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Abstract
Containers are widely used for resource management in dat-
acenters. A common practice to support deep learning (DL)
training in container clouds is to statically bind GPUs to con-
tainers in entirety. Due to the diverse resource demands of
DL jobs in production, a significant number of GPUs are
underutilized. As a result, GPU clusters have low GPU uti-
lization, which leads to a long job completion time because
of queueing.

We present TGS (Transparent GPU Sharing), a system that
provides transparent GPU sharing to DL training in container
clouds. In stark contrast to recent application-layer solutions
for GPU sharing, TGS operates at the OS layer beneath con-
tainers. Transparency allows users to use any software to
develop models and run jobs in their containers. TGS lever-
ages adaptive rate control and transparent unified memory
to simultaneously achieve high GPU utilization and perfor-
mance isolation. It ensures that production jobs are not greatly
affected by opportunistic jobs on shared GPUs. We have built
TGS and integrated it with Docker and Kubernetes. Experi-
ments show that (i) TGS has little impact on the throughput
of production jobs; (ii) TGS provides similar throughput for
opportunistic jobs as the state-of-the-art application-layer so-
lution AntMan, and improves their throughput by up to 15×
compared to the existing OS-layer solution MPS.

1 Introduction
Containers [1–3] are widely used for resource management
in datacenters. Containers provide lightweight virtualization,
and can significantly reduce the complexity and cost of de-
ployments and managements in datacenters.

Deep learning (DL) is an important workload in data-
centers. With recent advancements in deep neural networks
(DNNs) [4] and the burst of big data space, DL models have
been increasingly integrated into applications and online ser-
vices. Large enterprises build multi-tenant GPU clusters that
are shared by many teams to develop and train DL models.

A common practice to support DL training in container
clouds is to statically bind complete GPUs to containers.
When a GPU is allocated to a container, the container has
exclusive access to the GPU, which provides performance iso-
lation for production jobs. But it means that other containers
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Figure 1: TGS architecture.

on the same machine cannot use the GPU when the GPU is
under-utilized or is even completely idle.

The major limitation of this approach is low resource uti-
lization. A recent study on a production GPU cluster by Mi-
crosoft shows that the mean GPU utilization is only 52% [5].
Another measurement on a production GPU cluster at Alibaba
shows even lower GPU utilization—the median GPU utiliza-
tion is no more than 10% [6]. However, due to exclusive GPU
allocation, incoming jobs have to wait in the queue to be
scheduled even when many GPUs are not fully utilized. This
causes a long job completion time for subsequent jobs.

This is a known problem in production GPU clusters [5, 6].
The problem can be addressed by GPU sharing to increase
GPU utilization. In production environments [6–8], DNN
training jobs are typically classified into two classes: produc-
tion jobs, which must run without much great performance
degradation caused by other jobs, and opportunistic jobs,
which utilize spare resources. It is natural to share GPUs
between the two classes of jobs to improve GPU utilization.
Yet, it is critical for production environments to ensure that
the impact of GPU sharing on production jobs is minimized.

GPU sharing solutions can be realized at either the appli-
cation layer or the OS layer. AntMan [6] is a state-of-the-art
application-layer solution. While AntMan can provide high
GPU utilization and performance isolation, it modifies DL
frameworks non-trivially and restricts users to use particu-
lar versions of given frameworks. NVIDIA Multiple Process

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    69



Sharing (MPS) [9] is an OS-layer solution. MPS requires
application knowledge to set resource limits for performance
isolation and does not support GPU sharing under GPU mem-
ory oversubscription. It merges several processes into a single
CUDA context, leading to fate sharing between jobs.

We present TGS, a system that provides transparent GPU
sharing to DL training in container clouds. Unlike application-
layer solutions, TGS works at the OS layer and realizes the
benefits of application-layer solutions at the OS layer without
the limitations of existing OS-layer solutions. Transparency
allows users to choose any version of any DL framework (ei-
ther TensorFlow, PyTorch or a custom framework) to develop
models and run jobs in containers.

The core of TGS is a lightweight indirection layer between
containers and GPUs. It intercepts the system calls from con-
tainers to GPUs and regulates the GPU resource usage for
concurrent jobs. TGS enables GPU sharing between the pro-
duction job and the opportunistic job, but largely isolates the
production job from contention.

There are two primary technical challenges in realizing an
OS-layer GPU sharing solution with performance isolation.
The first challenge is to share GPU compute resources be-
tween containers adaptively without application knowledge.
Inaccurately setting resource limits for each container would
either degrade job performance or leave resources unused.
MPS and MIG require application knowledge to manually set
resource limits. TGS applies an adaptive rate control approach
to address this challenge without application knowledge. It
monitors the performance of production jobs at runtime, and
adaptively updates the resource allocation to opportunistic
jobs. The control loop automatically converges to the point
that opportunistic jobs utilize as many resources as possible
without much affecting production jobs.

The second challenge is to enable transparent GPU mem-
ory oversubscription. GPUs have their own memory to keep
the application state. MPS fails when the total GPU mem-
ory required by containers exceeds the GPU memory size.
AntMan uses a custom memory management component in
DL frameworks to manage memory swapping between GPU
memory and host memory at the application layer. We design
a transparent unified memory mechanism based on CUDA
unified memory to enable unified memory at the OS layer,
obviating the need to explicitly modify applications. This
mechanism manages memory swapping underneath when the
GPU memory is oversubscribed. TGS leverages placement
preferences to ensure that GPU memory is prioritized for
production jobs to protect their performance.

In summary, we make the following contributions.
• We propose TGS, a system that provides transparent GPU

sharing for DL training in container clouds.
• We design adaptive rate control and transparent unified

memory mechanisms to simultaneously achieve high GPU
utilization and performance isolation.

• We implement TGS and integrate it with Docker and Ku-
bernetes. Experiments show that (i) TGS has little impact
on the throughput of production jobs; (ii) TGS provides
similar throughput for opportunistic jobs as state-of-the-
art application-layer solution AntMan and improves their
throughput by up to 15× compared to existing OS-layer
solution MPS.

2 Background and Motivation
In this section, we first introduce containers, deep learning
training, and the current practice to support deep learning
training in container clouds. Then, we show the limitations of
existing solutions to motivate TGS.

2.1 Container Clouds

Containers [1–3] (e.g., Docker) are used widely to manage
resources and deploy workloads in datacenters, and provide
portability and isolation. A container is a standalone software
package including everything needed to run an application.
A containerized application can run across various environ-
ments without any modifications. Such portability enables
developers to use the tools and application stacks of their
choice to develop and run their applications, without worry-
ing about deployment environments. Applications in different
containers are isolated by using independent namespaces.

Containers are lightweight, compared with virtual ma-
chines. Virtual machines use a guest OS, but containers use
the host OS kernel. Thus, applications can achieve bare metal
performance when running in containers. Cloud operators use
a container orchestration platform [10, 11] to provision, man-
age and update containers on many machines in a datacenter.

2.2 DL Training Workloads

DL training uses a dataset to train a DNN model. A train-
ing job contains many iterations. Each iteration uses a batch
of samples from the dataset to train the DNN model. An it-
eration includes a forward pass and a backward pass. The
forward pass uses the DNN model to compute the labels of
the samples in the batch. A loss is computed based on the
output labels and the actual labels using a loss function. The
backward pass propagates the loss from the last layer to the
first layer of the DNN model and computes the gradients for
each weight. The DNN model is updated based on the gradi-
ents using an optimizer. DL training is compute-intensive, so
GPUs are typically used. However, widely-adopted exclusive
GPU allocation leads to low GPU utilization in production,
as reported by Microsoft [5] and Alibaba [6].

2.3 Limitations of Existing Solutions

A natural way to increase GPU utilization is GPU sharing.
If a single container cannot utilize all the GPU resources, a
GPU can be shared by multiple containers to increase GPU
utilization. However, containers on a shared GPU will com-
pete for compute and memory resources of the GPU, and the
interference can slow down the jobs.
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AntMan [6] Salus [12] PipeSwitch [13] MPS [9] MIG [14] TGS

Transparency ✓ ✓ ✓
High GPU utilization ✓ ✓ ✓
Performance isolation ✓ ✓ ✓ ✓ ✓ ✓
Fault isolation ✓ ✓ ✓ ✓

Table 1: Comparison between TGS and existing GPU sharing solutions.

GPU sharing can be done either at the application layer
or the OS layer. The primary drawback of application-layer
solutions [6, 12, 13] is that they are not transparent to users,
i.e., they require significant modifications to DL frameworks.
Users are restricted to use the set of supported versions of
given frameworks and have to wait for the integration if a
newer version of a particular DL framework comes. This
approach loses the advantage of allowing users to use any
tools to develop and run applications in containers.

NVIDIA MPS [9] is an OS-layer solution for GPU sharing.
It requires application knowledge to properly set the resource
limit for each process to ensure performance isolation. More
importantly, MPS requires the total GPU memory of the pro-
cesses to fit within the GPU memory capacity and relies on
applications to handle memory swapping between GPU mem-
ory and host memory. Another limitation of MPS is that it
does not provide fault isolation. MPS merges the CUDA con-
texts of multiple processes into a single CUDA context to
share the GPU. When a process fails, it leaves the MPS server
and other processes in an undefined state and may result in
process hangs, corruptions, or failures.

NVIDIA Multi-Instance GPU (MIG) [14, 15] is another
OS-layer solution. MIG requires GPU hardware support
and is currently only available on three high-end GPUs, i.e.,
NVIDIA A100, NVIDIA A30, and NVIDIA H100. MIG can-
not arbitrarily partition a GPU based on application needs; it
only supports GPU partitioning for a given set of configura-
tions. For example, an NVIDIA A100 GPU can be partitioned
into GPU instances with separate compute and memory re-
sources for different DL training jobs, but MIG only provides
seven fixed configurations for each GPU instance and each
GPU instance cannot use more than 4/7 of the GPU compute
resources or half of the GPU memory resources. Furthermore,
it cannot dynamically change GPU resources owned by GPU
instances if there are running jobs on the GPU even if the
GPU usage of a container changes. Reconfiguration of MIG
can only happen when the GPU is idle. MIG does not support
memory oversubscription.

3 TGS Overview

TGS is a GPU sharing system for deep learning training in
container clouds that is designed to meet the following goals.
Table 1 compares TGS with existing GPU sharing solutions
regarding these four goals.

• Transparency. The system should be transparent to appli-
cations so that users can use any software to develop and
train DNN models in containers.

• High GPU utilization. The system should achieve high
GPU utilization for both compute and memory resources.

• Performance isolation. The system should provide perfor-
mance isolation for DL jobs. Production jobs should not be
significantly affected by opportunistic jobs.

• Fault isolation. Application faults should be isolated by
containers. The fault of an application in one container
should not crash applications in other containers.

Architecture. Figure 1 shows that TGS is an OS-layer ap-
proach: it sits between containers and GPUs. Containers and
applications are unaware of TGS. Users can use any custom
framework to develop and train DNN models. A GPU is ex-
posed as a regular GPU to the containers. The processes in
the containers issue GPU kernels, i.e. functions executed on
the GPU, to the GPU as they do with a dedicated GPU. TGS
uses a lightweight indirection layer to share the GPU between
workloads of several containers. The indirection layer inter-
cepts the GPU kernels from containers and regulates these
GPU kernels to control the resource usage of each container.

Key ideas. TGS leverages an adaptive rate control mecha-
nism and a transparent unified memory mechanism to tackle
two challenges in providing transparent GPU sharing at OS
layer. The first challenge is to adaptively share GPU compute
resources between containers without application knowledge.
To address this challenge, the rate monitor of TGS monitors
the performance of each container, and provides the number
of CUDA blocks (a basic scheduling and execution unit on
the GPU) as a real-time signal for the control loop. Based on
the signal, the rate control of TGS adaptively controls the rate
of sending GPU kernels to the GPU for each container. The
control loop automatically converges to the point that oppor-
tunistic jobs utilize as many remaining resources as possible
to achieve high GPU utilization without greatly affecting the
performance of production jobs.

The second challenge is to enable transparent GPU mem-
ory oversubscription. AntMan [6] modifies DL frameworks
to swap GPU memory when GPU memory is oversubscribed.
OS-layer solution MPS does not support GPU memory over-
subscription, and relies on applications to handle memory
swapping. These approaches are not transparent. To address
this challenge, TGS exploits CUDA unified memory [16]
which unifies GPU memory and host memory in a single
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memory space. TGS intercepts and redirects GPU memory
allocation calls from containers to the CUDA unified memory
space. When the GPU memory is oversubscribed, TGS can
automatically evict some data of opportunistic jobs to the host
memory, and change the mapping of the corresponding virtual
addresses to the new data locations in the host memory. The
entire process is transparent to applications. To ensure perfor-
mance isolation, TGS uses memory placement preferences to
prioritize allocating GPU memory for production jobs over
opportunistic jobs.

The design of TGS has two other benefits. First, the archi-
tecture is lightweight. TGS has low overhead and conforms
with the principle of containers. Second, TGS provides the
same fault isolation property as regular containers. The con-
tainers in TGS use separate GPU contexts, as opposed to MPS
which merges the CUDA contexts of the containers into one.
Therefore, an application fault in one container does not affect
or terminate other containers.

4 TGS Design
In this section, we present the design of TGS. We first describe
the adaptive rate control mechanism to share GPU compute
resources. Then we describe the unified memory mechanism
to share GPU memory resources.

4.1 Sharing GPU Compute Resources

Application code is encapsulated into functions to be executed
on a GPU, which are known as GPU kernels. GPU kernels
are highly optimized based on the particular architecture and
execution model of the GPU. A small DNN training job may
not use all the compute resources of a GPU. In this case, the
GPU has low utilization if it is exclusively allocated to the
container of the job. TGS improves GPU utilization by GPU
sharing. In TGS, a GPU can be exposed to and shared by
multiple containers to increase GPU utilization.

TGS ensures the performance of production jobs is not
greatly affected by opportunistic jobs. Opportunistic jobs use
no more than the resources left by production jobs. To achieve
this, we need to solve two problems. First, we need to estimate
how many resources are left by production jobs. Second, we
need to control opportunistic jobs to use no more than the
remaining resources.

Strawman solution: priority scheduling. A strawman so-
lution is priority scheduling. It intercepts the GPU kernels
from containers and puts them into a production queue and
an opportunistic queue based on the priority of the job. The
kernels in the opportunistic queue are only scheduled to the
GPU when the production queue is empty. In this solution,
whether there are remaining resources is estimated by check-
ing whether the production queue is empty, and controlling
the resource usage of opportunistic jobs is achieved by priori-
tizing the scheduling of the kernels in the production queue.
This is a canonical solution to performance isolation and high
utilization, and has been widely used in computer systems.

Monitor 𝛼!"
Queue kernels
and adapt 𝛽#$%

GPU

𝛼!"

report 𝛼!"

GPU kernels from
high-priority jobs

GPU kernels from
low-priority jobs

𝛼#$% = 𝛼!"

𝛽!"

𝛽#$% ≤ 𝛽!"

Figure 2: Adaptive rate control.

However, this solution is not suitable for GPU sharing.
An empty production queue for GPU jobs does not mean
production jobs are not using the GPU. A GPU kernel is an
optimized GPU function that runs for some time. The GPU
kernels scheduled in the past may still be running on the GPU,
while the production queue is empty. Similarly, an empty
queue also cannot tell how many resources on left on the
GPU. Therefore, if the kernels in the opportunistic queue
are sent to the GPU and the production jobs are using most
of the GPU resources, then the GPU kernels from both jobs
would contend with each other, which incurs large overhead
for production jobs. Keeping track of GPU kernels running
on the GPU is also not feasible, because the state of the GPU
is not fully visible.

It may be possible to implement a priority scheduler into
the GPU device driver, so that the scheduler can have full
visibility of the resource usage and can perform fine-grained
control. This solution is not general. It is tightly tied to the
low-level GPU specifics and requires deep integration with
each type of GPU based on their architecture and execution
model. Some GPUs are blackboxes and do not expose such
control to the OS.

Our solution: adaptive rate control. TGS uses an adaptive
rate control approach (Figure 2). The main idea is to carefully
control the dequeuing rate of the kernels in the opportunistic
queue based on the kernel arrival rate, so that opportunistic
jobs can use up the remaining compute resources without
greatly affecting the production job. This is a general OS-
layer approach: it is decoupled from low-level GPU specifics
and does not require access to GPU internal control.

This approach requires a feedback signal to tell the control
loop whether the dequeuing rate of the opportunistic queue
can be increased to use more resources or should be decreased
to avoid degrading production jobs. Ideally, we want to use
the application performance, i.e., the training throughput for
DL training workloads, as the feedback signal, because this
is the metric we ultimately care about. However, we cannot
directly obtain the training throughput, because this requires
application knowledge, and we aim to design an OS-layer
solution that is transparent to applications.

One choice of the signal is GPU utilization, i.e., increase the
rate if the GPU utilization is below 100%. While this choice
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Figure 3: Relationship between the rates of production and oppor-
tunistic jobs.

seems natural, it has two drawbacks. First, the definition of
GPU utilization is hardware-specific and is often vague [17].
Today’s GPUs contain different types of compute units on a
single chip, e.g., Tensor cores and CUDA cores for different
data types on NVIDIA GPUs. GPU utilization reported by
GPU drivers (if supported) often lacks a precise definition.
Even if it does (e.g., the percentage of stream processors
that are used), it is unclear what a single utilization value
actually means for a GPU with several types of compute
units. Second, GPU utilization is only loosely coupled with
the application performance. Even when the reported GPU
utilization is below 100%, it does not mean we can increase
the dequeuing rate of the opportunistic queue without slowing
down production jobs. For example, a production job and an
opportunistic job may compete for the same type of compute
units that are already used up by the production job alone,
though there are other types of compute units that are idle;
two jobs may also compete for other resources than the one
captured by GPU utilization.

In TGS, we use the kernel arrival rate of production jobs
(i.e., the rate that TGS receives kernels from the containers)
as the feedback signal. A DL training job constructs a com-
pute graph based on the DNN model for its training process.
It uses the compute graph to generate and send kernels to
the GPU to perform training. The compute graph captures
the dependencies between the kernels. The kernel arrival rate
directly corresponds to the training throughput. If the training
is slowed down, the kernels are finished slower, the depen-
dencies are satisfied slower, and the kernel arrival rate drops.
Therefore, TGS uses a rate monitoring module to monitor
the kernel arrival rate of production jobs, and uses it as the
feedback signal to control the kernel dequeuing rate of oppor-
tunistic jobs. Note that any contention between production
jobs and opportunistic jobs can be captured by this kernel
arrival rate, including GPU cache contention, CPU contention
and network contention. Some of them are beyond what a
GPU hardware design can control, and TGS uses rate control
as a knob to control all of them. Since there can be a small
variance in the kernel arrival rate, TGS uses a moving average
to smooth the estimation of the kernel arrival rate. For the
kernels from production jobs, TGS only performs a simple
counting operation to estimate the kernel arrival rate. It does

not queue the kernels and directly passes them to the GPU, to
minimize the impact on the performance of production jobs.

Rate adaptation algorithm. The rate adaptation algorithm
controls the kernel dequeuing rate of the opportunistic queue,
so that the kernel arrival rate of production jobs is not greatly
affected and the kernel dequeuing rate of opportunistic jobs
is maximized. Formally, let αin and αout be the rates that the
kernels of production jobs arrive at and departure from TGS
respectively, and βin and βout be those of the opportunistic
jobs. TGS only monitors, but does not limit the rate of pro-
duction jobs. So αin = αout . Let the kernel arrival rate of
production jobs when the GPU is not shared be R. The rate
control algorithm is to maximize βout so that αin = R. In the
formulation, βout is the variable controlled by the algorithm
and αin is dependent on βout . Let f be the function that cap-
tures the relationship between αin and βout , i.e., αin = f (βout).
Then the algorithm has to solve the following optimization
problem.

max βout (1)
s.t. αin = f (βout)≥ R (2)

βout ≥ 0 (3)

The exact shape of f (βout) is unknown, but we know its
rough shape by the nature of the problem. Specifically, f (βout)
is flat and is equal to R when βout is small, and is monoton-
ically decreasing when βout is large, as illustrated in Fig-
ure 3(a). The intuition is that when βout is small, the GPU is
not fully utilized and executing the kernels of opportunistic
jobs does not affect the performance of production jobs, re-
sulting in a flat line; after the tipping point β∗, opportunistic
jobs start to compete with production jobs for GPU resources,
causing the performance of production jobs to drop. Note that
the monotonically decreasing part is not necessarily linear;
Figure 3(a) illustrates the general trend that αin decreases
when βout increases. The goal of the algorithm is to find the
tipping point β∗ from which f (βout) starts to decrease.

Figure 3(a) is the general case. There are two special cases.
Figure 3(b) is the special case where the GPU is already fully
utilized by production jobs, so that even executing a small
number of kernels for opportunistic jobs would degrade the
performance of production jobs. In this case, the line does
not have a flat part. Figure 3(c) is the special case where
the demand of opportunistic jobs is very small, so that even
when the dequeuing rate is not limited, the performance of
production jobs is not affected. In this case, the line does not
have a monotonically decreasing part.

To approximate the optimal βout , we use the canonical
additive increase multiplicative decrease (AIMD) method to
control the rate βout , as shown in Algorithm 1. Specifically,
TGS first measures the rate R of a production job on a GPU
before it adds an opportunistic job to the GPU for sharing (line
1−3). After the opportunistic job is added, TGS additively
increases βout , if αin is greater than or equal to R (line 24−

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    73



25), or multiplicatively decreases βout , if αin is below R (line
29−30). AIMD ensures that βout can approximately converge
to the tipping point β∗. To accelerate convergence, a slow start
phase is adopted (line 17−22). Experiments in §6 shows that
the convergence is fast. When the production job changes its
resource usage pattern, TGS detects that the variance of R
is beyond a threshold. In this case, the rate control module
suspends the opportunistic job and measures new R (line
26− 28). When R becomes stable, the rate control module
uses AIMD to adjust βout to the tipping point. We have the
following theorem to ensure the convergence of the adaptive
rate control algorithm at most cases.

Theorem 1 Assuming DL jobs are stable during the profiling
phase and the convergence phase, the adaptive rate control
algorithm converges in O(B logB) function calls, where B is
the throughput limit of jobs in the GPU.

The proof of the theorem is in Appendix A. The proof is
based on the stability of the deep learning training workload.
For readers familiar with congestion control in computer net-
working, our problem resembles the bandwidth allocation
problem when multiple flows compete for the bandwidth re-
sources of a shared link. In bandwidth allocation, each flow
uses a congestion control algorithm to control its own rate,
and after the system converges, each flow gets a fair share
of the link bandwidth. Our problem is subtly different from
bandwidth allocation in that we do not limit the rate of pro-
duction jobs, and only control the rate of opportunistic jobs to
ensure that the performance of production jobs is not greatly
affected by resource sharing.

4.2 Sharing GPU Memory Resources

GPUs have GPU memory that is separated from the host mem-
ory. The memory size in modern GPUs ranges from a few GB
to tens of GB. GPU memory stores the state and data needed
by applications to perform their computation on the GPU. The
compute units in the GPU can access the GPU memory much
faster than the host memory. The GPU device driver exposes
the GPU memory to users with an API, which is similar to
the memory management API for the host memory. Users use
the API to allocate and manage GPU memory for their GPU
programs, e.g., cudaMalloc for GPU memory allocation on
NVIDIA GPUs. Similar to GPU compute resources, the GPU
memory can be shared by multiple containers when a single
container cannot utilize all the GPU memory resources.

Strawman solution: pass-through allocation. A strawman
solution is to directly pass the GPU memory allocation calls
from containers to the GPU. In this way, the GPU memory is
fully utilized as long as there is enough demand from contain-
ers. The major limitation of this solution is that it has large
overhead for production jobs. In this solution, when produc-
tion jobs do not use all the GPU memory, opportunistic jobs
can obtain the remaining memory. Later, if the production job
wants to allocate more GPU memory, they would not be able

Algorithm 1 Adaptive Rate Control Algorithm
1: procedure INIT
2: R = measure_high_prio_ job_rate()
3: βout = 0
4: state = SLOW_START
5:
6: procedure UPDATE_HIGH_RATE
7: Ravg = avg(high_rate_window)
8: dR = |R−Ravg|/R
9: if dR < R_threshold then

10: R = max(R,Ravg)
11: else
12: R = measure_high_prio_ job_rate()
13:
14: procedure UPDATE_LOW_RATE_LIMIT
15: dα = |R−αin|/R
16: switch state do
17: case SLOW_START :
18: if dα < thresholdslow_start then
19: βout ∗= δSS
20: else
21: βout /= δSS
22: state =CA
23: case CA :
24: if dα < threshold1 then
25: βout+= δAI
26: else if dα > threshold2 then
27: βout = 0
28: state = SLOW_START
29: else
30: βout ∗= δMD

to do so because the remaining memory has been allocated
to opportunistic jobs. Without sufficient GPU memory, pro-
duction jobs may run at a lower speed, or even fail, which
violates fault isolation.

Another limitation of this solution is that it does not con-
sider the characteristics of DL frameworks. When starting a
job, some DL frameworks (e.g., TensorFlow) claim all the
available GPU memory even if the training job does not re-
quest that much memory. These DL frameworks typically
have a memory pool that caches all the allocated memory, and
give the memory to the training job on demand. They do not
free and return the allocated memory back to the GPU when
some memory is not used. This is an optimization in these
DL frameworks to avoid the overhead of frequently calling
GPU memory to allocate and release during a job.

This optimization introduces challenges to sharing the GPU
memory. Application-layer solutions like AntMan [6] can
directly modify DL frameworks to obtain the memory usage
of training jobs and disable unnecessary memory caching to
return unused GPU memory back to the GPU. However, to
design a transparent OS-layer solution, modifications on DL
frameworks or applications are not allowed.

Our solution: unified GPU and host memory. Modern
GPUs provide a feature called unified memory which uni-
fies GPU memory and host memory in a single address space.
Unified memory is traditionally used by applications to sim-
plify GPU memory management. TGS applies CUDA unified
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memory [16] in a novel way: it uses CUDA unified memory
allocation as an indirection of GPU memory allocation, in
order to achieve transparency and performance isolation for
GPU memory sharing. Specifically, TGS exposes CUDA uni-
fied memory as pseudo GPU memory to containers. When a
container issues a GPU memory allocation call, whether the
call is for regular GPU memory or CUDA unified memory,
TGS intercepts this call and allocates the memory requested
by the call in the CUDA unified memory space. When pro-
duction jobs do not use up the GPU memory, opportunistic
jobs can obtain the remaining GPU memory.

Pseudo GPU memory refers to that the allocated memory
appears to be normal GPU memory to containers and appli-
cations, while it can actually come from either GPU memory
or host memory depending on availability. Note that we do
not change the virtual memory system. Pseudo memory is
still virtual memory, and applications use virtual memory
addresses to access allocated pseudo memory. A GPU/host
virtual memory address is translated to a GPU/host physical
memory address by the GPU/host memory management unit.

The transparent unified memory in TGS is different from
the original CUDA unified memory in two aspects, which are
(i) performance isolation and (ii) transparent oversubscription
of GPU memory. To provide performance isolation, TGS uses
placement preferences in CUDA unified memory to priori-
tize the allocation of GPU memory to production jobs. When
the GPU memory is not full, the memory allocation requests
from any job get the GPU memory. When the GPU memory
is full, TGS tries to place the blocks of production jobs in the
GPU memory, and evict the blocks of opportunistic jobs to
the host if necessary. This is transparent to the containers, as
the containers still use the same virtual memory addresses
to access their allocated memory space. The virtual mem-
ory addresses are translated to physical memory addresses at
different locations. This mechanism also does not introduce
additional out-of-memory (OOM) faults, because in the view
of DL training jobs, the GPU memory capacity is the same as
the size of the original GPU memory.

The transparent unified memory in TGS also addresses
the issue of overclaiming the GPU memory in existing DL
frameworks, without modifications to DL frameworks. When
the DL framework claims all the available GPU memory, TGS
allocates the requested amount of memory from the CUDA
unified memory space. The actually used memory would
trigger GPU page faults and be swapped to the GPU memory
when it is used for the first time, and then would reside in
the GPU memory. Consequently, only the portion actively
used by the training job is in the GPU memory; the remaining
portion is in the host memory. This allows opportunistic jobs
to efficiently share the GPU memory.

5 Implementation
We have implemented a system prototype for TGS with
∼3000 lines of code in C++ and Python, and integrated it

with Docker and Kubernetes. A coordinator process takes
charge of resource management and leverages the indirec-
tion layer of TGS to enable GPU sharing between containers.
Specifically, the adaptive rate control and the transparent uni-
fied memory provided by TGS are used for GPU sharing.
The code of TGS is open-source and is publicly available at
https://github.com/pkusys/TGS.

Adaptive rate control. TGS intercepts CUDA driver API
calls related to CUDA kernel launch from containers for rate
monitoring and rate control. Because CUDA kernel launch
may be evoked by multiple threads in the container, TGS
uses a global counter to record the number of CUDA blocks
launched in a given time period. A CUDA block is a group of
threads that must execute in the same SM (Streaming Multi-
processor) and different CUDA blocks can run independently
in parallel. As the number of a CUDA block that a kernel
contains is specified in the CUDA driver API call, the number
of pending CUDA blocks can be treated as a real-time signal
to estimate the performance of production jobs. For a produc-
tion container, a standalone thread serves as the rate monitor,
which reads this counter of the TGS periodically and sends
the value to the rate-control component of the opportunistic
container on the same GPU. For an opportunistic container,
a rate control thread is created when the CUDA driver starts
to work. The rate control thread adjusts the rate limit of the
opportunistic container according to the received statistics.
To keep the kernel launch rate of the opportunistic container
at a desirable value, all CUDA kernel launch API calls are
redirected to the rate control component first. The rate control
component accesses statistics generated by the rate monitor
to examine whether the rate limit is satisfied and defers the
kernel launch if the rate of the opportunistic container exceeds
the rate limit.

Unified memory management. To implement transparent
memory sharing, TGS intercepts CUDA driver API calls re-
lated to GPU memory allocation, such as cuMemAlloc, and
replaces these calls with unified memory allocation calls us-
ing cuMemAllocManaged. We use cuMemAdvise to prioritize
the allocation of GPU memory for production containers.
Specifically, we use cuMemAdvise to set the preferred lo-
cation of memory allocation as the current GPU to avoid
eviction for production containers. When the production con-
tainer finishes, the indirection layer in the opportunistic con-
tainer would use CUDA driver API cuMemPrefetchAsync to
prefetch memory located in the host memory transparently.

6 Evaluation

Setup. Most experiments are conducted on a server ma-
chine configured with an Intel Xeon Silver 4210R CPU, two
NVIDIA A100 40 GB PCIe GPUs and 126 GB host mem-
ory. AntMan [6] only open-sourced one particular version
based on TensorFlow 1.15.4 and the version is not compatible
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Figure 4: Throughput of production and opportunistic jobs for different model pairs when GPU memory is sufficient.
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Figure 5: Throughput of production and opportunistic jobs for different model pairs under GPU memory oversubscription.

with A100. Therefore, all experiments involved in Tensor-
Flow are conducted on an AWS p3.2xlarge instance which
is configured with eight Intel Xeon Scalable (Skylake) vC-
PUs, one NVIDIA V100 16 GB Tensor Core GPU and 61 GB
host memory. The software environment includes NVIDIA
driver 460.91.03, CUDA 11.2, Docker 20.10.5, PyTorch 1.9.0,
TensorFlow 1.15.4, torchvision 0.10.0 and scipy 1.6.3.

Workloads. We use various models for evaluation. The
models include ShuffleNet, MobileNet, GCN (Graph Con-
volutional Network), ResNet-50, BERT-Base, DLRM (Deep
Learning Recommendation Model) and ESPnet2. These mod-
els are representative and widely-used, and are standard bench-
marks for evaluating DL systems. They vary in terms of GPU
resource usage, which allows us to evaluate TGS under differ-
ent levels of GPU resource contention.

Comparison. To demonstrate the benefits of TGS, we com-
pare the following mechanisms in the experiments. Each job
runs in a separate container. We use throughput (iterations
per second) as the main metric to evaluate the performance of
different mechanisms, because it is a direct metric of a job’s
speed. We run at least 100 seconds for each case to measure
the variance of the throughput, which typically includes 2000
iterations of a DL training job. Because a DL training job
performs the same computation for each iteration (only the
input data is different), the variance is low. We also use job
completion time (JCT), but it depends both on the throughput
and the number of iterations. The latter is configured by the
user and varies from job to job.

• TGS. This is the proposed system.

• Exclusive. The production and opportunistic jobs are given
exclusive access to a GPU when they run.

• Co-execution. The production job and the opportunistic
job are executed concurrently without TGS.

• NVIDIA MPS. The production job and the opportunistic
job run concurrently with NVIDIA MPS. We manually find
the appropriate resource limit to set for each job in MPS
to ensure that the performance of the production job is not
affected by the opportunistic job.

• NVIDIA MIG. We manually set the best configuration to
partition GPUs into different GPU instances so that the
performance degradation of the production job brought by
the opportunistic job is minimal.

Due to the compatibility issue of AntMan [6], we compare it
with TGS in §6.7.

6.1 Adaptive Rate Control

TGS uses an adaptive rate control approach to allocate GPU
compute resources between containers in order to simultane-
ously achieve high GPU utilization and performance isolation.
In this experiment, we show that TGS packs an opportunistic
job with a production job on a GPU to increase GPU uti-
lization when the production job cannot use up all the GPU
resources, and that the overhead of the production job is 5%
to 10.8%. We use two different pairs of DNN models for
the production job and the opportunistic job to evaluate TGS
under different scenarios of resource contention. In this ex-
periment, the total required GPU memory of the two jobs
does not exceed the GPU memory capacity. This allows us to
focus on evaluating the effectiveness of adaptive rate control.
In the experiment, the two jobs arrive at the same time, and
we measure the throughput for each job. To clearly show the
difference between the five mechanisms, we normalize the
throughput of each mechanism to that of Exclusive.
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Figure 6: Performance comparison under a mixed workload job stream.

Figure 4a compares the performance of the five mecha-
nisms when the production job trains ShuffleNet with batch
size 4 and the opportunistic job trains MobileNet with batch
size 4. These two models are small, so this case has low
resource contention, and the throughput of the production
job and the opportunistic job is almost the same for the five
mechanisms. The overhead of TGS is 5%.

Figure 4b shows the results when the production job
trains ResNet-50 with batch size 24 and the opportunistic job
trains ShuffleNet with batch size 64. Both models are more
computation-intensive than the models in Figure 4a. Thus,
this case has a higher resource contention. TGS and MPS
provide higher performance of the production job compared
to Co-execution, because TGS and MPS control the resource
allocation. Co-execution does not provide performance isola-
tion, so the contention with the opportunistic job causes the
throughput of the production job to reduce to 57% of that
under Exclusive. The opportunistic job gets more resources
than it should get by contending with the production job un-
der co-execution. Thus the throughput of the opportunistic
job under co-execution is high. TGS incurs 10.8% overhead
for the production job although the resource contention is
high. The performance provided by MPS is also comparable
with TGS, although MPS sacrifices fault isolation. MIG only
provides limited configurations for each GPU instance. On
an NVIDIA A100 GPU, each GPU instance can only use at
most one half of the total GPU memory and 4/7 of total SMs
for GPU computation when a GPU is partitioned into two
instances. In the high contention scenario, when the produc-
tion job needs more GPU SMs than 4/7 for computation, the
performance of the production job suffers, and is reduced to
77% of that under Exclusive. The opportunistic job gets more
resources than it should, so its throughput is quite high.

While TGS protects production jobs from high contention
caused by the opportunistic job, some sharing overhead is
inevitable. In terms of throughput, Exclusive slightly outper-
forms TGS, because Exclusive runs DL models exclusively
on the GPU. However, in this case, opportunistic jobs have to
wait until the completion of the production job before execu-
tion. This leads to longer JCT for opportunistic jobs. Figure 4c
shows that as the ratio of the job duration of the production
job to that of the opportunistic job becomes larger, TGS can
significantly reduce the queuing delay and thus speed up the

opportunistic job over Exclusive. When the ratio is 20, TGS
can reduce the JCT of the opportunistic job by 95% than
Exclusive at the low-contention scenario and by 47% at the
high-contention scenario.

6.2 Unified Memory Management

In this experiment, we show that TGS provides high GPU
utilization and performance isolation for GPU sharing even
when the GPU memory is oversubscribed. We use two dif-
ferent pairs of DNN models to evaluate TGS under different
scenarios. To oversubscribe the GPU memory, we use DLRM
as the model of the opportunistic job for both pairs. DLRM
is a large recommendation model with high GPU memory
consumption. Similar to previous experiments, two jobs arrive
at the same time, and we measure the throughput of each job.
To clearly show the differences between the five mechanisms,
we normalize the throughput of each mechanism to that of
Exclusive for each job. Because MPS and Co-execution do
not support GPU memory oversubscription, we modify the
DL frameworks to use unified memory to evaluate them.

Figure 5a compares the performance of the five mecha-
nisms when the production job trains ResNet-50 with batch
size 16 and the opportunistic job trains DLRM with batch
size 2048. The overhead of TGS is 2.3% compared to Ex-
clusive. Co-execution has lower throughput due to resource
contention. While MPS can set resource limits for SM usage,
it cannot prioritize GPU memory allocation, and the two jobs
contend for GPU memory resources when the GPU memory
is oversubscribed. This causes significant memory swapping
between GPU memory and host memory for both jobs, which
degrades the performance of the production job under GPU
memory oversubscription. MIG can partition the GPU mem-
ory resources, but it cannot provide sufficient GPU SMs with
the production job due to the configuration constraints. There-
fore, the performance of the production job under MIG is
lower than that of Exclusive and TGS. In terms of the oppor-
tunistic job, Co-execution and MPS have lower throughput
due to GPU memory contention. TGS improves the through-
put by 7.8× over MPS for the opportunistic job by prioritizing
memory allocation. MIG cannot partition GPU memory flexi-
bly. The GPU instance of the opportunistic job can only use
one half of the GPU memory to maintain performance of the
production job. Therefore, the throughput of the opportunistic
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Figure 7: System overhead of TGS.

job under MIG is even lower than that of Co-execution and
MPS.

Figure 5b shows the results when the production job trains
BERT-Base with batch size 4 and the opportunistic job trains
DLRM with batch size 256. BERT-Base is more computation-
intensive than ResNet-50, and thus there is heavier contention.
TGS maintains the performance as Exclusive with 12.3%
overhead for the production job. Due to heavier contention,
Co-execution and MPS perform worse for the production job.
Due to more GPU compute resource demand, MIG performs
also worse. TGS improves the throughput by 36× over Co-
execution, 72× over MPS, and 1.5× over MIG for the produc-
tion job. TGS also performs the best for the opportunistic job
compared to MIG, MPS and Co-execution. They are slower
due to resource contention and simply use unified memory
without leveraging priority information. For the opportunistic
job, TGS improves the throughput by 24×, 15× and 259×,
compared to co-execution, MPS, and MIG, respectively.

Exclusive provides all GPU resources to the production
job, even though GPU resources are not fully utilized. As a
result, the opportunistic job has a long queuing time—it has to
wait for the production job to finish before it can be executed.
As shown in figure 5c, when the ratio of the job duration of
the production job to that of the opportunistic job reaches 20,
TGS reduces the JCT of the opportunistic job by 95% over
Exclusive at the low-contention scenario and by 92% at the
high-contention scenario.

6.3 Mixed Workload Job Stream

In this experiment, we compare TGS with Exclusive and Co-
execution when sharing a GPU between a mixed workload
job stream. The DNN models used in the trace are consistent
with previous experiments, including ResNet-50, MobileNet,
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Figure 8: Convergence under dynamic job arrival.

ShuffleNet, GCN, BERT-Base, and DLRM. The running time
of the jobs are from a production DL training job trace of Mi-
crosoft [5]. The job stream contains 100 jobs, where half are
production jobs and the other half are opportunistic jobs. We
use fast-forwarding [18] to speed up the experiment. NVIDIA
MIG and NVIDIA MPS cannot dynamically change GPU re-
sources allocated to a DL training job, so we do not compare
them in this experiment.

Figure 6a shows the average JCT when executing the trace.
For fair comparison, we normalize the JCT of each mecha-
nism to that of Exclusive for each job. As shown in figure 6b,
because Co-execution cannot protect production jobs from
contention caused by GPU sharing, the average normalized
JCT of production jobs under Co-execution is 135% of that
under Exclusive, while TGS only incurs 6% overhead. Com-
pared to Exclusive, Figure 6c shows that TGS can significantly
reduce the JCT of opportunistic jobs. This is because TGS
can reduce the queueing time of opportunistic jobs, as they
can use remaining GPU resources not used by production
jobs, instead of waiting for production jobs to complete. TGS
reduces the average normalized JCT of opportunistic jobs to
48% of that under Exclusive.

6.4 System Overhead

TGS monitors the rate of production jobs, and relies on the
monitoring to decide whether a GPU can be shared and how
many resources can be allocated to opportunistic jobs. When a
GPU is shared, experiments in previous sections have demon-
strated that opportunistic jobs do not greatly affect production
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Figure 9: Convergence under dynamic resource usage.

jobs. In this experiment, we explore the system overhead
of the rate monitoring component in TGS. We measure the
throughput of a job with and without TGS for different config-
urations, and normalize the throughput to that without TGS.

Figure 7a shows the throughput under different DNN mod-
els. The throughput is almost the same with and without TGS
for ResNet-50, GCN and BERT-Base. Figure 7b shows the
throughput under different batch sizes. We use ResNet-50
as the DNN model. Similarly, the JCT is almost the same
with and without TGS for batch size 8, 16 and 32. The re-
sults demonstrate that the rate monitoring component of TGS
incurs 0.3% to 5% overhead for production jobs.

6.5 Convergence

We evaluate the convergence of TGS in different scenarios.
The first scenario evaluates the convergence under dynamic
job arrivals, i.e., a job arrives in the middle to share the GPU
with an existing job. In this scenario, the production job train-
ing ShuffleNet with batch size 4 is running in the beginning.
The opportunistic job training MobileNet with batch size 4
is started after 350 seconds and runs for 240 seconds before
it finishes. Figure 8a and Figure 8b show the time series of
the GPU utilization and normalized throughput, respectively.
As shown in Figure 8a, there are still idle GPU resources
when the production job runs, so the total GPU utilization
increases when the two jobs run concurrently and share the
GPU. Figure 8b shows that the throughput of the opportunis-
tic job increases when it is launched at 350 seconds. At the
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Figure 10: GPU sharing between different DL frameworks.

same time, GPU sharing does not affect the throughput of the
production job.

The second scenario evaluates the convergence under dy-
namic resource usage, i.e., a job dynamically switches be-
tween high and low GPU utilization, and the other job utilizes
the unused GPU resources. In this scenario, the production
job trains ESPnet2 with batch size 1 and the opportunistic job
trains BERT-Base with batch size 16. ESPnet2 has several
phases, so it changes GPU utilization periodically. Figure 9a
and Figure 9b show the time series of the GPU utilization and
normalized throughput during a transition, respectively. When
ESPnet2 needs more GPU resources, the production job keeps
its maximum throughput. Between 910 and 940 seconds, ES-
Pnet2 does not train, but runs validation in the GPU. Thus
ESPnet2 still utilizes GPU but the throughput is zero. After
940 seconds, ESPnet2 runs into a phase that primarily uses
CPU, and Figure 9a shows that the GPU utilization of ESP-
net2 decreases to 0. TGS detects the change and dynamically
allocates more GPU resources to the opportunistic job. After
1060 seconds, the production job starts using GPU again and
reclaims all GPU resources. TGS ensures that the production
job is not greatly affected by the opportunistic job.

In summary, these experiments demonstrate that TGS can
converge in different scenarios. On the contrary, MIG can-
not change GPU resource allocation to each GPU instance
whenever there is a job running on the GPU, and MPS cannot
change GPU resources allocated to a job after the job begins.
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Figure 11: Comparison between TGS and AntMan.

6.6 Supporting Different DL Frameworks

The experiments in previous sections are based on PyTorch,
because TensorFlow-like frameworks claim all GPU memory
by default when DL models start and the baselines cannot be
directly used for GPU sharing for these frameworks. Specifi-
cally, Co-execution does not support GPU memory oversub-
scription or GPU memory allocation on demand. When one
job claims all GPU memory, another job cannot use any GPU
memory and would be aborted under Co-execution. MPS also
suffers from this behavior. To compare TGS with them, we
modify DL frameworks to use CUDA unified memory and
enable dynamic GPU memory allocation.

Figure 10a compares the performance of the four mecha-
nisms when the production job trains ShuffleNet with batch
size 4 on PyTorch and the opportunistic job trains MobileNet
with batch size 4 on TensorFlow. The result is similar to that
of Figure 4a.

Figure 10b compares the performance of the four mech-
anisms in the high contention scenario. The production job
trains ResNet-50 with batch size 16 and the opportunistic job
trains ShuffleNet with batch size 32. Similar to figure 4b, TGS
reduces the throughput of the production job by 14% com-
pared to Exclusive, while Co-execution reduces the through-
put by 41%. MPS achieves comparable performance, but it
has to be manually tuned and breaks fault isolation.

6.7 Comparison with AntMan

In this experiment, we compare TGS with AntMan [6], which
is a state-of-the-art application-layer solution for GPU sharing.
AntMan is closely coupled with DL frameworks and uses an
application-layer metric, iteration time, to control the oppor-
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Figure 12: GPU sharing with the large model.

tunistic job. The open-sourced GitHub repository of AntMan
is not fully functional. It does not include the logic to dynam-
ically allocate resources to jobs. We contacted the authors of
AntMan and followed their instructions to add necessary code
in order to run AntMan. Figure 11a and 11b show the com-
parison under low-contention (ShuffleNet with batch size 4
and MobileNet with batch size 4) and high-contention scenar-
ios (ResNet-50 with batch size 8 and ShuffleNet with batch
size 4), respectively. Although AntMan uses application-layer
knowledge and controls the jobs at the application layer, TGS
still achieves similar performance to AntMan. The throughput
of the production job under TGS is 104.1% to 104.3% than
that under AntMan, while the throughput of the opportunistic
job using TGS is 103% to 122% than that of AntMan. Com-
pared to AntMan, TGS provides the same benefit of GPU
sharing and is transparent to DL frameworks.

6.8 GPU Sharing for Large Model Training

In §6.2, we have shown that even if a large model (e.g.,
DLRM) with large batch size (e.g., 2048) and large mem-
ory consumption (e.g., 38 GB) runs on a GPU, TGS can still
mostly maintain the performance of the production job, while
providing the remaining GPU resources to the opportunis-
tic job. In this experiment, we show that although it is not a
common scenario, TGS can provide GPU sharing capability
when training a bigger model (e.g., GPT). We train a GPT
with batch size 32 using two NVIDIA A100 GPUs as the
production job, while running two single-GPU opportunistic
jobs training MobileNet with batch size 4. Figure 12 shows
that TGS still can achieve comparable performance compared
to MPS, while MPS breaks fault isolation and Co-execution
breaks performance isolation. NVIDIA MIG does not support
multi-GPU jobs when a GPU is partitioned into several GPU
instances, so it is not evaluated in this case.

7 Discussion
Distributed training. Many solutions have been proposed
to achieve high GPU utilization for distributed training
jobs [19–23]. With these solutions, it is unlikely that a dis-
tributed training job would leave substantial GPU resources
unused; otherwise, the job should reduce its GPUs. Therefore,
there is little need for TGS. It is most suitable for sharing
GPUs between single-GPU jobs, which is also how GPU
sharing is used in previous solutions [6, 12, 13]. Yet, TGS
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can be applied to increase GPU utilization for unoptimized
distributed jobs, by controlling the GPU resource usage of an
opportunistic job on each GPU as for single-GPU jobs.

GPU cluster scheduling. Many solutions [7, 18, 24–28] have
been proposed to minimize job completion time and provide
fairness for a GPU cluster. GPU cluster scheduling is orthogo-
nal and complementary to TGS. TGS provides the mechanism
for transparent GPU sharing, which can be used by cluster
schedulers when they schedule and place jobs. We note that
some schedulers [18,28] pack multiple jobs on a GPU, which
are at the application level and require modifications to DL
frameworks. Also, they do not support GPU memory over-
subscription. These schedulers can benefit from TGS.

Space sharing and time sharing. The concepts of GPU
compute sharing and memory sharing are orthogonal to space
sharing and time sharing. Sharing GPU compute resources
can be done either in space sharing or in time sharing. The
adaptive rate control mechanism and transparent unified mem-
ory mechanism of TGS can be used either in space sharing or
in time sharing. GPU space sharing needs hardware support
and is not well supported. Current space sharing solutions
reduce performance isolation (e.g. MIG) or fault isolation
(e.g. MPS). Therefore, TGS currently uses time sharing.

8 Related Work
Deep learning systems. Many DL frameworks have been
proposed for developing and running DNN models [29–36].
Some works optimize communication to improve distributed
training performance [19–23]. Some works use memory swap-
ping to handle the GPU memory problem for training large
DNN models [16,37–39]. They focus on improving the perfor-
mance of a single training job, while TGS provides a solution
for improving the GPU utilization of running many jobs in
a cluster. Some works [40, 41] propose algorithms for inter-
job GPU memory management, but they are not transparent
to applications and require modifications to DL frameworks.
GPUswap [42] proposes a transparent GPU memory swap-
ping system, but it needs to modify GPU drivers. However,
most current commercial GPU drivers, such as NVIDIA GPU
drivers, are not open-source. Open-source GPU drivers are
not as high performance as the commercial ones, so they are
not widely used for DL training workloads. MIG-Serving [43]
tries to find better configurations to use MIG for GPU sharing.
However, MIG itself has limitations as described above. We
compare MIG with the best configuration and TGS in the eval-
uation section, and show the benefits of TGS. There are many
solutions for optimizing DL inference workloads [44,45]. We
focus on GPU clusters for training workloads in this paper.
Several scheduling algorithms have been designed to sched-
ule DL training jobs in a GPU cluster [7, 18, 24–28]. These
works are orthogonal to TGS.

Containers. Containers provide lightweight virtualization
for applications. Due to the benefits of portability, isola-

tion and performance, containers are widely used in dat-
acenters. Major public cloud services, such as AWS, Mi-
crosoft Azure and Google Cloud, offer containers as a ser-
vice [46–48]. Many container runtimes (e.g., Docker) and
orchestration systems (e.g., Kubernetes) are developed and
deployed [1–3, 10, 11, 49, 50]. Some work is proposed to pro-
vide high-performance networking with isolation [51–56].
These solutions are orthogonal to TGS, which focuses on
improving GPU utilization.

GPU sharing. Several solutions have been proposed for
GPU sharing. Early solutions [57–65] explored OS-layer tech-
niques like driver call interception and application-layer tech-
niques like introducing new programming APIs, for sharing
GPU between applications. They focus on jobs with a few
kernels, and are not specifically designed for DL training that
typically has hundreds of kernels. With the emergence of
DL applications, recent solutions [6, 12, 13] have been de-
signed for GPU sharing of DL training. AntMan [6] is the
state-of-the-art application-layer solution for GPU sharing.
Salus [12] uses centralized GPU memory management and
kernel scheduling for GPU sharing. It requires all the appli-
cations to fit in the GPU memory. PipeSwitch [13] provides
fast context switching for DNN jobs, but only one job can
run at each time. They all modify DL frameworks. MPS [9]
is an OS-layer solution, but it requires application knowl-
edge to correctly set resource limits, does not support GPU
memory oversubscription and does not provide fault isolation.
Planaria [66] is an accelerator designed for the multi-tenant
scenario. In comparison, TGS is a software solution that can
be used for sharing a variety of hardware.

9 Conclusion
We have presented TGS, a system that transparently shares
GPUs for DL workloads to improve GPU utilization in con-
tainer clouds. TGS is distinguished from state-of-the-art
application-layer solutions in that it enables users to use any
DL framework and library to develop and train DNN mod-
els in containers. Shared GPUs are exposed to containers as
regular GPU devices, and TGS transparently runs multiple
containers on a GPU when a single container cannot utilize
all GPU resources. TGS achieves both high utilization and
decent performance isolation.
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A Convergence of Adaptive Rate Control Al-
gorithm

We assume each GPU has an unknown constant throughput
limit B. The TGS’s goal is to maximize throughput of the
opportunistic job without affecting the production job very
much. We assume throughput of the production job is rela-
tively stable. Therefore, the adaptive rate control algorithm
can accurately measure the throughput of the production job,
i.e. αin. When throughput of the production job is unstable
beyond a manual tuned threshold, TGS re-estimates αin. In
this context, we define that a cycle is a phase starting after
TGS detects contention and ending when TGS detects con-
tention again. A step is defined as an invocation of the rate
control component to adjust rate limit of the opportunistic
job, such as an additive increase or a multiplicative decrease.
Hence, a cycle consists of one multiplicative decrease step
and multiple continous additive increase steps. Let the initial
value of βout be β0 (β0 ≤ B). The simplified convergence of
the rate adaptive control algorithm is shown as follow:

Opportunistic Job production Job
β0 min(R,B−β0)
β1 = β0 +δAI min(R,B−β1)
β2 = β0 +δAI +δAI min(R,B−β2)
...

...
βk = β0 +δAI + · · ·+δAI︸ ︷︷ ︸

k

min(R,B−βk)

Detect Contention: R+β0 + kδAI ≥ B
Action: Multiplicative Decrease
βk+1 =

β0+kδAI
δMD

min(R,B−βk+1)

βk+2 =
β0

δMD
+ kδAI

δMD
+δAI min(R,B−βk+2)

βk+3 =
β0

δMD
+ kδAI

δMD
+δAI +δAI min(R,B−βk+3)

...
...

βk+l+1 =
β0

δMD
+ kδAI

δMD
+δAI + · · ·+δAI︸ ︷︷ ︸

l

min(R,B−βk+l+1)

Detect Contention: R+ β0
δMD

+ kδAI
δMD

+ lδAI ≥ B
Action: Multiplicative Decrease
βk+l+2 =

β0
δ2

MD
+ kδAI

δ2
MD

+ lδAI
δMD

min(R,B−βk+l+2)

...
...

β∗ = β0

δ
logβ0
MD

+ kδAI

δ
logβ0
MD

+ lδAI

δ
log

β0
2

MD

+ · · ·+m min(R,B−β∗)

We assume the unit of bandwith is indivisible. As shown
above, the adaptive rate control algorithm converge in
O(logβ0) cycles, because the unknown term β0 decreases
to zero in O(1+ logβ0) cycles, i.e. O(B logB) steps. There-
fore, the complexity of the adaptive rate control algorithm is
O(B logB).
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