
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

DOTE: Rethinking (Predictive) WAN Traffic Engineering
Yarin Perry, Hebrew University of Jerusalem; Felipe Vieira Frujeri,
Microsoft Research; Chaim Hoch, Hebrew University of Jerusalem;

Srikanth Kandula and Ishai Menache, Microsoft Research; Michael
Schapira, Hebrew University of Jerusalem; Aviv Tamar, Technion

https://www.usenix.org/conference/nsdi23/presentation/perry

DOTE: Rethinking (Predictive) WAN Traffic Engineering

Yarin Perry1, Felipe Vieira Frujeri2, Chaim Hoch1, Srikanth Kandula2, Ishai Menache2, Michael Schapira1,
and Aviv Tamar3

1Hebrew University of Jerusalem, 2Microsoft Research, 3Technion

Abstract– We explore a new design point for traffic engi-
neering on wide-area networks (WANs): directly optimizing
traffic flow on the WAN using only historical data about
traffic demands. Doing so obviates the need to explicitly esti-
mate, or predict, future demands. Our method, which utilizes
stochastic optimization, provably converges to the global op-
timum in well-studied theoretical models. We employ deep
learning to scale to large WANs and real-world traffic. Our ex-
tensive empirical evaluation on real-world traffic and network
topologies establishes that our approach’s TE quality almost
matches that of an (infeasible) omniscient oracle, outperform-
ing previously proposed approaches, and also substantially
lowers runtimes.

1 Introduction

To meet the constant rise in traffic, service providers invest
huge effort into traffic engineering (TE)—optimizing traffic
flow across their backbone WANs [11, 22, 24, 28, 37, 39, 57],
which interconnect their datacenters with each other and
with external networks. The production state-of-the-art
involves periodically solving a (logically centralized) op-
timization problem to determine how to best split traffic
across network paths. Changes to TE configurations are
realized using software-defined control of network hard-
ware [11, 22, 24, 35, 38, 39].

A key challenge for WAN TE is uncertainty regarding
future traffic demands. The standard approach for contend-
ing with this is twofold. For time-sensitive traffic, providers
measure application-specific usage data from switches (e.g.,
using sampled netflow or ipfix counters) and attempt to pre-
dict future usage. For bandwidth-hungry, scavenger-class
traffic [22], providers deploy so called agents/shims in the OS
of hosts from which traffic originates. These agents explicitly
signal applications’ traffic demands to “brokers” that, in turn,
aggregate demands, relay them to the centralized optimizer,
and enforce the resulting rate allocations [22, 24].

Both of the above approaches for handling traffic uncer-
tainty have drawbacks. Demand predictions can naturally
be erroneous and, more importantly, there is an objective
mismatch between the loss functions to predict future traffic
demands (e.g., mean-squared-error, L1 norm error) and the
end-to-end objective of producing high-performance TE con-
figurations. For example, mean-squared-error would weight
error in any demand equally, yet errors on demands that are

more problematic to carry on a given topology will exert
a disproportionately large effect on TE quality. The other
approach – brokering and explicitly specifying demands – en-
tails nontrivial operational overheads, including changes to
end-hosts and applications. This can increase the lag experi-
enced by application requests (which is why this approach is
used in practice only for bandwidth-hungry, scavenger-class
traffic [22]).

The demand uncertainty challenge is further amplified for
customer-facing traffic (web, images, e-mails, videos, etc.),
which constitutes a large and growing share of the total traffic
traversing some providers’ backbones. For such traffic, which
originates in unmodified apps or clients, brokering in the
host OS is not applicable. Moreover (see §2.1), such traffic
exhibits high variability and is difficult to predict accurately.

We explore a new design point for WAN TE: training
a TE decision model on historical data about traffic de-
mands to directly output high-quality TE configurations. We
present the DOTE (Direct Optimization for Traffic Engineer-
ing) TE framework. DOTE applies stochastic optimization
to learn how to map recently observed traffic demands (e.g.,
empirically-derived traffic demands from the last hour) to
the next choice of TE configuration. Using DOTE, providers
need only passively monitor traffic to/from datacenters and
do not have to onboard applications onto brokers. Directly
predicting TE outcomes that optimize TE performance also
resolves the objective mismatch between demand prediction
and TE performance, yielding TE outcomes that are more ro-
bust to traffic unpredictability. We show how DOTE can scale
to handle large WANs and real-world traffic by harnessing
the expressiveness of deep learning.

We evaluate DOTE both analytically and empirically. Our
theoretical results establish that if the TE optimization objec-
tive satisfies desirable convexity/concavity properties, DOTE
provably converges to the optimum. We prove that this is in-
deed the case for standard TE optimization objectives such as
minimizing the maximum-link-utilization (MLU) [8, 14, 27],
maximizing network throughput [4, 22, 24, 37], and maximiz-
ing concurrent-flow [11, 29].

Our empirical evaluation compares DOTE, in terms of
both quality and runtimes, to TE with explicit demand esti-
mates from end-hosts, demand-prediction-based TE, demand-
oblivious TE, deep-reinforcement-learning-based TE, and
more. Evaluating data-driven TE schemes like DOTE re-
quires substantial empirical data regarding traffic conditions

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1557

for both training and performance analysis. We conduct
a large-scale empirical study using both publicly available
datasets and historical data from Microsoft’s private WAN.
These datasets span months of traffic demands at few-minutes
granularity, amounting to tens of thousands of demand snap-
shots. Our evaluation covers small (10s of nodes) and large
(100s of nodes) WANs, different types of traffic (including
inter-datacenter and customer-facing), and different TE opti-
mization objectives. To facilitate reproducibility, our code is
available at [2].

Our evaluation results show that:

• DOTE achieves TE quality almost matching that of an
infeasible oracle with perfect knowledge of future de-
mands. Across all evaluated network topologies, traffic
traces, and considered TE objectives, DOTE compares
favorably to all other evaluated TE schemes. We also
demonstrate DOTE’s robustness to changes in traffic
conditions and to network failures.

• By invoking a DNN for the online computation of TE
configurations, DOTE achieves runtimes 1-2 orders
of magnitude faster than solving a linear program (LP),
even for large WANs, matching the gains from recent
proposals for fast (approximate) LP optimizations [4,40].
Our approach thus also holds promise for expediting
decision making for TE.

We view our investigation of direct optimization for WAN
TE as a first step and discuss current limitations of our ap-
proach that we hope future research can address.
This work does not raise any ethical concerns.1

2 Motivation and Key Insights

2.1 Inter-DC vs. Customer-Facing Traffic
Enterprise WANs carry traffic between the provider’s own
datacenters (e.g., geo-replication of datasets, newly computed
search indices) as well as traffic traversing the backbone to-
wards/from customers (e.g., web traffic, videos).

To motivate our direct optimization approach, we present
analyses of traffic on Microsoft’s production WAN. Fig-
ure 1(a) plots the standard deviation in inter-datacenter traffic
demands, normalized by the mean, across 11 consecutive
weeks, for the pair of datacenters with the highest average
demand. Demands are collected at 5-minute granularity. Sim-
ilarly, Figure 1(b) plots the normalized standard deviation in
customer-facing traffic demands over 4 consecutive weeks for
the pair of nodes with the highest average demand. Observe
the substantial difference; in the inter-datacenter traffic trace,
demands are significantly less variable.

1In particular, the measured traffic demands, used in our evaluation, are
aggregate counters between pairs of datacenters at the granularity of minutes
(or coarser). They do not contain user IP addresses or packet contents.

 0

 0.2

 0.4

 0.6

 0.8

 1

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

ST
D

 /
 M

ea
n

Day of Week

(a) Inter-data-center traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

ST
D

 /
 M

ea
n

Day of Week

(b) Customer-facing traffic

Figure 1: Variability in traffic demands for inter-datacenter
traffic and customer-facing traffic across different weeks.

High variability in customer-facing traffic demands can
accrue from different sources, e.g., (1) flash-crowds that may
cause a surge in search requests, e-mail volume, etc., (2)
congestion on the WAN’s peering links with ISP networks,
and (3) route changes and outages that cause traffic to ingress
or egress the WAN at different sites. We have observed that
customer-facing demands can exceed 100× the average value
for extended stretches of time. Thus, customer-facing traffic
is harder to accurately predict than inter-datacenter traffic.
See Figure 10(a)–Figure 10(b) in the appendix for differences
in demand-prediction accuracy between the above discussed
two traffic traces.

To summarize: for customer-facing traffic, which is a large
and growing share of overall WAN traffic, not only is direct
inference of traffic demands by the host OS infeasible, but
accurate demand prediction also appears elusive. We seek a
method that can achieve nearly optimal TE outcomes even
for the unpredictable traffic demands.

2.2 Demand Prediction vs. Direct Optimization
We illustrate key insights underlying DOTE using the example
in Figure 2(a). Each of nodes A and B wishes to send traffic
to node D, and can do so either via its direct link to D or
its 2-hop path to D through node C. All link capacities are
1. Every fixed time interval (say, 5 minutes), the TE system
must determine, for each of the two source nodes, A and B,
traffic splitting ratios specifying which fraction of its demand
is forwarded along each of its assigned two paths to D. A and
B’s traffic demands for each time interval are drawn (i.i.d) at
the beginning of each time interval from a fixed probability
distribution: with probability 1

2 node A’s demand is 5
3 and

node B’s demand is 5
6 and with probability 1

2 node B’s demand
is 5

3 and node A’s demand is 5
6 . The TE system has no a priori

knowledge of the realization of the traffic demands; splitting
ratios must be determined before actual traffic demands are
revealed.

Demand-prediction-based TE and its shortcomings. A
natural solution is training a predictor on empirical data con-
taining past demands for A and B to predict the combination of
demands closest (in expectation) to the realized combination
of demands (e.g., in terms of mean-squared-error), and then

1558 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Network topology (b) Induced splitting ratios for a
demand-predictor

(c) Optimal splitting ratios (d) Expected MLU as a function of the splitting
ratios

Figure 2: Simple WAN TE example

performing global optimization with respect to the predicted
demands. In our simple example, this leads to the predicted
demand-combination being (5

4 ,
5
4) and the induced splitting

ratios presented in Figure 2(b). Under these splitting ratios,
regardless of the realization of the demands, either link (A,D)
or link (B,D) will carry more traffic than its capacity can
accommodate. In the optimal solution shown in Figure 2(c),
however, regardless of the realized demands, no link carries
more traffic than its capacity can support.

Of course, instead of predicting a single demand-
combination, one could have predicted a probability distribu-
tion over the traffic demands and optimized splitting ratios
with respect to that. This entails two nontrivial challenges,
which are significantly amplified for large WANs and real-
world traffic: (1) We must impose a specific structure on
the probability distribution to be predicted (e.g., Gaussian,
bimodal), which might not be a good fit for actual WAN
traffic. This is particularly true when there hidden correla-
tions between demands (as in our example); (2) Optimizing
an LP with respect to a distribution over multiple demand-
combinations can be prohibitively time consuming for large
WANs.

On direct optimization of traffic splitting ratios and why
it might do better. An alternative approach, which avoids
presuppositions regarding the traffic, and also LP optimiza-
tions, is training a decision model on past realizations of A
and B’s traffic demands to directly output traffic splitting ra-
tios that are close to the global optimum. This approach can
outperform the demand-prediction-based approach in scenar-
ios where traffic is volatile and hard to predict but a certain
configuration of splitting ratios performs well on most traffic
realizations. Directly inferring the splitting ratios also obvi-
ates the need for solving an LP to optimize splitting ratios
with respect to predicted traffic. As our evaluation results in
§4 show, this significantly accelerates TE runtimes for large
WANs. In our example, after sufficient training, the model is
expected to learn the splitting ratios in Figure 2(c) (the unique

global optimum). Indeed, DOTE, which is a manifestation of
this approach, quickly converges to this global outcome.

Exploiting convexity/concavity for direct optimization of
splitting ratios via gradient descent. A key insight is that for
classical TE optimization objectives, the function mapping
splitting ratios to expected performance scores satisfies desir-
able properties, namely, convexity/concavity. This facilitates
utilizing elegant direct optimization methods, like (stochastic)
gradient descent, circumventing explicit demand prediction.

To illustrate this, we consider the classical TE objective
of minimizing maximum-link-utilization (MLU). We visual-
ize in Figure 2(d) the impact of different choices of splitting
ratios on MLU, i.e., the maximum ratio, across all network
links, between the traffic traversing a link and the link capac-
ity. x-axis values specify the fraction of A’s traffic sent on
the direct path (A,D). Since A only has two available paths,
this value also uniquely determines the fraction of A’s traffic
sent on the indirect path (A,C,D). Similarly, y-axis values
specify the fraction of B’s traffic sent on (B,D) and so also on
(B,C,D). z-axis values represent the expected MLU for dif-
ferent choices of splitting ratios for A (x-axis) and B (y-axis)
for the underlying demand distribution described above. For
instance, the scenario where A and B send all of their traffic
on (A,D) and (B,D), respectively, is captured by w(A,D) = 1
(x-axis) and w(B,D) = 1 (y-axis), and the derived expected
MLU is 5

3 (z-axis). Indeed, in this scenario, regardless of
which of the two demand combinations is realized, the traffic
injected into either link (A,D) or link (B,D) will be 5

3 x its
capacity. The unique global minimum for MLU, in which no
link capacity is exceeded, is achieved for w(A,D) = 0.6 and
w(B,D) = 0.6 (the red dot in Figure 2(d), which corresponds
to the splitting ratios in Figure 2(c)).

As seen in Figure 2(d), the expected MLU exhibits a desir-
able structure—convexity in the traffic splitting ratios. This
suggests the following procedure for converging to the op-
timum: start with arbitrary splitting ratios, and adapt the
splitting ratios in the direction of the steepest slope of the (ex-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1559

pected) MLU (i.e., the opposite direction of the gradient with
respect to the splitting ratios) until converging to the global
minimum. We show (in §3.3) that the convexity of the ex-
pected MLU extends to any network topology, any choice of
network paths (tunnels), and any underlying demand distribu-
tion, and so, this elegant optimization procedure is guaranteed
to converge to the global optimum in general.

2.3 TE as Stochastic Optimization
How to estimate the gradient of the expected MLU? Ex-
ecuting gradient descent on the expected MLU requires re-
peatedly evaluating the gradient for different traffic splitting
configurations. However, exact knowledge of the gradient
is impossible without exact knowledge of the underlying de-
mand distribution. Once again, the specific structure of the
TE setting gives rise to opportunities for effective optimiza-
tion. We show how the gradient can be closely approximated
from data samples of past realizations of the demands. Our
approach builds on the following two observations that, while
illustrated using our toy example, generalize to arbitrary net-
work topologies, tunneling schemes, and distributions over
traffic demands (see §3).

• For any realized demand-combination, the MLU gra-
dient with respect to these specific demands can be
expressed in closed form. Suppose that the realized
demands in our simple example are 5

3 for A and 5
6 for B.

The MLU as a function of A’s splitting ratios, w(A,D)

and (1 − w(A,D)), and B’s splitting ratios, w(B,D) and
(1−w(B,D)), can be expressed as:

max{5
3

w(A,D),
5
3
(1−w(A,D))+

5
6
(1−w(B,D)),

5
6

w(B,D)}

(i.e., the maximum load across the links (A,D), (C,D),
and (B,D), respectively2). This representation of the
MLU for the realized demands as a convex function
of the splitting ratios enables deriving a closed form
expression of the (sub)gradient of the MLU3, as shall be
discussed in §3.

• Averaging over the MLU gradients for past realized
demands closely approximates the gradient of the
expected MLU. Exact knowledge of the underlying
probability distribution over demands is elusive in most
real-world scenarios. Hence, the gradient of the expected
MLU for a given configuration of splitting ratios can-
not be precisely derived. However, this gradient can be
well-approximated by averaging over the gradients for

2Observe that the load on (A,C) and (B,C) is always dominated by the
load on (C,D), and so we disregard these links.

3Note that even though this function is not differentiable for all inputs due
to the maximum operator, the subgradient always exists and can be explicitly
derived.

realized demands at those splitting ratios. In our exam-
ple, deriving the expected MLU gradient for specific
traffic splitting ratios for A and B can be achieved by
sampling sufficiently many past realizations of A and B’s
demand-combinations, deriving the MLU gradient with
respect to each such realized demand combination (at
these splitting ratios), and averaging over these.

Why is reinforcement learning (RL) not a good fit? (Deep)
RL methods have been applied to many networking domains,
including routing [54]. Similarly to DOTE, RL approaches to
TE also replace explicit demand prediction with end-to-end
optimization, mapping recent traffic demands to TE configu-
rations [54]. However, while RL can be applied to essentially
any sequential decision making context, RL suffers from
higher data-sample complexity, notorious sensitivity to noisy
training, and a brittle optimization process that necessitates
painstakingly sweeping hyperparameters [21]. A key obser-
vation underlying DOTE is that WAN TE exhibits a desirable
structure that gives rise to opportunities for much simpler and
more robust optimization, rendering RL an “overkill”.

2.4 Harnessing Deep Learning
In our simple example, traffic demands were repeatedly drawn
from the same probability distribution. Real-world traffic ex-
hibits intricate temporal (hourly, diurnal, weekly), and other,
patterns. To pick up on such regularities, the TE system
could take into account the recent history of observed traffic
demands (e.g., traffic demands from the last hour). How-
ever, there are infinitely many possible recent histories of
traffic demands the TE system might observe. To address this,
DOTE trains a deep neural network (DNN) to approximate
the optimal mapping from traffic histories to TE configura-
tions, exploiting the capability of DNNs to automatically
identify complex patterns in large, high-dimensional data
(§3.4). DOTE builds on recent developments in large-scale
optimization, namely, the ADAM stochastic gradient descent
optimizer [30], to accommodate efficient training on extensive
empirical data (10s of thousands of traffic demand snapshots
in our experiments).

3 Direct Optimization for TE (DOTE)

Below, we present our model for WAN TE with uncertain
traffic demands, which extends the classical WAN TE model.
We then delve into the the DOTE stochastic optimization
framework, provide theoretical guarantees, and discuss how
DOTE can be implemented in practice.

3.1 Modeling WAN TE
Network. The network is modeled as a capacitated graph
G = (V,E,c). V and E are the vertex and edge (link) sets,

1560 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

respectively, and c : E → R+ assigns a capacity to each edge.

Tunnels. Each source vertex s communicates with each desti-
nation vertex t via a set of network paths, or “tunnels”, Pst .

Traffic demands. A demand matrix (DM) D is an |V |× |V |
matrix whose (i, j)’th entry Di, j specifies the traffic demand
between source i and destination j.

Optimization objective. To simplify exposition, we first
describe DOTE for the case of one classical TE objective:
minimizing maximum-link utilization (MLU) [9, 13, 17]. We
discuss other optimization objectives (maximum network
throughput and maximum-concurrent-flow) in §3.5.

TE configurations. We focus on how traffic should be split
across a given set of tunnels so as to achieve the optimization
objective. DOTE is compatible with any tunnel-selection
method. We discuss an extension that incorporates data-
driven tunnel selection in §5.

Given a network graph and demand matrix, a TE configura-
tion R specifies for each source vertex s and destination vertex
t how the Ds,t traffic from s to t is split across the tunnels in
Pst . Thus, a TE configuration specifies for each tunnel p ∈ Pst
a value xp, where xp is the fraction of the traffic demand from
s to t forwarded along tunnel p (and so ∑p∈Pst xp = 1).

Given a demand matrix D and TE configuration R , the total
amount of flow traversing edge e is fe = ∑s,t∈V,p∈Pst ,e∋p Ds,t ×
xp. The objective is minimizing the maximum link utilization
induced by R and D, maxe∈E

fe
c(e) , which we will refer to as

MLU and represent as L(R ,D). WAN operators seek to re-
duce the MLU to keep more headroom open for unplanned
failures and traffic spikes. Typically, operators spend to in-
crease link capacities when MLU exceeds a threshold value,
and so reducing MLU can reduce CAPEX [14, 27].

In this work, we aim to select TE configurations without
a priori knowledge of the traffic demands. To do so, we
augment the above model as follows:

WAN TE under traffic uncertainty. Time is divided into
consecutive intervals, called “epochs”, of length δt . δt is de-
termined by the network operator (e.g., at some large service
providers [22, 24], δt is a few minutes). At the beginning of
each epoch t, the TE configuration R (t) for that epoch is de-
cided based only on the history of past demand matrices and
TE configurations. We also assume that the demand matrix
is fixed within an epoch and can be approximately estimated
after the fact.4 Such periodic changes to TE configuration
reflect the current practice in private WANs [22–24].

After selecting the TE configuration R (t) for epoch t, the
demand matrix Dt is revealed. To minimize MLU, the goal for
direct optimization is to devise a TE function π(Dt−1, . . .D1)

4For e.g., by sampling ipfix (or equivalent) data at each node in the WAN,
as is done in production in SWAN [22] and B4 [24]. This data contains
source and destination nodes and volume of bytes exchanged. Alternatively,
traditional ISP backbones use network tomography on measured link usage
data (see, e.g., [46, 58]).

that, for every t > 0, maps the history of DMs from the pre-
vious t − 1 time epochs to a TE configuration R (t) for the
upcoming time epoch t so as to minimize 1

T Σt
x=1L(R (x),Dx),

where T represents the length of time in which TE configura-
tions are computed according to π.

To reason about WAN TE in the presence of traffic uncer-
tainty, we assume that the demand matrix Dt at each epoch t is
generated from some probability distribution. We also make
the following two assumptions, which are fundamental to any
data-driven approach to WAN TE. First, we assume that there
is some sufficiently large H > 0 such that the finite window
of H recent historical observations of DMs is sufficient for
informing the decision of the next TE configuration. (Our em-
pirical results in §4 suggest that H = 12 suffices for attaining
high performance on our datasets.) Formally, we model the
demand matrix Dt as generated according to an unknown
H-Markov process with transition probabilities such that
P(Dt |Dt−1, . . . ,Dt−H) = P(Dt |Dt−1, . . . ,D1). Second, we as-
sume that the probability of observing a particular sequence
of H DMs in the training data and during real-time system
execution is the same. This formally translates to the Markov
process being in a steady state. Let P(Dt−1, . . . ,Dt−H) de-
note the Markov process’ stationary distribution, which deter-
mines the probability for any specific H-long recent history
of DMs. The expected MLU for a TE configuration R at
epoch t is therefore EDt [L(R ,Dt)], where the expectation
is with respect to the (unknown) probability distributions
P(Dt−1, . . . ,Dt−H) and P(Dt |Dt−1, . . . ,Dt−H) defined above.

3.2 The DOTE TE Framework
DOTE leverages stochastic optimization to compute a TE
function πθ(Dt−1, . . . ,Dt−H), parametrized by θ, which maps
the H-long recent history of DMs to the TE configura-
tion for the next time epoch, R (t). If the TE function is
sufficiently expressive, there should exist parameters that
closely approximate the optimal TE function. As we shall
discuss in §3.4, in DOTE, πθ is realized by a deep neu-
ral network (DNN), and the parameters θ correspond to
the DNN’s link weights. We thus consider the optimiza-
tion problem of seeking parameters θ for which the follow-
ing expression is minimized: E [L(πθ(Dt−1, . . . ,Dt−H),Dt)],
where the expectation is with respect to choosing t uni-
formly at random from {1, . . . ,T}, and the probability dis-
tributions P(Dt−1, . . . ,Dt−H) and P(Dt |Dt−1, . . . ,Dt−H) de-
fined above. Observe that by the linearity of expectation
and the above equation, E [L(πθ(Dt−1, . . . ,Dt−H),Dt)] =
1
T ΣT

t=1EDt

[
L(R (t),Dt)

]
, which is precisely our optimization

objective in DOTE.
The training data for DOTE is a trace of historical

DMs, consisting of N sequences of DMs of the form{
Di

t ,D
i
t−1, . . . ,D

i
t−H

}
, where each sequence consists of H+1

DMs and captures a specific realization of a H-long history
of DMs and the subsequent realized DM. We assume that

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1561

these N observations of DM sequences are sampled i.i.d. from
t ∈ [1, . . . ,T], P(Dt−1, . . . ,Dt−H) and P(Dt |Dt−1, . . . ,Dt−H).5

DOTE executes stochastic gradient descent (SGD) [51] to
optimize the parameters θ by sequentially sampling m-sized
mini-batches of data, where each data point in the mini-batch
is drawn from the data uniformly at random. For each mini-
batch of sampled data points, the parameters θ are updated as
follows:

θ := θ−α
1
m ∑

i in batch
∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)),

where α is a step size parameter and
∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) is the gradient of the

loss function with respect to θ. Our realization of stochastic
optimization in DOTE follows the ADAM [30] method,
which incorporates momentum and an adaptive step size.

A closer look at DOTE’s parameter update step. Re-
call that our objective is to reach a performant TE con-
figuration with respect to the expected loss (MLU). The
success of DOTE’s SGD is thus crucially dependent on
DOTE’s ability to well-approximate the gradient with re-
spect to the expected loss. Unfortunately, in most real-world
TE environments, exact knowledge of the underlying dis-
tribution over traffic demands is unattainable. To address
this, DOTE’s parameter update step (see above) incorporates
the expression 1

m ∑i in batch ∇θL(Di
t ,πθ(Di

t−1, . . . ,D
i
t−H)). As

discussed above, each sequence of H + 1 demand ma-
trices

{
Di

t ,D
i
t−1, . . . ,D

i
t−H

}
in the batch is assumed

to be independently drawn from the underlying sta-
tionary distribution of the Markov process. Hence,
1
m ∑i in batch ∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) is an unbiased es-

timate of the gradient of the expected loss, and closely ap-
proximates the gradient of the expected loss for a large enough
m. Approximating the gradient of the expected loss in this
manner is termed Sample Average Approximation (SAA) in
stochastic optimization literature [51]. Relying on unbiased
stochastic gradients for SGD guarantees convergence to a
global optimum with respect to the expected loss [49] when
the loss function is concave (as in our context, see §3.3).

We are left with the challenge of deriving
1
m ∑i in batch ∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)). An impor-

tant technical observation is that each data point i in the batch,
L(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) is a composition of differentiable

computations. DOTE capitalizes on this for calculating the
gradient ∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) in closed form via

backpropagation. We revisit this point in §3.4.

5When the data is a long trace of historical DMs, the samples are not
necessarily independent. However, we assume that the mixing time of the
Markov process is fast enough such that correlations between the data sam-
ples are negligible. This is a common assumption in time series prediction.

3.3 Analytical Optimality Results
We prove that, for a perfectly expressive TE function, i.e.,
when the TE function can be any mapping from demand
histories to TE configurations, and in the limit of infinite
empirical data sampled from the underlying Markov process’
stationary distribution, DOTE attains optimal performance.
In practice, we relax both assumptions: in DOTE, we sample
from a large, but finite, dataset of historical demands, and use
a parametric model (specifically, a neural network) to map
from the set of possible histories to valid TE configurations.
Our theoretical result below, however, establishes that our
approach is fundamentally sound, and so high performance
in practice can be achieved by acquiring sufficient empirical
data and employing a sufficiently expressive decision model
(e.g., a deep enough neural network). Our empirical results
in §4 corroborate this.

For the sake of analysis, we assume that the set of pos-
sible history realizations, which we denote by H, is fi-
nite. Let π : H → R denote a mapping from history
to TE configuration6. We consider an idealized stochas-
tic gradient descent (SGD) algorithm that, at each iter-
ation k samples a single data point Dt ,Dt−1, . . . ,Dt−H
from the probability distributions P(Dt−1, . . . ,Dt−H) and
P(Dt |Dt−1, . . . ,Dt−H), and updates πk+1 = Pro j{πk −ηvk},
where vk ∈ ∂L(πk(Dt−1, . . . ,Dt−H),Dt) denotes the subgra-
dient of the objective function, and Pro j denotes a pro-
jection onto the simplex for each (s,d) pair. The final
output after K iterations is π̄ = 1

K ∑
K
k=1 πk. Let L̄(π) =

E [L(π(Dt−1, . . . ,Dt−H),Dt)] denote the expected MLU of
a TE function, and let π∗ ∈ argminπ L̄(π) denote the optimal
TE function. We prove the following theorem:

Theorem 1. For any ε > 0, there exists η > 0 and finite K
such that

∣∣E[
L̄(π̄)

]
− L̄(π∗)

∣∣ ≤ ε, where the expectation is
w.r.t. the sampling by the algorithm.

The proof of Thoerem 1, which crucially relies on the
convexity of the MLU objective, appears in Appendix B.

3.4 Scalability and Real-World Traffic
Direct TE optimization aims at computing a mapping from
the history of recent traffic demands to a TE configuration that
optimizes expected performance for the next demands. A key
insight is that with real-world traffic, one may expect certain
patterns in this mapping; for example, if two histories of traf-
fic conditions are very similar, their corresponding optimal
TE configurations should also be similar. However, measur-
ing and explicitly quantifying such similarities is nontrivial.
Our approach is to exploit deep neural networks, which have
demonstrated remarkable success in identifying complex pat-
terns in high dimensional data, for this task.

6Note that we dropped the subscript θ in π, as in our analysis we consider
the space of all possible TE configurations, and not a specific parametrization.

1562 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DOTE employs a DNN to realize the TE function
πθ(Dt−1, . . . ,Dt−H). Specifically, DOTE’s DNN maps an
input of H (12 in our experiments) most recent DMs into an
output vector specifying the splitting ratios across tunnels for
all source-destination pairs. In our implementation of DOTE,
we use the popular Fully Connected DNN architecture. See
Appendix E for a formal exposition of how the DNN’s output
and the realized DM are fed into the loss function to derive the
induced MLU. Importantly, the sequence of steps for mapping
the DNN output to the MLU value L(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H))

involves only differentiable computations; the loss as a func-
tion of the TE configuration is a composition of a max and a
linear function, and the neural network is differentiable by de-
sign. Hence, the gradient ∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) can

be calculated in closed form via backpropagation. In our im-
plementation, the Pytorch [41] auto-differentiation package
is used to calculate the gradients.

3.5 On Maximum and Concurrent Flow

We next explain how DOTE extends to two other central TE
objectives: maximizing network throughput [18, 22, 24, 25]
(maximum multicommodity flow) and maximum concurrent-
flow [11, 29, 48].

TE configurations for flow maximization. TE objectives
that capture different notions of flow maximization require
that the outputs of the TE mechanism satisfy strict capacity
constraints. To address this, we revise our definition of TE
configuration R from §3.1: for each source-destination pair
s, t ∈ V , R now specifies (1) traffic splitting ratios xp over
the paths (tunnels) p ∈ Pst (as in §3.1), (2) for each path
(tunnel) p ∈ Pst , a “cap” ωp ≥ 0. ωp represents the maximum
permissible flow between s to t along the path p (enforced
via rate limiting). R must satisfy that no link capacity is
exceeded (regardless of the realized demands), i.e., that for
each link e∈E, Σs,t∈V,p∈Pst ,e∋pωp ≤ c(e). A TE configuration
R and demand matrix D induce, for each tunnel p a flow
fp(R ,D) = min{xp×Ds,t ,ωp}. The total flow between s and
t is thus fst(R ,D) = Σp∈Pst fp(R ,D).

The maximum-multicommodity-flow and maximum-
concurrent-flow objectives. In maximum-multicommodity-
flow [18, 22, 24, 25], the performance objective L(R ,D) is to
compute, for a given demand matrix D, a TE configuration
R that maximizes the expression L(R ,D) = Σs,t∈V fst(R ,D)
(the total network throughput). For a TE configuration R
and demand matrix D, let α(R ,D) denote the maximum
value α ∈ [0,1] for which at least an α-fraction of each
Ds,t is routed concurrently, i.e., such that for all s, t ∈ V ,
fst(R ,D)≥ αDs,t . The goal in maximimum-concurrent-flow
is to compute, for an input DM D, the TE configuration
R for which L(R ,D) = α(R ,D) is maximized. Relative
to maximum-multicommodity-flow above, the maximum-
concurrent-flow objective enhances fairness. Practical TE

systems [22, 24] use a sequence of optimizations wherein
they employ different objectives for different priority classes.
For example, they may use maximum-multicommodity-flow
or minimizing MLU for high priority traffic and maximum-
concurrent-flow for scavenger-class traffic.

DOTE for maximum-multicommodity-flow and maximum-
concurrent-flow. Adapting DOTE to the above two flow-
maximization objectives is accomplished along the lines de-
scribed in §3.4. In particular, a DNN is again utilized to map
the recent observations of DMs to the next TE configuration.
Recall from the above discussion that the (revised) TE config-
uration consists of both traffic splitting ratios across tunnels
and a “flow cap” for each tunnel. In our design, the DNN
outputs wp ≥ 0 for each tunnel p. The wp’s are used to de-
rive traffic splitting ratios and flow caps as follows. We set
ωp =

wp
γ

, where γ = max
(

maxe∈E
Σp:e∈pwp

c(e) ,1
)

. Observe that
this guarantees that no link capacity can be exceeded even if
each tunnel p carries its maximum permissible flow ωp (i.e.,
that Σs,t∈V,p∈Pe

st
ωp ≤ c(e)). We then set the traffic split share

on tunnel p to simply be its proportional weight: xp =
ωp

Σq∈Pst ωq
.

Since the objective is now maximizing a performance metric,
DOTE now involves stochastic gradient ascent.

Optimality via stochastic quasi-concave optimization.
In Appendix B, we prove the analogues of Theorem 1
for maximum-multicommodity-flow and for maximum-
concurrent-flow, establishing DOTE’s optimality for these two
objectives. Similarly to Theorem 1 (for MLU), this implies
that with sufficient training data and a sufficiently expressive
decision model, DOTE attains near-optimal TE configurations.
Our evaluation results for maximum-multicommodity-flow
and for maximum-concurrent-flow exemplify this (§4.3).

Our proofs for maximum-multicommodity-flow and for
maximum-concurrent-flow are considerably more subtle than
that of Theorem 1, as both objectives are not concave (the
analogue of convexity for maximization problems). Instead,
we show that the average maximum-multicommodity-flow /
maximum-concurrent-flow score of a TE configuration over
any set of DMs is quasi-concave. This result, which may be
of independent interest, allows us to leverage the analytical
arguments in [20] to show convergence of a suitable stochastic
gradient ascent algorithm to the global optimum, and bound
the number of required iterations.

3.6 Realizing DOTE
Figure 3 illustrates key differences between DOTE and prior
software-defined WAN TE schemes. One key difference is
the use of historical traffic demands and a learnt controller
instead of running an optimization solver, leading to sub-
stantial decrease in deployment overheads and runtimes. In
particular, bandwidth brokers are no longer needed to esti-
mate application demands. Furthermore, rate allocations can,
if necessary, be enforced by piggy-backing on novel traffic

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1563

Prior controllers

WANService hosts

Network
agents

Service
brokers

Traffic demands
BW allocation Network config.

Topology, usage

Rate
limiting

(a) Architecture of prior SD-WAN TE schemes [22, 24]. (b) DOTE with differences shown in red.

Figure 3: Illustration of the key differences from previous SD-WAN TE schemes.

shaping techniques that are deployed in modern cloud servers
at the OS-level as well as in NIC/FPGA offloads [1,12,43,47].

Training DOTE. Since DOTE’s decision model is trained
offline on historical data, its operational model can be periodi-
cally replaced by a model trained in the background on more
recent and up to date data, to gracefully adapt to planned
changes in WAN topology (adding capacity, planned addi-
tion/removal of nodes or links) and to temporal drifts in traffic
demand distributions. Our evaluation results (§4) indicate that
DOTE produces high performance TE configurations even
weeks after being deployed, and even if the network topology
changes during this time (e.g., due to failures). This provides
ample time for training substitute TE functions (a process that
requires less than a day on large networks for our empirical
datasets without code and hardware optimizations).

Handling network failures. Tunnelling protocols (e.g.,
MPLS) identify tunnels with failed nodes/links. A traditional
approach in TE to rerouting traffic around failed tunnels is
to let traffic sources redistribute traffic proportionally among
their remaining tunnels [22, 24, 39, 52].7 We incorporate this
simple approach into DOTE and evaluate its effectiveness in
§4), showing that it achieves high resiliency to failures. We
discuss other possible approaches in §5.

4 Evaluation

Using actual traffic demands from three different production
WANs (Abilene, GEANT, and Microsoft’s WAN), we ask the
following questions: (1) How does DOTE compare against an
omniscient oracle with perfect knowledge of future demands?
(2) How does DOTE compare with state-of-the-art prediction-
based TE [4, 22, 24, 36, 40], demand-oblivious TE [8, 32],
and RL-based TE [54]? (3) Can DOTE support different
TE objectives (e.g., MLU [8], maximum-multicommodity-
flow [4, 22, 24])? (4) How long does DOTE take to train and
to apply online at each solver activation? (5) How does DOTE
perform under network faults and drift in traffic patterns?

7Traffic split (0.6,0.3,0.1) becomes (0,0.75,0.25) if the first path goes
down.

#Nodes #Edges Length Granularity
Abilene 11 14 4.5months 5 min.
GEANT 23 37 4 months 15 min.
PWAN O(100) O(100) O(1) months minutes

PWANDC O(10) O(10) O(1) months minutes
GtsCe 149 193

SyntheticCogentco 197 243
KDL 754 895

Table 1: Datasets used to evaluate DOTE

4.1 Methodology

Datasets: Data-driven TE is best evaluated on real-world
datasets; we use the production topology and the traffic de-
mands from GEANT [53], Abilene [3], and PWAN, a pri-
vate WAN at Microsoft. Traffic traces were collected at a
few-minute granularity over several months. We also use
three topologies (GtsCe, Cogentco and KDL) from Topology
Zoo [31] with synthetic traffic (generated using the gravity
model [8, 45]). Table 4 lists the topology sizes and traffic
demands. Nodes in these WAN topologies are datacenters,
edge sites, or peering points. Traffic on PWAN includes both
traffic between datacenters and traffic to/from end users. To
better understand how DOTE performs for each traffic class,
we consider a subset–PWANDC–which only contains large
datacenters and the traffic between them. For each WAN, we
use the earlier 75% of demand matrices (DMs) for training
and the later 25% DMs as the test set.

Tunnel choices are k-shortest-paths, edge-disjoint paths, and
SMORE trees. More specifically, we use (1) Yen’s algorithm
for k-shortest-paths, with k = 8 per commodity (pair of nodes),
(2) edge-disjoint shortest-paths where, for each commodity,
we iteratively compute a shortest-path in the network and
remove all links on that path from consideration until no
more paths exist for that commodity, and (3) tunnels from
SMORE [37] generated using Yates [36].

Comparables to DOTE include: (1) Omniscient oracle,
which is an optimization with perfect knowledge of future
demands and bounds the quality of any WAN TE scheme. (2)
Demand-prediction-based TE methods [4, 22, 24, 36, 40],
which are in production today [22, 24]. We consider a rich

1564 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

WAN Online Lat. (s) Precomp. Lat. (s)
DOTE LP DOTE COPE Oblivious

Abilene 0.0005 0.02 1800 180 1
PWANDC 0.003 0.05 1200 7200 15

Geant 0.002 0.04 2400 10800 180
PWAN 0.2 1 36000 > 345600 ∼ 86400

Table 2: Comparing the online latency (to compute a TE
configuration for a demand matrix) as well as the precompu-
tation latency (to train models, to compute demand-oblivious
configurations, etc.) for various TE schemes. 8 shortest paths
are used per demand across all WANs and TE schemes.

collection of possible predictors of future demands: linear
regression, ridge regression, random forest, DNN models, and
autoregressive models (§C). (3) RL-based WAN TE [54],
which leverages a neural network of the same size as DOTE’s
(see below). (4) Demand-oblivious TE [8], which optimizes
the worst-case performance over all traffic demands. (5)
SMORE [37], which picks source-rooted trees for worst-
case demands but adapts splitting ratios over the chosen trees
based on predicted future demands. (6) COPE [55], which
enhances demand-oblivious schemes by also optimizing over
a set of predicted traffic demands.

Metrics: Our TE quality metric is the ratio between the value
obtained by the evaluated TE scheme and the performance ob-
tained by the omniscient oracle, which has perfect information
about future traffic demands. We consider three TE objec-
tives: minimize maximum link utilization (MLU) [8, 14, 27],
maximize multicommodity flow [4, 22, 24, 37] and maxi-
mize concurrent-flow [11, 29]. Note that this ratio is ≥ 1
for MLU (because lower max-link utilization is better) and
≤ 1 for the other metrics (because carrying more flow is bet-
ter). We refer to the relative gap from 1 as the optimality gap.
We also measure the runtimes (latency) of the evaluated TE
schemes on the same physical machine.8

DNN architecture: Unless otherwise specified, results for
DOTE use five fully connected NN layers with 128 neurons
each and ReLU(x) activation except for the output layer which
uses Sigmoid(x). For different TE objectives, DOTE uses a
similar architecture with small changes. We chose this archi-
tecture because it empirically outperformed other investigated
architectures.

Infrastructure and code: We ran our experiments in cloud
VMs and made use of cloud ML training systems. To enable
further research, we have released our code at [2].

Fault model: To examine TE behaviour under network faults,
we randomly bring down a certain number of links (e.g., 1
to 20 while ensuring network is not partitioned), and com-
pare the performance of DOTE (see DOTE’s failure-recovery
scheme at the end of §3.6) and alternatives with an omni-
scient oracle with perfect knowledge of both future failures
and future traffic demands.

8VM with 8 vCPUs and 256GB RAM.

4.2 Comparing DOTE with Other TE Schemes
TE quality. Figure 4 compares DOTE with the other TE
schemes described in §4.1, with the exception of SMORE
(to be discussed in §4.3). The values plotted here are the
maximum link utilization (MLU) normalized by that of the
ominiscient oracle with perfect knowledge of future demands.
The figure shows results on four different topologies. Each
candlestick shows the distribution of MLUs achieved on the
various demand matrices with the boxes ranging from 25th
to 75th percentile and the whiskers going from minimum to
maximum value. The figure also plots values achieved at
various other percentile values. We note a few findings.

• First, optimizing for predicted demands can lead to poor
TE quality (see results for GEANT and PWAN). Note
that the y axis is in log scale. A value of y = 2 indicates
that the link most utilized by the TE scheme is twice as
utilized as the most utilized link in the optimal solution
(produced by the oracle). Optimizing with respect to
predicted demands performs well only on Abilene and
PWANDC, where the traffic demands are predictable.
These results are for a linear-regression-based predictor
that outperforms all other considered predictors on our
real-world traffic datasets (see Appendix C).

• Next, we observe that the RL-based TE scheme [54] has
extremely poor TE quality even on Abilene. This could
be due to the infamous training complexity of RL.

• Third, demand-oblivious TE [8] results in somewhat
decent TE quality on GEANT but not on any of the other
WANs. This could be because optimizing worst-case
performance across all possible demands fails to take
advantage of the specific characteristics of real-world
traffic demands.

• Fourth, COPE [55], which explicitly accounts for his-
torically observed demands, significantly outperforms
demand-oblivious TE. The key issue with COPE is its
extremely high runtimes. Our analysis (see Table 2 and
discussion below) suggests that COPE’s applicability
does not extend beyond topologies with tens of nodes.

• Finally, note that DOTE achieves TE quality that is al-
most always significantly better than the alternatives’
and nearly as good as the omniscient oracle’s. The dif-
ference in TE quality is especially stark at the higher per-
centiles. Relative to the compared TE schemes, DOTE
offers MLU up to 25% better at the median and 170%
better at the 99th percentile.

Runtimes. Table 2 presents a comparison of runtimes across
TE schemes. The table presents the latency of applying each
TE scheme to a new demand matrix and, wherever appro-
priate, the required precomputation time. Demand-oblivious
schemes [8] and COPE [55] do not change the TE configura-
tion online but involve very long precomputation latency and
require very large memory. DOTE performs both precompu-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1565

 1

 10

PWANDC PWAN

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

Oblivious
COPE
99th

90th
Average
Median

(a) PWANDC & PWAN

 1

 10

Abilene GEANT

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

Oblivious
COPE
99th

90th
Average
Median

(b) Abilene & GEANT

Figure 4: TE quality when aiming to minimize the maximum link utilization with 8 shortest paths per demand. Candlesticks
depict results across hundreds of demands; the boxes are from the 25th to the 75th percentile, the whiskers range from min to
max value, dashed lines capture other percentiles of interest. DOTE achieves much lower MLU compared to the alternatives.

 0

 0.2

 0.4

 0.6

 0.8

 1

PWANDC
edge-disjoint

PWANDC
8 shortest paths

PWAN
edge-disjoint

PWAN
8 shortest paths

(n
or

m
al

iz
ed

)
To

ta
l F

lo
w

DOTE
DM Pred

99th

90th
Average
Median

(a) PWANDC & PWAN

 0

 0.2

 0.4

 0.6

 0.8

 1

Abilene
edge-disjoint

Abilene
8 shortest paths

GEANT
edge-disjoint

GEANT
8 shortest paths

(n
or

m
al

iz
ed

)
To

ta
l F

lo
w

DOTE
DM Pred

99th

90th
Average
Median

(b) Abilene & GEANT

Figure 5: TE quality when aiming to maximize total flow with two different tunnel choices.

tation on historical demands (training the DNN) and online
computation (invoking the DNN). SMORE’s online com-
putation involves solving an LP to optimize over predicted
demand matrices and so its latency is roughly as high as the
LP’s latency in the table. To compute Racke’s routing trees,
SMORE requires several hours on the larger topologies.

The table shows that DOTE’s inference time is faster than
the latency of using LPs to optimize over one (predicted)
DM. The LP’s latency is on par with results in recent stud-
ies [4, 40]. DOTE’s online computation is short because it is
effectively a few matrix multiplications.9 LP computation la-
tency increases super-linearly with the network size and prior
work notes that solver times can exceed several minutes on
networks with thousands of nodes and edges [4, 40]; DOTE’s
inference latency on large WANs, such as KDL (see Table 4),
is still within a few seconds. DOTE’s training time is less
than 12 hours for PWAN and can be accelerated using stan-
dard methods (e.g., by parallelization, SIMD and other model
training enhancements).

9Input is 12 demand matrices and output is splitting ratios or one double
per tunnel per demand. On the large PWAN network, both the input and
output are a few tens of MBs.

COPE’s precomputation latency is a few orders of mag-
nitude higher than that of the demand-oblivious TE, which
is, itself, a couple orders of magnitude higher than that of
prediction-based TE. COPE also has much higher memory
requirements (over 256GB on PWAN); in fact, on PWAN,
COPE did not finish pre-computation even after four days on
a 8-core VM with 256GB running Gurobi [19] vers. 9.1, and
hence Figure 4 includes no results for COPE on PWAN. To
understand COPE’s runtime complexity better, we ran it on
WAN topologies from Topology Zoo [31] that are larger than
GEANT and PWANDC but smaller than PWAN. On Janet-
Backbone which has 29 nodes and 45 edges, COPE ran for
1.5 hours and on SurfNet (50 nodes, 68 edges), COPE did not
finish even in 10 hours. These results suggest that COPE is
inapplicable to large WANs.10

10Per Table 1 in [55], the previously published results on COPE are on
much smaller topologies than considered here.

1566 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

PWANDC
edge-disjoint

PWANDC
8 shortest paths

PWAN
edge-disjoint

PWAN
8 shortest paths

Av
g.

 A
llo

ca
te

d
D

em
an

d
Fr

ac
tio

n

DOTE
DM Pred

99th
90th

Average
Median

(a) PWANDC & PWAN

 0

 0.2

 0.4

 0.6

 0.8

 1

Abilene
edge-disjoint

Abilene
8 shortest paths

GEANT
edge-disjoint

GEANT
8 shortest paths

Av
g.

 A
llo

ca
te

d
D

em
an

d
Fr

ac
tio

n

DOTE
DM Pred

99th
90th

Average
Median

(b) Abilene & GEANT

Figure 6: TE quality when aiming to maximize the concurrent flow for two different tunnel choices. For each demand matrix,
we compute the fraction of demand satisfied for each source and destination, and sort these values into a vector. Across many
hundreds of demand matrices, the candlesticks plot the average over all such allocation vectors. Note: allocating more flow is
better. The box in each candlestick is the 25th and 75th percentile (fractional allocation) and the whiskers go from min to max
value.

 1

 10

PWANDC PWAN

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

Oblivious
COPE
99th

90th
Average
Median

(a) PWANDC & PWAN

 1

 10

Abilene GEANT

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

Oblivious
COPE
99th

90th
Average
Median

(b) Abilene & GEANT

Figure 7: TE quality when aiming to minimize MLU with all possible edge-disjoint paths.

 1

 1.5

 2

 2.5

 3

 3.5

 4

Abilene GEANT

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

99th
90th

Average

Median

Figure 8: TE quality when aiming to minimize MLU with
routing trees chosen by SMORE.

4.3 Generalizing to Other TE Objectives and
Tunnel Choices

Here, we present results for two additional TE objectives –
maximizing multi-commodity-flow and maximizing concur-

rent flow– as well as two other choices for tunnels.

Note that some of the compared alternatives to DOTE,
namely, demand-oblivious TE [8] and COPE [55], do not
readily apply to these TE objectives (as both build on results
from oblivious routing theory that provide provable guaran-
tees for MLU minimization), and it is not clear how to extend
them to other objectives. Our evaluation of DOTE for these
metrics is therefore restricted to benchmarking against the
omniscient oracle and prediction-based TE.

Maximizing Total Flow: Figure 5 compares DOTE with
prediction-based TE on all four WANs for two different tun-
nel choices when the TE objective is to carry as much total
flow as possible while respecting capacity constraints. Ob-
serve that DOTE carries substantially more flow and closely
approximates the TE quality of the omniscient oracle. As
before, the gap between DOTE and prediction-based TE is
larger on WANs where demands are less predictable (i.e., all
WANs but Abilene) and at the higher percentiles. Generally,
DOTE may be able to carry 10% to 20% more flow.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1567

Maximizing Concurrent Flow: Figure 6 compares DOTE
with the omniscient oracle and prediction-based TE when the
TE objective is to maximize the minimum fraction of demand
satisfied across all demands. Observe that DOTE fully allo-
cates almost all of the demands (the upper candlesticks are
at y = 1), whereas prediction-based TE allocates a smaller
fraction of the demanded volume for many more demands.

Tunnel choice does not qualitatively change our results for
TE performance; contrast Figure 7 and Figure 8 with Figure 4.
Note that when using Racke’s routing trees (as in SMORE)
prediction-based TE coincides with SMORE.

4.4 Coping with Network Failures
Figure 9 shows how DOTE performs, in terms of MLU,
when different numbers of (randomly chosen) links fail in the
PWAN topology. As noted in §3.6, DOTE assumes that source
nodes (or tunnel heads [44]) identify tunnels that fail and re-
balance traffic proportionally among the surviving tunnels.
The figure compares DOTE with two variants of prediction-
based TE: DM Pred. which, similar to DOTE, has no a priori
knowledge of future traffic demands or the link faults, and
FA DM Pred. which is identical to DM Pred. except that it is
fault-aware, i.e., knows the links that will fail. Our quality
metric is still normalized MLU except that we now normalize
based on an omniscient oracle that has perfect knowledge of
both future traffic demands and the failures.

Our results show that DOTE outperforms both demand-
prediction-based TE (DM Pred.) and demand-prediction-
based TE with oracle access to future failures (FA DM Pred.)
for many concurrent link failures with different tunnel choices.
We interpret this result as indicating that the error in demand
predictions weights more heavily on attaining a good TE ob-
jective than the confusion induced by these link failures. Our
results on other topologies (Abilene, GEANT, and PWANDC)
and for the maximum-multicommodity-flow objective show a
similar trend (Figure 13 and Figure 14).

4.5 Robustness to Traffic Noise and Drift
Robustness to unexpected traffic changes. To assess
DOTE’s robustness to noisy traffic, we evaluate DOTE on
the GEANT, Cogentco, and GtsCe WANs [31], where each
demand in the realized DM is independently multiplied by
a factor chosen uniformly at random from [1−α,1+α] for
α ∈ {0.1,0.25,0.35}. Our results (see §D) show that under
such traffic perturbations, the distance, in terms of MLU, from
the omniscient oracle remains low across all evaluated WANs
(e.g., 2%, 2.9%, and 3.8% for α = 0.1,0.25,0.35 for GEANT
with edge-disjoint tunnels).

Robustness to natural traffic drift. We investigate to what
extent the quality of DOTE’s TE configurations deteriorates
when DOTE is not frequently retrained. We quantify the dis-
tance from the omniscient oracle, in terms of both MLU and

maximum-multicommodity-flow, of the average weekly value
achieved by DOTE on the Abilene and GEANT WANs over
4 consecutive weeks (without retraining DOTE). See Table 3
and Table 4 in the Appendix. Our results show that while the
distance from the optimum increases over time, in general,
DOTE remains close to the optimum (within a few % on aver-
age) even weeks after the model is trained. This suggests that
DOTE can provide high quality TE even if it was re-trained
once every month. DOTE’s training time (see Table 2) allows
for much more frequent retraining.

5 Limitations and Future Research

We believe that our investigation of direct optimization for
WAN TE has but scratched the surface and outline below
current limitations of our approach, as well as intriguing di-
rections for future research.

Extending DOTE to support latency-sensitive traffic. To
accommodate latency-sensitive traffic, the following strategy
(similarly to [34]) could be employed: reserve shortest paths
(tunnels) for such traffic and always schedule short/latency-
sensitive traffic flows to these paths.

More expressive neural network architectures. Our real-
ization of DOTE uses a relatively simple neural network that
does not leverage knowledge of the WAN topology. Con-
sequently, the neural network has to (implicitly) learn the
network topology during training. Directly incorporating the
WAN structure into DOTE using Graph Convolutional Net-
works [56] could potentially lead to faster training and/or
better quality solutions.

Extending DOTE to incorporate data-driven tunnel se-
lection. Our discussion of DOTE assumed an underlying
tunnel-selection scheme. DOTE can be extended to support
data-driven tunnel-selection by adding DNN output variables
specifying a probability distribution over a finite set of can-
didate tunnels (e.g., shortest-path, edge disjoint, SMORE).
At the beginning of each time epoch, the tunnels to be used
in that time epoch would be chosen according to this proba-
bility distribution. DOTE’s optimality results extend to this
setting. We defer a more thorough study of data-driven tunnel
selection (e.g., not limited to a finite set of predetermined
candidate tunnels) to future research.

Learning to contend with link failures. We described (§3.6)
an approach for dealing with link failures in the data plane.
An alternative is incorporating fault tolerance into the DNN
training process by introducing random link failures.

6 Related Work

(WAN) TE. TE has been extensively studied [5, 7, 10, 11, 14,
16, 22, 24, 26–28, 37, 39, 57, 59] in a broad variety of settings,
including legacy networks [13, 17], datacenter networks [6],

1568 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 10

 100

1 2 3 5 10 20

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

Number of Failures

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(a) 8SP

 1

 10

 100

1 2 3 5 10 20

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

Number of Failures

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(b) edge-disjoint

Figure 9: Coping with different numbers of random link failures on PWAN; the candlesticks show the distribution over 1700
different randomly chosen failure cases.

and backbone networks [27]. SDN-controlled WAN TE has
also received extensive attention [11, 22, 24, 35, 37–39, 59].

TE via oblivious routing, COPE, and SMORE. Oblivi-
ous routing optimizes worst-case MLU across all possible
DMs [8, 9, 42]. Since oblivious routing does not exploit any
information about past traffic demands, it naturally yields sub-
optimal solutions [8, 37]. COPE [55] optimizes MLU across
a set of DMs spanned by previously observed DMs, while
retaining a worst-case performance guarantee. Since COPE
both extends oblivious routing and optimizes over ranges of
demand matrices, its optimization phase is extremely time-
consuming (§4.2). The key conceptual difference between
DOTE and such “robust TE” schemes is in the goal of the
pre-computation. Instead of emitting a single TE configura-
tion that minimizes some cost function (specifically, MLU)
over some predetermined set of DMs, DOTE’s objective is
to identify a mapping from a vector of DMs from the recent
past to the next TE configuration. DOTE thus achieves higher
flexibility by being able to emit different TE configurations on
a case-by-case basis, and is also able to pick up on temporal
patterns in traffic demands. SMORE [37] employs Racke’s
oblivious routing trees [42] to produce static tunnels that are
robust to traffic uncertainty, with traffic splitting ratios still op-
timized with respect to the (inferred/predicted) future traffic
demands. Thus, SMORE can be thought of as a instantiation
of prediction-based TE.

Online TE [14, 15, 27], wherein traffic configurations (such
as splitting ratios) adapt automatically and in short timescales
to the observed demands is an enticing design point for TE,
but is challenging to achieve. TexCP [27] requires WAN
routers to offer novel explicit feedback, while MATE [14]
relies on changes in end-to-end latency and hence takes much
longer to react and converge and is also less stable [27]. Re-
cently deployed TE schemes [22, 24] (see §2 and Figure 3)
are simpler and easier to deploy because they replace such
distributed, closed-loop, short-timescale control with central-
ized, open-loop and periodic adaptation. We view online TE
as complementary to DOTE; DOTE could be used to periodi-

cally compute a TE configuration while online TE could be
continuously used in between DOTE updates to tweak this TE
configuration in response to changes in network conditions.

Reinforcement-learning-based TE. Demand-prediction-
based and RL approaches to TE are contrasted in [54] in terms
of MLU only on a small network (12 nodes and 32 edges) for
synthetic traffic patterns and a model of hop-by-hop routing
that does not capture routing along tunnels. Our theoretical
and empirical results reveal that DOTE’s stochastic optimiza-
tion scheme outperforms both demand-prediction-based and
RL-based TE.

Some recent work on TE [4, 40] speeds up the multicom-
modity flow computations that underpin TE optimization by
effectively breaking the large LPs into smaller problems that
can be solved in parallel. However, these approaches still rely
on predicted demand matrices (unlike DOTE). DOTE offers
an alternate way to speed up TE: replacing the LP solver with
invocations of a fairly small DNN. This has the potential to
be innately more efficient.

7 Conclusion

We presented a new framework for WAN TE: data-driven
end-to-end stochastic optimization using only historical infor-
mation about traffic demands. Our theoretical and empirical
results establish that this approach closely approximates the
optimal TE configuration, significantly outperforming previ-
ously proposed TE schemes in terms of both solution quality
and runtimes.

Acknowledgements: We thank our shepherd, Mojgan
Ghasemi, and the NSDI reviewers, for their valuable feed-
back. We thank Umesh Krishnaswamy, Himanshu Raj and the
SWAN team at Microsoft for their help and feedback. Yarin
Perry and Michael Schapira were partially supported by BSF
grant 2019798 and a grant from Microsoft. Aviv Tamar is
funded by ERC grant 101041250.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1569

References

[1] Google cloud armor: Rate limiting overview. https:
//bit.ly/3TnI1mO.

[2] Github repo containing our code. 2022. https://
github.com/PredWanTE/DOTE.

[3] Abilene/Internet2. http://www.internet2.edu/.

[4] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai
Menache, Matei Zaharia, and Peter Bailis. Contracting
wide-area network topologies to solve flow problems
quickly. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 175–
200, 2021.

[5] Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and
Wu Chou. A roadmap for traffic engineering in sdn-
openflow networks. Comput. Netw., 71:1–30, October
2014.

[6] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic flow scheduling for data center net-
works. In NSDI, 2010.

[7] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fin-
gerhut, Vinh The Lam, Francis Matus, Rong Pan, Navin-
dra Yadav, and George Varghese. Conga: Distributed
congestion-aware load balancing for datacenters. SIG-
COMM Comput. Commun. Rev., 44(4):503–514, Au-
gust 2014.

[8] David Applegate and Edith Cohen. Making Intra-
Domain Routing Robust to Changing and Uncertain
Traffic Demands. In SIGCOMM, 2003.

[9] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and
Harald Racke. Optimal oblivious routing in polynomial
time. In Proceedings of the Thirty-fifth Annual ACM
Symposium on Theory of Computing, STOC ’03, pages
383–388, 2003.

[10] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. MicroTE: Fine grained traffic engineer-
ing for data centers. In Proceedings of the Seventh
COnference on emerging Networking EXperiments and
Technologies, page 8. ACM, 2011.

[11] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai
Menache, Nikolaj Bjørner, Asaf Valadarsky, and
Michael Schapira. TEAVAR: striking the right
utilization-availability balance in WAN traffic engineer-
ing. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM 2019, pages 29–
43, 2019.

[12] Adrian M. Caulfield, Eric S. Chung, Andrew Put-
nam, Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,
Michael Papamichael, Lisa Woods, Sitaram Lanka,
Derek Chiou, and Doug Burger. A cloud-scale ac-
celeration architecture. In MICRO, 2016.

[13] Marco Chiesa, Gábor Rétvári, and Michael Schapira.
Lying your way to better traffic engineering. CoNEXT,
2016.

[14] A. Elwalid, C. Jin, S. Low, and I. Widjaja. Mate: Mpls
adaptive traffic engineering. In Proceedings of IEEE
INFOCOM, volume 3, pages 1300–1309 vol.3, 2001.

[15] Simon Fischer, Nils Kammenhuber, and Anja Feldmann.
Replex: Dynamic traffic engineering based on wardrop
routing policies. In Proceedings of the 2006 ACM
CoNEXT Conference, 2006.

[16] Bernard Fortz and Mikkel Thorup. Internet traffic en-
gineering by optimizing ospf weights. In INFOCOM
2000. Nineteenth annual joint conference of the IEEE
computer and communications societies. Proceedings.
IEEE, volume 2, pages 519–528. IEEE, 2000.

[17] Bernard Fortz and Mikkel Thorup. Increasing internet
capacity using local search. Computational Optimiza-
tion and Applications, 2004.

[18] Naveen Garg and Jochen Könemann. Faster and sim-
pler algorithms for multicommodity flow and other frac-
tional packing problems. SIAM Journal on Computing,
37(2):630–652, 2007.

[19] Zonghao Gu, Edward Rothberg, and Robert Bixby.
Gurobi Optimizer Reference Manual, Version 5.0.
Gurobi Optimization Inc., Houston, USA, 2012.

[20] Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Be-
yond convexity: Stochastic quasi-convex optimization.
Advances in neural information processing systems, 28,
2015.

[21] Peter Henderson, Riashat Islam, Philip Bachman, Joelle
Pineau, Doina Precup, and David Meger. Deep rein-
forcement learning that matters. In Proceedings of the
AAAI conference on artificial intelligence, volume 32,
2018.

[22] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. SIGCOMM, 2013.

[23] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,

1570 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bit.ly/3TnI1mO
https://bit.ly/3TnI1mO
https://github.com/PredWanTE/DOTE
https://github.com/PredWanTE/DOTE
http://www.internet2.edu/

Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and
after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in google’s software-defined
wan. SIGCOMM ’18, pages 74–87, 2018.

[24] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed software defined wan.
SIGCOMM, 2013.

[25] William S. Jewell. Multi-commodity Network Solutions.
1966.

[26] Wenjie Jiang, Rui Zhang-Shen, Jennifer Rexford, and
Mung Chiang. Cooperative content distribution and
traffic engineering in an isp network. In ACM SIG-
METRICS Performance Evaluation Review, volume 37,
pages 239–250. ACM, 2009.

[27] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna
Charny. Walking the tightrope: Responsive yet stable
traffic engineering. In SIGCOMM. ACM, 2005.

[28] Srikanth Kandula, Ishai Menache, Roy Schwartz, and
Spandana Raj Babbula. Calendaring for wide area
networks. In SIGCOMM, 2014.

[29] George Karakostas. Faster Approximation Schemes
for Fractional Multicommodity Flow Problems. ACM
Trans. Algorithms, 2008.

[30] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization learning. arXiv preprint
arXiv:1412.6980, 2014.

[31] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The internet topology zoo. IEEE Journal
on Selected Areas in Communications, 2011.

[32] M Kodialam, T V Lakshman, and S Sengupta. Traffic-
oblivious routing in the hose model. IEEE/ACM Trans-
actions on Networking, 19(3):774 – 787, 2011.

[33] Igor V Konnov. On convergence properties of a sub-
gradient method. Optimization Methods and Software,
18(1):53–62, 2003.

[34] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area
network traffic engineering with BlastShield. Technical
Report MSR-TR-2021-31, Microsoft Research, 2021.

[35] Alok Kumar, Sushant Jain, Uday Naik, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing
Ai, Björn Carlin, Mihai Amarandei-Stavila, Mathieu
Robin, Aspi Siganporia, Stephen Stuart, and Amin Vah-
dat. Bwe: Flexible, hierarchical bandwidth allocation
for wan distributed computing. In Sigcomm ’15, 2015.

[36] Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster,
Robert Kleinberg, and Robert Soulé. Yates: Rapid
prototyping for traffic engineering systems. In Proceed-
ings of the Symposium on SDN Research, SOSR ’18,
pages 11:1–11:7, New York, NY, USA, 2018. ACM.

[37] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,
Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and
Robert Soulé. Semi-oblivious traffic engineering: The
road not taken. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18),
pages 157–170, Renton, WA, 2018. USENIX Associa-
tion.

[38] George Leopold. Building Express Backbone:
Facebook’s new long-haul network. http://code.
facebook.com/posts/1782709872057497/, 2017.

[39] Hongqiang Harry Liu, Srikanth Kandula, Ratul Maha-
jan, Ming Zhang, and David Gelernter. Traffic engineer-
ing with forward fault correction. In ACM SIGCOMM
2014 Conference, SIGCOMM’14, Chicago, IL, USA,
August 17-22, 2014, pages 527–538, 2014.

[40] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid,
Peter Kraft, Akshay Agrawal, Srikanth Kandula,
Stephen Boyd, and Matei Zaharia. Solving large-scale
granular resource allocation problems efficiently with
POP. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 521–537,
2021.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information pro-
cessing systems, 32:8026–8037, 2019.

[42] Harald Räcke. Minimizing congestion in general net-
works. In Proceedings of the 43rd Symposium on Foun-
dations of Computer Science, FOCS ’02, 2002.

[43] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar
Jeyakumar, Abdul Kabbani, George Porter, and Amin
Vahdat. Senic: Scalable nic for end-host rate limiting.
In NSDI, 2014.

[44] E. Rosen, A. Viswanathan, and R. Callon. Multi-
Protocol Label Switching Architecture. RFC 3031.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1571

http://code.facebook.com/posts/1782709872057497/
http://code.facebook.com/posts/1782709872057497/

[45] Matthew Roughan, Albert Greenberg, Charles
Kalmanek, Michael Rumsewicz, Jennifer Yates, and
Yin Zhang. Experience in measuring backbone
traffic variability: Models, metrics, measurements and
meaning. IMW, 2002.

[46] Matthew Roughan, Mikkel Thorup, and Yin Zhang. Per-
formance of estimated traffic matrices in traffic engi-
neering. In SIGMETRICS, 2003.

[47] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius,
Vinh The Lam, Carlo Contavalli, and Amin Vahdat.
Carousel: Scalable traffic shaping at end hosts. In
SIGCOMM, 2017.

[48] Farhad Shahrokhi and David W. Matula. The maximum
concurrent flow problem. J. ACM, 37:318–334, 1990.

[49] Shai Shalev-Shwartz and Shai Ben-David. Understand-
ing machine learning: From theory to algorithms. Cam-
bridge university press, 2014.

[50] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and
Karthik Sridharan. Stochastic convex optimization. In
COLT, volume 2, page 5, 2009.

[51] Alexander Shapiro, Darinka Dentcheva, and Andrzej
Ruszczynski. Lectures on stochastic programming:
modeling and theory. SIAM, 2021.

[52] Martin Suchara, Dahai Xu, Robert Doverspike, David
Johnson, and Jennifer Rexford. Network architecture
for joint failure recovery and traffic engineering. In Pro-
ceedings of the 2011 ACM SIGMETRICS Conference,
2011.

[53] Steve Uhlig, Bruno Quoitin, Jean Lepropre, and Simon
Balon. Providing public intradomain traffic matrices to
the research community. SIGCOMM Comput. Commun.
Rev., 36(1):83–86, jan 2006.

[54] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and
Aviv Tamar. Learning to route. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks,
HotNets-XVI, 2017.

[55] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang,
Yin Zhang, and Albert Greenberg. Cope: Traffic engi-
neering in dynamic networks. In SIGCOMM, 2006.

[56] Zonghanu Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. A comprehen-
sive survey on graph neural networks. arXiv preprint
arXiv:1901.00596, 2019.

[57] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen
Tian, Hao Wang, Haibing Guan, and Ming Zhang.
Guaranteeing deadlines for inter-data center trans-
fers. IEEE/ACM Transactions on Networking (TON),
25(1):579–595, 2017.

[58] Yin Zhang, M. Roughan, C. Lund, and D.L. Donoho.
Estimating point-to-point and point-to-multipoint traf-
fic matrices: an information-theoretic approach.
IEEE/ACM Transactions on Networking, 13(5):947–
960, 2005.

[59] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj,
Jonathan Leach, Yiting Xia, and Ying Zhang. AR-
ROW: restoration-aware traffic engineering. In ACM
SIGCOMM 2021 Conference, Virtual Event, USA, Au-
gust 23-27, 2021, pages 560–579, 2021.

1572 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix

A Predictability of WAN TE Traffic

Figure 10(a) plots the inter-data-center traffic demand be-
tween the pair of data centers with the highest average de-
mand over the course of a week. Similarly, Figure 10(b) plots
the normalized volume of customer-facing traffic for the pair
of nodes with the highest average demand over the course of
a week. Demands are shown at 5-minute granularity and are
normalized by the peak demand. As shown in Figure 10(a),
inter-data-center traffic demands exhibit very distinct diurnal
and hourly patterns. Indeed, the figure also presents the pre-
dictions of a linear regression model trained on data from the
3 preceding weeks, which takes as input the traffic demands
observed in the previous hour (at 5-minute granularity), and
outputs the predicted traffic demand for the upcoming 5 min-
utes. In contrast, the predictions of a linear regressor for
customer-facing traffic, as shown in Figure 10(b), are quite
often far from the actual traffic demands.

B Analytical Results

B.1 Minimizing Max-Link Utilization

We next prove that, for an infinitely expressive TE function,
i.e., when each history of DMs can be independently mapped
to a TE configuration, and in the limit of infinite empirical
data sampled from the underlying Markov process’ stationary
distribution, DOTE attains optimal performance. This estab-
lishes that our approach is fundamentally sound, and so high
performance in practice can be achieved by acquiring suffi-
cient empirical data and employing a sufficiently expressive
decision model (e.g., a deep enough neural network).

For the sake of analysis, we make the following simpli-
fying assumptions. We first assume that the set of possible
history realizations, which we denote by H, is finite. Let Dmax
denote an upper bound on the maximum traffic demand be-
tween a source-destination pair, cmin denote the minimum link
capacity, and pmax denote the maximum number of tunnels
interconnecting a source-destination pair. Note that any valid
TE configuration specifies, for each source-destination pair, a
point in the pmax-dimensional simplex (specifying its splitting
ratios across at most pmax tunnels); let R denote the space of
valid TE configurations. Let π : H → R denote a mapping
from history to TE configuration. π can be represented as a
vector with |H|×n2 × (pmax −1) components.11 Since each
element in this vector is itself a vector in the pmax-dimensional
simplex, we have that ∥π∥ ≤

√
|H|n2(pmax −1) .

= B, where
∥ · ∥ is the Euclidean norm. We make the following observa-
tion.

11Note that we dropped the subscript θ in π, as in our analysis we consider
the space of all possible TE configurations, and not a specific parametrization.

Proposition 1. The loss function L(π(Dt−1, . . . ,Dt−H),Dt)
is convex in π and ρ-Lipschitz, with ρ = Dmax/cmin.

Proof. fe is, by definition, linear in the traffic splitting ratios
and so in π. Since the max is a convex function, we have
that L is convex in π. Similarly, since each component in

fe
c(e) is Dmax/cmin-Lipschitz, the maximum is also Dmax/cmin-
Lipschitz.

We now consider an idealized stochastic gra-
dient descent (SGD) algorithm where at each it-
eration k we sample Dt ,Dt−1, . . . ,Dt−H from the
probability distributions P(Dt−1, . . . ,Dt−H) and
P(Dt |Dt−1, . . . ,Dt−H), and update πk+1 = Pro j{πk −ηvk},
where vk ∈ ∂L(πk(Dt−1, . . . ,Dt−H),Dt) denotes a subgradi-
ent of the objective function12, and Pro j denotes a projection
onto the simplex for each (s,d) pair. The final output after K
iterations is π̄ = 1

K ∑
K
k=1 πk.

The next theorem, based on Theorem 14.12 in [49],
bounds the loss of this algorithm. Let L̄(π) =
E [L(π(Dt−1, . . . ,Dt−H),Dt)] denote the expected loss of a
TE function, and let π∗ ∈ argminπ L̄(π) denote the optimal
TE function.

Theorem 2. For every ε > 0, if SGD is run for K ≥ B2ρ2

ε2

iterations with η =
√

B2

ρ2K , then the output of SGD satisfies

E
[
L̄(π̄)

]
≤ L̄(π∗)+ ε,

where the expectation is w.r.t. the sampling by the algorithm.

Theorem 2 shows that without function approximation (the
TE function space spans all possible mappings from history
to TE configuration), and with infinite data (the algorithm con-
tinuously samples from the true demand distribution), SGD
converges to the optimal TE function with arbitrary precision.
In practice, we relax both assumptions. In DOTE we sample
from a large, but finite, dataset of historical demands, and use
a parametric model (specifically, a neural network) to map
from an infinite set of possible histories to valid TE configura-
tions. Our empirical results show that, with enough data and
a deep enough neural network, the approximate TE function
DOTE learns is still very close to optimal.

B.2 Maximum-Multicommodity-Flow and
Maximum- Concurrent-Flow

We begin by stating a general convergence result for quasi-
convex functions that satisfy certain assumptions. We then
proceed to show that both maximum-multicommodity-flow
and maximum-concurrent-flow indeed satisfy these assump-
tions, implying their convergence.

12The objective is not necessarily differentiable everywhere because of
the max, but the subgradient exists for every π.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1573

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

N
or

m
al

iz
ed

 T
ra

ff
ic

Day of Week

Traffic
Prediction

(a) Inter-data-center traffic

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

N
or

m
al

iz
ed

 T
ra

ff
ic

Day of Week

Traffic
Prediction

(b) Customer-facing traffic

Figure 10: Inter-data-center traffic and customer-facing traffic over the course of a week, along with the predictions of a linear
regression model for the time-series.

B.2.1 General results

We begin by providing an analysis of stochastic quasi-convex
optimization, under general assumptions. In the next sec-
tion, we will show that maximum-multicommodity-flow and
maximum- concurrent-flow are special cases of this setting.13

Our analysis builds on two studies – the analysis of stochastic
normalized subgradient of [20], which is for smooth and un-
constrained problems, and the study of [33], which considered
non-smooth quasi-convex optimization.

A quasi-convex function f (x) satisfies that its level sets,
L(f ;α) = {x| f (x)≤ α}, are convex sets for all α.

We first define a normalized subgradient in the context
of quasi-convex functions, following [33]. The normal
cone to a convex set X at point x is defined by N(X ,x) =
{q ∈ Rn|⟨q,y− x⟩ ≤ 0 ∀y ∈ X} . The set of subgradients at
a point x are given by N(L(f ; f (x)),x). The set of nor-
malized subgradients, Q(f ;x), at a point x, are given by
Q(f ;x) = S(0,1)∩N(L(f ; f (x)),x), where S(0,1) is the n-
dimensional sphere of radius 1. These are directions of ascent
– normalized vectors such that taking an infinitely small step
in their direction is guaranteed to not decrease the function.

In the following, we consider a general stochastic optimiza-
tion problem:

min
x∈X

ED∼P(D) [f (x,D)] , (1)

where f is quasi-convex in x for every D.
We will further assume the following. Let B(z,r) denote

the n-dimensional ball centered on z with radius r.

Assumption 1. Set X is convex and bounded by
B(0, B̄). The function f is bounded by B. It
is also G-Lipschitz and quasi-convex in x for every
D. Furthermore, Q(1

M ∑
M
i=1 f (x,Di);x) ̸= /0 for any x /∈

13While we present results for quasi-convexity, the extension of these
results to quasi-concave problems is immediate.

argminy
1
M ∑

M
i=1 f (y,Di), and for every D1, . . . ,DM , we have

that 1
M ∑

M
i=1 f (x,Di) is quasi-convex in x.

Note that the last requirement in Assumption 1 is not imme-
diate, as the sum of quasi-convex functions is not necessarily
quasi-convex.

The stochastic normalized subgradient method we consider
works as follows [20]. At each iteration k we sample a mini-
batch {Di}b

i=1 ∼ P(D) and define fk =
1
b ∑

b
i=1 f (x,Di). We

then update xk+1 = Pro j{xk −ηvk}, where vk ∈ Q(fk;xk) de-
notes a subgradient of the minibatch, and Pro j denotes a
projection onto the set X . The final output after K iterations
is x̄K = argminx1,...,xK

fk(xk).
The analysis in [20] bounds the error of the normalized

subgradient method, for smooth and unconstrained functions.
We next adapt it to our setting.

The next definition adapts a central definition from [20] to
our non-smooth setting.

Definition 1. (SLQC) Let x,x∗ ∈ Rn, κ,ε > 0. We say that
f is (ε,κ,x∗)-strictly-locally-quasi-convex (SLQC) in x if at
least one of the following applies. (1) f (x)− f (x∗)≤ ε. (2)
Q(f ;x) ̸= /0 and for any ∆ ∈ Q(f ;x), and every y ∈ B(x∗, ε

κ
),

it holds that ⟨∆,y− x⟩ ≤ 0.

We next show that the Lipschitz and quasi-convex proper-
ties in Assumption 1 suffice to establish SLQC.

Lemma 1. Let f satisfy Assumption 1. Fix D, and let x∗ ∈
argminx∈X f (x;D). Then f is (ε,G,x∗)-SLQC for all x ∈ X.

Proof. Assume f (x;D)− f (x∗;D) > ε. Let Z denote the
f (x;D)-level set of f (x;D). Let ∂Z be the boundary of Z. By
definition of the level set, for every z ∈ ∂Z, f (z)− f (x∗)> ε.
From the Lipschitz property then, for every z ∈ ∂Z we must
have ∥z− x∗∥ ≥ ε

G . Since Z is convex, we therefore have that
B(x∗, ε

G)⊂ Z. From Assumption 1, Q(f ;x) ̸= /0, and from the
definition of Q(f ;x), we have that for every y ∈ B(x∗, ε

G), if
∆ ∈ Q(f ;x) then ⟨∆,y− x⟩ ≤ 0.

1574 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We next show that with high probability, the subgradient
of each minibatch is a descent direction for the expected
objective in (1).

Lemma 2. Let Assumption 1 hold, and let x∗ ∈
argminx∈X ED∼P(D) [f (x,D)]. Assume that the minibatch

size satisfies b = O
(

8nB2 log(GB̄/δ)
ε2

)
. Then, with probabil-

ity at least 1− δ, we have that the minibatch average fk =
1
b ∑

b
i=1 f (x,Di) is (ε,2G,x∗)-SLQC in xk.

Proof. Let

ξ =
1
b

b

∑
i=1

f (x∗,Di)−ED∼P(D) [f (x
∗,D)] .

From Hoeffding’s inequality, we have that

P(|ξ| ≥ t)≤ 2exp
(
−2bt2

B2

)
.

Thus, if b ≥ B2 log(2/δ)
2t2 we have that with probability 1− δ,

|ξ|< t.
Let x∗k ∈ argminx∈X

1
b ∑

b
i=1 f (x,Di). Let

ξ
′ =

1
b

b

∑
i=1

f (x∗k ,Di)−ED∼P(D) [f (x
∗
k ,D)] .

Then, using a covering number argument [50], we have that
for b ≥ nB2 log(GB̄/δ)

2t2 , with probability 1−δ, |ξ′|< t. We have
that

1
b

b

∑
i=1

f (x∗k ,Di)≤
1
b

b

∑
i=1

f (x∗,Di)≤ ED∼P(D) [f (x
∗,D)]+ξ,

and

ED∼P(D) [f (x
∗,D)]−ξ

′≤ED∼P(D) [f (x
∗
k ,D)]−ξ

′≤ 1
b

b

∑
i=1

f (x∗k ,Di).

Therefore,

1
b

b

∑
i=1

f (x∗,Di)−
1
b

b

∑
i=1

f (x∗k ,Di)≤ ξ+ξ
′.

Now, similarly to the proof of Lemma 1, assume that
1
b ∑

b
i=1 f (xk,Di) − 1

b ∑
b
i=1 f (x∗k ,Di) > ε. We choose b =

O
(

8nB2 log(GB̄/δ)
ε2

)
such that with probability 1−δ, ξ+ξ′ ≤

ε/2.
We therefore have:

1
b

b

∑
i=1

f (xk,Di)−
1
b

b

∑
i=1

f (x∗,Di)> ε− (ξ+ξ
′)≥ ε

2
.

For simplicity, we denote f̄ (x) = 1
b ∑

b
i=1 f (x,Di). Note that

f̄ is quasi-convex, by Assumption 1. Let Z denote the f̄ (xk)-
level set of f̄ (x). Let ∂Z be the boundary of Z. By definition

of the level set, for every z ∈ ∂Z, f̄ (z)− f̄ (x∗)> ε/2. From
the Lipschitz property then, for every z ∈ ∂Z we must have
∥z− x∗∥ ≥ ε

2G . Since Z is convex, we therefore have that
B(x∗, ε

2G) ⊂ Z. From Assumption 1, Q(f̄ ;x) ̸= /0, and from
the definition of Q(f̄ ;x), we have that for every y ∈B(x∗, ε

2G),
if ∆ ∈ Q(f̄ ;x) then ⟨∆,y− x⟩ ≤ 0.

We are finally ready to present the converge result.

Theorem 3. Let Assumption 1 hold. Suppose we run
the stochastic normalized subgradient method for K ≥
4G2∥x1−x∗∥2

ε2 iterations, η = ε/2G, and the minibatch size sat-

isfies b = O
(

8nB2 log(KGB̄/δ)
ε2

)
. Then with probability 1−2δ,

we have that f (x̄K)− f (x∗)≤ 3ε.

Proof. This is a direct application of Theorem 5.1 of [20],
where we used Lemma 2 to guarantee that at each iteration
the minibatch is SLQC, as required in [20]. We note that by
our Definition 1, the proof in [20] holds without change to the
non-smooth setting. The projection onto the set X requires a
straightforward modification to the proof of [20], where the
first equality in their proof of Theorem 4.1 should be a ≤.
The rest of the proofs remain unchanged.

B.2.2 Results for Maximum-Multicommodity-Flow

We formally define the problem as follows.
for each tunnel T , let xT denote the flow on that tunnel,

and let xe = ∑
T :e∈T

xT , for each edge e, denote the total flow on

edge e. We define

γ = max
(

max
e

xe

Ce
,1
)
,

and normalize the flows by γ, yielding normalized flows on a
tunnel,

yT =
xT

γ
,

and correspondingly, total normalized flows from source s
to target t, ys,t = ∑

T∈Pst

yT . Let x = {xT} denote our decision

variables. Given a demand matrix D, the Max-MCF objective
is

fMMCF(x,D) = ∑
s,t

min(Ds,t ,ys,t).

We next show that fMMCF is Lipschitz.

Lemma 3. For any tunnel T and x ≥ 0, xT
γ(x) ≤Cmax.

Proof. Let e∈ T , then by the definitions of γ(x) and xe, γ(x)≥
xe
ce
≥ xT

Cmax
.

Lemma 4. fT (x) = xT
γ(x) is Lipschitz on Rn

+, and its Lipschitz

constant is at most K = 2 · Cmax
Cmin

.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1575

Proof. Assume, without loss of generality, that f (x)≥ f (y).
Case 1: γ(y) = 1

| f (x)− f (y)|
= f (x)− f (y)

=
xT

γ(x)
− yT

γ(y)

=
xT

γ(x)
− yT

≤ xT − yT

≤ |xT − yT |
≤ ∥x− y∥1

≤ 2 · Cmax

Cmin
· ∥x− y∥1,

where the first inequality is since γ(x) ≥ 1, and the third
inequality is by the definition of ∥x∥1.
Case 2: γ(y) =

ye0
Ce0

> 1, for some edge e0.

| f (x)− f (y)|
= f (x)− f (y)

=
xT

γ(x)
− yT

γ(y)

=
xT

γ(x)
− yT

γ(x)
+

yT

γ(x)
− yT

γ(y)

=
1

γ(x)
· (xT − yT)+

yT

γ(y)
· 1

γ(x)
(γ(y)− γ(x))

≤ 1
γ(x)

· (xT − yT)+
yT

γ(y)
· 1

γ(x)

(
ye0

Ce0

−
xe0

Ce0

)
≤
∣∣∣∣ 1
γ(x)

· (xT − yT)+
yT

γ(y)
· 1

γ(x)

(
ye0

Ce0

−
xe0

Ce0

)∣∣∣∣
≤ 1

γ(x)
· |xT − yT |+

yT

γ(y)
· 1

γ(x)

∣∣∣∣ ye0

Ce0

−
xe0

Ce0

∣∣∣∣
≤ |xT − yT |+

Cmax

Cmin
· |ye0 − xe0 |

≤ 2 · Cmax

Cmin
· ∥x− y∥1,

where the first inequality is since γ(y) =
ye0
Ce0

, γ(x)≥ xe0
Ce0

, yT ≥
0, and γ > 0, the third inequality is since |a+b| ≤ |a|+ |b|,
the fourth inequality is by Lemma 3 and since γ(x)≥ 1, and
the last inequality is by the definitions of ∥x∥1, xe and since
|a+b| ≤ |a|+ |b|.

Proposition 2. The function fMMCF is Lipschitz, and its Lips-
chitz constant is at most ∑s,t ∑p∈Pst 2 · Cmax

Cmin
.

Proof. By Lemma 4 and as a sum and minimum of Lipschitz
functions.

We next state two lemmas that we will use in our analysis.

Lemma 5. For any a,b ≥ 0, c,d > 0 and λ ∈ [0,1], we have
that min

(a
c ,

b
d

)
≤ λa+(1−λ)b

λc+(1−λ)d .

Proof. Let f (λ) = λa+(1−λ)b
λc+(1−λ)d . Then,

f ′(λ) =
(a−b)(λc+(1−λ)d)− (c−d)(λa+(1−λ)b)

(λc+(1−λ)d)2

=
ad −bc

(λc+(1−λ)d)2 .

Also, f (0) = b
d , f (1) = a

c , and f ′(λ) has a fixed sign for any
λ ∈ [0,1]. Therefore, f (λ)≥ min(a

c ,
b
d).

Lemma 6. Let x = {xT}, x′ = {x′T}, and λ ∈ [0,1]. Let x′′ =
{λxT + (1 − λ)x′T}, and let γ, γ′ and γ′′ be the respective
normalization constants. Then γ′′ ≤ λγ+(1−λ)γ′.

Proof. We have that

γ
′′ = max

(
max

e

x′′e
Ce

,1
)

= max
(

max
e

λxe +(1−λ)x′e
Ce

,1
)

≤ max
(

max
e

λxe

Ce
,λ

)
+max

(
max

e

(1−λ)x′e
Ce

,1−λ

)
= λmax

(
max

e

xe

Ce
,1
)
+(1−λ)max

(
max

e

x′e
Ce

,1
)

= λγ+(1−λ)γ′.

We next show that Max-MCF satisfies Assumption 1.

Proposition 3. The function fMMCF is Lipschitz and bounded.
Its maximum is obtained inside a convex set X. Furthermore,
for every D1, . . . ,DM , we have that 1

M ∑
M
i=1 f (x,Di) is quasi-

concave in x

Proof. By definition, xT ≥ 0 for all T . Let Cmax = maxe Ce,
and consider T -dimensional hypercube X = [0,Cmax]

T . By
definition, for every x ≥ 0 that is outside X , there is an x′ ∈ X
with an equivalent objective value. To see this, let γ the
normalizing constant for x, and set x′ = x/γ. Then,

x′T =
xT

max
(

maxe
xe
Ce
,1
) ≤ xT

max
(

maxe
xe

Cmax
,1
) ≤ xT

xT
Cmax

=Cmax.

But the normalizing factor for x′ is 1, so x and x′ have the
same objective value.

Clearly, fMMCF is bounded by ∑s,t ∑T :e∈T Cmax.
The function is Lipschitz by proposition 2.
Let f̄MMCF(x) = 1

M ∑
M
i=1 fMMCF(x,Di). We shall now show

that for any x,x′ ∈ X , and λ ∈ [0,1], f̄MMCF(λx+(1−λ)x′)≥

1576 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

min{ f̄MMCF(x), f̄MMCF(x′)}, proving that f̄MMCF is quasi-
concave. We denote by γ′ and y′ the respective normaliza-
tion constant and normalized flows corresponding to x′. We
also denote x′′ = λx+(1−λ)x′, and let γ′′ and y′′ denote its
corresponding normalization constant and normalized flows,
respectively.

min(
M

∑
i=1

∑
s,t

min(Di
s,t ,ys,t),

M

∑
i=1

∑
s,t

min(Di
s,t ,y

′
s,t))

=min(
M

∑
i=1

∑
s,t

min(Di
s,t , ∑

T∈Pst

xT

γ
),

M

∑
i=1

∑
s,t

min(Di
s,t , ∑

T∈Pst

x′T
γ′
))

=min(
1
γ

M

∑
i=1

∑
s,t

min(γDi
s,t , ∑

T∈Pst

xT),
1
γ′

M

∑
i=1

∑
s,t

min(γ′Di
s,t , ∑

T∈Pst

x′T))

≤
λ

M
∑

i=1
∑
s,t

min(γDi
s,t , ∑

T∈Pst

xT)+(1−λ)
M
∑

i=1
∑
s,t

min(γ′Di
s,t , ∑

T∈Pst

x′T)

λγ+(1−λ)γ′

=

M
∑

i=1
∑
s,t

min(λγDi
s,t ,λ ∑

T∈Pst

xT)+min((1−λ)γ′Di
s,t ,(1−λ) ∑

T∈Pst

x′T)

λγ+(1−λ)γ′

≤ 1
λγ+(1−λ)γ′

M

∑
i=1

∑
s,t

min
(

λγDi
s,t +(1−λ)γ′Di

s,t ,

λ ∑
T∈Pst

xT +(1−λ) ∑
T∈Pst

x′T

)

=
M

∑
i=1

∑
s,t

min
(

Di
s,t ,

1
λγ+(1−λ)γ′ ∑

T∈Pst

(λxT +(1−λ)x′T)
)

≤
M

∑
i=1

∑
s,t

min(Di
s,t , ∑

T∈Pst

x′′T
γ′′

)

=
M

∑
i=1

∑
s,t

min(Di
s,t ,y

′′
s,t),

where the first inequality is by Lemma 5, the second inequal-
ity is since min(a,b)+min(c,d)≤ min(a+c,b+d), and the
third inequality is by Lemma 6.

Lemma 7. Let x /∈ argmaxy f (y), x∗ ∈ argmaxy f (y), and let
γ, γ∗ be the respective normalization constants.
If f (x+λ(x∗−x))≥ λγ∗ f (x∗)+(1−λ)γ f (x)

λγ∗+(1−λ)γ for any λ∈ [0,1], then
Q(f ;x) ̸= /0.

Proof. The directional derivative of f along x∗− x at x:

∇x∗−x f (x) = lim
h→0+

f (x+h(x∗− x))− f (x)
h∥x∗− x∥

≥ lim
h→0+

hγ∗ f (x∗)+(1−h)γ f (x)
hγ∗+(1−h)γ − f (x)

h∥x∗− x∥

= lim
h→0+

hγ∗

hγ∗+(1−h)γ (f (x∗)− f (x))

h∥x∗− x∥

≥ lim
h→0+

γ∗

max(γ∗,γ) (f (x∗)− f (x))

∥x∗− x∥
> 0.

Therefore, since L(f ; f (x)) is convex, − x∗−x
∥x∗−x∥ ∈Q(f ;x).

Lemma 8. Let x = {xT}, x′ = {x′T}, and λ ∈ [0,1]. Let x′′ =
{λxT + (1 − λ)x′T}, and let γ, γ′ and γ′′ be the respective
normalization constants. Then,
f̄MMCF(x′′)≥ λγ f̄MMCF (x)+(1−λ)γ′ f̄MMCF (x′)

λγ+(1−λ)γ′ .

Proof.

f̄MMCF (x′′) =
M

∑
i=1

∑
s,t

min(Di
s,t , ∑

T∈Pst

x′′T
γ′′

)

≥
M

∑
i=1

∑
s,t

min
(

Di
s,t ,

1
λγ+(1−λ)γ′ ∑

T∈Pst

(λxT +(1−λ)x′T)
)

=

M
∑

i=1
∑
s,t

min
(

λγDi
s,t +(1−λ)γ′Di

s,t ,λγ ∑
T∈Pst

xT
γ
+(1−λ)γ′ ∑

T∈Pst

x′T
γ′

)
λγ+(1−λ)γ′

≥

M
∑

i=1
∑
s,t

(
min(λγDi

s,t ,λγ ∑
T∈Pst

xT
γ
)+min((1−λ)γ′Di

s,t ,(1−λ)γ′ ∑
T∈Pst

x′T
γ′)

)
λγ+(1−λ)γ′

=
λγ f̄MMCF (x)+(1−λ)γ′ f̄MMCF (x′)

λγ+(1−λ)γ′
,

where the first inequality is by Lemma 6 and the second
inequality is since min(a,b)+min(c,d)≤ min(a+ c,b+d).

Proposition 4. Q(f̄MMCF ,x) ̸= /0 for any x /∈
argmaxy f̄MMCF(y)

Proof. By Lemma 8 where x = x∗,x′ = x, and by Lemma
7.

Since Assumption 1 holds, Theorem 3 guarantees that the
stochastic normalized subgradient method will converge to
an optimal solution of the Max-MCF objective.

B.2.3 Results for Maximum-Concurrent-Flow

Given a demand matrix D, the Max-Concurrent-Flow objec-
tive is

fMCONC(x,D) = min({
ys,t

Ds,t
}s,t∈V,Ds,t>0 ∪{1}).

We assume that when Ds,t ̸= 0, there is a minimal value ε for
Ds,t , corresponding, e.g., to a single packet. We next show
that Max-Concurrent-Flow satisfies Assumption 1.

Proposition 5. The function fMCONC is Lipschitz, and its
Lipschitz constant is at most max

s,t

(
∑p∈Pst

2·Cmax
ε·Cmin

)
.

Proof. By Lemma 4 and as a sum, minimum and multiplica-
tion by a constant of Lipschitz functions.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1577

Proposition 6. The function fMCONC is Lipschitz and
bounded. Its maximum is obtained inside a convex set X. Fur-
thermore, for every D1, . . . ,DM , we have that 1

M ∑
M
i=1 f (x,Di)

is quasi-concave in x

Proof. The claims in the beginning of proposition 3 hold
for fMCONC, and therefore its maximum is obtained inside a
convex set.

Clearly, fMCONC is bounded by 1.
The function is Lipschitz by proposition 5.
Let f̄MCONC(x) = 1

M ∑
M
i=1 fMCONC(x,Di). We shall now

show that for any x,x′ ∈ X , and λ ∈ [0,1], f̄MCONC(λx+(1−
λ)x′)≥ min{ f̄MCONC(x), f̄MCONC(x′)}, proving that f̄MCONC
is quasi-concave. We denote by γ′ and y′ the respective nor-
malization constant and normalized flows corresponding to
x′. We also denote x′′ = λx+(1−λ)x′, and let γ′′ and y′′ de-
note its corresponding normalization constant and normalized
flows, respectively.

min(
M

∑
i=1

min(

{
ys,t

Di
s,t

}
∪{1}),

M

∑
i=1

min(

{
y′s,t
Di

s,t

}
∪{1}))

=min(
M

∑
i=1

min(


∑

T∈Pst

xT
γ

Di
s,t

∪{1}),
M

∑
i=1

min(


∑

T∈Pst

x′T
γ′

Di
s,t

∪{1}))

=min(
1
γ

M

∑
i=1

min(


∑

T∈Pst

xT

Di
s,t

∪{γ}), 1
γ′

M

∑
i=1

min(


∑

T∈Pst

x′T

Di
s,t

∪
{

γ
′}))

≤
λ

M
∑

i=1
min(

{
∑

T∈Pst
xT

Di
s,t

}
∪{γ})+(1−λ)

M
∑

i=1
min(

{
∑

T∈Pst
x′T

Di
s,t

}
∪{γ′})

λγ+(1−λ)γ′

=

M
∑

i=1
(min(

{
∑

T∈Pst
λxT

Di
s,t

}
∪{λγ})+min(

{
∑

T∈Pst
(1−λ)x′T

Di
s,t

}
∪{(1−λ)γ′}))

λγ+(1−λ)γ′

≤

M
∑

i=1
min(

{
∑

T∈Pst
λxT+ ∑

T∈Pst
(1−λ)x′T

Di
s,t

}
∪{λγ+(1−λ)γ′})

λγ+(1−λ)γ′

=
M

∑
i=1

min(


∑

T∈Pst

λxT+(1−λ)x′T
λγ+(1−λ)γ′

Di
s,t

∪{1})

≤
M

∑
i=1

min(


∑

T∈Pst

x′′
γ′′

Di
s,t

∪{1})

=
M

∑
i=1

min(

{
y′′s,t
Di

s,t

}
∪{1}),

where the first inequality is by Lemma 5, the second inequal-
ity is since min(a,b)+min(c,d)≤ min(a+c,b+d), and the
third inequality is by Lemma 6.

 0.1

 1

 10

 100

 1000

 10000

Abilene GEANT

(n
or

m
al

iz
ed

)
R
M

SE

Linear Regression
Ridge Regression

Random Forest
AutoRegressive

99th
90th

Average
Median

Figure 11: Accuracy of predicting demands; results from
different prediction methods.

Lemma 9. Let x = {xT}, x′ = {x′T}, and λ ∈ [0,1]. Let x′′ =
{λxT + (1 − λ)x′T}, and let γ, γ′ and γ′′ be the respective
normalization constants. Then,
f̄MCONC(x′′)≥ λγ f̄MCONC(x)+(1−λ)γ′ f̄MCONC(x′)

λγ+(1−λ)γ′ .

Proof.

f̄MCONC(x′′) =
M

∑
i=1

min(


∑

T∈Pst

x′′
γ′′

Di
s,t

∪{1})

≥
M

∑
i=1

min(


∑

T∈Pst

λxT+(1−λ)x′T
λγ+(1−λ)γ′

Di
s,t

∪{1})

=

M
∑

i=1
min(

 λγ ∑
T∈Pst

xT
γ
+(1−λ)γ′ ∑

T∈Pst

x′T
γ′

Di
s,t

∪{λγ+(1−λ)γ′})

λγ+(1−λ)γ′

≥

M
∑

i=1

(
min(

{
λγ ∑

T∈Pst

xT
γ

Di
s,t

}
∪{λγ})+min(

 (1−λ)γ′ ∑
T∈Pst

x′T
γ′

Di
s,t

∪{(1−λ)γ′})
)

λγ+(1−λ)γ′

=
λγ f̄MCONC(x)+(1−λ)γ′ f̄MCONC(x′)

λγ+(1−λ)γ′
,

where the first inequality is by Lemma 6 and the second
inequality is since min(a,b)+min(c,d)≤ min(a+ c,b+d).

Proposition 7. Q(f̄MCONC,x) ̸= /0 for any x /∈
argmaxy f̄MCONC(y)

Proof. By Lemma 9 where x = x∗,x′ = x, and by Lemma
7.

Since Assumption 1 holds, Theorem 3 guarantees that the
stochastic normalized subgradient method will converge to
an optimal solution of the Max-Concurrent-Flow objective.

1578 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 10

 100

Abilene
8 shortest paths

GEANT
edge-disjoint

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

Linear Regression
Ridge Regression

Random Forest
AutoRegressive

99th
90th

Average
Median

Figure 12: Impact of demand prediction accuracy on max-
link-utilization.

C A Closer Look at Demand Prediction

Our results in §4 considered a demand-prediction-based
scheme that utilizes linear regression. We next contrast lin-
ear regression with other prediction methods on our datasets.
Specifically, we consider the following prediction methods:
linear regression, ridge regressing, random forrest, and au-
toregressive model. With the exception of the autoregressive
model, each of these schemes predicts the next traffic demand
for each source-destination pair using only that specific pair’s
recently observed 12 most traffic demands, i.e., the predic-
tion for each pair is independent from the prediction for other
pairs (as in SWAN [22]). The autoregressive model, in con-
trast, predicts the entire next DM from the 12 most recently
observed DMs, to allow for detecting correlations between
different pairs that might be conducive for prediction.

Figure 11 plots the accuracy of the different predictors, as
quantified by the root-mean-squared-error, for the two pub-
licly available WAN datasets. The accuracy is normalized
by the average traffic demand for the dataset and presented
in log-scale. Our results for PWAN and PWANDC exhibit
similar trends. As shown in the figure, linear regression and
ridge regression achieve the best results on average on both
WANs. We also considered a DNN-based predictor with a
single hidden layer with 128 neurons and ReLU activation
functions, but its performance was strictly dominated by lin-
ear regression on the test data (results omitted). Moreover,
treating source-destination pairs individually attains better
accuracy than that provided by the autoregressive model. We
believe that this is because, on the one hand, the previous traf-
fic demands for a single pair already contain a lot of valuable
information and, on the other hand, the much larger input
and output of the autoregressive model (entire DMs vs. single
demands) makes effective learning more difficult.

Figure 12 plots the implications of choosing different
predictors for TE performance, as quantified by the max-
link-utilization, benchmarked against DOTE. Observe that
DOTE outperforms all considered flavors of demand-based-
prediction TE, and also that accuracy in demand prediction
does not always translate to better TE performance, exem-

plifying the potential objective mismatch between the two,
discussed in the Introduction.

D Robustness to Unexpected Traffic Changes

We consider the GEANT, Cogentco, and GtsCe network
topologies with edge-disjoint tunnels. For Cogentco, and
GtsCe we use the gravity model to generate demands for both
train and test. To evaluate the implications of unexpected traf-
fic changes, we add noise to the test set by multiplying each
demand independently by a factor sampled uniformly at ran-
dom from the range [1−α,1+α] for α ∈ {0.1,0.25,0.35}.

Recall that for GEANT, DOTE generates TE configurations
that are extremely close to the optimum (less than 2%). Our
results show that even under random traffic perturbations, the
distance from the omniscient oracle remains low; 2%, 2.9%,
and 3.8% for α = 0.1,0.25,0.35, respectively. For α = 0.35,
the distance from the omniscient oracle was 0.01% in the
median, 13% in the 90th percentile, and no higher than 28%
even in the 99th percentile.

For both Cogentco and GtsCe, DOTE’s trained model is
roughly 0.5% from the omniscient oracle on the test demands
are perturbed. This is because traffic is generated using the
gravity model naturally does not reflect the intricate tempo-
ral patterns and complexity of real-world traffic. Even after
perturbing the traffic in our experiments DOTE achieved near-
optimal performance. Specifically, on Cogentco, the average
distance from the omniscient oracle was 0.54%, 0.57%, and
0.6% for α = 0.1,0.25,0.35, respectively. For α = 0.35, the
distance from the omniscient oracle was 0.56% in the median,
1% in the 90th percentile, and 1.4% in the 99th percentile.
On GtsCe, the average distance from the omniscient oracle
was 0.51%, 0.56%, and 0.61% for α = 0.1,0.25,0.35 respec-
tively. For α = 0.35, the distance from the omniscient oracle
was 0.57% in the median, 1% in the 90th percentile, and 1.4%
in the 99th percentile.

Tunnels Week 1 Week 2 Week 3 Week 4
Abilene 8 SP 0.7 0.3 1.0 1.5
Abilene edge-disjoint 2.1 2.4 2.4 2.0
GEANT 8 SP 1.4 2.7 2.9 3.1
GEANT edge-disjoint 0.7 1.6 2.0 2.5

Table 3: Average weekly distance from the omniscient oracle
achieved by DOTE for MLU across 4 consecutive weeks

Tunnels Week 1 Week 2 Week 3 Week 4
Abilene 8 SP 1.6 2.1 3.9 6.2
Abilene edge-disjoint 1.1 1.4 3.1 5.5
GEANT 8 SP 4.9 4.7 5.0 4.8
GEANT edge-disjoint 6.3 6.8 6.9 6.4

Table 4: Average weekly distance from the omniscient ora-
cle achieved by DOTE for maximum-multicommodity-flow
across 4 consecutive weeks

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1579

E Stochastic Optimization Loss Function Pseu-
docode

Function 1 Stochastic Optimization Loss Function Pseu-
docode

G = (V,E,c) // capacitated directed graph that models the
WAN topology
U = {(i, j)|i ∈V, j ∈V, i ̸= j} // all pairs of nodes
T = ∪(s,t)∈U Ps,t // the set of all tunnels
A|U |×|T | // specifies, for each pair of nodes i∈U and tunnel
j ∈ T whether tunnel j interconnects the nodes in i

Ai, j =

{
1 j ∈ Pi

0 otherwise
B|T |×|E| // specifies, for each tunnel i and edge j, whether
tunnel i contains edge e

Bi, j =

{
1 j ∈ i
0 otherwise

C|E|×1 // vector representing WAN link capacities
Ci,1 = c(i)

function LOSS(DNNout put ,DMnext)
DNN|T |×1

out put // the output of the DNN

DM|U |×1
next // the (actual) next demand matrix

// × and / are element-wise operations
// 1. Compute the splitting ratios
PathsSplit |T |×1 = DNNout put × (AT (1.0/A ×

DNNout put))
// 2. Calculate the flow on each edge
FlowOnEdges|E|×1 = BT ((AT × DMnext) ×

PathsSplit)
// 3. Compute the maximum-link-utilization
MaxLoad = max(FlowOnEdges/C)
return MaxLoad

end function

F Additional Failure Results

Analogous to Figure 9, Figure 13 shows the behavior un-
der faults for the Abilene, GEANT and PWANDC topolo-
gies respectively. Figure 14 shows the results for maximum-
multicommodity-flow.

1580 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 1.5

 2

 2.5

 3

edge-disjoint 8 shortest paths

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(a) Abilene

 1

 5

 10

 15

 20

 25

 30

edge-disjoint
1 failure

edge-disjoint
2 failures

8 shortest paths
1 failure

8 shortest paths
2 failures

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(b) GEANT

 1

 1.5

 2

 2.5

 3

edge-disjoint
1 failure

edge-disjoint
2 failures

8 shortest paths
1 failure

8 shortest paths
2 failures

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(c) PWANDC

Figure 13: Understanding the behavior of DOTE under failures on different WAN datasets. The results are qualitatively similar
to Figure 9.

 0

 0.2

 0.4

 0.6

 0.8

 1

Abilene GEANT PWANDC PWAN

(n
or

m
al

iz
ed

)
To

ta
l F

lo
w

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(a) 8SP

 0

 0.2

 0.4

 0.6

 0.8

 1

Abilene GEANT PWANDC PWAN

(n
or

m
al

iz
ed

)
To

ta
l F

lo
w

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(b) edge-disjoint

Figure 14: Coping with a random link failure when aiming to maximize the total flow for two different tunnel choices.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1581

	Introduction
	Motivation and Key Insights
	Inter-DC vs. Customer-Facing Traffic
	Demand Prediction vs. Direct Optimization
	TE as Stochastic Optimization
	Harnessing Deep Learning

	Direct Optimization for TE (DOTE)
	Modeling WAN TE
	The DOTE TE Framework
	Analytical Optimality Results
	Scalability and Real-World Traffic
	On Maximum and Concurrent Flow
	Realizing DOTE

	Evaluation
	Methodology
	Comparing DOTE with Other TE Schemes
	Generalizing to Other TE Objectives and Tunnel Choices
	Coping with Network Failures
	Robustness to Traffic Noise and Drift

	Limitations and Future Research
	Related Work
	Conclusion
	Predictability of WAN TE Traffic
	Analytical Results
	Minimizing Max-Link Utilization
	Maximum-Multicommodity-Flow and Maximum- Concurrent-Flow
	General results
	Results for Maximum-Multicommodity-Flow
	Results for Maximum-Concurrent-Flow

	A Closer Look at Demand Prediction
	Robustness to Unexpected Traffic Changes
	Stochastic Optimization Loss Function Pseudocode
	Additional Failure Results

