009.

[27] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir

Feinberg, Amir Gholami, Kai Rothauge, Michael W

Mahoney, and Joseph Gonzalez. On the computational

inefficiency of large batch sizes for stochastic gradient

descent. arXiv preprint arXiv:1811.12941, 2018.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep learning. MIT press, 2016.

[29] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter No-

ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew

Tulloch, Yangqing Jia, and Kaiming He. Accurate,

large minibatch SGD: Training ImageNet in 1 hour.

arXiv preprint arXiv:1706.02677, 2017.

[30] Diego Granziol, Stefan Zohren, and Stephen Roberts.

Learning rates as a function of batch size: A random

matrix theory approach to neural network training.

Journal of Machine Learning Research, 23(173):1–65,

2022.

[31] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin,

Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang

Liu, and Chuanxiong Guo. Tiresias: A GPU cluster

manager for distributed deep learning. In NSDI, 2019.

[32] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim

Naumov, Brandon Reagen, David Brooks, Bradford

Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia,

et al. The architectural implications of facebook’s

DNN-based personalized recommendation. In HPCA,

2020.

[33] Awni Hannun, Carl Case, Jared Casper, Bryan Catan-

zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-

jeev Satheesh, Shubho Sengupta, Adam Coates, et al.

Deep speech: Scaling up end-to-end speech recogni-

tion. arXiv preprint arXiv:1412.5567, 2014.

[34] F Maxwell Harper and Joseph A Konstan. The movie-

lens datasets: History and context. ACM transactions

on interactive intelligent systems (TIIS), 5(4):1–19,

2015.

[35] Michael Harries and New South Wales. Splice-2 com-

parative evaluation: Electricity pricing. 1999.

[36] John A Hartigan and Manchek A Wong. Algorithm

as 136: A k-means clustering algorithm. Journal of

the royal statistical society. series c (applied statistics),

28(1):100–108, 1979.

[37] Kim Hazelwood, Sarah Bird, David Brooks, Soumith

Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed

Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Ap-

plied machine learning at Facebook: A datacenter in-

frastructure perspective. In HPCA, 2018.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

CVPR, 2016.

[39] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,

Xia Hu, and Tat-Seng Chua. Neural collaborative fil-

tering. In Proceedings of the 26th international con-

ference on world wide web, 2017.

[40] Peter Henderson, Jieru Hu, Joshua Romoff, Emma

Brunskill, Dan Jurafsky, and Joelle Pineau. Towards

the systematic reporting of the energy and carbon foot-

prints of machine learning. Journal of Machine Learn-

ing Research, 21(248):1–43, 2020.

[41] Miro Hodak, Masha Gorkovenko, and Ajay Dholakia.

Towards power efficiency in deep learning on data

center hardware. In IEEE International Conference on

Big Data, 2019.

[42] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train

longer, generalize better: closing the generalization gap

in large batch training of neural networks. In NeurIPS,

2017.

[43] Sunpyo Hong and Hyesoon Kim. An integrated GPU

power and performance model. In ISCA, 2010.

[44] Geoff Hulten, Laurie Spencer, and Pedro Domingos.

Mining time-changing data streams. In Proceedings of

the seventh ACM international conference on Knowl-

edge discovery and data mining (SIGKDD), 2001.

[45] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-

wski, Matei Zaharia, and Alex Aiken. TASO: Op-

timizing deep learning computation with automatic

generation of graph substitutions. In SOSP, 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 133

[46] Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Jun-

rui Pan, Amogh Manjunath, Timothy G Rogers, Tor M

Aamodt, and Nikos Hardavellas. AccelWattch: A

power modeling framework for modern GPUs. In MI-

CRO, 2021.

[47] Dong-Ki Kang, Ki-Beom Lee, and Young-Chon Kim.

Cost efficient GPU cluster management for training

and inference of deep learning. Energies, 15(2):474,

2022.

[48] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre

Riteau, Paul Ruth, Dan Stanzione, Mert Cevik, Jacob

Colleran, Haryadi S Gunawi, Cody Hammock, et al.

Lessons learned from the chameleon testbed. In ATC,

2020.

[49] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-

cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.

On large-batch training for deep learning: Generaliza-

tion gap and sharp minima. In ICLR, 2017.

[50] Krishnateja Killamsetty, S Durga, Ganesh Ramakrish-

nan, Abir De, and Rishabh Iyer. Grad-match: Gradient

matching based data subset selection for efficient deep

model training. In ICML, 2021.

[51] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In ICLR, 2015.

[52] Toshiya Komoda, Shingo Hayashi, Takashi Nakada,

Shinobu Miwa, and Hiroshi Nakamura. Power capping

of CPU-GPU heterogeneous systems through coordi-

nating DVFS and task mapping. In 2013 IEEE 31st

International Conference on computer design (ICCD).

IEEE, 2013.

[53] Alex Krizhevsky, Geoffrey Hinton, et al. Learning

multiple layers of features from tiny images. 2009.

[54] Alexandre Lacoste, Alexandra Luccioni, Victor

Schmidt, and Thomas Dandres. Quantifying the

carbon emissions of machine learning. arXiv preprint

arXiv:1910.09700, 2019.

[55] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and

Mosharaf Chowdhury. Oort: Efficient federated learn-

ing via guided participant selection. In OSDI, 2021.

[56] Tze Leung Lai, Herbert Robbins, et al. Asymptotically

efficient adaptive allocation rules. Advances in applied

mathematics, 6(1):4–22, 1985.

[57] Zhenzhong Lan, Mingda Chen, Sebastian Goodman,

Kevin Gimpel, Piyush Sharma, and Radu Soricut. AL-

BERT: A lite BERT for self-supervised learning of

language representations. ICLR, 2020.

[58] Sebastien Levy, Randolph Yao, Youjiang Wu,

Yingnong Dang, Peng Huang, Zheng Mu, Pu Zhao,

Tarun Ramani, Naga Govindaraju, Xukun Li, et al.

Predictive and adaptive failure mitigation to avert

production cloud VM interruptions. In OSDI, 2020.

[59] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Eka-

terina Gonina, Jonathan Ben-Tzur, Moritz Hardt, Ben-

jamin Recht, and Ameet Talwalkar. A system for mas-

sively parallel hyperparameter tuning. Proceedings of

Machine Learning and Systems, 2:230–246, 2020.

[60] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-

tamizadeh, and Ameet Talwalkar. Hyperband: A novel

bandit-based approach to hyperparameter optimiza-

tion. The Journal of Machine Learning Research,

18(1):6765–6816, 2017.

[61] Weixin Liang and James Zou. Metashift: A

dataset of datasets for evaluating contextual distri-

bution shifts and training conflicts. arXiv preprint

arXiv:2202.06523, 2022.

[62] Ilya Loshchilov and Frank Hutter. Decoupled weight

decay regularization. In ICLR, 2019.

[63] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and

Guangquan Zhang. Learning under concept drift: A

review. IEEE Transactions on Knowledge and Data

Engineering, 31(12):2346–2363, 2018.

[64] Cheng Luo and Reiji Suda. A performance and en-

ergy consumption analytical model for GPU. In 2011

IEEE ninth international conference on dependable,

autonomic and secure computing, 2011.

[65] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and

Jian Sun. Shufflenet v2: Practical guidelines for effi-

cient CNN architecture design. In ECCV, 2018.

[66] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri

Joshi. Matchmaker: Data drift mitigation in machine

learning for large-scale systems. In MLSys, 2022.

[67] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime

Tatbul, Mohammad Alizadeh, and Tim Kraska. Bao:

Making learned query optimization practical. In SIG-

MOD, 2021.

[68] Sam McCandlish, Jared Kaplan, Dario Amodei, and

OpenAI Dota Team. An empirical model of large-batch

training. arXiv preprint arXiv:1812.06162, 2018.

[69] Xinxin Mei, Qiang Wang, and Xiaowen Chu. A sur-

vey and measurement study of GPU DVFS on energy

conservation. Digital Communications and Networks,

3(2):89–100, 2017.

134 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[70] Sparsh Mittal and Sumanth Umesh. A survey on

hardware accelerators and optimization techniques for

RNNs. Journal of Systems Architecture, 112:101839,

2021.

[71] Seyed Morteza Nabavinejad, Sherief Reda, and Ma-

soumeh Ebrahimi. Batchsizer: Power-performance

tradeoff for DNN inference. In Proceedings of the 26th

Asia and South Pacific Design Automation Conference,

2021.

[72] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,

Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,

Phillip B Gibbons, and Matei Zaharia. Pipedream:

generalized pipeline parallelism for DNN training. In

SOSP, 2019.

[73] Vassil Panayotov, Guoguo Chen, Daniel Povey, and

Sanjeev Khudanpur. Librispeech: an ASR corpus

based on public domain audio books. In IEEE in-

ternational conference on acoustics, speech and signal

processing (ICASSP), 2015.

[74] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. Pytorch: An imperative style, high-performance

deep learning library. NeurIPS, 2019.

[75] David Patterson, Joseph Gonzalez, Quoc Le, Chen

Liang, Lluis-Miquel Munguia, Daniel Rothchild, David

So, Maud Texier, and Jeff Dean. Carbon emissions

and large neural network training. arXiv preprint

arXiv:2104.10350, 2021.

[76] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,

Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong

Guo. A generic communication scheduler for dis-

tributed DNN training acceleration. In SOSP, 2019.

[77] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-

manya, Willie Neiswanger, Qirong Ho, Hao Zhang,

Gregory R Ganger, and Eric P Xing. Pollux: Co-

adaptive cluster scheduling for goodput-optimized

deep learning. In OSDI, 2021.

[78] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,

and Yuxiong He. ZeRO: Memory optimizations to-

ward training trillion parameter models. In Interna-

tional Conference for High Performance Computing,

Networking, Storage and Analysis (SC), 2020.

[79] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and

Percy Liang. SQuAD: 100,000+ questions for machine

comprehension of text. In EMNLP, 2016.

[80] Sebastian Ruder. An overview of gradient descent opti-

mization algorithms. arXiv preprint arXiv:1609.04747,

2016.

[81] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni,

Ian Osband, Zheng Wen, et al. A tutorial on thomp-

son sampling. Foundations and Trends® in Machine

Learning, 11(1):1–96, 2018.

[82] Simone Scardapane and Dianhui Wang. Randomness

in neural networks: an overview. Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Dis-

covery, 7(2):e1200, 2017.

[83] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren

Etzioni. Green AI. Commun. ACM, 63(12):54–63,

2020.

[84] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying,

and Quoc V Le. Don’t decay the learning rate, increase

the batch size. In ICLR, 2018.

[85] Emma Strubell, Ananya Ganesh, and Andrew McCal-

lum. Energy and policy considerations for deep learn-

ing in NLP. Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, 2019.

[86] Thierry Tambe, Coleman Hooper, Lillian Pentecost,

Tianyu Jia, En-Yu Yang, Marco Donato, Victor Sanh,

Paul Whatmough, Alexander M Rush, David Brooks,

et al. EdgeBERT: Sentence-level energy optimizations

for latency-aware multi-task NLP inference. In MI-

CRO, 2021.

[87] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xi-

aowen Chu. The impact of GPU DVFS on the energy

and performance of deep learning: An empirical study.

In Proceedings of the Tenth ACM International Con-

ference on Future Energy Systems, 2019.

[88] William R Thompson. On the likelihood that one

unknown probability exceeds another in view of the

evidence of two samples. Biometrika, 25(3-4):285–

294, 1933.

[89] Chengcheng Wan, Muhammad Santriaji, Eri Rogers,

Henry Hoffmann, Michael Maire, and Shan Lu.

ALERT: Accurate learning for energy and timeliness.

In ATC, 2020.

[90] Farui Wang, Weizhe Zhang, Shichao Lai, Meng Hao,

and Zheng Wang. Dynamic GPU energy optimization

for machine learning training workloads. IEEE Trans-

actions on Parallel and Distributed Systems, 2021.

[91] Guanhua Wang, Shivaram Venkataraman, Amar Phan-

ishayee, Nikhil Devanur, Jorgen Thelin, and Ion Sto-

ica. Blink: Fast and generic collectives for distributed

ML. In Proceedings of Machine Learning and Systems,

2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 135

[92] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,

Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,

Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-

sor programs with partially equivalent transformations

and automated corrections. In OSDI, 2021.

[93] Yuxin Wang, Qiang Wang, Shaohuai Shi, Xin He, Zhen-

heng Tang, Kaiyong Zhao, and Xiaowen Chu. Bench-

marking the performance and energy efficiency of AI

accelerators for AI training. In 20th IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Internet

Computing (CCGRID), 2020.

[94] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,

Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei

Lin, and Yu Ding. MLaaS in the wild: Workload anal-

ysis and scheduling in large-scale heterogeneous GPU

clusters. In NSDI, 2022.

[95] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

Chaumond, Clement Delangue, Anthony Moi, Pierric

Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe

Davison, Sam Shleifer, Patrick von Platen, Clara Ma,

Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,

Sylvain Gugger, Mariama Drame, Quentin Lhoest, and

Alexander Rush. Transformers: State-of-the-art natural

language processing. In EMNLP, 2020.

[96] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta,

Bilge Acun, Newsha Ardalani, Kiwan Maeng, Glo-

ria Chang, Fiona Aga, Jinshi Huang, Charles Bai,

Michael Gschwind, Anurag Gupta, Myle Ott, Anasta-

sia Melnikov, Salvatore Candido, David Brooks, Geeta

Chauhan, Benjamin Lee, Hsien-Hsin Lee, Bugra Aky-

ildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike

Rabbat, and Kim Hazelwood. Sustainable AI: Environ-

mental implications, challenges and opportunities. In

Proceedings of Machine Learning and Systems, 2022.

[97] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake

Hechtman, Yanping Huang, Rahul Joshi, Maxim

Krikun, Dmitry Lepikhin, Andy Ly, Marcello Mag-

gioni, et al. GSPMD: general and scalable paral-

lelization for ML computation graphs. arXiv preprint

arXiv:2105.04663, 2021.

[98] Peifeng Yu, Jiachen Liu, and Mosharaf Chowdhury.

Fluid: Resource-aware hyperparameter tuning engine.

MLSys, 2021.

[99] Matthew D Zeiler. Adadelta: an adaptive learning rate

method. arXiv preprint arXiv:1212.5701, 2012.

[100] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,

Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,

Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and

Ion Stoica. Ansor: Generating high-performance ten-

sor programs for deep learning. In OSDI, 2020.

[101] Pengfei Zou, Ang Li, Kevin Barker, and Rong Ge.

Indicator-directed dynamic power management for iter-

ative workloads on GPU-accelerated systems. In 2020

20th IEEE/ACM International Symposium on Clus-

ter, Cloud and Internet Computing (CCGRID). IEEE,

2020.

136 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Energy Savings Potential on GPUs

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)
Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(a) NVIDIA A40.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(b) NVIDIA V100.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(c) NVIDIA RTX6000.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(d) NVIDIA P100.

Figure 15: Energy usage normalized against Baseline for DNN

training, measured on (a) NVIDIA A40 GPU, (b) NVIDIA V100

GPU, (c) NVIDIA RTX6000 GPU and (d) NVIDIA P100 GPU.

Figure 15 shows the potential for energy savings on four

different generations of NVIDIA GPUs: Ampere (A40), Volta

(V100), Turing (RTX6000), and Pascal (P100). All four gen-

erations show that there are sufficient potential for energy

savings, motivating Zeus.

B TTA vs. ETA for All Workloads

Figure 16 plots the Pareto Front for all six workloads and

the baseline (default batch size and maximum power limit) is

shown as a red triangle. Note that the axes do not start from

zero in order to zoom into the Pareto Front. Data points were

gathered on an NVIDIA V100 GPU.

40000 50000 60000
Training Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e7
192, 250W

32, 100W48, 125W48, 150W
48, 175W

48, 200W

56, 225W
48, 250W

Baseline
Pareto Front

(a) DeepSpeech2

6000 8000 10000
Training Time (s)

1.2

1.4

1.6

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e6
32, 250W

12, 125W8, 150W

12, 175W

12, 200W

12, 225W

12, 250W

Baseline
Pareto Front

(b) BERT (QA)

4000 5000 6000
Training Time (s)

7

8

9

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e5
128, 250W

64, 125W
32, 150W

32, 175W

64, 200W

64, 225W

64, 250W

Baseline
Pareto Front

(c) BERT (SA)

70000 80000 90000
Training Time (s)

1.2

1.3

1.4

1.5

1.6

1.7

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e7
256, 250W

360, 150W

360, 175W

360, 200W

360, 225W

360, 250W

Baseline
Pareto Front

(d) ResNet-50

200 400 600
Training Time (s)

0.2

0.4

0.6

0.8

1.0

1.2
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

1e5
1024, 250W

128, 100W
128, 125W128, 150W

Baseline
Pareto Front

(e) ShuffleNet V2

20 40 60 80 100
Training Time (s)

1

2

3

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e3
1024, 250W

16384, 150W16384, 175W16384, 225W

Baseline
Pareto Front

(f) NeuMF

Figure 16: ETA vs. TTA across all workloads, with Pareto Front

and default configuration highlighted. Measured on an NVIDIA

V100 GPU.

C ETA w.r.t. Configurations for All Workloads

Figures 17 and 18 respectively show the ETA value when

batch size and power limit are swept. Especially note the

convexity of all BS-ETA curves, which justifies the design of

our pruning exploration algorithm.

D Cumulative Regret of All Workloads

Figure 19 shows the cumulative regret of Zeus and Grid

Search over job recurrences for all six workloads. In gen-

eral, Zeus converges to a better knob than Grid Search while

being faster.

E Search Paths for All Workloads

Figures 20 and 21 respectively show the search path of Zeus

and Grid Search in the 2D configuration space. Thanks to the

decoupling of batch size and power limit, Zeus is able to more

efficiently navigate the search space and converge to a knob

while consuming less energy and time during exploration.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 137

10 100
Batch Size

0.0

0.5

1.0

E
TA

 (J
)

1e7

Error margin

(a) DeepSpeech2

10.0
Batch Size

0

1

E
TA

 (J
)

1e6

Error margin

(b) BERT (QA)

10 100
Batch Size

0

5

E
TA

 (J
)

1e5

Error margin

(c) BERT (SA)

2 × 10
2

3 × 10
2

Batch Size

0

2

E
TA

 (J
)

1e7

Error margin

(d) ResNet-50

10 100 1000
Batch Size

0

5

E
TA

 (J
)

1e5

Error margin

(e) ShuffleNet V2

100 1000 10000
Batch Size

0.0

2.5

5.0

E
TA

 (J
)

1e5

Error margin

(f) NeuMF

Figure 17: ETA w.r.t batch size of different DNN training workload.

The blue shade shows the error margin across repeated runs.

100 125 150 175 200 225 250
GPU Power Limit (W)

0

2

4

6

E
TA

 (J
)

1e6

(a) DeepSpeech2

100 150 200 250
GPU Power Limit (W)

0.0

0.5

1.0

1.5

E
TA

 (J
)

1e6

(b) BERT (QA)

100 150 200 250
GPU Power Limit (W)

0.0

2.5

5.0

7.5

E
TA

 (J
)

1e5

(c) BERT (SA)

100 150 200 250
GPU Power Limit (W)

0.0

0.5

1.0

1.5

E
TA

 (J
)

1e7

(d) ResNet-50

100 125 150 175 200 225 250
GPU Power Limit (W)

0

2

4

E
TA

 (J
)

1e4

(e) ShuffleNet V2

100 150 200 250
GPU Power Limit (W)

0

500

1000

E
TA

 (J
)

(f) NeuMF

Figure 18: ETA w.r.t GPU power limit of different DNN training

workload. Measured on an NVIDIA V100 GPU.

F Additional Sensitivity Analysis

Figure 22 compares both the energy consumption and training

time for Zeus against Default. We also calculate and plot the

geometric mean across all jobs. The result shows that with

higher η, Zeus prioritizes reducing energy consumption over

time, leading to higher improvement factor of energy, and

vice versa.

G Performance of Zeus on All GPUs

Figure 23 presents the energy and time consumption of all

workloads on four different generations NVIDIA GPUs: Am-

pere (A40), Volta (V100), Turing (RTX6000), and Pascal

0 100
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(a) DeepSpeech2

0 50 100
Job Recurrence (t)

10
5

10
6

10
7

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(b) BERT (QA)

0 25 50
Job Recurrence (t)

10
5

10
6

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(c) BERT (SA)

0 25 50
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(d) ResNet-50

0 50 100
Job Recurrence (t)

10
5

10
6

10
7

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(e) ShuffleNet V2

0 100
Job Recurrence (t)

10
5

10
7

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(f) NeuMF

Figure 19: Cumulative regret of Zeus vs. Grid Search across all

workloads.

(P100). The overall trends hold for all GPUs.

138 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(a) DeepSpeech2

8 12 16 24 32 48 56
Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(b) BERT (QA)

8 16 32 64 12
8

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(c) BERT (SA)

64 12
8

19
2

25
6

36
0

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(d) ResNet-50

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(e) ShuffleNet V2

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4

Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(f) NeuMF

Figure 20: Search path of Zeus across all workloads.

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(a) DeepSpeech2

8 12 16 24 32 48 56
Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(b) BERT (QA)

8 16 32 64 12
8

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(c) BERT (SA)

64 12
8

19
2

25
6

36
0

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(d) ResNet-50

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(e) ShuffleNet V2

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4

Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(f) NeuMF

Figure 21: Search path of Grid Search across all workloads.

(a) ETA

(b) TTA

Figure 22: Impact of priority knob η on ETA and TTA.

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(a) Energy Consumption (V100)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(b) Training Time (V100)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(c) Energy Consumption (A40)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1
TT

A
(n

or
m

al
iz

ed
)

Default Grid Search Zeus

(d) Training Time (A40)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(e) Energy Consumption (RTX6000)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(f) Training Time (RTX6000)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(g) Energy Consumption (P100)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(h) Training Time (P100)

Figure 23: Energy and time consumption of DNN training, nor-

malized against Default for DNN training. Results measured on (a)

NVIDIA A40 GPU, (b) NVIDIA V100 GPU, (c) NVIDIA RTX6000

GPU and (d) NVIDIA P100 GPU.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 139

