
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Polycorn: Data-driven Cross-layer Multipath
Networking for High-speed Railway through

Composable Schedulerlets
Yunzhe Ni, Peking University; Feng Qian, University of Minnesota – Twin Cities;

Taide Liu, Yihua Cheng, Zhiyao Ma, and Jing Wang, Peking University; Zhongfeng
Wang, China Railway Gecent Technology Co., Ltd; Gang Huang and Xuanzhe Liu,
Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Peking University; Chenren Xu, Zhongguancun Laboratory and Key Laboratory of
High Confidence Software Technologies, Ministry of Education, Peking University

https://www.usenix.org/conference/nsdi23/presentation/ni

POLYCORN: Data-driven Cross-layer Multipath Networking for
High-speed Railway through Composable Schedulerlets

Yunzhe NiP, Feng QianM, Taide LiuP, Yihua ChengP, Zhiyao MaP, Jing WangP

Zhongfeng WangG, Gang HuangPH, Xuanzhe LiuPH, Chenren XuPZHB∗
PPeking University MUniversity of Minnesota – Twin Cities GChina Railway Gecent Technology Co., Ltd

ZZhongguancun Laboratory HKey Laboratory of High Confidence Software Technologies, Ministry of Education (PKU)

Abstract – Modern high-speed railway (HSR) systems
offer a speed of more than 250 km/h, making on-board Inter-
net access through track-side cellular base stations extremely
challenging. We conduct extensive measurements on commer-
cial HSR trains, and collect a massive 1.79 TB GPS-labeled
TCP-LTE dataset covering a total travel distance of 28,800 km.
Leveraging the new insights from the measurement, we de-
sign, implement, and evaluate POLYCORN, a first-of-its-kind
networking system that can significantly boost Internet perfor-
mance for HSR passengers. The core design of POLYCORN
consists of a suite of composable multipath schedulerlets that
intelligently determine what, when, and how to schedule user
traffic over multiple highly fluctuating cellular links between
HSR and track-side base stations. POLYCORN is specially
designed for HSR environments through a cross-layer and
data-driven proactive approach. We deploy POLYCORN on
the operational LTE gateway of the popular Beijing-Shanghai
HSR route at 300 km/h. Real-world experiments demonstrate
that POLYCORN outperforms the state-of-the-art multipath
schedulers by up to 242% in goodput, and reduces the delivery
time by 45% for instant messaging applications.

1 Introduction
High-speed railway (HSR) systems, which offer a speed of
250+ km/h, revolutionize inter-city travel. Internet services on
HSR are typically provided by track-side cellular base stations
and an on-board proxy relaying data between WiFi APs and
the cellular infrastructure [1–7]. However, the ultra-fast speed
of HSR poses unprecedented challenges in bringing seamless
Internet service to passengers because of the intermittent link
connectivity characteristic – handover happens every less than
10 seconds [8] and the handover failure may cause a “blackout”
period of up to 10 seconds [9], as reported by previous studies.

It is known that MPTCP [10] (or multipath transport in
general) can leverage path diversity (with each path asso-
ciated with a cellular carrier or mobile network operator)
to improve link/connection robustness, as demonstrated in
low mobility scenarios [11–14]. However, applying multipath
transport to HSR networking is very challenging. Under such
extreme mobility, the network performance fluctuates sub-
second level [15], leading to 1636x higher variance in RTT

∗B: chenren@pku.edu.cn

than in static or low mobility scenarios [16] – this is a sharp
contrast to the common assumption that a relatively stable net-
work condition may last for several RTTs, which is leveraged
by the state-of-the-art MPTCP schedulers [17,18] for making
scheduling decisions. Indeed, as to be demonstrated in §6.2,
the inaccurate link quality estimation and scheduling deci-
sion informed by inaccurate throughput and RTT observations
often lead to poor performance under extreme mobility.

In this paper, we argue that in contrast to the state-of-art
multipath schedulers that rely on instantaneous performance
measurement for making reactive scheduling decisions, we
should carefully mine the networking features specific to the
extreme mobility scenario, identify the main events leading
to predictable failures, and design proactive scheduling strate-
gies accordingly. For this purpose, we conduct real-world
measurements on the popular Beijing-Shanghai route in China
traveling at an average speed of 300 km/h. Over 24 trips span-
ning three weeks, we collected 1.79 TB data covering a total
travel distance of 28,800 km. Our study differs from all prior
HSR networking measurement studies [8, 15, 19, 20]: through
collaborating with the on-board HSR ISP, we obtain precise
location (from the GPS receiver mounted on the carriage
roof) for every collected network performance sample. This
allows us to statistically correlate the train’s physical location
with various network performance events, enabling many key
analyses and henceforth the design of our system.

Leveraging our unique dataset, we identify three key as-
pects that guides our system design. First, handover failures,
which incur several seconds of link disconnection, can be rea-
sonably predicted from the train’s moving trajectory. Second,
the multipath heterogeneity (the relative performance rank-
ing across paths, i.e., carriers) is highly dynamic, oftentimes
changing on a per-RTT basis. Third, transport-layer packet
retransmission is much more common than typical cellular
links. We find that on HSR, 1.8% of the TCP packets experi-
ence retransmission timeout (RTO) – among them, 24% are
retransmitted more than once.

Inspired by the above findings, we develop POLYCORN,
a practical networking system that significantly boosts the
Internet performance for HSR passengers. It is to our best
knowledge the first full-fledged system that specifically opti-
mizes for Internet services on extreme mobility ground trans-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1325

portation. Leveraging multipath heterogeneity, POLYCORN
distributes passengers’ traffic over multiple cellular carriers
for bandwidth aggregation, reduced delay, and improved reli-
ability. In its core, POLYCORN is equipped with a novel multi-
path scheduler called HSRSCH, which judiciously determines
transmitting which data over which path(s) in real time despite
the highly dynamic network conditions. HSRSCH is tailored
to HSR environments through a proactive and cross-layer ap-
proach. Its design consists of four optimizations that could
be either individually or jointly applied to existing “baseline”
schedulers such as the minRTT shipped with MPTCP.

• Handover-failure-aware Path Rejection (§4.3) has an in-
tuitive idea: once an imminent handover failure event is pre-
dicted, HSRSCH temporarily disables the corresponding path
so packets will not be scheduled over it to avoid the black-
out period (and inter-subflow out-of-order delay). To realize
this idea, we apply robust and lightweight machine learning
to predict handover failures. We use two features carefully
derived from our measurements: location and cell ID, which
lead to an overall prediction accuracy of 80.6%.

• Tail-aware Path Rejection (§4.4) determines whether to
use path(s) when their link conditions deteriorate. Its basic
idea is to avoid scheduling tail packets, which belong to the
end of a flow (i.e., upon an end-of-flow indicator) on slow
path(s). Since HSR traffic is dominated by short-lived flows
(e.g., web browsing, instant messaging, mini videos), this opti-
mization can significantly accelerate short flows’ completion
time. We instantiate the idea by modeling the queuing and
transmission process of tail packets to guide path selection.

• Extended Reinjection (§4.5) detects vulnerable packets
when losses occur, and retransmit them early over other paths
in a batched manner. The idea stems from the bursty na-
ture of wireless losses and consequent excessive RTO events,
which we find to be even more prominent on HSR: one sin-
gle packet loss will introduce more subsequent ones. Our
approach differs from MPTCP’s default packet-by-packet
reinjection mechanism that is far too conservative for HSR.
We carefully determine the reinjection aggressiveness based
on real data to avoid putting too much burden on other paths.

• Opportunistic Redundant Traffic Injection (§4.6) proac-
tively leverages idle path(s) to transmit redundant data. It not
only provides extra resiliency to link quality fluctuation, but
also enables the transport layer to continuously probe the path
for important metrics such as RTT and RTO, which are highly
dynamic when probed from HSR.

We integrate the above components through a compos-
able scheduling framework, which treats a complex multi-
path scheduler as a pipeline of modularized schedulerlets as
described above. Compared to a monolithic scheduler, our
schedulerlet-based approach decouples the multipath schedul-
ing logic, and thus significantly reduces the system complexity
and development overhead, through the unified interface of
schedulerlets designed by us. It also makes the system exten-

sible and open to future optimizations (§4.2). The scheduling
framework is then integrated with a multi-user/multi-path data
transport mechanism (also developed by us), leading to the
full-fledged POLYCORN system (§4.7).

Utilizing various system-level techniques including multi-
pipe multiplexing [21, 22] and user-level packet interception,
our implementation runs completely in the user space while
maintaining full user/server transparency and high packet
I/O performance. It is deployed as two proxy modules, one
running on the HSR train and the other running on a cloud
server, that schedule uplink and downlink traffic respectively
over multiple cellular paths. POLYCORN requires no hardware
or firmware modifications, and is orthogonal to HSR-specific
PHY/MAC layer innovations [23–26] for cellular networks.
Our implementation consists of 24K lines of code.

Through our three-year collaboration efforts with the HSR
ISP’s operational department, we managed to deploy POLY-
CORN on real HSR trains by instrumenting their onboard LTE
gateways. We evaluate POLYCORN on the popular Beijing-
Shanghai route at 300 km/h, with the key results as follows.

• On HSR, POLYCORN outperforms state-of-art multi-
path schedulers (e.g., ECF [27], STMS [18], MuSher [17],
BLEST [28] and MPTCP’ default scheduler [10]) by 43% to
242% when downloading files with different sizes.

• POLYCORN consistently outperforms MPTCP by 61.5%,
30.6%, 64.2% on the three HSR route segments (Beijing-
Jinan, 406 km; Jinan-Nanjing, 617 km; Nanjing-Shanghai,
301 km) respectively, in terms of the file download time. This
indicates that POLYCORN could boost the networking perfor-
mance under different HSR track-side environments.

• POLYCORN reduces the delivery time by 45% for an instant
messaging application in a multi-user setting, compared to
the current operational deployment of HSR Internet access.

Note that although the above results are obtained from
LTE, POLYCORN is compatible with 5G networks that are
being deployed along the HSR tracks [29]. We elaborate the
applicability of POLYCORN on 5G in §7.

The Contributions of this paper is summarized as follows.

• New insights of extreme mobility networking characteris-
tics derived from a massive, GPS-labeled TCP-LTE dataset
covering 28,800 km travel distance.

• The design of cross-layer, proactive multipath scheduling
algorithms tailored to extreme mobility networking, and their
integration through a composable scheduling pipeline.

• The development of POLYCORN, the first-of-its-kind net-
work system boosting the mobile Internet performance for all
the HSR passengers.

• Deployment and extensive evaluations of POLYCORN on
commercial HSR trains in the wild.

This work does not raise any ethical issues.

1326 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Networking Performance Measurement
To motivate the design of POLYCORN, we conduct real-world
measurements of mobile networking performance on HSR.
Our study is unique in two aspects. First, all our measured
network performance samples have precise GPS coordinates,
as opposed to coarse-grained cell IDs used in previous studies
[8, 15]. Second, leveraging the unique GPS-labeled data, we
offer new insights such as the predictability of failed LTE
handovers on HSR.

2.1 Data Collection Methodology
A major challenge of collecting fine-grained location on HSR
is a lack of GPS signal in the carriage due to electromagnetic
shielding. To overcome it, we collaborate with the China
Railway Gecent Technology operating China’s HSR WiFi
platform. We next describe our data collection setup in detail.

Onboard LTE Gateway. It is deployed by China’s HSR
WiFi carrier in the server room on each train. This gateway
serves two purposes: in the upstream, it connects to track-side
LTE base stations for Internet access; in the downstream, it
connects to the WiFi access points (802.11ac APs) serving
passengers in each carriage through a wired local area net-
work (LAN). The gateway is equipped with multiple SIM
cards of two major cellular carriers, as well as a 2×2 MIMO
antenna mounted on top of the server room carriage. The
GPS receiver is also mounted on the carriage roof, allowing
precisely tracking the location and speed of the train. We are
permitted to access the GPS data and use two of the LTE inter-
faces exclusively (i.e., there is no other user traffic over these
interfaces during data collection). We conduct data collection
using iPerf [30], tshark [31], and Quectel LTE QLog1 to mea-
sure the available bandwidth, capture packet traces, and record
LTE control-plane messages, respectively. No prior study to
our knowledge has leveraged such a unique infrastructure for
HSR network measurement and optimization.

Measurement Server. We deploy two co-located servers (4×
Intel Xeon Skylake 6133 2.5 GHz CPU with 8 GB RAM) in
a major cloud service provider in China. Each server serves
measurement requests for one LTE carrier. The servers are
located in Shanghai that is 20 to 1,300 km away from our stud-
ied HSR route. We conduct wired experiments from several
hosts near the HSR route to the two servers, and the through-
put (RTT) are measured to be ≥50 Mbps (≤ 33 ms), which
is far above (below) the corresponding metric measured on
HSR. This indicates that the Internet is not the performance
bottleneck for the end-to-end (i.e., HSR-to-server) path.

Route and Duration. We carried out experiments on the
“Fuxing” high-speed trains between Beijing and Shanghai,
the top-two cities in China. This 1,318 km route is one of
the busiest railway routes in China, with an annual passenger
volume of 215 million. The average train speed is 300 km/h.

1A proprietary tool offered by the gateway vendor for collecting LTE log
data from their LTE modems.

Over 24 trips spanning three weeks, we collected 1.79 TB
data covering a total travel distance of 28,800 km. Our dataset
consists of the following cross-layer records: (1) The GPS lo-
cation of the train updated every second; (2) The packet traces
and downlink TCP Throughput collected by a long-lived iPerf
session running on the LTE gateway; the server uses the BBR
congestion control [32] that is known to yield a more accurate
bandwidth estimation compared to widely deployed TCP CU-
BIC [33]; (3) The LTE lower-layer information including cell
ID, signal strength (RSRP), and the LTE signaling messages
collected by Quectel LTE QLog and parsed by MobileIn-
sight [34]. We made the dataset publicly available in: https:
//soar.group/projects/hsrnet/dataset.html.

2.2 Throughput & Latency Characterization
Leveraging our large dataset, we begin with basic characteri-
zations of throughput and latency. Across the entire dataset,
the 25th, 50th, and 75th-percentile downlink TCP through-
put of Carrier A (B)2 are measured to be 2.56 (4.60), 6.48
(10.67), and 12.42 (19.73) Mbps, respectively. Regarding the
latency, the 25th, 50th, and 75th-percentile RTT of carrier
A (B) are 123 (147), 185 (191), and 315 (348) ms, respec-
tively. We observe that both throughput and latency exhibit
high temporal fluctuations. To quantify them, we compute the
ratio between the average throughput in the current time win-
dow [t0 −∆t, t0], denoted as CT , and the average throughput
in the previous window [t0 −6∆t, t0 −∆t], denoted as RT ,
where t0 is the current time. ∆t is empirically chosen as 0.2
seconds, the median RTT when HSR travels at 300 km/h.
Fig. 1a plots the distribution of the throughput ratio defined
above. As shown, in 26.4% (Carrier A) or 22.6% (Carrier B)
of the cases, CT/RT is lower than 50% or higher than 200%,
confirming the high throughput fluctuation. The latency varia-
tion is also prominent (figure not shown). This leads to fre-
quent TCP Retransmission Timeout events (RTOs), which are
experienced by 1.8% of the packets. We even observe that
the transmissions of many packets experience more than one
RTO, as shown in Fig. 1b (“0” indicates no RTO is triggered).

 0

 20

 40

 60

 80

 100

1/8 1/4 1/2 1 2 4 8

C
D

F
 (

%
)

Ratio of CT and RT

Carrier A
Carrier B

(a) Throughput.

1e+1
1e+2
1e+3
1e+4
1e+5
1e+6

0 1 2 3 4 5+

P
a

c
k
e

t
C

o
u

n
t

Timeout Events Triggered

506358

6755
1526

252
73

271

(b) RTT.

Figure 1: TCP performance temporal variation.

2.3 Predictability of Networking Performance
Since trains move along fixed rail tracks, it is anticipated
that the networking performance is predictable, similar to
what has been reported for lower-speed vehicles [35]. On
HSR, however, the predictability may be affected by the ultra-
high speed. No prior study to our knowledge has studied the
predictability of HSR networking performance.

2China Mobile and China Unicom respectively.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1327

https://soar.group/projects/hsrnet/dataset.html
https://soar.group/projects/hsrnet/dataset.html

We begin with exploring a straightforward approach of
predicting the TCP throughput using the train’s trajectory.
For each <location, direction> pair, we compute the average
throughput near the location (± 1 km) in all trips to smooth
out the temporal variation, aggregate all those samples and
calculate the ratio between the 75-th and the 25-th percentile
values. As shown in Fig. 2a, the median ratio is 3.21 and
3.24 for Carrier A and B, respectively, and it may reach up to
1003. The results indicate that, unlike low-speed transporta-
tion, throughput prediction in HSR is very challenging. The
main reason is that the extreme mobility introduces complex
stochastic channel fading, which can cause significant tempo-
ral variation in received signal strength and henceforth high
data rate fluctuation at the same location. This is exemplified
in Fig. 2b, which plots the RSRP values of Carrier A over
a 40 km route measured on three different days. As shown,
the link quality not only exhibits randomness across the three
trips but also lacks spatial locality during the same trip. We
also would to note that this unpredictable pattern is jointly
determined by the highly dynamic channel condition and its
complex interaction with TCP congestion control – a small
difference in wireless channel condition may result in a big
difference in future TCP performance. In addition, the pre-
diction result also depends on a specific congestion control
(CC) algorithm, which makes the design space for throughput
prediction even more challenging.

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
 (

%
)

Ratio of 3rd and 1st Quantile of Thp.

Carrier A
Carrier B

(a) Variability of Throughput.

-135
-120
-105
-90
-75
-60

 32.5 32.6 32.7 32.8 32.9 33

R
S

R
P

 (
d
B

m
)

GPS (latitude)

Day 1 Day 2 Day 3

(b) Location vs. RSRP.

Figure 2: Measurement study of location-aware TCP through-
put repeatability and predictability.

Given the difficulty of throughput prediction for HSR,
POLYCORN takes a unique approach of predicting handover
failures. Due to its high speed, HSR experiences much more
frequent handovers compared to low-speed vehicles. More
importantly, in HSR, handovers are more likely to fail. A
failed handover occurs when a UE disconnects from or loses
connection to the current base station but is not yet connected
to the new base station. Failed handovers bring negative per-
formance impact, including packet losses and their incurred
retransmission timeout (RTO) that force TCP to enter a slow
start. In our dataset, the performance impact is measured to
be at least 1 second and can last as long as 10 seconds. In
contrast, a successful handover usually incurs shorter than
100 ms of TCP throughput disruption.

We next explore the predictability of failed handovers given
their importance. Our dataset records 32,231 and 45,656 han-

3The ratio could be even higher with finer-grained location granularity
due to the bursty TCP performance on HSR.

Scenario Carrier A Carrier B

Distance to EHP < 200m 75.4% 83.7%

Distance to EHP ≥ 200m 65.9% 71.8%

RSRP ≥ -95dBm 89.2% 83.8%

RSRP < -95dBm 52.9% 67.7%

Table 1: Handover success rate.

dovers for Carrier A and B, respectively. Among them, the
fraction of failed handovers is 6.22% and 5.47%, respectively,
significantly higher than those experienced by low-speed ve-
hicles. We observe that 47.33% (40.35%) of the source cells
(from which the handover initiates) of Carrier A (Carrier B)
experiences at least one handover failure in our three-week
measurement. Fig. 3a plots the handover failure rate, defined
as the ratio of failed handovers, across the cells4 experienced
at least one handover failure. As shown, for both carriers, more
than 30% of the cells have a failure rate between 20% and
80%, indicating that it is infeasible to predict failed handovers
only using cell ID. Nevertheless, we identify two noticeable
features that can facilitate prediction of handover failures.
First, the RSRP and failure rate are found to be negatively
correlated, for handover messages are more likely to be lost
under lower SNR. Second, a handover that is triggered late
(compared to historically recorded handovers at the same lo-
cation) is more likely to fail: due to HSR’s high speed, there is
simply not enough time for a late handover to complete. This
is confirmed by the statistics shown in Tab. 1, which plots the
successful rates across all handovers under four scenarios. (1)
Handovers starting within 200 m of the Earliest Handover Po-
sitions (EHP) of their source cells. (2) Handovers starting at
least 200 m beyond EHP; (3) Handovers with ≥-95dB RSRP
when they start; (4) Handovers with <-95dB RSRP when
they start. Here the EHP of a cell s is defined as the earliest
geographic location (w.r.t. the train’s moving direction) of all
the handovers with a source cell s when they start. As shown
in Tab. 1, handovers that start early or have high RSRP values
have higher chances of success compared to late or low-RSRP
handovers, respectively. We also plot some individual han-
dovers versus signal strength and location in Fig. 3b where a
dot (star) represents a successful (failed) handover, and the
colors correspond to different cells.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Handover Failure Rate (%)

Carrier A
Carrier B

(a) Failure rate.

-100

-90

-80

-70

-60

1 2 3 4

R
S

R
P

 (
d

B
m

)

Relative Latitude (0.02 Degree)

Successful Handover
Failed Handover

(b) Pattern snapshot.

Figure 3: Handover pattern study.

4Unless explicitly mentioned, cell means <cell, direction> pair.

1328 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.4 Multipath Heterogeneity
Recall that the on-board LTE gateway (§2.1) is equipped
with SIM cards of two carriers. We next explore whether the
performance of the two carriers are correlated or not. Specif-
ically, we compute the throughput and RTT ratios between
the two carriers in a synchronous manner. We find that 39.2%
(16.9%) of the computed throughput (RTT) ratios are lower
than 0.5, and 37.0% (23.2%) of the throughput (RTT) ratios
are higher than 2.0, as plotted in Fig. 4a. This suggests that
the two carriers’ performance is indeed heterogeneous when
accessed from HSR, and the two carriers can performance-
wise complement each other. We further quantify at what time
granularity one carrier can consistently outperform the other.
Specifically, we define the RTT Leading Time as the longest
consecutive period during which one carrier always has a
lower RTT than the other. As shown in Fig. 4b, the median
RTT leading time for Carrier A and B are 457 ms and 632 ms
respectively. This indicates that the multipath heterogeneity
on HSR is highly dynamic, changing every 2 to 4 RTTs (see
also Fig. 4c), attributed to HSR’s extreme mobility.

 0
 20
 40
 60
 80

 100

1/8 1/4 1/2 1 2 4 8

C
D

F
 (

%
)

Ratio

Throughput RTT

(a) Throughput/RTT ratio.

 0
 20
 40
 60
 80

 100

 0 1 2 3 4 5

C
D

F
 (

%
)

RTT Leading Time (s)

Carrier A Carrier B

(b) RTT leading time.

-1
 0
 1
 2
 3
 4
 5

 0 20 40 60 80 100

R
T

T
 R

a
ti
o

Time (sec)

Carrier A / Carrier B

(c) Snapshot of RTT ratio time series.
Figure 4: Measurement study of path diversity.

2.5 Implications on System Design
We summarize key findings of our measurements and their
implications on system design.
• As the mobile networking performance is highly fluctuating
on HSR, one needs to continuously probe the cellular link to
get fresher link quality estimations and use it strategically;
• One may tackle the link dynamics by proactive reinjection,
as the RTO-based retransmission is often inefficient (§2.2);
• One could leverage the predictability of handover failures
to take early actions before losing the connectivity (§2.3);
• One can further leverage the path heterogeneity to mitigate
the volatility on individual paths. The path selection requires
judicious decisions based on traffic patterns, real-time link
quality monitoring, and handover failure prediction (§2.4).

3 Handover Failure Prediction
In this section, we present how to leverage the available yet
reliable information to predict handover failures, which is cru-

cial to improving networking performance in our frequently
disconnected networking environment.

Handover Success/Failure Determination Methodology.
Our measurement in §2.3 provides evidence that HSR han-
dover failures, which disrupt TCP performance for several
seconds, are potentially predictable – they are more likely to
fail if happened at a latter location in the overlap zone (for
handover) and/or if RSRP is lower. Herein, we formulate han-
dover success/failure determination task as a classification
problem, and adopt SVM, a lightweight supervised machine
learning algorithm fed with location (i.e., longitude, latitude)
and RSRP values when UE disconnects from the source cell
as features and handover result as labels. We log all these
relevant information into a database called LinkDB deployed
on both mobile relay and remote proxy (see Fig. 7) and train
the SVM with linear kernel function and L2 loss function
for each source cell. By using location, the percentage of the
linearly separable (successful and failed) handovers is 72.8%
and 71.4% for carrier A and B respectively; by using RSRP,
this number is reported as 73.5% and 67.1%. When jointly
use location and RSRP, this number raises up to 92.6% and
89.2%. This data shows that for most cells, the handover result
could be accurately inferred from the location and/or RSRP
when the handover starts. Another implication is that if a fresh
handover event is close to the historical handover failure data
in the feature space, it is very likely to fail.

Handover Failure Prediction in POLYCORN. Although the
aforementioned offline analysis shows promising results in de-
termining whether the handover is successful or failed based
on location and RSRP data, it is not straightforward to turn it
into a practical online handover failure predictor. The main
challenge is that the handover failure has to be predicted in
advance so as to be useful for guiding interface scheduling, es-
pecially for downlink traffic. In other words, the time advance
needs to take into account the tens or hundreds of millisec-
onds of delay for mobile relay to deliver the handover failure
precaution signal to the remote proxy. In our data analysis,
we also find that the LTE chipset can delay the RSRP log
reporting to userspace for up to 200 ms. This fact together
with RSRP’s highly fluctuating nature (Fig. 2b) makes RSRP
an error-prone feature for SVM to use for online handover
failure prediction. Therefore, POLYCORN has to rely on lo-
cation information only since it is truly predictable given the
reliable train speed. In practice, the mobile relay sends its
associated cell ID, train’s speed and location, and current time
to the remote proxy. On the remote proxy, LinkDB provides
information about all historical handovers from this cell and
calculates the predicted location of handover failure ˆLHOF ,
defined as the average location of all handover failures. Then,
LinkDB predicts ˆtHOF , the time that train passes ˆLHOF . If
the current moment is approaching ˆtHOF (to be elaborated
in §4.3), POLYCORN predicts that the handover in this cell
would fail because it is too late to initiate it even from now.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1329

TimeNotification of
Current Cell

Notification of
Next Cell

𝑡"# − 𝑡% 𝑡"# − 𝑡& 𝑡"#

Value of 𝑡"#' Wrong LL Correct J

Case #2: Do NOT throttle the path:
Handover ended at most shortly after 𝑡"#' .

Case #1: Bandwidth wasted:
Path is in good status after 𝑡"#' .

Successful Handover

TimeNotification of
Current Cell

Notification of
Next Cell

𝑡"# − 𝑡% 𝑡"# − 𝑡& 𝑡"#

Value of 𝑡"#' Early L Correct J Late LLL

Case #3: Bandwidth wasted:
Path is usable after 𝑡"#' .

Case #5: High delay:
Data packets or their ACKs would be lost.

Case #4: Correctly throttled:
Queue drained, NO packet loss

Handover Failure

Figure 5: Types of Handover Prediction Results.

 0

 20

 40

 60

 80

 100

-1 -0.5 0 0.5 1 1.5 2 2.5 3

C
D

F
 (

%
)

∆ Value (s).

Failure
Successful

Figure 6: Handover Prediction Validation.

Prediction Validation. We consider the case where we throt-
tle the path from ˆtHOF to the time when the UE connects to
the next cell. The point is, if the handover failed, we should
throttle the path right before the handover to drain the queue
on it. Otherwise, we should only throttle the path for a very
short period, or optimally do not throttle it. As illustrated in
Fig. 5, let tHO be the groundtruth value of handover time,
t1 < t2 where t1 and t2 are two non-negative numbers, and
hence there are five combinations of ∆ = tHO − ˆtHOF and
handover results. We set t1 to 0 seconds where ˆtHOF exactly
matches tHO, and set t2 to 2.5 seconds, beyond which the
side effect brought by early prediction overweighs its benefit.
Fig. 6 plots the distribution of ∆, where ˆtHOF is predicted us-
ing leave-one-trip-out cross-validation over the entire dataset.
For handover failure, 80.6%, 1.3%, and 18.1% of the pre-
diction results are correct, late, and early, respectively. For
successful handovers, the correct rate is 78.2%. Here we note
that POLYCORN seeks for a conservative approach towards
handovers prediction and path throttling decision – it priori-
tizes avoiding the penalty of a handover failure misprediction
and considers it acceptable to waste available bandwidth in
the cases that successful handover predicted as failure (Case 1)
or successfully predicting the handover failure but in a earlier
moment (Case 3) – in both cases the networking performance
already starts to degrade when approaching the handover
point anyway. As to be shown in §6.2, such coarse-grained
results is adequate for our system given the high speed and
the GPS system errors.

4 System Design of POLYCORN

We now present the design of POLYCORN, a software solu-
tion for high-performance Internet access for ultra-high-speed
transportation. The design goals of POLYCORN include the
following: (1) Be resilient to extreme mobility environment.

Figure 7: POLYCORN Architecture Overview.

POLYCORN should survive highly fluctuating network perfor-
mance and inaccurate link quality estimations. (2) Faster flow
completion. As opposed to bandwidth-intensive such as bulk
data transfer [8], networked applications used by passengers,
such as instant messaging and web browsing, typically have
short or small sessions. It is therefore important to reduce the
flow completion time. (3) Effectively use multiple cellular
carriers. The multipath heterogeneity revealed in §2.4 should
be leveraged for robust traffic delivery. (4) Be practical for
real-world deployment. POLYCORN should be easy to deploy
and ideally, be transparent to client and server applications
and require no infrastructure modifications.

4.1 Overall Architecture
The high-level architecture of POLYCORN is illustrated in
Fig. 7. As shown, POLYCORN leverages the dual-proxy ar-
chitecture [22]. One proxy deployed at the on-board mobile
relay (i.e., cellular gateway) multiplexes passengers’ uplink
traffic over the paths of multiple cellular carriers; another
proxy deployed at a cloud server performs the reverse op-
eration of demultiplexing the traffic and delivering them to
the destination servers. Each in-cloud proxy is paired with
one on-board mobile relay, and more pairs can be flexibly set
up for scaling up the service for larger HSR network. Down-
link traffic is handled in a symmetric way: the cloud-side
and on-board proxy perform multiplexing and demultiplex-
ing, transparently. The two proxies are essential for providing
transparent transport-layer multipath to off-the-shelf hosts.

The dual proxies offer a centralized place for multipath
scheduling, i.e., deciding which traffic should be transmitted
over which path(s). One path is one subflow that exclusively
uses one network interface (i.e., SIM card). The scheduler for
uplink and downlink traffic resides on the on-board LTE gate-
way and the in-cloud proxy, respectively. Multipath schedul-
ing is one of the most critical components of a multipath
transport system, in particular for HSR networking where the
paths’ performance is individually fluctuating and collectively
heterogeneous. We are unaware of any multipath scheduler
specifically designed for extreme mobility transportation, and
POLYCORN’s design fills this gap.

4.2 Composable Multipath Scheduler
Our measurement study in §2.5 suggests that multipath trans-
port for HSR networking needs to consider multiple dimen-
sions: performance fluctuation, predictable handover failures,
and path heterogeneity, etc. To tackle such complexity, we
adopt a novel framework that treats a multipath scheduler as
a pipeline of modularized schedulerlets. Each schedulerlet
encapsulates a multipath scheduling functionality that ma-

1330 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Performance Issue Mitigation Strategy Schedulerlet

Disruption due to handover failure Filter paths facing imminent handover failures based on prediction §4.3

Suboptimal scheduling due to path heterogeneity Filter paths that lengthen TCP flow completion due to tail packets §4.4

Single packet experiencing multiple RTOs Proactively reinject packet clusters facing excessive retransmissions §4.5

Stale performance metrics on idle paths Opportunistically deliver redundant data over unselected paths §4.6

Table 2: Logic flow from performance issues to designs.

nipulates three sets of paths: a selected set S containing the
currently selected path(s) for data transmission, a candidate
set C containing the candidate paths that can be selected, and
an unavailable set U containing the unavailable paths that
by default cannot be selected. The purpose of having U is to
restrict path selection to only a subset of all paths. Initially,
all the paths belong to C. Depending on which set(s) to ma-
nipulate, we classify the schedulers into different categories:
(1) a candidate filter that moves path(s) from C to U; (2) a
selection filter that moves paths from S to C; and (3) a soft se-
lector that moves path(s) from C to S; (4) a hard selector that
moves path(s) from C or U back to S. The purpose of having
a hard selector is to provide a mechanism that can “revive”
any path. This is useful when paths’ conditions are highly
dynamic; it also ensures the completeness of the framework.

The schedulerlets are then strategically arranged to form
the overall scheduling pipeline. Compared to a monolithic
scheduler, our schedulerlet-based approach decouples the mul-
tipath scheduling logic, and thus significantly reduces the
system complexity and development overhead, through the
unified interface of schedulerlets (modifying S, C, and/or U).
Note that we do not claim that our design can achieve any
optimality, since the “local” optimalities achieved by individ-
ual schedulerlets do not necessarily translate into a “global”
optimality. Nevertheless, from a practical perspective, formu-
lating a global optimization problem and solving it through a
monolithic scheduler is extremely challenging due to the large
solution space, real-time requirement, and volatile network dy-
namics. Therefore, we believe our “decouple-then-integrate”
design achieves a right balance among practicality, simplicity,
and performance, as to be thoroughly evaluated in §6.

We now consider how to instantiate the above generic
framework into the concrete design of HSRSCH, the mul-
tipath transport scheduler for POLYCORN. The high-level de-
sign principle is to identify scenarios where vanilla MPTCP
performs poorly, based on our extensive field studies, and
improve them through judiciously designed schedulerlets.
Specifically, Tab. 2 lists our identified performance issues,
mitigation strategies, and the corresponding schedulerlets of
HSRSCH, which will be detailed in the rest of §4. Here we de-
scribe the high-level scheduling pipeline. As shown in Fig. 8,
the pipeline begins with a candidate filter schedulerlet that
removes “bad” paths facing an imminent handover failure
(§4.3), followed by a soft selector that performs initial, rough
path selection. We find that the default minRTT scheduler

Packet Buffer

Candidate Filter (Handover-failure-aware Path Rejection)

Produce packet to send

Selection Filter (Tail-aware Path Rejection)

Hard Selector (Opportunistic Redundant Traffic Injection)

Soft Selector (minRTT)

Discard non-available path(s) from input

Select best path(s)

Discard non-preferable path(s) from output

Send
Add more path(s) to output

Discard path(s) predicted to disconnect

Discard high-delay path(s) for tail traffic

Add idle path(s) (if exist)

If all paths filtered

If no path
selected

Reinjection Handler (Extended Reinjection)

Reinject packets Reinject all packets upon
repeated timeouts

Users

Inject
new packets

Figure 8: Composable scheduler in POLYCORN.

used by MPTCP can be properly leveraged as a soft selec-
tor, because favoring a low-latency path (when congestion
window permits) is also desirable in HSR networking. Subse-
quently, we employ a selection filter to further remove certain
selected paths, shortening the flow completion time (§4.4).
Next, we apply a hard selector to make use of the remaining
paths (in C and U) – we use them for delivering redundant
data and probing the bandwidth (§4.6). Finally, due to the
high network condition volatility, performance degradation
or even outage may still appear on a selected path despite
the above schedulerlets. To tackle this, we also introduce a
reinjection handler that dynamically redistributes scheduled
packets to other paths. This mechanism tolerates other sched-
ulerlets’ errors and further improves the overall robustness
(§4.5). Note that HSRSCH is designed to be scalable, i.e.,
they could work with any number of available paths.

The aforementioned taxonomy of schedulerlets based on
which sets (S, C, U) they manipulate also helps decide the
order of the schedulerlets. For example, the candidate filter is
invoked first since it does not depend on other schedulerlets;
the selection filter needs to examine the output of the soft
selector so the former comes after the latter in the pipeline.
The hard selector tries to make use of any unselected paths; it
is therefore situated at the end of the pipeline.

4.3 Handover-failure-aware Path Rejection
Recall from §2.3 that handover failures incur considerable per-
formance impact. Our first optimization has an intuitive idea:
predict imminent handover failures using LinkDB (§3), and
apply a schedulerlet (candidate filter) to disable the path(s)
facing handover failure(s). The rationale is that, sending traffic
over a path experiencing a blackout of several seconds caused
by a failed handover will significantly lengthen the flow com-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1331

pletion time. Therefore, it should be avoided at all costs. In our
design, for downlink traffic scheduling5, the gateway continu-
ously sends the collected features (GPS reading and cell ID)
to the in-cloud proxy where LinkDB runs. Those features are
sent with top priority using a redundant scheduler to ensure
that the proxy would receive the features in time. The proxy
then predicts tHOF , the interval between the current time and
the next expected handover (§3). If tHOF is predicted to be
less than a threshold L, the proxy-side scheduler disables the
path. The path will be re-enabled when the connectivity to the
new cell is established. The threshold L incurs a tradeoff be-
tween bandwidth waste (occurs when disabling the path early)
and performance degradation (occurs when disabling the path
late). We configure L as: L=RTT + EGP S

VHSR
. The first term

is the estimated RTT between the in-cloud proxy and the LTE
gateway. RTT is the lower bound of L because at least one
round trip is needed for any in-flight data to be delivered with
confirmation; if we send any data after t+ tHOF −RTT (t is
the current time), then we run into risks where the data/ACK
delivery is affected by a failed handover. The second term
EGP S
VHSR

accounts for the GPS localization inaccuracy, where
EGP S and VHSR are the maximum GPS error (in meter) and
the train’s current speed (in m/s) respectively. Due to poten-
tially erroneous GPS reading, the train’s actual location may
be ahead of the reported GPS location. Therefore, we need
the second term for an additional safety margin. We conser-
vatively set EGP S to 20 m, and VHSR is estimated from the
recent GPS trajectory. We would also like to mention that in
the corner case when all paths are predicted to experience
handover failure soon, all of them would be disabled – this
would effectively block all pending traffic until the mobile
relay notifies the remote proxy of a new cell.

4.4 Tail-aware Path Rejection
The HSR networking performance is not only affected by
handover failures, but also by the highly fluctuating channel
quality due to HSR’s high speed. When a path’s quality de-
teriorates, HSRSCH needs to make a key decision: should
the path be temporarily disabled? Here the tradeoff is band-
width utilization vs. latency: skipping the path misses the
opportunity of utilizing its (albeit low) bandwidth, while us-
ing the path can possibly lengthen the flow completion time
compared to sending the data over a faster path.

To balance the above tradeoff, since our goal is to accelerate
short flows dominating the traffic pattern on HSR, HSRSCH
detects scenarios where a flow is about to end, and employs a
schedulerlet (selection filter) that rejects sending tail packets
over low-performance paths. Here tail packets reside at the
end of a flow, whereas non-tail packets are at the beginning
or in the middle of a flow. The rationale is that, sending a
tail packet over a low-performance path is very likely to de-
lay the flow completion. In contrast, transmitting a non-tail

5For brevity, we only describe downlink traffic scheduling. Uplink traffic
scheduling is performed at the on-board gateway in a similar manner.

packet over a poor-quality path usually only incurs packet
out-of-order with a negligible or small impact on the flow
completion time, provided that (1) all the paths are fully uti-
lized (i.e., there is no idle period), and (2) the receiver has
a large enough buffer to accommodate out-of-order packets
(which we can ensure as we have control over both multiplex-
ing proxies). To transparently identify tail packets without
the knowledge of flow size, HSRSCH keeps monitoring TCP
FIN or RST packets. Once a TCP FIN or RST is observed,
HSRSCH marks all the packets in the send buffer and all
future outgoing packets of the same flow as tail packets. We
leave more sophisticated tail packet identification methods
(e.g., based on application semantics) as future work.

To cope with highly fluctuating network conditions,
HSRSCH employs a new way of deciding whether flow f has
low performance over path i. Specifically, HSRSCH compares
two scenarios. In the first scenario, we schedule some packets
of f on path i. The packet delivery time and henceforth the
flow completion time of f is at least:

T−i,f = owdi + bufi

bwi

where owdi, bufi, and bwi are the estimated one-way delay,
the send buffer occupancy level, and the estimated bandwidth
of path i, respectively. T−i,f estimates the time taken to drain
the FIFO send buffer of path i prior to sending any new packet
belonging to f . It is therefore a lower bound of f ’s completion
time if any of its packets are scheduled on path i. In the second
scenario, we do not use path i at all to schedule f . In this
scenario, the optimal flow completion time of f is at most:

T+
i,f = min

j 6=i

{(
owdj +

bufj + remainf

bwj

)
(1 +ηj)

}
where remainf denotes the remaining bytes of f yet to be
sent, ηj is a relaxation parameter empirically defined as the
ratio between path j’s RTT variance and RTT, and j iterates
over all the paths except path i. T+

i,f quantifies the time of
transmitting all the remaining bytes of f over the best path
(except i), considering the paths’ bandwidth and current send
buffer occupancy levels. It is a loose upper bound of the
optimal (single-path) completion time of f , which can in fact
be further reduced (albeit difficult to quantify) by distributing
f over multipath. If T−i,f > T+

i,f , it implies that there exists a
better scheduling strategy of not using path i compared to any
strategy of using path i; we thus determine that path i is too
slow to schedule tail packets of f . See example in §A.

4.5 Extended Reinjection
Multipath transport needs to simultaneously manage multi-
ple paths. To handle individual paths’ failure, MPTCP has a
built-in reinjection mechanism (also known as Opportunis-
tic Retransmission [36]): upon RTO events, the oldest unac-
knowledged packet on the same path will be retransmitted
(reinjected) over another path as determined by performing

1332 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the scheduling again. We find that such a reinjection policy
is too conservative since it handles reinjection on the basis
of individual packets. In contrast, in HSR networks, packet
delivery failures often occur in a bursty manner: if a packet
experiences an RTO, the probability that the subsequent pack-
ets are delayed or lost becomes much higher. Bursty losses
are common in wireless networks in general. Nevertheless,
on HSR, the bursty pattern of packet losses is much more
prominent as the UE is frequently disconnected from base
stations due to failed handovers or low signal strength.

Inspired by the above observation, we design an Extended
Reinjection mechanism for HSRSCH, whose basic idea is to
detect scenarios where packets are undergoing multiple RTOs,
and reinject packets in a proactive and batched manner to
match the bursty packet loss pattern for HSR cellular access.
Specifically, in our approach, when any packet experiences
the k-th RTO, HSRSCH reinjects all the unacknowledged
(i.e., in-flight) packets on the same path to other path(s). In-
stead of executing the reinjection(s) immediately by invok-
ing the scheduling algorithm multiple times (similar to what
MPTCP does when executing each single reinjection opera-
tion), HSRSCH performs lazy reinjection: the to-be-reinjected
packets are thrown back to their origin connection-level send
buffers, and the actual reinjection will take place later when
these packets are (re)scheduled according to their connection-
and user-level priorities (at that time that destination path will
also be determined6). The purpose of lazy reinjection is to
maintain priority and fairness, i.e., the reinjected packets are
regarded as newly arrived so they do not bear an unfairly high
priority over the reinjected path. This is particularly impor-
tant when many packets belonging to the same connection
are reinjected. Also note that for each reinjection, the receiver
will receive at least two identical copies: the original packet
and at least one reinjected packet; only the first arrived copy
will be consumed by the receiver.

In the above algorithm, the parameter k incurs a trade-
off: a large k provides fewer reinjection opportunities, poten-
tially worsening the performance on the current path where
losses occur, whereas a small k makes reinjection more ag-
gressive, adding more traffic burden on other paths. We take a
data-driven approach to select the appropriate k value: in our
dataset, setting k to 1, 2, and 3 incurs 47%, 15%, and 0.3%
more redundant traffic, respectively. We therefore set k = 3 in
our evaluation (§6.2).

4.6 Opportunistic Redundant Traffic Injection
The soft selector along with both filters intend to find the best
path for each packet, leaving the remaining unselected path(s)
idle. This will cause two major issues: (1) the available band-
width on idle paths, despite their high latency, is wasted; (2)
no performance measurement can be carried out on idle paths
without traffic, and previous measurement quickly becomes

6We use a bitmap field to ensure that the same packet is not reinjected to
its previously scheduled path.

stale due to the high path dynamics. To address both issues,
we design a schedulerlet (hard selector) that opportunistically
schedules redundant data over idle paths. This not only allows
passive measurement to be conducted, but also provides extra
resiliency to channel quality fluctuation, leading to further re-
duced flow completion time, i.e., when one path experiences
unexpected performance degradation, the receiver can still
receive extra copies of the data delivered over other path(s).
In HSRSCH, the idleness of a path is determined when no
traffic has been scheduled over it for either α seconds, or β
bytes worth of data, whatever occurs first. Once a path be-
comes idle, HSRSCH duplicates the next τ scheduled packets
and transmits their duplicated copies over the idle path. If
multiple idle paths are available, the duplicate copies will be
transmitted over all the idle paths. We empirically set α =
1 second, β = 8 KB, and τ = 16, which were found to well
balance the tradeoff between the performance and bandwidth
overhead based on our on-board controlled experiments.

Besides fostering reliability under performance degrada-
tion, injecting traffic over an idle path brings another benefit:
it allows the transport layer to keep the path performance
statistics up-to-date. As shown in Fig. 1a, on HSR, a cellular
link’s quality changes almost every RTT. If no packet is sent
over an idle path, TCP’s built-in probing mechanism, which
is piggybacked with user traffic, will be paused, and TCP will
thus lose track of important metrics such as RTT and RTO.
Our proactive injection design addresses this issue.

4.7 Putting Everything Together
We integrate the above four schedulerlets into the composable
framework introduced in §4.2. We next describe the detailed
scheduling logic on both in-cloud proxy (for downlink traffic)
and on-board LTE gateway (for uplink traffic).

Recall that POLYCORN is a multi-user system. In each
scheduling round, HSRSCH begins with selecting a user to
serve, and then picking a flow belong to the selected user. Our
current implementation uses the standard proportional fair
(PF) scheduling [37] for user selection, and round-robin for
flow selection. More sophisticated scheduling algorithms can
be plugged into our framework. Once the to-be-served flow
is determined, HSRSCH schedules the flow’s next packet,
which is the untransmitted packet (including to-be-reinjected
packets) with the smallest sequence number, as described in
Fig. 8. Note that the reinjection handler runs in parallel with
the scheduling thread that invokes the candidate/selection
filters and soft/hard selectors.

5 Implementation
This section details the implementation of POLYCORN. Our
high-level design goals consist of the following. First, POLY-
CORN should be practical. The required changes on clients’
mobile devices should be minimized, or ideally none. Also,
POLYCORN should be able to deploy on the HSR LTE gate-
way and keep its running components unmodified. Second,
the data transport scheme should be able to schedule traffic

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1333

Restart
Polycorn

Before
Each Test

On-board
LTE Gateway

Test Ctrl.

App
Client

Polycorn
Mobile
Relay

(MPTCP)
App

Client

(MPTCP)
App

Server

Polycorn
Remote
Proxy

Cellular
Network

Public
Cloud

App
Server

Start Clients
Simultaneously

= Network
Namespace

Note:

Carrier A

Carrier B

(a) POLYCORN vs. MPTCP.

Polycorn
Remote
Proxy

App
Server

On-board
LTE Gateway

Test
Ctrl.

App
Client

Polycorn
Mobile
Relay

Polycorn
Remote
Proxy

Cellular
Network

Public
Cloud

App
Server

Restart
Polycorn

Before
Each Test

Start
Clients

Simulta-
neously

Carrier A

Carrier B
Polycorn
Mobile
Relay

App
Client

(b) POLYCORN microbenchmark.

On-board
LTE Gateway

Test Ctrl.

App
Client

Polycorn
Mobile
Relay

(TCP) App
Client A

(TCP) App
Server A

Polycorn
Remote
Proxy

Cellular
Network

Public
Cloud

App
Server

Restart
Polycorn

Before
Each Test

Start Clients
Simultaneously

Carrier A

Carrier B
(TCP) App

Client B
(TCP) App
Server B

(c) POLYCORN vs. TCP.
Figure 9: Experimental setup for different comparative evaluation.

with awareness of multiple users and connections.

Working with Unmodified Users and LTE Gateway.
Based on TM3 [21] and MPFlex [22] frameworks, POLY-
CORN uses TCP splitting to achieve transparency towards
both clients and servers. A brief summary of TCP splitting
is: when communicating with servers, POLYCORN acts as
a forward proxy; when communicating with clients, POLY-
CORN acts as a reverse proxy. To avoid kernel modification
which is not allowed by the LTE gateway vendor, we use
raw socket instead of netfilter-based [38] kernel modules
(which is used by MPFlex and TM3) or high-performance
packet I/O frameworks like DPDK [39] to capture user traffic.
After capturing user traffic, we drop all user packets using
iptables [40] to prevent the kernel from forwarding them. In
this way, we implement POLYCORN completely in userspace.
As for the well-known performance issue of raw sockets, our
experiments show that raw sockets could operate at 300 Mbps
on the LTE gateway, which is significantly higher than the
peak aggregated throughput of the LTE interfaces. Moreover,
POLYCORN works in a separated network namespace (netns)
to avoid conflicts with runtime kernel configuration used by
other programs and mitigate potential security issues. For in-
stance, POLYCORN disables reverse-path filtering in its own
netns to forward packets generated by POLYCORN with any
source IP. Our design allows sensitive system configurations
to be preserved in the original netns, thus isolate the security
risk from normal runtime programs.

Multiuser Multipath Traffic Multiplexing. Similar to TM3

and MPFlex, POLYCORN multiplexes user traffic onto off-
the-shelf sockets to implement multipath data transfer. POLY-
CORN uses TCP sockets as its subflows. Although QUIC is
better than TCP in terms of Head-of-Line blocking mitiga-
tion, especially in multiuser settings, we choose the “fallback”
TCP sockets primarily because we encountered extensive rate
limitation cases when launching QUIC flows in our measure-
ments. This observation agrees with the findings in [41] to
reveal that UDP traffic will most likely be treated as malicious
flow by cellular carriers when sending in large volume, which
situation might not disappear soon in most developing and
under-developed countries. Therefore, we believe our choice
is better for long-term real-world deployment. As for mul-
tiuser traffic scheduling, POLYCORN maintains a separated
send/reinject buffer and a metadata set including user source

IP, amount of sent traffic, etc, for each flow. With those meta-
data, in operation POLYCORN first determines which user/flow
to serve, then checks the flow’s send buffer to choose a packet
to send. Finally, POLYCORN runs HSRSCH to choose inter-
faces to send the packet, as described in §4.2.

6 Evaluation
6.1 Experimental Setup
We carried out the experiments on Beijing-Shanghai HSR
route, the one carrying most HSR passengers in the country.

Deployment on Operational System. We deployed POLY-
CORN mobile relay and server proxy on the high-speed train
LTE gateways and public cloud servers respectively, with the
same hardware configuration described in §2.1. More specifi-
cally, the mobile relay runs CentOS 7.3 with MPTCP kernel
0.94 (Linux 4.14) – we adhere to CentOS for POLYCORN de-
ployment on the LTE gateway because it runs other mission-
critical train-ground communication services developed by
the operators and third-party IT service providers.

Fairness in Comparative Study. We made the following
efforts to improve fairness in evaluating POLYCORN:

• MPTCP Baseline is configured in decoupled rather than de-
fault coupled congestion control mode (used in [15]) because
the relay-proxy suite acting as an end-user traffic aggregation
and delegation point should harness more wireless bandwidth
from multiple cellular carriers instead of treating itself as a
single user or session – it makes the baseline stronger and
comparative evaluation fairer.

• Pairwise study. We carried all the experiments in the side-
by-side concurrent test setting for 50 times with different
software configuration tailored for fairness in different sce-
nario, including comparing POLYCORN with MPTCP variants
(Fig. 9a) and its own variants for microbenchmark (Fig. 9b)
in single session bulk data download (§6.2), and comparing
POLYCORN with SPTCP (Fig. 9c) and MPTCP (Fig. 9a) in
multi-user instance messaging settings (§6.3). Specifically,
we managed to obtain exclusive access to four SIM cards with
two for each carrier respectively from the HSR WiFi service
division, pair each transport software solution (e.g., SPTCP,
MPTCP and POLYCORN) with two cards from different carri-
ers, and perform all the experiments on the operational HSR
with a speed of 300+ km/h. Note that the scheduler and sys-
tem design of POLYCORN can easily scale to more than two

1334 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1/8

1/4

1/2

 1

 2

 4

 8

256KB 1MB 4MB

G
o
o
d
p
u
t
R

a
ti
o
 o

v
e
r

M
P

T
C

P
s

File Size

minRTT
MuSher

ECF
BLEST

STMS

(a) Comparing with state-of-art MPTCPs.

1/4

1/2

 1

 2

 4

256KB 1MB 4MB

G
o
o
d
p
u
t
R

a
ti
o
 o

v
e
r

m
in

R
T

T

File Size

BJ-JN
JN-NJ

NJ-SH

(b) On different route segments.

1/2

 1

 2

256KB 1MB 4MBG
o
o
d
p
u
t
R

a
ti
o
 o

v
e
r

V
a
n
ill

a

File Size

HPR
TPR

ORI
ER

Polycorn

(c) Microbenchmark.
Figure 10: Bulk data downloading time comparative evaluation.

interfaces in LTE, 5G, etc. We choose to perform evaluations
with two cards primarily because that is the maximum number
we can obtain permission to access presently.

6.2 Bulk Data Download Performance
We first evaluate the performance of POLYCORN in compari-
son to the state-of-the-art MPTCP solutions and its own vari-
ants for microbenchmark from a single session perspective.
We use fixed-size flows of 256 KB, 1 MB, 4 MB to examine
POLYCORN’s performance in a pairwise manner. Specifically,
we choose to use average goodput ratio of test object to its op-
ponent as the primary metric instead of showing their absolute
value. This is because the cellular link quality and the asso-
ciated mobile networking performance differs significantly
from one trackside location to another – the large variance for
a single performance profile prevents comparative quantita-
tive illustration and analysis between the two solution in the
same testing environment.

Comparison with MPTCP Schedulers. We examine the ef-
ficacy of POLYCORN by showing its goodput ratio relative
to the state-of-the-art MPTCP schedulers in Fig. 10a. We
make three key observations: First, POLYCORN wins in al-
most all the cases, demonstrating that the four data-driven
scheduler designs collectively and successfully improve the
networking performance under different corner cases unique
to HSR that are not well handled by all the state-of-the-art
MPTCP scheduling strategies. Second, minRTT (as the de-
fault MPTCP scheduler) performs similarly compared with
BLEST [28] (1 MB and 4 MB), ECF [27], and STMS [18], and
outperforms MuSher [17]. This indicates that the strategies
assuming predictable path heterogeneity are not advantageous
over the simplest (and generic) one when encountering the
highly dynamic networking environment. Specifically, POLY-
CORN outperforms minRTT by 1.45x, 1.28x, and 1.26x for
256 KB, 1 MB, and 4 MB respectively with overall 1.31x.
In general, all the state-of-the-art schedulers trust and exclu-
sively rely on their estimations of network condition to make
interface scheduling decisions accordingly, while the fluctuat-
ing network nature on HSR makes the estimations error-prone
and degrade the accuracy of the scheduling decisions. This is
also why MuSher performs worse than others in our case: it
assigns traffic to interfaces according to the quickly varying
ratio of throughput on each interface and failed to catch up
with the changes; others who rely more on RTT performed

better simply because RTT is relatively less variable. POLY-
CORN chooses to employ coarse-grained but more reliable
event information and achieves better performance. Third,
POLYCORN performs worse than BLEST in the shortest flow.
Unlike POLYCORN that tries to improve bandwidth utilization
(i.e., Tail-aware Path Rejection), BLEST does not schedule
packets on the path that would potentially cause head-of-line
blocking, and hence achieves zero tail delay. This benefit
comes at the cost of reduced bandwidth utilization, and will
not continue to stay in a long flow.
Different HSR Route. We also examine the robustness of
POLYCORN in different segments on the Beijing-Shanghai
HSR route with different cellular coverage and terrain pat-
terns of different channel characteristics [42]. As shown
in Fig. 10b, POLYCORN consistently outperforms minRTT
– the performance gain of POLYCORN on Beijing-Jinan
(plain/rural), Jinan-Nanjing (hills/rural), Nanjing-Shanghai
routes (urban/plain) are 19.4%, 25.2%, 44.9%, respectively.
Microbenchmark. We further study the performance gain
of HSRSCH and our four individual scheduler designs over
POLYCORN Vanilla (i.e., POLYCORN with minRTT sched-
uler). We plot the goodput ratio of the aforementioned five
multipath transmission schemes and POLYCORN Vanilla in
Fig. 10c. The four proposals all positively improve POLY-
CORN’s performance by 7.0%, 18.8%, 4.2%, and 2.9% on
average for the three different file sizes, and they cumula-
tively contribute to 16% goodput gain.
• Handover-failure-aware Path Rejection is designed to mask
the impact of packet loss during the disconnected period and
the consequent RTO to the TCP (e.g., slow start) by receiving
or predicting handover from explicit signals from LTE real-
time analytic and/or our LinkDB information and take action
accordingly. Specifically, by sending redundant cross-flow
copies during the period any interface encountering discon-
nectivity, as shown in Fig. 11a, POLYCORN can recover from
the disconnection much faster, i.e., achieve 1.2x and 1.5x as
mean and median values within 2 seconds after handover
failure, which typically lasts a few seconds or longer.
• Tail-aware Path Rejection is used to avoid the out-of-order
delay caused by the slow paths by refusing to inject data on
the interface that may increase the flow completion time. As
shown in Fig. 11b, the tail delay was reduced by 5.6% on
average and 15.6% in 95 percentile compared to POLYCORN

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1335

 50

 60

 70

 80

 90

 100

 100 1000 10000

C
D

F
 (

%
)

Goodput After Handover in 2s (Kbps)

PV
PV+HPR

(a) HPR.

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

C
D

F
 (

%
)

Tail Delay (s)

PV
PV+TPR

(b) TPR.

 90

 92

 94

 96

 98

 100

 0 0.5 1 1.5 2 2.5 3

C
D

F
 (

%
)

Out-of-order Delay (s)

PV
PV+ER

(c) ER.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Utilization Rate (%)

PV Path A
PV Path B

PV+ORI Path A
PV+ORI Path B

(d) ORI.

Figure 11: POLYCORN microbenchmark comparative evaluation.
(PV: Polycorn Vanilla; HPR: Handover-failure-aware Path Rejection; TPR: Tail-aware Path Rejection;

ER: Extended Reinjection; ORI: Opportunistic Redundant Traffic Injection.)

Vanilla. This mechanism is useful especially for those tail
delay greater than 10 seconds, which is due to the high packet
loss rate and prolonged retransmission time of the interfaces
with abnormal high RTT.

• Extended Reinjection mainly focuses on reducing extremely
high retransmission time and leads to a significant reduction
of out-of-order delay, which is shown in Fig. 11c. It reduces
out-of-order delay by 23% among all the out-of-order packets,
and 4% out-of-order delay among all the packets.

• Opportunistic Redundant Traffic Injection aims to proac-
tively update the performance metrics of interfaces that have
been idle for a while due to higher measured RTT. This helps
HSRSCH more quickly discover recovered paths and improve
path utilization. As shown in Fig. 11d, POLYCORN Vanilla
simply ignores the path with much higher RTT. By employ-
ing opportunistic probing mechanism, the utilization rate of
the path appears to be worse is increased by more than 60%,
which allows better bandwidth utilization from all the paths.

Remarks. We note that POLYCORN exhibits non-trivial vari-
ation in its performance, and sometimes it falls behind the
counterpart solutions. There are two major reasons: 1) It is
difficult to exactly repeat tests on HSR: minor difference in
test location results large difference in network condition –
given the fluctuating network delay, the remote proxy (i.e.,
sender) cannot accurately learn about the location of the train;
2) POLYCORN works with inaccurate handover failure predic-
tions and TCP performance metrics. Our schedulerlets could
tolerant minor errors in the context data, e.g., comparative
operators tolerates minor error in RTT. However, there exist
cases where other solution has the proper information to make
right scheduling decisions while POLYCORN does not.

6.3 Multi-user Instant Messaging Performance
We next evaluate POLYCORN in a multi-user setting, and
choose instant messaging, the most popular application of
HSR passengers as a representative use case for a case study.
To best emulate the application behavior, we establish a long-
lived TCP connection (adopted by many instant messaging
application including WeChat, the most popular one in China)
between POLYCORN mobile relay and server proxy for each
user. We let each user sends 100 messages concurrently with
pre-generated intervals following the exponential distribution.
Each messaging event includes a 100-byte uplink message

and an immediate 4-byte downlink one. Note that POLYCORN
adopts a symmetric scheduler design for both downlink and
uplink, which makes our data-driven interface scheduling
work with uplink without extra effort. We perform concur-
rent pairwise experiments for POLYCORN vs. SPTCP and
POLYCORN vs. MPTCP-minRTT respectively – SPTCP with
round-robin scheduling cross different SIM card is the current
operational solution used by the HSR WiFi systems due to its
simplicity and interface-level fairness.

 0
 0.05
 0.1

 0.15
 0.2

10 20 30

A
v
e
ra

g
e

D
e
liv

e
ry

 T
im

e
 (

s
)

Num of Users

Polycorn
SPTCP

MPTCP

(a) Performance.

 0
 0.1
 0.2
 0.3
 0.4
 0.5

10 20 30

C
o
e
ff
ic

ie
n
t
o
f
V

a
ri
a
ti
o
n

o
f
D

e
liv

e
ry

 T
im

e

Num of Users

Polycorn
SPTCP

MPTCP

(b) User fairness.

Figure 12: Multi-user instant messaging evaluation.

Experimental Results. Benefiting from the multi-stage data-
driven scheduler design, POLYCORN outperforms SPTCP and
MPTCP in both performance and user fairness. As shown
in Fig. 12a, POLYCORN consistently improves aggregated
instant messaging performance when the number of users
ranges from 10 to 30. On average, POLYCORN reduces de-
livery time by 45% and 16% in comparison to SPTCP and
MPTCP respectively, and tail delay, e.g., 90 percentile, by
34% and 14%. In terms of user fairness, we use the coefficient
of variation to quantify the variance of message delivery time
regardless of the mean value across tests on different route
segments with diverse networking conditions. As we can see
in Fig. 12b, POLYCORN reduces the coefficient of variation by
86% and 49% on average when compared with SPTCP and
MPTCP respectively, which significantly improves fairness
across different on-board users.

7 Discussion
POLYCORN for 5G. Our evaluation does not cover 5G be-
cause the 5G CPE (Customer Premise Equipment) is not
available on our HSR WiFi system yet. However, we believe
POLYCORN’s techniques remain applicable to 5G. For ex-
ample, a recent measurement reveals that on 5G HSR, the
handover failure rate is comparable to LTE [20], and multi-
ple studies suggest that 5G suffers from higher bandwidth
fluctuation and packet losses compared to 4G [20, 26].

1336 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fairness. We discuss two fairness issues here. First, the fair-
ness among POLYCORN users is ensured by POLYCORN’s
multi-user scheduling algorithm (we use proportional fair
scheduling, see §4.7). Second, the fairness between POLY-
CORN users and non-POLYCORN users (who use their own
cellular data plan) is typically guaranteed by the LTE base
station. Also, POLYCORN uses unmodified TCP congestion
control for each multiplexed long-lived TCP connection es-
tablished for each sim card. This further minimizes the risk
of POLYCORN being overly aggressive.

Other Mobile Applications. We have evaluated POLYCORN
on bulk download (with different sizes) and instant messaging
(with different number of users). Other applications popu-
lar on HSR include web browsing and short videos. Short
video traffic may resemble bulk download that POLYCORN
can effectively handle, whereas web browsing further involves
client-side processing overhead, which may reduce the effec-
tiveness of POLYCORN that only optimizes content delivery.

Scalability. The POLYCORN architecture natively supports
adding more wireless interfaces (e.g., SIM cards) and pairs
of onboard mobile relay & in-network server proxy to meet
the scalability requirement. We leave larger-scale evaluations
of POLYCORN as our future work.

Head-of-Line (HoL) Blocking Issue in TCP Reuse. POLY-
CORN uses one multipath connection formed with TCP sub-
flows to transmit all user traffic. The use of TCP will in-
evitably introduces the HoL blocking at both intra-connection
and inter-user level due to due to its byte-level ordering guar-
antee, which is an overkill in POLYCORN’s multi-user multi-
plexing context. We envision that this problem will be solved
by (MP)QUIC with its support of out-of-order delivery and
cross-path acknowledgment [43, 44].

8 Related Work

Mobile Networking Performance Improvement. A
plethora of research efforts have been devoted to improve
network performance (under high mobility) through devel-
oping robust handover schemes [26], simplifying cellular
control plane [45, 46], and fixing base station-side policy
configuration bugs [47, 48]. Unlike POLYCORN, all the
above approaches require modifications to the cellular
infrastructure. There are also studies at upper layers, e.g.,
designing customized single-path transport protocol [49]
and optimizing congestion control algorithms [50–54].
POLYCORN instead proposes a holistic multipath solution
with new optimization dimensions.

Performance-enhancement Proxy (PEP). In vehicular sys-
tems, PEPs are often deployed on mobile relays, to lever-
age carrier diversity and UDP encapsulation for bandwidth
aggregation and mitigating link failure, e.g., through strip-
ing [11,55], opportunistic erasure coding [12], and flow splic-
ing [13]. Specifically, the work [35, 55] present the idea of
location-aware link characteristics (e.g., throughput and avail-

ability) prediction and packet scheduling. PEPs can also be
deployed in fixed locations in the Internet [56–58]. POLY-
CORN synthesizes all the ideas above and presents four multi-
path scheduling strategies dedicated to addressing the unique
networking challenges in extreme mobility.

Multipath Transport Architecture. Transmitting data over
multiple paths can be realized at different layers, e.g., WNIC
driver [59, 60], in-kernel transport layer [36, 61], light ker-
nel modification [21, 22], and UDP encapsulation [62–64].
Differing from the above, POLYCORN is an entire userspace
solution reusing Linux TCP for the benefits of OS/middlebox
compatibility, application transparency, and good runtime per-
formance, with multipath, multi-user multiplexing support.

Scheduling over Heterogeneous Paths. Several generic
multipath transport schedulers have been proposed to mitigate
the head-of-line blocking and out-of-order delay incurred by
imbalanced subflows, such as opportunistic declining [28] and
migrating [27], intra-chunk opposite scheduling [65], out-of-
order transmission [18], and reactive bandwidth probing [17].
None of them considers HSR-specific aspects, and many of
them [27, 28, 65] only work for two paths. Horde [66] and
miDRR [67] allows user/app to specify their QoS requirement
and perform packet scheduling accordingly. RAVEN [14]
achieves low latency by extensively leveraging redundant
transmission over multiple paths. HSRSCH brings new opti-
mization dimensions integrated through a composable sched-
ulerlet pipeline, and strikes a balance where overall through-
put is not harmed by large amount of redundant traffic and
latency of short flows are preserved.

9 Conclusion
The popularity of HSR systems brings the requirement of
high-performance data networking under extreme mobility
more tangible than ever. In this work, we have addressed
the challenge of bringing seamless Internet service to pas-
sengers on HSR by synthesizing multipath transmission and
data-driven scheduling techniques into a practical and read-
ily deployable system design. Extensive experimental results
have demonstrated the effectiveness of our system design ded-
icated to extreme-mobility. We believe that our upper layer
optimization solution can seamlessly cooperate with the on-
going 5G/NextG(-Unlicensed) evolution.

Acknowledgment
We are grateful to the reviewers for their constructive cri-
tique, and our shepherd Keith Winstein in particular, for his
valuable comments, all of which have helped us greatly im-
prove this paper. We also thank Dina Katabi, Songwu Lu,
Kun Tan and Yong Cui for their thoughtful input based on an
early version of the work. This work was supported by Na-
tional Key Research and Development Plan, China (Grant No.
2020YFB1710900), National Natural Science Foundation of
China (Grant No. 62022005 and 62172008) and Microsoft
Research Asia. Chenren Xu is the corresponding author.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1337

References
[1] China launches upgraded high-speed trains, with wi-

fi. https://gbtimes.com/china-launches-upgra
ded-high-speed-trains-wi-fi.

[2] Jr to launch free wi-fi on bullet trains from
may. https://mainichi.jp/english/articles/2
0180303/p2a/00m/0na/009000c.

[3] South korea’s brand-new olymic bullet train will make
americans jealous. https://mic.com/articles/1
87809/south-koreas-brand-new-olympic-bulle
t-train-will-make-americans-jealous.

[4] Spain’s high speed trains introduce high speed wifi. ht
tps://www.thelocal.es/20161104/spains-hig
h-speed-trains-introduce-high-speed-wifi.

[5] Eurostar - on-board entertainment server launched.
https://nomad-digital.com/customer-story/e
urostar-on-board-entertainment-server-lau
nched.

[6] Enjoy the standard experience. https:
//www.thalys.com/nl/en/info-services/en
joy-the-standard-experience.

[7] Deutsche bahn launches ‘wifi @ db’ wlan network.
https://www.globalrailwayreview.com/news/1
09948/deutsche-bahn-launches-wifi-db-wla
n-network.

[8] Jing Wang, Yufan Zheng, Yunzhe Ni, Chenren Xu, Feng
Qian, Wangyang Li, Wantong Jiang, Yihua Cheng, Zhuo
Cheng, Yuanjie Li, Xie Xiufeng, Yi Sun, and Zhongfeng
Wang. An active-passive measurement study of tcp
performance over lte on high-speed rails. In ACM Mo-
biCom, 2019.

[9] Chenren Xu, Jing Wang, Zhiyao Ma, Yihua Cheng, Yun-
zhe Ni, Wangyang Li, Feng Qian, and Yuanjie Li. A
first look at disconnection-centric tcp performance on
high-speed railways. IEEE Journal on Selected Areas
in Communications, 38(12), 2020.

[10] Multipath tcp - linux kernel implementation. https:
//multipath-tcp.org.

[11] Pablo Rodriguez, Rajiv Chakravorty, Julian Chesterfield,
Ian Pratt, and Suman Banerjee. Mar: A commuter router
infrastructure for the mobile internet. In ACM MobiSys,
2004.

[12] Ratul Mahajan Jitendra Padhye Sharad Agarwal and
Brian Zill. High performance vehicular connectivity
with opportunistic erasure coding. In USENIX ATC,
2012.

[13] Joshua Hare, Lance Hartung, and Suman Banerjee.
Transparent flow migration through splicing for multi-
homed vehicular internet gateways. In IEEE VNC, 2013.

[14] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal.
Raven: Improving interactive latency for the connected
car. In ACM MobiCom, 2018.

[15] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan
Wang, Xiangxiang Wang, Meng Shen, and Rashid Mi-
jumbi. A measurement study on multi-path tcp with
multiple cellular carriers on high speed rails. In ACM
SIGCOMM, 2018.

[16] Qingyang Xiao, Ke Xu, Dan Wang, Li Li, and Yifeng
Zhong. Tcp performance over mobile networks in high-
speed mobility scenarios. In IEEE ICNP, 2014.

[17] Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak,
Dimitrios Koutsonikolas, and Joerg Widmer. Musher:
An agile multipath-tcp scheduler for dual-band 802.11
ad/ac wireless lans. In ACM MobiCom, 2019.

[18] Hang Shi, Yong Cui, Xin Wang, Yuming Hu, Minglong
Dai, Fanzhao Wang, and Kai Zheng. Stms: Improving
mptcp throughput under heterogeneous networks. In
USENIX ATC, 2018.

[19] Li Li, Ke Xu, Dan Wang, Chunyi Peng, Kai Zheng,
Rashid Mijumbi, and Qingyang Xiao. A longitudinal
measurement study of tcp performance and behavior
in 3g/4g networks over high speed rails. IEEE/ACM
Transactions on Networking, 25(4), 2017.

[20] Yueyang Pan, Ruihan Li, and Chenren Xu. The first 5g-
lte comparative study in extreme mobility. Proceedings
of the ACM on Measurement and Analysis of Computing
Systems, 6(1), 2022.

[21] Feng Qian, Vijay Gopalakrishnan, Emir Halepovic, Sub-
habrata Sen, and Oliver Spatscheck. Tm 3: flexible
transport-layer multi-pipe multiplexing middlebox with-
out head-of-line blocking. In ACM CoNEXT, 2015.

[22] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z Morley
Mao, and Subhabrata Sen. An in-depth understanding
of multipath tcp on mobile devices: measurement and
system design. In ACM MobiCom, 2016.

[23] Fumihiro Hasegawa, Akinori Taira, Gosan Noh, Bing
Hui, Hiroshi Nishimoto, Akihiro Okazaki, Atsushi Oka-
mura, Junhwan Lee, and Ilgyu Kim. High-speed train
communications standardization in 3gpp 5g nr. IEEE
Communications Standards Magazine, 2(1), 2018.

[24] Bo Ai, Andreas F Molisch, Markus Rupp, and Zhang-
Dui Zhong. 5g key technologies for smart railways.
Proceedings of the IEEE, 108(6), 2020.

1338 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://gbtimes.com/china-launches-upgraded-high-speed-trains-wi-fi
https://gbtimes.com/china-launches-upgraded-high-speed-trains-wi-fi
https://mainichi.jp/english/articles/20180303/p2a/00m/0na/009000c
https://mainichi.jp/english/articles/20180303/p2a/00m/0na/009000c
https://mic.com/articles/187809/south-koreas-brand-new-olympic-bullet-train-will-make-americans-jealous
https://mic.com/articles/187809/south-koreas-brand-new-olympic-bullet-train-will-make-americans-jealous
https://mic.com/articles/187809/south-koreas-brand-new-olympic-bullet-train-will-make-americans-jealous
https://www.thelocal.es/20161104/spains-high-speed-trains-introduce-high-speed-wifi
https://www.thelocal.es/20161104/spains-high-speed-trains-introduce-high-speed-wifi
https://www.thelocal.es/20161104/spains-high-speed-trains-introduce-high-speed-wifi
https://nomad-digital.com/customer-story/eurostar-on-board-entertainment-server-launched
https://nomad-digital.com/customer-story/eurostar-on-board-entertainment-server-launched
https://nomad-digital.com/customer-story/eurostar-on-board-entertainment-server-launched
https://www.thalys.com/nl/en/info-services/enjoy-the-standard-experience
https://www.thalys.com/nl/en/info-services/enjoy-the-standard-experience
https://www.thalys.com/nl/en/info-services/enjoy-the-standard-experience
https://www.globalrailwayreview.com/news/109948/deutsche-bahn-launches-wifi-db-wlan-network
https://www.globalrailwayreview.com/news/109948/deutsche-bahn-launches-wifi-db-wlan-network
https://www.globalrailwayreview.com/news/109948/deutsche-bahn-launches-wifi-db-wlan-network
https://multipath-tcp.org
https://multipath-tcp.org

[25] Study on international mobile telecommunications (imt)
parameters for 6.425 - 7.025 ghz, 7.025 - 7.125 ghz and
10.0 - 10.5 ghz. https://www.3gpp.org/DynaRepor
t/38921.htm.

[26] Yuanjie Li, Qianru Li, Zhehui Zhang, Ghufran Baig,
Lili Qiu, and Songwu Lu. Beyond 5g: Reliable extreme
mobility management. In ACM SIGCOMM, 2020.

[27] Yeon-sup Lim, Erich M Nahum, Don Towsley, and
Richard J Gibbens. Ecf: An mptcp path scheduler to
manage heterogeneous paths. In ACM CoNEXT, 2017.

[28] Simone Ferlin, Özgü Alay, Olivier Mehani, and Roksana
Boreli. Blest: Blocking estimation-based mptcp sched-
uler for heterogeneous networks. In IFIP Networking,
2016.

[29] China’s high-speed rail links winter olympics cities.
http://english.cctv.com/2019/12/30/ARTIITvo
MUF29MZmtX5y4t9m191230.shtml.

[30] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and
Kevin Gibbs. Iperf: The tcp/udp bandwidth measure-
ment tool. http://dast.nlanr.net/Projects.

[31] Gerald Combs. Tshark-the wireshark network analyser.
http://www.wireshark.org.

[32] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, So-
heil Hassas Yeganeh, et al. Bbr: congestion-based con-
gestion control. Communications of the ACM, 60(2),
2017.

[33] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
Operating Systems Review, 42(5), 2008.

[34] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Hao-
tian Deng, and Tao Wang. Mobileinsight: Extracting and
analyzing cellular network information on smartphones.
In ACM MobiCom, 2016.

[35] Jun Yao, Salil S Kanhere, and Mahbub Hassan. Improv-
ing qos in high-speed mobility using bandwidth maps.
IEEE Transactions on Mobile Computing, 11(4), 2011.

[36] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan
Ford, Michio Honda, Fabien Duchene, Olivier Bonaven-
ture, and Mark Handley. How hard can it be? design-
ing and implementing a deployable multipath tcp. In
USENIX NSDI, 2012.

[37] Raymond Kwan, Cyril Leung, and Jie Zhang. Propor-
tional fair multiuser scheduling in lte. IEEE Signal
Processing Letters, 16(6), 2009.

[38] The netfilter.org project. https://www.netfilter.or
g/.

[39] Linux Foundation. Data plane development kit (DPDK),
2015.

[40] The netfilter.org "iptables" project. https://www.ne
tfilter.org/projects/iptables/index.html.

[41] Korian Edeline, Mirja Kühlewind, Brian Trammell, and
Benoit Donnet. copycat: Testing differential treatment
of new transport protocols in the wild. In ACM ANRW,
2017.

[42] Cheng-Xiang Wang, Ammar Ghazal, Bo Ai, Yu Liu,
and Pingzhi Fan. Channel measurements and models
for high-speed train communication systems: A survey.
IEEE communications surveys & tutorials, 18(2), 2015.

[43] J Iyengar and M Thomson. Rfc 9000 quic: A udp-
based multiplexed and secure transport. Omtermet Em-
gomeeromg Task Force, 2021.

[44] https://datatracker.ietf.org/doc/draft-iet
f-quic-multipath/.

[45] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas
Sekar, Sylvia Ratnasamy, and Scott Shenker. A high
performance packet core for next generation cellular
networks. In ACM SIGCOMM, 2017.

[46] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. A control-
plane perspective on reducing data access latency in lte
networks. In ACM MobiCom, 2017.

[47] Yuanjie Li, Haotian Deng, Jiayao Li, Chunyi Peng, and
Songwu Lu. Instability in distributed mobility manage-
ment: Revisiting configuration management in 3g/4g
mobile networks. In ACM SIGMETRICS, 2016.

[48] Zengwen Yuan, Qianru Li, Yuanjie Li, Songwu Lu,
Chunyi Peng, and George Varghese. Resolving pol-
icy conflicts in multi-carrier cellular access. In ACM
MobiCom, 2018.

[49] Hongke Zhang, Wei Quan, Jiayang Song, Zhongbai
Jiang, and Shui Yu. Link state prediction-based reliable
transmission for high-speed railway networks. IEEE
Transactions on Vehicular Technology, 65(12), 2016.

[50] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshmi-
narayanan Subramanian, and Carmelita Görg. Adaptive
congestion control for unpredictable cellular networks.
In ACM SIGCOMM, 2015.

[51] Wai Kay Leong, Zixiao Wang, and Ben Leong. Tcp
congestion control beyond bandwidth-delay product for
mobile cellular networks. In ACM CoNEXT, 2017.

[52] Shinik Park, Jinsung Lee, Junseon Kim, Jihoon Lee,
Sangtae Ha, and Kyunghan Lee. Exll: An extremely low-
latency congestion control for mobile cellular networks.
In ACM CoNEXT, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1339

https://www.3gpp.org/DynaReport/38921.htm
https://www.3gpp.org/DynaReport/38921.htm
http://english.cctv.com/2019/12/30/ARTIITvoMUF29MZmtX5y4t9m191230.shtml
http://english.cctv.com/2019/12/30/ARTIITvoMUF29MZmtX5y4t9m191230.shtml
http://dast. nlanr. net/Projects
http://www. wireshark. org
https://www.netfilter.org/
https://www.netfilter.org/
https://www.netfilter.org/projects/iptables/index.html
https://www.netfilter.org/projects/iptables/index.html
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/

[53] Ke Liu, Zhongbin Zha, Wenkai Wan, Vaneet Aggarwal,
Binzhang Fu, and Mingyu Chen. Optimizing tcp loss
recovery performance over mobile data networks. IEEE
Transactions on Mobile Computing, 19(6), 2019.

[54] Soheil Abbasloo, Yang Xu, and H Jonathan Chao. C2tcp:
A flexible cellular tcp to meet stringent delay require-
ments. IEEE Journal on Selected Areas in Communica-
tions, 37(4), 2019.

[55] Joshua Hare, Lance Hartung, and Suman Banerjee. Be-
yond deployments and testbeds: experiences with public
usage on vehicular wifi hotspots. In ACM MobiSys,
2012.

[56] Rajiv Chakravorty, Sachin Katti, Ian Pratt, and Jon
Crowcroft. Using tcp flow-aggregation to enhance data
experience of cellular wireless users. IEEE Journal on
Selected Areas in Communications, 23(6), 2005.

[57] Kyu-Han Kim and Kang G Shin. Prism: Improving
the performance of inverse-multiplexed tcp in wireless
networks. IEEE Transactions on Mobile Computing,
6(12), 2007.

[58] Jiasi Chen, Rajesh Mahindra, Mohammad Amir Kho-
jastepour, Sampath Rangarajan, and Mung Chiang. A
scheduling framework for adaptive video delivery over
cellular networks. In ACM MobiCom, 2013.

[59] Srikanth Kandula, Kate Ching-Ju Lin, Tural Badirkhanli,
and Dina Katabi. Fatvap: Aggregating ap backhaul
capacity to maximize throughput. In USENIX NSDI,
2008.

[60] Anthony J Nicholson, Scott Wolchok, and Brian D No-
ble. Juggler: Virtual networks for fun and profit. IEEE
Transactions on Mobile Computing, 9(1), 2010.

[61] Alexander Frömmgen, Amr Rizk, Tobias Erbshäußer,
Max Weller, Boris Koldehofe, Alejandro Buchmann, and
Ralf Steinmetz. A programming model for application-
defined multipath tcp scheduling. In ACM Middleware,
2017.

[62] Luiz Magalhaes and Robin Kravets. Transport level
mechanisms for bandwidth aggregation on mobile hosts.
In IEEE ICNP, 2001.

[63] Cheng-Lin Tsao and Raghupathy Sivakumar. On effec-
tively exploiting multiple wireless interfaces in mobile
hosts. In ACM CoNEXT, 2009.

[64] Quentin De Coninck and Olivier Bonaventure. Multi-
path quic: Design and evaluation. In ACM CoNEXT,
2017.

[65] Yihua Ethan Guo, Ashkan Nikravesh, Z Morley Mao,
Feng Qian, and Subhabrata Sen. Accelerating multipath
transport through balanced subflow completion. In ACM
MobiCom, 2017.

[66] Asfandyar Qureshi and John Guttag. Horde: separat-
ing network striping policy from mechanism. In ACM
MobiSys, 2005.

[67] Kok-Kiong Yap, Te-Yuan Huang, Yiannis Yiakoumis,
Sandeep Chinchali, Nick McKeown, and Sachin Katti.
Scheduling packets over multiple interfaces while re-
specting user preferences. In ACM CoNext, 2013.

A Example for Tail-aware Path Rejection
Fig. 13 exemplifies how tail-aware path rejection works on
HSR. In this example, the traffic consists of a flow whose FIN
packet was received by POLYCORN (so all the subsequent
packets are tail packets). There are two paths A and B, whose
estimated RTT and send buffer occupancy levels are plotted
in the top and bottom subfigure, respectively. Path A has a
low RTT and its send buffer is almost full, whereas Path B has
a high RTT and its buffer occupancy level is low. MPTCP’s
default minRTT scheduler frequently schedules tail packets
to Path B because Path A is busy (congestion window being
full). However, our algorithm usually rejects Path B because
the flow completion time will reduce if we wait for Path A to
become available and send tail packets over A. This results in
a large number of path rejection instances.

 0

 1000

 2000

 3000

S
R

T
T

 (
m

s
)

Path A Path B Rejection

0%

25%

50%

75%

100%

 17.6 17.8 18 18.2 18.4 18.6 18.8 19

B
u

ff
e

r
O

c
c
u

p
a

n
c
y

Time (s)

Figure 13: Reject Trace.

1340 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Networking Performance Measurement
	Data Collection Methodology
	Throughput & Latency Characterization
	Predictability of Networking Performance
	Multipath Heterogeneity
	Implications on System Design

	Handover Failure Prediction
	System Design of Polycorn
	Overall Architecture
	Composable Multipath Scheduler
	Handover-failure-aware Path Rejection
	Tail-aware Path Rejection
	Extended Reinjection
	Opportunistic Redundant Traffic Injection
	Putting Everything Together

	Implementation
	Evaluation
	Experimental Setup
	Bulk Data Download Performance
	Multi-user Instant Messaging Performance

	Discussion
	Related Work
	Conclusion
	Example for Tail-aware Path Rejection

