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Abstract
Access link from the ISP tends to be the bottleneck for

many users. However, users today have no control over how
the access bandwidth (which is under the ISP’s control) is
divided across their incoming flows. In this paper, we present
a system, CRAB, that runs at the receiver’s devices – home
routers and endpoints – and enforces user-specified weights
across the incoming flows, without any explicit support from
the ISP or the senders. It involves a novel control loop that
continuously estimates available downlink capacity and flow
demands by observing the incoming traffic, computes the
max-min weighted fair share rates for the flows using these
estimates, and throttles the flows to the computed rates. The
key challenge that CRAB must tackle is that the demand
and capacity estimated by observing the incoming traffic at
the receiver (after the bottleneck) is inherently ambiguous
– CRAB’s control loop is designed to effectively avoid and
correct these ambiguities. We implement CRAB on a Linux
machine and Linksys WRT3200ACM home router. Our eval-
uation, involving real-world flows, shows how CRAB can
enforce user preferences to achieve 2× lower web page load
times and 3× higher video quality than the status quo.

1 Introduction
This paper tackles a common and seemingly simple problem:
how can users control how their Internet access link gets
shared across their incoming flows? For instance, how can a
user ensure that their Youtube video streaming is not impacted
when the Dropbox app on their device starts downloading
large files at the same time, and the two flows compete at the
user’s Internet access link?

At a glance, a plausible solution is to exploit the traffic
shaping features provided in many home routers (e.g. mecha-
nisms for weighted fair queuing or prioritization) [1, 15, 18].
However, these mechanisms are effective only when the bot-
tleneck is at (and queues build up at) the home router – this
happens when the bottleneck is the uplink from the router to
the Internet Service Provider (ISP) for outgoing flows or the
downlink from the router to the end-devices for the incoming
flows [1]. Our work targets a different problem as illustrated
in Figure 1, where the bottleneck for the incoming flows is
the downlink from the ISP to the home router, and queues
build up in the ISP. This is a common scenario [36, 50], with
the Internet access bandwidth being governed by contractual
agreements between an end-user and their ISP, and the median
broadband download speed being less than 35Mbps in more
than half the countries worldwide [3].

Existing literature provides us with two options for man-
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Figure 1: CRAB’s Target Scenario. The user may own multiple
devices, each downloading multiple flows over the Internet. These
flows arrive at the user’s home router via the access link from the
ISP, from where they get routed to individual devices. The Internet
access link is often the bottleneck for the incoming flows [3, 36].

aging flow shares at the Internet access link, both of which
are beyond the receiving user’s control. The first option is to
directly schedule or shape traffic at the bottleneck (e.g. via pri-
oritization or weighted fairness) [17,25,43,49]. However, the
access bottleneck is controlled by the ISP. ISPs are unaware
of user preferences and do not deploy any mechanisms that
enable end users to configure how their traffic is scheduled
and shaped at the access bottleneck. 1 The second option is
for the senders to appropriately control the rate at which flows
arrive at the bottleneck. For example, low-priority senders can
use “scavenger” protocols that yield bandwidth more readily
to higher priority flows [34, 38, 41, 48]. This is again outside
the receiving user’s control – it is up to the sender to use and
configure such protocols.

We design a system, CRAB, 2 that enables users (receivers)
to control how their Internet access bandwidth gets shared
across their incoming flows without any explicit support from
external entities (i.e. the ISPs and the senders). Here we use
the term receiver to collectively refer to devices in the receiv-
ing domain that an end user can directly access and configure
– these include end devices (phones and computers) as well
as home routers (attached to the access link). More generally,
CRAB provides a mechanism to control flow shares exclu-
sively from a vantage point that is topologically placed after
the bottleneck – where queues don’t build up naturally, and
where one has seemingly zero control.

CRAB allows a user (i) to configure the home router with
weights across each end-device, and (ii) to optionally con-
figure end-devices with weights across their incoming flows

1Although a few research proposals of this form exist [19, 24, 27, 35,
54], they have not been realized in practice, given the inherent difficulty of
coordinating across multiple domains.

2For Customizable Receiver-driven Allocation of Bandwidth.
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(defined based on application, web domain, etc). It then strives
to throttle the incoming flows at the home router (grouped
by destination device) and individually at the end devices (if
enabled) to their respective max-min weighted fair share rates.
CRAB’s key challenge lies in correctly computing these rates
after the bottleneck (as discussed below). While this after-the-
bottleneck throttling cannot directly control how the access
bandwidth is divided across the incoming flows, it signals the
senders (which typically run some form of congestion con-
troller [22, 26, 30, 32, 39, 46, 52]) to lower their sending rates
to the throttled values, thus enabling the flows to eventually
converge to their desired shares.

So what makes it difficult to compute the weighted fair
share rates after the bottleneck? Given flow weights, comput-
ing the correct (max-min) weighted fair rates for each flow
requires knowing the bottleneck link capacity and the flow
demands. Once the absolute weighted share of a flow has been
computed from the link capacity and flow weight, the max-
min weighted fair rates can be computed by re-allocating any
excess capacity, that is unused by flows with demands smaller
than their absolute share, to other flows in the proportion of
their weights. While the capacity and the flow demands are
naturally available at the bottleneck, CRAB (placed after the
bottleneck) must estimate them by observing the incoming
traffic at the receiver. This introduces multiple challenges:
(1) It is not possible to distinguish whether the total traffic
observed at the receiver is limited by the access link capacity
or by the flows’ cumulative demands – the latter would result
in underestimating capacity.
(2) The arrival rate of a flow at the receiver depends on the
rate at which it was served at the bottleneck. A flow that got
a small share of bandwidth at the bottleneck (less than its
weighted share or demand) could be wrongly perceived as
having low demand.
(3) If the receiver incorrectly throttles flows to rates lower
than their weighted shares (due to spuriously low capacity
or demand estimates), the flows’ sending rates (and their ob-
served arrival rates at the receiver) would end up matching
the throttled rates. As a result, the link capacity and demand
estimates would stay unchanged and the system will not self-
correct. Similar reasoning makes it difficult to adapt to an
increase in link capacity and flow demands.

The centerpiece of CRAB is a control loop that is designed
to tackle the above challenges (§3). It continuously loops
between (i) measuring flow arrival rates (over timescales of
hundreds of milliseconds) to estimate link capacity and flow
demands, and (ii) re-computing and enforcing weighted fair-
share rates based on these estimates. By waiting for rates mea-
sured over long enough timescales before reacting, CRAB
avoids fast reaction to spuriously low demand estimates – it
allows for the impact of any flow throttling to kick in, and
for the sending (and observed) rates for the remaining flows
to grow to their true demands (or weighted shares), before
reallocating any unused capacity. When re-allocating capacity

from a flow with low demand, CRAB leaves some headroom
to detect growing demand, at which point it immediately re-
claims all of the flow’s re-allocated bandwidth, again allowing
the flow to grow to its true demand or its weighted share. To
self-correct capacity underestimation, it periodically probes
for more bandwidth by explicitly increasing the total rate as-
signed to flows and checking for any consequent increase in
observed rates.

CRAB runs the same logic at the home router and at the
end-points, without requiring any explicit coordination among
them CRAB at the home router enforces per-device shares
based on estimated access link capacity and per-device de-
mands. CRAB at the end-point independently adapts its capac-
ity estimate to the per-device rate enforced by the home router
and controls per-flow shares. When directly attached to the
ISP’s link (without a home router) or when the router and end-
device are owned by different entities (e.g. in airports, cafes,
etc), an end-device with CRAB enabled can self-sufficiently
enforce its desired shares across its incoming flows.

CRAB’s cautious re-allocation of unused capacity can leave
the bottleneck link under-utilized at times. As we illustrate in
§2, some amount of link under-utilization is inevitable when
shaping traffic after the bottleneck (maximally utilizing the
link would imply no flow gets throttled at the receiver, and
consequently no impact on how the bottleneck bandwidth
is shared). The link under-utilization with CRAB typically
manifests as transient dips in the throughput for lower priority
(throttled) flows, below their max-min weighted shares. This
is a reasonable price to pay for better performance for higher
priority traffic that is achieved by enforcing user-specified
flow shares with CRAB.

We implement CRAB (§4) on a Linux endhost and a
Linksys WRT3200ACM router. Our end-host implementa-
tion also includes hooks for classifying flows that are broadly
defined by users based on applications and web domains,
and involve cross-origin requests (e.g. to CDNs and ad net-
works). Our experiments involving real-world flows with dif-
ferent sender-side congestion controllers (YouTube videos,
web browsing, and bulk downloads), show how CRAB comes
close to achieving the desired weighted fair share rates. In
particular, CRAB achieves 2.5-3× higher video quality and
2× lower web page load times in presence of lower-priority
bulk flows than the status-quo (that cannot enforce desired
preferences), with 10-20% decrease in overall link utilization.

2 Overview
CRAB enables the user to manage how their Internet access
link (that is often the bottleneck for downloads [3, 36]) gets
shared across the incoming flows. Figure 1 illustrates a typical
target scenario. CRAB at the home router controls how the
access bandwidth is shared across traffic destined to each
end-device. CRAB at the end-device (if enabled) controls
how its router-enforced bandwidth share is divided across its
incoming flows. Note that all end devices need not run CRAB
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Figure 2: CRAB’s high-level workflow (detailed in §2.1).

– only an end device that wishes to control the bandwidth
sharing across its own flows needs to enable CRAB.

2.1 CRAB Framework

We provide an overview of the CRAB framework at the end-
device (noting the small differences in CRAB’s router design
towards the end). CRAB sits in front of the ingress interface,
where it intercepts and shapes the incoming traffic before
forwarding it to the kernel’s TCP/IP stack. Figure 2 shows
the key elements in CRAB’s architecture.
1. User Interface. Our current prototype allows users to de-
fine flows based on three criteria: (i) all traffic destined to a
specified application running on the end-device, (ii) all traffic
associated with a specified web-domain, and (iii) all traffic
originating from a specified source address. 3 The user can
group multiple flows into a flow-group, and specify a weight
for each flow-group. Users can also specify a weight for a
default flow group, where traffic not classified in any other
flow group is mapped. Henceforth, we use the terms flow and
flow-group interchangeably.
2. Flow Filter Manager. It maps high-level flow identifiers
(as specified by the user) into TCP/IP header fields that the
system can use to classify packets as and when they arrive
at the interface. Mapping a web-domain into header fields
requires some inputs from the browser (we detail this in §4).
3. Throughput Measurement. CRAB sniffs the incoming
traffic to measure (i) throughput of each flow group to estimate
demands, and (ii) the cumulative throughput over all flows to
estimate link capacity. The link capacity estimated by CRAB
at the end-device corresponds to the device’s bandwidth share
as enforced by the home router.
4. Rate Computation. CRAB computes weighted fair share

3Future extensions of our system can support more criteria.

rates for each flow, based on user-specified weights and the
capacity and demand estimates obtained from flow throughput
measurements (as detailed in §3).
5. Rate Enforcement. CRAB uses the mappings from the
flow filter manager to classify incoming traffic into user-
defined flow groups. It puts the traffic for each group into
separate queues, and throttles each queue to its computed
weighted fair share rate. Since CRAB throttles traffic after
the bottleneck, it cannot directly control how flows are sched-
uled at the bottleneck. However, it induces packet losses and
queuing delay at the receiver, which signals the senders to ad-
just their rates to the throttled value, thus eventually achieving
the desired bandwidth shares at the bottleneck.

We considered a few other alternatives for signalling send-
ing rates from the receiver, e.g. by adjusting TCP receive
windows. We decided to use throttling for rate enforcement
because of its generality – all senders that run some form of
congestion controller (either over TCP [22, 26, 30, 32, 52] or
UDP [39, 46]) would naturally react to queue buildups and/or
packet drops induced by throttling.

CRAB framework at the home router is same as that at the
end-device. The only difference is that since users configure
the home router with weights across each end-device (directly
identified by the destination IP address), an explicit flow filter
manager is not required.

Note that, in principle, one could have managed flow-group
shares directly at the home router, instead of the end-device.
But then classifying the incoming traffic based on flow-groups
at the router would have required explicit coordination with
the applications running at the end-device in real-time (as
explained in §4), which would have complicated system de-
ployment. Our current division of functionality between the
home-router and end-points requires no explicit coordination
among them, which greatly simplifies CRAB’s deployment
and use, and extends CRAB’s utility to other contexts beyond
home users (as discussed in §7). It also reduces computational
complexity at the router, with the router managing only per-
device queues, and each device then managing the rates for
their own flows.

2.2 Goals and Challenges

We use a series of experiments to illustrate some of the chal-
lenges that CRAB must tackle. We consider a scenario where
a Linux end-host is directly attached to the access link from
the ISP (without a home router). For repeatable experiments,
we emulate an ISP-controlled access link by routing all traffic
for the end-host via a router that mimics the ISP and throttles
the traffic to 30Mbps. When we only stream a 4K YouTube
video on the end-host, we find that the video quality stays
at the maximum level (Figure 3a). We then stream the same
video in presence of two long-lasting bulk downloads 4 over

4Bulk downloads of games and movies are fairly common among users
with limited bandwidth because of inaccessibility of high quality video
streaming or cloud gaming [29, 31].
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(a) Video plays at highest quality level
alone.
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(b) Video quality suffers greatly
in presence of bulk downloads.
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(c) WFQ at the bottleneck in 5:1 ensures bulk flows
do not affect video quality.
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(d) Instant reaction fully utilizes the link,
but cannot enforce desired weights.
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(e) Indefinitely throttling bulk flows results severely
under-utilizes the link.
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(f) CRAB ensures high video quality at cost of slight
link underutilization

Figure 3: Video quality suffers in presence of bulk download flows, we look at different possible ways to ensure this does not happen. In all
experiments, link bandwidth is set to 30 Mbps.

the Internet, and evaluate the results under different settings.
Status Quo. Today, there is no way for a user to enforce how
their access bandwidth gets divided across their flows. We
find that with the bulk downloads consuming a large share of
the access bandwidth, the status-quo achieves very low video
quality (Figure 3b).

This degradation in video quality is clearly undesirable and
can be mitigated if the user can specify and enforce a higher
weight (say 5×) for the video flow.
Impractical Ideal: WFQ at the bottleneck. We next model
the ideal, but impractical scenario where the ISP enforces
user preferences at the bottleneck via WFQ. For this, we
configure the router in our setup (that mimics the ISP) to
use weighted deficit round-robin (DRR) [49], with the video
flow to bulk flows ratio set to 5:1. As shown in Figure 3c, the
video flow is able to use its absolute share of 25Mbps, and
achieve the highest video quality, while bulk downloads get at
least 5Mbps. WFQ is work-conserving – whenever the video
flow consumes less than its share of 25Mbps (e.g. when its
playback buffer is full), the remaining capacity is used by the
bulk downloads, keeping the link maximally utilized.
Impossible to mimic WFQ after the bottleneck. CRAB
strives to mimic the ideal WFQ-enforced rates. However,
while WFQ at the bottleneck can achieve both desired band-
width shares and maximal link utilization, there is an inherent
trade-off between the two when shaping traffic after the bottle-
neck. We highlight this trade-off by illustrating two extreme
strawmen for rate computation at the receiver.

(i) Work-conserving re-allocation cannot enforce weighted
fairness after the bottleneck. In order to maximally utilize the
link, whenever the video flow’s demand becomes less than
its absolute share, any unused capacity should be explicitly
reallocated to the bulk flows. It is natural to use the arrival
rate of the video flow at the receiver as an estimate of its
demand. However, if the video flow gets a small share of
bandwidth at the bottleneck due to competing flows, it will
have a low arrival rate at the receiver and will be incorrectly
perceived as having low demand. We now evaluate the effects
of instantaneously re-allocating unused capacity based on
such spurious demand estimates.

For this, we configure the end-device to use Linux HTB (Hi-
erarchical Token Bucket) [5] to throttle the incoming flows to
their absolute shares (25Mbps for video and 5Mbps for bulk),
and enable HTB’s “bandwidth borrowing” feature which im-
mediately re-allocates any capacity that is unused by a flow
with a smaller arrival rate. Since the total arrival rate at the
receiver is already capped by bottleneck link capacity, such
instantaneous re-allocation induces no throttling – while this
achieves maximal link utilization, it cannot enforce desired
bandwidth shares and produces the same outcome as the
status-quo (Figure 3d). For the setup in Figure 1, enabling
WFQ for the incoming flows at the home router (after the
bottleneck), will produce the same effect.

More generally, maintaining maximal link utilization is
fundamentally at odds with CRAB’s mechanism of enforcing
desired rates. In order to signal any change in the sending
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rates, CRAB must throttle some flows at the receiver – the
link under-utilization thus induced is what gives room to the
remaining flows to grow to their true demands or absolute
weighted shares.
(ii) No re-allocation leads to severe under-utilization. At the
other extreme, indefinitely throttling bulk flows to their ab-
solute weighted fair rates, oblivious of video flow demand
estimates, allows the video flow to grow to its true demand and
ensure high video quality, but decreases the link utilization
by 46% compared to the status quo (Figure 3e).
CRAB achieves desired shares with high link utilization.
CRAB navigates the above trade-off by re-allocating unused
capacity more cautiously (at timescales of a few hundred
milliseconds) – this allows the impact of any throttling to kick
in, and for the flows to grow to their true demands or absolute
shares, before the unused capacity is re-allocated. For flows
consuming less than their absolute shares, CRAB provisions
for detecting a growth in demand, upon which it immediately
reclaims all lent out capacity. This cautious reallocation and
aggressive reclamation may under-utilize the link at times,
which is inevitable (as discussed above) and primarily affects
the bulk flows. On the whole, as shown in Figure 3f, we find
that CRAB can effectively enforce the desired shares while
lowering the link utilization by only 19% with respect to the
status quo. CRAB has 2× higher link utilization than the
extreme alternative of no re-allocation or of the user explicitly
pausing the bulk flow while the video lasts.
Other Challenges. CRAB was able to correctly estimate
link capacity in the above experiments. However, link capac-
ity estimation can be more challenging in other scenarios.
In particular, if the total incoming traffic at the receiver is
limited by flows’ cumulative demand (as opposed to the ac-
cess link capacity), it would result in underestimation of link
capacity – CRAB should be able to self-correct its capacity
estimate to ensure correct bandwidth shares if flows’ demands
increase. Link capacity could also vary over time – CRAB
should be able to detect any changes and accordingly recom-
pute weighted share rates. What makes such self-correction
and adaptation particularly difficult is that once flows have
been throttled to a spuriously low rate, their sending rates
(and, consequently, their arrival rates and CRAB’s capacity
estimates) could stay stuck at the throttled values. CRAB
handles this by explicitly probing for more bandwidth.

We detail CRAB’s control loop, i.e. its re-allocation, recla-
mation, and bandwidth estimation logic in §3.

The specific control loop we describe in this paper is one
way of using CRAB’s framework for controlling flow shares
at the receiver. There can be alternative ways of using our
framework while complying with our observation that some
amount of link under-utilization is inherently needed to con-
trol flow shares from the receiver. For instance, we can di-
rectly throttle the cumulative rate of all incoming traffic at the
receiver to a value lower than the overall link capacity that
CRAB estimates (via its throughput observation and band-

width probing logic). This creates an artificial bottleneck at
the receiver where we can enforce the desired scheduling pol-
icy (prioritization, weighted fair queuing, etc) across the flow
classes maintained by CRAB. While effective at controlling
flow shares, such an approach would be more sensitive to
precise bandwidth estimation and may lead to unnecessary
wastage of bandwidth due to consistent link under-utilization.
We evaluate this alternative in §5.4.

2.3 CRAB’s Scope

CRAB’s scope is limited in the following key ways:
1. CRAB relies on the fact that flows have a sender-side rate
control mechanism that is responsive to throttling. This holds
for most of the traffic on the Internet that either uses TCP’s
congestion control mechanism or runs adaptive rate control
over UDP [39]. CRAB is not effective in scenarios where a
flow is not responsive to throttling.
2. CRAB cannot directly control the fine-grained queuing
behavior at the bottleneck. It can only influence the rates
achieved by different flows over long-enough timescales (a
few hundred milliseconds), as it requires the senders to react
to the throttled rates or the increased room for growth in
rates. This allows CRAB to effectively control bandwidth
shares across long-lived flow groups, e.g. video streaming,
conferencing, web browsing sessions, bulk downloads, etc.
However, CRAB cannot effectively control the queuing delay
experienced at the bottleneck by short intermittent downloads
that terminate before CRAB gets a chance to react (e.g. a flow
group comprising of only interactive chats). Though CRAB
cannot actively help such flows, it will not hurt them either.
3. CRAB can only actively control how a user’s incoming
flows share their common bottleneck (at the ISP’s access link
or at the access router). If a flow is bottlenecked elsewhere
(e.g. at the sender’s uplink), it is simply perceived by CRAB
as having a lower demand at the shared access bottleneck,
and CRAB accordingly reallocates the access link capacity
unused by this flow across the remaining flows.
4. Since CRAB must react at slow timescales (of hundreds
of ms) to build correct capacity and demand estimates, it is
not a good fit for volatile cellular networks where link capac-
ity changes by large magnitudes at much smaller timescales
due to high mobility, hand-overs, etc [23, 37, 51, 57]. In com-
parison, we found broadband connectivity and home WiFi
networks to be significantly more stable (see Appendix B).

3 CRAB Control Loop
We now describe CRAB’s control loop that continuously it-
erates between (i) measuring flow throughput to estimate
capacity and demand, and (ii) computing and applying new
per-flow rates. Table 1 lists different attributes that CRAB
maintains for each flow and uses for rate computations.

3.1 Throughput Measurement

Two parameters govern the granularity of our throughput
measurement: the observation period (t) and the number of
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Flow Attribute Description
weight The weight assigned by the user
observed_t pt The measured throughput of the flow (its arrival rate at the ingress)
true_bw The absolute weighted fair share of the flow computed from estimated link capacity and flow weight
lent_bw The unused bandwidth the flow lends out to other flows
borrowed_bw The amount of bandwidth the flow borrowed from other flows
assigned_bw The rate assigned to a flow (set to true_bw+borrowed_bw)
saturating (bool) set to true if the flow’s demand is potentially higher than its assigned bandwidth
non_saturating (bool) set to true if the flow’s demand is smaller than its assigned bandwidth
growing (bool) set to true if the flow needs to reclaim its lent bandwidth

Table 1: Attributes of a flow in CRAB

observations (n). In each observation, CRAB measures the
throughput (or arrival rate) for each flow over time t (i.e. num-
ber of bytes received in t time divided by t). It makes n such
observations and picks the maximum value as the observed
throughput of a flow. We use the max filter instead of mean or
median to capture bursts which are common for applications
like web browsing and video streaming.

The values of t and n govern how long we wait before mak-
ing any changes to flow rates. A very small value of t would
result in inaccurate throughput measurements, whereas a very
high value can mask spikes in demand. 5 A very small n will
not give flows enough time to adjust to new rates skewing de-
mand estimates, and a very large n would induce much slower
reactions to changes in demands and capacity. In practice,
n× t should be as high as a few RTTs to allow the senders
enough time to react. We find that setting t to 200ms and n
to 5 works well across different scenarios. We evaluate the
impact of these parameter settings in §5.6.

After every throughput measurement (over n× t s), CRAB
sets following flags of each flow f :
Growing: A flow is determined to be growing if f had
previously lent out bandwidth but its observed throughput
indicates an increase in its demand (i.e. it is using more
than what it was using earlier). f .growing = ( f .lent_bw >
0) and ( f .observed_t pt ≥ f .assigned_bw− f .lent_bw).
Saturating: If the flow f is either growing or it is utiliz-
ing almost all of its assigned bandwidth, i.e., f .saturating =
f .growing or ( f .observed_t pt +δ≥ f .assigned_bw). Here,
δ masks noise in throughput observations, and is set to
max(0.1× f .observed_t pt,0.25Mbps). Note that we con-
sider all growing flows to be saturating, but a saturating flow
(that is simply utilizing all of its assigned bandwidth) may
not necessarily be growing.
Non-saturating: If f is under-utilizing its assigned
bandwidth (after subtracting its lent out band-
width): f .non_saturating = ( f ,observed_t pt + δ) <
( f .assigned_bw− f .lent_bw).

5The value of t should be at least as high as the inter-arrival time between
multiple consecutive 64KB chunks to correctly compute throughput (with
TSO/LRO enabled, packets arrive in bursts of 64KB).

3.2 Rate Computation Overview

Figure 4 shows a simplified state diagram for CRAB’s control
loop. Followed by a throughput measurement, we take one of
the four actions in the exact priority order.
(1) If there exists any growing flow, we do reclamation for it
(i.e. reclaim any bandwidth it has lent out to other flows).
(2) Otherwise, if there is at least one non-saturating and one
saturating flow, we reallocate (or lend out) bandwidth unused
by non-saturating flows to saturating flows.
(3) If observed throughput has dropped and there does not
exist any saturating flow, we decrease the bandwidth estimate
and divide it between flows according to their weights.
(4) In all other cases, we try to probe for more bandwidth.
We return to the throughput measurement after each action.
The following sub-sections describe these actions and their
triggers in more detail.

3.3 Reallocation

Reallocation takes place if there is at least one non-saturating
flow (which can lend out bandwidth) and at least one saturat-
ing flow (which can potentially utilize this lent bandwidth).

CRAB first computes the bandwidth each flow f can lend:

f .lent_bw = f .assigned_bw− f .observed_t pt−headroom

We keep a small headroom (set to 0.25Mbps) to enable de-
tecting when the flow needs to grow back (§5.6 evaluates the
impact of this parameter).

If f .lent_bw > f .borrowed_bw, this means that the flow
can no longer make use of the bandwidth it has previously bor-
rowed and instead has extra unused bandwidth to lend. In this
case, CRAB subtracts f .borrowed_bw from f .lent_bw and
resets f .borrowed_bw to zero. CRAB computes the global
excess (unused) bandwidth by summing up the lent band-
width across all such flows. It then resets the assigned band-
width for each flow f to f .true_bw, after which it reallo-
cates the excess bandwidth across all flows in proportion
to their weights until their demands are satisfied, accord-
ingly updating f .borrowed_bw and f .assigned_bw (set to
f .true_bw+ f .borrowed_bw) for each flow. The algorithm
for this redivision is given in AppendixA.
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Figure 4: State diagram of CRAB’s control loop.

3.4 Reclamation

Notice that we do not decrease the assigned bandwidth of
the non-saturating flow during reallocation. This, combined
with the lent bandwidth headroom, ensures that CRAB can
detect growth in a flow’s demand, and classify such a flow
as growing (as noted in §3.1). To enable faster reclamation,
CRAB terminates the throughput measurement sooner than
n× t s, once it detects that any flow f is growing. It reclaims
all bandwidth lent out by the flow f by setting f .lent_bw = 0.
It reduces the global excess if f .lent_bw (before updating to
0) was greater than f .borrowed_bw, and accordingly recom-
putes how the updated excess bandwidth is redivided across
flows (using the same logic from §3.3). Note that when re-
dividing excess bandwidth, we consider a growing flow to
be a saturating flow because it can potentially utilize more
bandwidth as its demand is still unknown.

3.5 Bandwidth Estimation

CRAB keeps track of estimated bandwidth (estimated_bw)
based on the overall observed throughput across all flows
(total_observed_t pt). We now discuss CRAB’s mechanism
for detecting a change (increase or decrease) in capacity. This
is required for (i) correcting spuriously low capacity estimates
caused by limited demand, and (ii) adapting to potential ca-
pacity variations (e.g. due to change in an end-device’s share
of bandwidth triggered by changes in another device’s de-
mands).
Decrease in Bandwidth. A drop in total_observed_t pt can
happen due to two reasons – either the total bandwidth has
dropped, or a flow’s demand has decreased. Bandwidth esti-
mate should not be decreased in the latter case – reallocating
the bandwidth now unused by the flow can increase observed
throughput. Since there is no way to tell these two scenar-

ios apart, we first let reallocation try to fix things before we
reduce estimated_bw. More specifically, as long as there is
a saturating flow (that can potentially use more bandwidth),
CRAB keeps trying to reallocate excess capacity. If no flow
can be classified as saturating and total_observed_t pt re-
mains lower than estimated_bw, 6 it can assume that the
bandwidth has dropped and reduces estimated_bw to the
total_observed_t pt. This assumption can still be incorrect
because it is possible that it is not the bandwidth, but the de-
mand for all the flows that have actually decreased. However,
in such a case, decreasing estimated_bw does not hurt the
flows, and later when flows grow back, we can re-estimate
bandwidth through bandwidth probing as discussed ahead.

After updating estimated_bw, CRAB resets global excess
bandwidth to zero and assigns each flow its absolute weighted
share of the new bandwidth estimate. This eradicates the effect
of erroneous reallocations that happen before decreasing the
bandwidth estimate. Correct reallocation (if needed) can then
take place in subsequent iterations of the control loop.
Increase in Bandwidth. Detecting an increase in bandwidth
is particularly tricky because CRAB itself limits the arrival
rates of flows by throttling them. Thus, it needs to explic-
itly probe for more bandwidth. To do so, CRAB increases
the assigned rate of a saturating flow and then waits to take
a throughput measurement. If it detects any significant in-
crease in total_observed_t pt, 7 it updates estimated_bw to
total_observed_t pt. It accordingly computes the absolute
weighted share for each flow (setting it as the flow’s true and
assigned bandwidth). It then accordingly increases the global
excess bandwidth and redivides the bandwidth across all flows
in proportion to their weights until their demands are satisfied
(as in §3.3).

The above requires careful consideration of two aspects –
which saturating flow should we select for bandwidth probing
and what should the increment value be. We select a new
saturating flow in a round-robin fashion in each bandwidth
probing round, such that any one flow does not get an advan-
tage over the other. We calculate the increment in proportion
of estimated_bw i.e. increment = inc× estimated_bw. To
prevent large disruptions in flow shares, we start off with a
small value of inc (0.125), but every time bandwidth probing
results in an increase in estimated bandwidth, we double the
value of inc. When probing does not result in an increase, we
reset the increment to its starting value. We continuously keep
probing for bandwidth until this happens. The only time we
terminate bandwidth probing prematurely is if we detect a
flow to be growing, in which case we skip to reclamation.
Bootstrapping. CRAB bootstraps by calculating weighted
fair share rates of flows based on an arbitrary initial estimate of
bandwidth. By keeping this estimate large, we can avoid doing

6To be robust against minor throughput changes, the precise condition we
check for is total_observed_t pt < 0.9× estimated_bw.

7If the increase in total_observed_t pt is greater than max(0.1 ×
total_observed_t pt, 1Mbps)
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Figure 5: Linux’s HTB scheduler.

bandwidth probing at startup time. Once the first measurement
interval is over, CRAB is able to fix this estimate. CRAB can
maintain a historical average estimate of bandwidth in the
persistent state to feed as an initial value for more efficient
bootstrapping.

3.6 CRAB’s Router Control Loop

CRAB runs the same control loop at the home router, except
for one change: each throughput measurement takes 3n ob-
servations, so the length of throughput measurement is 3n× t
s. This ensures that CRAB in end-devices is able to adjust
their flow rates to per-device rate changes made by the home
router, before the router’s next measurement.

4 System Implementation
We implement CRAB’s end-host logic on a 2.4GHz 8-core
Ubuntu 20.04 machine with Linux 5.11 kernel, and its home-
router logic on a 1.8GHz dual-core Linksys WRT3200ACM
router running Linux-based OpenWRT firmware. We start
with discussing the end-host implementation (§4.1-§4.5), and
then discuss router implementation (§4.6).

4.1 CRAB’s Placement

The inbound traffic arrives at an ethernet (eth) or wireless
(wlan) interface. Since Linux does not have rich options to
shape ingress traffic, we redirect the inbound traffic to an
intermediate function block (ifb) [6] interface, where CRAB
can shape traffic using Linux TC [10] (§4.3). The shaped
traffic then gets picked up by the receiver’s TCP/IP stack for
further (normal) processing.

4.2 Throughput Measurement

We measure the flow throughputs (or arrival rates) by using
scapy [16] to sniff and record the incoming traffic at the origi-
nal ingress interface (eth or wlan).

4.3 Rate Enforcement

We enforce the computed weighted fair share rates for each
flow group at the ifb interface using Linux’s HTB (Hierarchi-
cal Token Bucket) scheduler [5].

Flow Groups : { 
 Video Streaming: { 
  flow identifiers: ["app>netflix", "web>youtube.com", "web>hulu.com"], 
  weight: 5 
 },
 Work: { 
  flow identifiers: ["app>dropbox", "ip>1.2.3.4"] 
  weight: 5 
 },
 Default:{ 
  weight: 1 
 } 
}

Figure 6: An Example of a CRAB Config File.

Primer on HTB. Figure 5 shows the basic working of HTB.
HTB allows a user to classify traffic into different classes
(based on filters defined by packet header fields such as IP
address, protocol type, TCP/UDP ports, etc) and specify dif-
ferent rates for throttling each class. If an incoming packet
cannot be classified into a class defined by the filter rules, it is
put into a special queue called the fast queue. Each class con-
sists of a FIFO queue (to buffer packets) and a token bucket
filter. Tokens are added to the bucket at the specified rate. If
the amount of tokens in the bucket is greater than or equal to
the size of the head packet in the queue, then the packet is
dequeued. Otherwise, the queue blocks. If the queue is full,
new incoming packets for that class are dropped.

A round-robin scheduler moves between classes to dequeue
packets. If a class cannot dequeue a packet because it does
not have enough tokens, the scheduler moves to the next class
without blocking. The scheduler prioritizes dequeuing from
the fast queue before any of the HTB classes.

HTB supports work-conserving traffic shaping by allowing
unused tokens to be borrowed by other classes – we do not
enable this feature in CRAB for reasons discussed in §2.2,
and use the re-allocation logic described in §3 instead.
HTB in CRAB. We maintain a class for each flow group. The
flow filter manager (detailed in §4.5) installs the filter rules for
classifying incoming packets into their respective classes. We
set the throttling rate for each class to the weighted fair share
rate of its respective flow-group (as computed by CRAB’s
control loop), and accordingly adjust the queue size. 8

4.4 User Interface

The user specifies their preferences in a config file. Figure 6
shows a sample config file. It contains different flow groups,
where each flow group consists of a list of flow identifiers and
a weight associated with the flow group. Our current imple-
mentation allows a user to give three kinds of flow identifiers
– ip (for traffic coming from the specified IP address), app
(for traffic destined to the specified application), and web (for
traffic destined for webpages from the specified web domain).

4.5 Flow Filter Management

Flow filter manager (FFM) maps user-specified high-level
flow identifiers into packet header fields that can be used for

8Queue size is adjusted to 2BDP = 2 × rate × RTT, where we assume
RTT to be 50ms.
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Figure 7: Weighted sharing of 30 Mbps bottleneck between 4 flows in a ratio of 4:3:2:1, where f1 has a weight of 1 and f4 has a weight of 4.

The bottom part of each graph shows flow demand changes in Mbps, where ∞ means unknown demand.

filtering packets at HTB. When we encounter a packet from
an unknown source IP address (that does not correspond to an
installed filter rule), we copy the packet header to FFM. FFM
determines the mapping for the packet (as detailed below) and
installs a new filter rule for it. Note that FFM installs filter
rules asynchronously, and we do not block traffic while this
happens. Instead, the unclassified packet is put (and served) in
HTB’s fast queue. Once FFM installs the corresponding rule,
it is used to correctly classify future packets from that flow.
This ensures that if the unclassified packets are of a potentially
important flow, their service is not degraded. Typically, FFM
is able to install new filter rules fast enough, such that only
the first couple of packets for an unclassified flow land up in
the fast queue. FFM installs filter rules as follows:
(i) Source IP Mapping: If the source IP address of a packet
arriving at the ingress matches with an ip field in the config
file, we install the corresponding filter simply based on that.
(ii) Application: If the source IP is not found in the config
file, we use psutil [7] to reverse map the destination port on
the packet header to find which application has opened that
port. If the application is specified in any flow group in the
config file, we install a filter that maps traffic from the packet’s
source IP address to this flow group. If the application does
not match any identifier in the config file, we map it to the
default flow group (unless the app is the web browser, which
we handle as a special case as discussed below)
(iii) Web Domain: Mapping packets to the web pages (identi-
fied by web domains) is tricky for multiple reasons:
(a) Web pages from the same web domain may be hosted on
several different machines.
(b) Web pages make many cross-origin requests e.g. to CDNs
and ad servers. Since these requests are often dynamic (e.g.
due to load balancing in CDNs or real-time bidding in ad net-
works), it is not possible to pre-populate a list of IP addresses
a webpage from a certain web domain would access.
(c) Packet headers do not carry any information about which
web domain the packet belongs to. The packet payload of
HTTPS traffic, which does carry some information, is en-
crypted at the ingress (where CRAB sniffs) and is decrypted
only at the browser.

Thus, if the application using the destination port is a web
browser, FFM needs more context from the browser to cor-
rectly classify the packet. We built a Google Chrome plugin

that provides this context. As soon as the browser starts re-
ceiving an HTTPS response, the plugin prepares and sends
a message to FFM that contains the source IP address of the
response, and the URL of the webpage that initiated the cor-
responding HTTPS request. Using this mapping, the FFM
can extract the web domain from the URL and find its match
in the config file. If there is a match, we install a filter for
the source IP address, mapping it to the corresponding flow
group. Otherwise, we map it to the default flow group.

FFM may not be able to correctly classify packets if the
relevant packet header fields are encrypted (as in the case of
VPNs). In such cases, application integration similar to the
plugin we built for Google Chrome can help remove FFM’s
dependency on encrypted packet headers and enable the clas-
sification of non-encrypted fields. Note that DNS encryption
does not affect FFM, as it does not rely on DNS packets.

4.6 Home Router Implementation

Similar to our end-host implementation, CRAB at the router
sniffs incoming traffic (using tcpdump [12]) at the ingress
(eth) interface, and redirects the traffic to the ifb interface. It
classifies the traffic based on the destination IP address at the
ifb interface and enforces the per-destination rates computed
by CRAB’s control loop using Linux HTB.

5 Evaluation
We now evaluate the following:
• CRAB’s ability to adapt to changes in flow demands and
link capacity in synthetic scenarios involving real-world bulk
flows (§5.1).
• Performance (QoE) improvement enabled by CRAB for
real-world video streaming (§5.2) and web browsing (§5.3),
when competing with bulk downloads.
• An alternative way of using CRAB’s framework to enforce
user preferences, and the trade-offs involved (§5.4).
• The need for CRAB’s home router logic with multiple active
devices in the user’s domain (§5.5).
• The impact of changing CRAB’s key parameters, i.e.
throughput observation length and lending headroom (§5.6).
• CRAB’s robustness to diverse traffic characteristics and its
overheads (summarized in §5.7, and detailed in the appendix).

We use the same setup as in §2.2, that models a single
end-host directly attached to the ISP’s link (for repeatable
experiments, we emulate a 30Mbps access link by throttling
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traffic at our home router). The only exception is §5.5, where
we extend the home router logic to implement CRAB after
the throttle point.

Unless otherwise specified, we compare CRAB with two
baselines: (i) ideal WFQ (implemented at the access link emu-
lated by our router), and (ii) status quo (i.e. no traffic shaping).
We also conducted experiments using HTB with bandwidth
borrowing after the bottleneck – since this produces almost
exactly the same outcome as the status quo (as discussed in
§2.2), we omit presenting those results.

Our workloads span real-world flows with a diverse set
of sender-side rate control mechanisms: (i) bulk download
flows that likely use TCP Cubic [30], (ii) YouTube video
streaming that uses BBR [11, 22] along with an adaptive
bitrate (ABR) algorithm for adapting video quality, and (iii)
web page-loads over Google Chrome that potentially use a
mix of BBR [22, 33] and Cubic [30] over QUIC [33, 39] and
TCP 9.

5.1 CRAB in action

We design synthetic scenarios to visualize CRAB’s fine-
grained reaction to changes in flow demands and/or link band-
width, using real-world flows that download large Linux im-
ages from different servers. We configure each download as a
separate flow group with different weights. Each flow individ-
ually has a demand higher than 30 Mbps as it is a backlogged
flow with no server-side bottleneck.
Testing Reallocation and Reclamation. We test a scenario
with 4 flows sharing a 30 Mbps link, with a desired sharing
ratio of 4:3:2:1 between them. We emulate dynamic flow
demands by shaping traffic at two interfaces in the home
router. The first interface throttles rates of individual flows
(to emulate flow demands limited by low sending rates or
other upstream bottlenecks). The second interface then cumu-
latively throttles all the traffic to 30 Mbps, emulating an ISP’s
access link (as mentioned before).

Figure 7a shows the flow shares when we do WFQ at the
ISP, which sets a perfect, but impractical baseline. Flow 1,
which has the lowest weight of 1, starts at 0 seconds. Because
there is no other active flow, it gets to utilize the entire link
bandwidth. Flows 2, 3, and 4 become active after every 30
seconds respectively, and at each point, the link is shared
in the proportion of active flows’ weights. At 125 seconds,
flow 4 stops, and link bandwidth is redivided between the
remaining three flows in the proportion to their weights. At
about 155 seconds, flow 3’s demand drops to 10.5 Mbps, and
its remaining share is taken up by flow 1 and flow 2. At 185
seconds, flow 2’s demand also drops to 10.5 Mbps, at which
point flow 1 gets all the remaining unused share.

Figure 7b shows how the flows share the link arbitrarily
without any shaping with the status quo.

Figure 7c shows that, on the whole, CRAB is able to imitate

9We can only guess the protocols used by different content providers
based on public knowledge.
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Figure 8: 2 flows sharing a link in 2:1 ratio with CRAB. Flow 1’s
demand and link bandwidth vary over time.

the ideal WFQ baseline very closely despite being at the other
side of the bottleneck (although there are some transient, and
inevitable, dips in link utilization).
Testing Bandwidth Estimation. In Figure 8, we evaluate
CRAB’s reallocation and reclamation, in addition to band-
width estimation due to varying link bandwidth. We have two
flows configured to share a 30Mbps link in the ratio of 2:1.
CRAB builds a spuriously low estimate of bandwidth when
flow 1 (with demand limited to 10Mbps) starts at 0 seconds.
CRAB is able to probe for more bandwidth once flow 2 (with
a demand more than 20Mbps) starts at 30s. It reallocates the
unused bandwidth of flow 1 to flow 2 as well. Flow 1’s de-
mand then increases at 60 seconds, CRAB reclaims its lent
bandwidth and the link bandwidth is correctly shared in a
ratio of 2:1 between flows 1 and 2 respectively. Then the
link bandwidth drops to 10Mbps at 90 seconds, CRAB de-
tects this change and adjusts the flows’ rates to 6.66Mbps and
3.33Mbps respectively. When bandwidth increases again to
30Mbps at 125 seconds, CRAB is able to probe for more band-
width and divide it according to the flows’ weights. Finally,
when flow 1 stops at 155 seconds, its bandwidth is reallocated
to flow 2. Appendix D presents a similar experiment, except
that instead of starting a single flow f2 at 30s with a demand of
more than 20Mbps, we start 3 new flows, each with a demand
of 10Mbps.

5.2 Video Streaming

We repeat the experiment in §2.2 with 7 different Youtube
videos of varying playtime 10, competing with bulk download.
Figure 9a reports the average video quality and link utiliza-
tion across all experiments. We record the quality of each
video over time using Youtube’s API [13]. We then calcu-
late the average video quality for each video by averaging
the video quality weighted by the amount of time played at
that quality. We calculate the average link utilization as the
sum of data received during the video playback, divided by
playback time. For CRAB and WFQ, we also try different
weight assignments between video flow and bulk downloads,
5:1, 1:1, and 1:5 respectively. Figure 9a shows how CRAB
maintains comparable video quality to WFQ for each weight
assignment setting (i.e. within [92-94]% of WFQ), but with
[15-20]% lower link utilization compared to status quo. The

10shortest video is 1 minute, while longest is 10 minutes
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Figure 9: Video streaming in presence of bulk downloads.

video quality achieved by status quo is worse than that with
CRAB even with weighted sharing of 1:5 between video and
bulk flows (this indicates that the video flow gets less than
17% of bandwidth share with the default status quo). 11. Fig-
ure 9b shows the cumulative amount of video and bulk flow
data downloaded across all videos for the experiment with a
weighted sharing of 5:1 between video and bulk download.
With CRAB and WFQ, video flow consumes almost half of
the data which translates to much higher video quality. In
comparison, with status-quo, video amounts to only 3% of
total downloaded data.

5.3 Web Browsing

In this experiment, we show how CRAB helps improve web
page load times despite background download flows. We em-
ulate a user’s browsing behavior by visiting 125 webpages
(around 300 MBs of data) in total from 4 popular web do-
mains (facebook.com, google.com, bbc.com, yahoo.com) in
different sessions of browsing using Selenium [8] 12. We sep-
arate each session by a Poisson inter-session time determined
with a mean of 60 seconds. Within each browsing session,
we separate each web page’s download by a Poisson distri-
bution with a mean of 5s to emulate a user’s page read-time.
We download two competing large files from two different
servers. We throttle the access downlink to 10 Mbps at the
router for these experiments and configure weights in the ratio
of 7:3 between web traffic and bulk downloads. To fairly com-
pare link utilization, we run the experiment for each baseline
for the same amount of time. Figure 10a shows the CDF of
page load times with CRAB, ideal WFQ, and status quo. The
median page load time with CRAB is 2× smaller than with
the status-quo and is within 15% of ideal WFQ. Figure 10b
shows that CRAB under-utilizes the link by about 13%.

5.4 Alternative way of using CRAB’s framework

We now evaluate the alternative mechanism for using CRAB’s
framework (referred to earlier in §2), where we directly throt-
tle the cumulative rate of all flows arriving at the ingress
to a value lower than the overall link capacity that CRAB

11Lower video throughput translated to lower resolution in all cases, and
we did not notice any re-buffering events.

12Selenim allows us to automate webpage loads and user clicks.
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estimates (via its throughput observation and slightly modi-
fied bandwidth probing logic), and then enforce the desired
scheduling policy on the artificial bottleneck that gets created.
To understand the trade-offs involved with this approach, we
evaluate it under two different scenarios. We emulate (and as-
sume) a static link capacity of 30Mbps, and do not implement
bandwidth estimation for the alternative approach for sim-
plicity. We also disable bandwidth estimation in the original
CRAB implementation for a fairer comparison.
(a) We first consider the scenario from §5.2, where a YouTube
video competes with bulk download on a bottleneck link with
a capacity 30Mbps. We prioritize the video flow at the receiver
without throttling the flows in one case, and after throttling
the incoming flows to a cumulative rate of 25Mbps in the
other. We compare these strategies with the status-quo (that
does not enforce user preferences) and the original CRAB
design. Figure 11a shows the results. Prioritizing the video
flow without throttling cannot enforce user preferences very
effectively (for reasons discussed in §2). However, prioritizing
the video flow after throttling the incoming traffic to a rate of
25Mbps (which is lower than the link capacity) is effective. It
results in slightly higher video quality but slightly lower link
utilization than the original CRAB design. 13

(b) We next evaluated a scenario where the 30Mbps band-
width is to be divided across three backlogged flows in the
ratio 1:2:3. We now apply weighted fair queuing at the re-
ceiver without throttling, and after throttling the incoming
traffic to 25Mbps, and compare the outcomes with original
CRAB and the status-quo (Figure 11b). Again, we observe
that the desired shares could not be effectively enforced with-
out throttling the flows to a rate lower than the link capacity.
WFQ applied after throttling at 25Mbps was able to enforce
the desired flow shares similar to the original CRAB. How-
ever, the original design achieved 19% higher link utilization

13The difference in video quality potentially stems from the difference
in scheduling policy – strict prioritization vs 5:1 weighted fair sharing with
original CRAB.
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Figure 11: Creating chokepoint by throttling to less than known

link capacity (a) helps control traffic (e.g. by using priority queues)
(b) but results in avoidable bandwidth wastage.

(which was very close to the status quo).
These results highlight that the original CRAB design

strives to achieve maximal link utilization. The link under-
utilization is transient and less notable when flow demands
are stable (as in the second scenario), and is more notable
when flow demands vary due to more frequent re-allocation
and reclamation (as in the first scenario). In contrast, the alter-
native approach of throttling the cumulative rate of incoming
flows will consistently suffer from lower link utilization by
design. The amount of link underutilization can be reduced
by reducing the gap between the throttling rate and the link
capacity, but this would also impact how effectively user pref-
erences get enforced (e.g. resulting in lower video quality for
the first scenario). This makes it difficult to correctly config-
ure the cumulative throttling rate, especially as link capacity
varies or is estimated imprecisely. Nonetheless, this alterna-
tive design effectively demonstrates the potential of using
CRAB’s framework in more than one way.

5.5 Multiple end-devices need CRAB at home-router

In this section, we show the need for CRAB at the home router
to ensure proper enforcement of bandwidth shares when there
are multiple devices actively using the Internet in the user’s
domain. We connect two machines (M1 and M2) to the home
router. M1 runs CRAB to enforce 2:1 weights between two
bulk download flows, while M2 does not run CRAB. Initially,
we just have two flows from M1 sharing the bottleneck link
in the 2:1 ratio enforced by CRAB. When the flow from M2
starts at around 40 seconds, in absence of CRAB support at
the home router, it ends up stealing M1’s bandwidth share
(as shown in Figure 12a). When CRAB at M1 throttles its
lower weight flow, the bandwidth yielded by this flow at the
access link is taken up by the flow from M2, instead of the
other higher-weighted flow at M1. 14 With CRAB enabled at
the home-router, CRAB at an individual device can correctly
control how its router-enforced bandwidth share is divided
between its flows (as shown in Figure 12b). Thus, in case
of multiple devices sharing the home Internet connection, it
is important to enable CRAB at the home router to enforce

14Note that sender side protocols to yield bandwidth [41, 48] would suffer
from a similar issue.
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Figure 12: With multiple active devices, CRAB at the home router

is required to ensure correct working of CRAB at the end-host.

bandwidth shares across different devices, and to prevent the
devices from stealing bandwidth from one another.

5.6 Impact of CRAB’s Parameters

The value of n (number of observations)× t (observation inter-
val) determines how long we spend in estimating throughput,
before making a change in assigned rates. Figure 13 shows
the effect of changing it from its default value of (5×0.2s)
to higher (10×0.3s) and lower (5×0.1s) value for the video
streaming experiment from §5.2. Higher value of n× t means
we are much slower in our reactions – we reallocate late
which improves video quality (very slightly) but at the cost
of greater link under-utilization. In contrast, a smaller value
of n× t implies quicker decisions – we have slightly better
link utilization, but video quality also slightly drops. If we
keep making observation length smaller, it would boil down
to doing instantaneous reallocation similar to bandwidth bor-
rowing with HTB (which, like status-quo, can maintain high
link utilization, but cannot enforce bandwidth shares).

We also experimented with changing CRAB’s lending head-
room parameter from its default value of 0.25Mbps to higher
(0.5Mbps) and lower (0.05Mbps) values. This had no signifi-
cant impact on CRAB’s performance – we present detailed
results in Appendix E.

5.7 Other Results

We briefly summarize some of our other results, providing
the details in the appendix:
• CRAB is quite robust to differences in RTTs and congestion
control algorithms across flows, and it scales well with the
increasing number of flow groups (Appendix C).
• CRAB has a negligible impact on packet delay and forward-
ing rates. It has a CPU utilization of 10.74% on a 2.4GHz
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8-core machine, which largely stems from the throughput
measurement module (Appendix F). This is because our cur-
rent implementation uses Scapy [16], a Python-based packet
sniffer. Using a more efficient sniffer (e.g. libtins [4]) would
reduce this overhead.

6 Related Work
There have been a number of proposals for enabling differ-
entiated services (in the form of weighted fair sharing or
prioritization) at network switches [17, 21, 25, 49, 53, 56].
However, these policies must be applied at the bottleneck,
which is controlled by the ISP and not the users. There exist
proposals that allow a user to send their preferences to the
ISP [19, 24, 27, 35, 54] which are difficult to deploy in prac-
tice. CRAB allows the user to control the access bottleneck
without seeking any support from the ISP.

There exist mechanisms for the device to control the uplink
bandwidth usage when sending data [5, 44, 45], e.g. priori-
tizing latency-sensitive uploads over file backups [14] – the
bottleneck occurs at the user device in these cases. Another
category of work allows the end user to configure their home
routers to do traffic prioritization [18, 40, 47], assuming that
the bottleneck is at the wireless link in the home network.
CRAB tackles the harder problem of controlling downlink
bandwidth usage by shaping traffic after the bottleneck (that
is likely to occur at the access link from the ISP), and naturally
helps in scenarios where the bottleneck is at the home-router.

With bottlenecks at the ISP, it can even be challenging to
do sender-side traffic prioritization. Bundler [20] solves this
problem in context of site-to-site traffic by estimating the
bottleneck rate in the ISP and enforcing that rate at the sender.
This shifts the bottleneck at the sender’s site instead of the ISP,
which lets the sender enforce its desired scheduling policies.
CRAB enforces desired bandwidth shares solely from the
receiving domain, without seeking any explicit coordination
with the senders.

Receiver-driven protocols [28, 42, 55] provide a receiver
with greater control over their downlink bandwidth, by letting
them explicitly dictate the sending rates. Some senders can
also use bandwidth-yielding protocols (e.g. [41, 48]), if they
know their flow has a relatively lower priority. However, the

onus of using these receiver driven or yielding protocols is
on the senders – a receiver can use these protocols only if
the senders also support them. CRAB allows receivers to
unilaterally control their access bandwidth shares.

7 Conclusion and Discussion
This paper presents CRAB, a system that enables end-user
to unilaterally control how their Internet access bandwidth
is shared across their incoming flows. In particular, we show
how home users can exploit CRAB to enforce their prefer-
ences and achieve better performance for their video and web
flows. Our source code is publicly available. 15 Our work
opens up several interesting future directions:
Theoretical analysis of performance. Formal characteriza-
tion of CRAB’s performance, e.g. by analyzing the upper-
bound on link utilization for effective enforcement of user-
specified shares under different scenarios, can inform future
designs for improved performance.
Other deployment modes. CRAB does not require any ex-
plicit coordination among the home router and the endpoints.
This extends CRAB’s utility to scenarios where multiple users
share a common Internet connection, e.g. in coffee shops,
enterprises, airports, etc. The domain owners can advertise
their use of CRAB at the access routers for enforcing fairness
across users (they can also use other scheduling mechanisms
at the routers [1, 15, 18] if it is known that the bottleneck is at
the downlink from the router to the end-devices). Each user
can then use CRAB at the endpoint to independently control
how their share of bandwidth is divided across their flows.
Setting Flow Weights. It might be difficult for users to set the
appropriate weight for a flow group that CRAB requires as an
input. Future work can explore how to design a more intuitive
user interface. For instance, we can auto-classify incoming
flows across broad categories (video streaming vs browsing vs
downloads, etc), and then automate weight assignments based
on coarse-grained user preferences across these categories
and learned estimates of bandwidth requirements for differ-
ent flows. Such bandwidth requirements are already known
for many standard applications, e.g. video streaming [2, 9].
CRAB can also ship with some default configurations for
popular traffic classes, which can be further customized by
users according to their needs.
Support for phones. We currently implement CRAB on a
Linux PC. We plan on porting our system to Android phones.
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Appendix
A Pseudocode for Redivision of Excess Band-

width
We first calculate the demand of each flow based on the
amount of bandwidth it lends out. Then excess is divided
based on this demand. If a flow’s demand is fulfilled with
bandwidth less than its share of excess, we can redivide this
residual excess share between other flows.

Algorithm 1 Redividing Excess Bandwidth between all flows

1: procedure REDIVIDE(excess)
2: // First we calculate demand of each flow based on

the bandwidth it lends out
3: for f in flows do
4: if f.lent_bw > 0 then
5: f.demand ← f.true_bw + f.borrowed_bw -

f.lended_bw
6: else
7: f.demand← ∞

8: f.assigned_bw← f.true_bw
9: if f.demand > f.assigned_bw then

10: f.lent_bw← 0
11: f.borrowed_bw← 0
12: // Based on the calculated demand, we divide excess

between all flows. When a flow’s demand is met, its
residual excess is again divided between other flows.

13: while excess > 0 do
14: residual_excess = 0
15: for f in flows do
16: if f.demand > f.assigned_bw then
17: excess_share ← excess × (f.weight

/weight_sum)
18: f.assigned_bw ← f.assigned_bw + ex-

cess_share

19: f.borrowed_bw ← f.borrowed_bw + ex-
cess_share

20: if f.assigned_bw > f.demand then
21: residual_excess← residual_excess +

(f.assigned_bw - f.demand)
22: f.lent_bw ← f.lent_bw +

(f.assigned_bw - f.demand)

23: excess← residual_excess

B Stability of Wifi Connection
Cellular networks are known to be highly unstable due to
factors like high mobility and handovers. Wifi connections
are relatively more stable. We evaluated this by sending IPerf
data over UDP at a fixed rate of 30Mpbs to a Linux machine
via a WiFi router. We measured the throughput over 200ms
granularity at the ingress of the Linux end-host using tcpdump.
Figure 14 shows the results. The observed throughput was
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Figure 14: Throughput of a 30 Mbps flow over Wifi measured in

200ms intervals.

largely stable with minor fluctuations around 30Mbps and
only a handful of dips.

C Robustness to Different Traffic Characteris-
tics

We now evaluate CRAB’s performance under diverse traffic
characteristics – flows with different RTTs, using different
congestion controllers, and varying the number of flow groups.
For these experiments, we generated iPerf flows with different
characteristics using a local server, which then arrived at our
receiver side setup used in our other experiments so far.

In the first experiment, we vary the RTT of flows by adding
artificial delay in packet delivery using Linux tc at the server
that generates flows. We start three backlogged flows sharing
a 30 Mbps link in a 1:2:3 ratio. We fix the delay of the first
flow (with weight 1) and the third flow (with weight 3) to 1ms
and 50ms respectively, and vary the delay of the second flow
(with weight 2) from 1ms to 500ms. We stop the third flow
after 30 seconds and continue to run the other two flows until
100 seconds. We then study the effect of different RTTs for
the first two flows as CRAB redivides the third flow’s share
between them in a 1:2 ratio. As shown in figure 15a, CRAB is
pretty robust to the difference in RTTs. The slight mismatch
in flow shares seen with an extremely high RTT difference of
200-500ms stems from the natural RTT unfairness that occa-
sionally manifests in CRAB during the bandwidth probing
phase when both flows share the bandwidth increment in a
non-isolated manner.

We use a similar setup as above for our second experiment,
except that the flows now have the same RTTs (20ms), but use
different congestion control algorithms. The third flow uses

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    571



1 ms 20 ms 50 ms 100 ms 200 ms 500 ms

RTT of flow 2

0.0

0.2

0.4

0.6

0.8

1.0 flow 1

flow 2

(a) Varying RTT difference

Cubic &
Cubic

BBR &
BBR

Cubic &
BBR

BBR &
Cubic

0.0

0.2

0.4

0.6

0.8

1.0 flow 1

flow 2

(b) Different congestion control algorithms for both
flows

3 flows 6 flows 12 flows 24 flows

Number of CRAB flow groups

0.0

0.2

0.4

0.6

0.8

1.0

(c) Number of active CRAB flow groups

Figure 15: CRAB maintains weighted sharing despite different characteristics of flows.
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TCP Cubic and stops after 30 seconds. We vary the congestion
control algorithms used by the other two flows as shown in
figure 15b and observe how that impacts their flow shares.
We find that CRAB’s enforcement of weighted fair shares is
robust to different congestion controllers. [New] CRAB is
unaffected by the unfairness that could manifest because of
RTT and congestion controller difference because it reacts
at super-RTT time scales thus forcing underlying flows to
adhere to throttled rates.

In the last experiment, we test CRAB’s robustness as we
increase the number of flow groups from 3 to 24. In the
first run, we have three flows sharing a 60 Mbps link in a
3:2:1 ratio. In the next run, we double the number of flows
associated with each weight, and so on. Figure 15c shows the
bandwidth share received by each flow, with different colors
indicating flows with different weights. We find that CRAB
can effectively tackle a large number of flows. [new] As long
as flows are large enough to react to CRAB, any number of
flows can be handled by it. The only breaking point may
be when a flow group consists of a large number of short-
lived flows which finish before reacting to CRAB’s throttling.
However, such a case is unlikely to exist in our target scenario
of a home network.

D Bandwidth Probing with Limited Demand
Flows

Extending on our discussion in §5.1, here we evaluate the
scenario when we do not have a convenient infinite demand
flow to rely on for bandwidth probing. CRAB is still able to
quickly probe for bandwidth by alternating between different
finite demand flows for bandwidth probing. Figure 16 shows
a scenario where we initially have one flow with a demand
of 10 Mbps, at 30 seconds, 3 new flows each with a 10 Mbps
demand start. Since their cumulative demand is more than 30
Mbps, the bandwidth probing algorithm is able to estimate
link capacity by alternatively picking a flow for bandwidth
probing and dividing capacity equally between them.

E CRAB’s Sensitivity to Lent Bandwidth
Headroom

The lent bandwidth headroom ensures that a flow has some
room in the link to send at least a few packets so CRAB can
detect it to be growing and reclaim for it. When the bandwidth
of a flow is detected to be exceeding this headroom, CRAB
quickly reclaims for it. Figure 17 shows CRAB’s sensitivity
to this parameter through the video experiment discussed in
§5.2. Overall, CRAB is not very sensitive to this parameter,
but

A larger value of headroom ensures better guarantees on
early detection for reclamation, thus, slightly better video qual-
ity. However, overprovisioning may result in under-utilization,
especially if we have a much higher number of flow groups.
This effect can be avoided easily by having a cap on the col-
lective headroom of all flow groups combined. A smaller
value of headroom may not guard very well against pressure
from other flows, which may result in CRAB not being able to
detect flow growth in time and therefore slightly worse video
quality. Another hidden effect that deteriorates link utilization
in case of small headroom is spurious reclamations. Small
values of headroom are not able to mask minor fluctuations
and noise, which results in spurious reclamation, as a result,
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Figure 17: Effect of lent bandwidth headroom on video quality vs
link utilization.

With CRAB No CRAB
Throughput 28.93 Mbps 28.98 Mbps

Delay 0.94 ms 0.88 ms
CPU Usage@end-host 10.74% N/A

Table 2: Overheads of CRAB

we see slight link under-utilization. Overall CRAB is not very
sensitive to this parameter.

F Overhead of CRAB
We evaluate CRAB’s overhead by measuring the throughput
and delay of a single bulk download flow with and without
CRAB. To measure throughput, we record the flow’s rate
at ifb’s egress (i.e. after shaping) with CRAB, and at eth0’s
ingress (as the raw arrival rate) without CRAB. We measure
processing delay by recording the difference between times-
tamps for when a packet arrives at the eth0 and when its
acknowledgment passes through eth0. Since CRAB’s compo-
nents are placed after the eth0 interface on the path of ingress
traffic, this calculation captures any extra delay inflicted by
CRAB. Table 2 shows that CRAB does not induce any sig-
nificant overhead (the throughput remains largely unchanged,
and the processing delay increases by only 0.06ms (i.e. 6.8%
over baseline).

We also measure the CPU utilization of all CRAB threads
during the experiment using Linux utility top. On a 2.4GHz
8-core machine, CRAB has an overall utilization of 10.34%.
Almost all of the CPU usage stems from the throughput mea-
surement thread of CRAB due to traffic sniffing. This is be-
cause Scapy, the Python-based packet sniffing library we use,
copies the entire packet even though we just need access to a
few packet header fields. The corresponding CPU overhead at
the home router, which uses tcpdump for sniffing, is 16.65%
on two cores at 1.8GHz. Writing a custom sniffer for CRAB
that copies only a few packet header fields can potentially
reduce the CPU overhead. We are working on shifting our
throughput measurement module to a faster packet sniffing
library like libtins [4].
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