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Abstract
LoRa is one of the most widely used LPWAN communication
techniques operating in the unlicensed sub-GHz ISM bands.
Its long range however also results in increased interference
from other LoRa and non-LoRa networks, undermining net-
work throughput due to packet collisions. This has motivated
extensive research in the area of collision resolution tech-
niques for concurrent LoRa transmissions and continues to
be a topic of interest. In this paper, we verify the implementa-
tion and efficacy of four of the most recent works on LoRa
packet collisions, in addition to standard LoRa. We implement
OpenLoRa, an open-source, unified platform to evaluate these
works and extensible for future researchers to compare against
existing works. We implement each of the four techniques
in Python as well as separate the demodulator and decoder
to provide benchmarks for future demodulators that can be
plugged into the framework for fair and easy comparison
against existing works. Our evaluation indicates that existing
contention resolution techniques fall short in their throughput
performance in practical deployments, especially due to poor
packet detection in low and ultra-low SNR regimes.

1 Introduction

LoRa is one of the most widely used Low Power Wide Area
Network (LPWAN) technologies for IoT applications such
as smart cities [1, 2], smart agriculture [3, 4], and industrial
IoT [5, 6]. LoRa’s popularity stems from its long operating
range, low power consumption, low-cost, and ease of deploy-
ment [7–10]. Its long range however, is a double-edged sword
as it also results in increased interference from other inde-
pendently deployed LoRa networks, leading to poor network
throughput due to packet collisions [11, 12]. Ghena et.al [13]
show that LoRa falls short of meeting the requirements for
a large variety of IoT applications due to two key reasons :
(a) under-utilization of the network capacity and (b) lack of
co-existence between networks.

Recently, a large number of LoRa collision resolution
techniques have been proposed to address the above chal-

lenges: Choir [14], FTrack [15], NScale [16], CoLoRa [17],
mLoRa [18], CIC [19], Pyramid [20], and AlignTrack [21].
These techniques develop novel LoRa de-modulation algo-
rithms that can simultaneously decode multiple colliding
LoRa packets to improve network throughput and address
scalability challenge faced by LoRa networks.

In this paper, we seek to compare and verify the efficacy of
state-of-the-art in LoRa collision resolution algorithms and
ask the question, “How effective are state-of-the-art collision
resolution techniques in improving network throughput?” .
Our goal is to evaluate and analyze various existing techniques
in a variety of important scenarios such as indoor/outdoor and
low/high-SNR networks. Towards this evaluation, we have
developed OpenLoRa, an extensible, open-source framework
using Python to implement each of the demodulators and
design an evaluation pipeline, along with extensive datasets
that can be used for benchmarking future works in LoRa
receiver designs. To this end, we pick four recent techniques,
(i) FTrack [15], (ii) NScale [16], (iii) CoLoRa [17], and (iv)
CIC [19] that provide public implementations.

The motivation for our paper stems from several key gaps
in the available implementations and evaluations.
Lack of throughput evaluations. While increasing network
throughput (in kilo bits per second) is their key goal, most
LoRa packet collision resolution literature evaluates the per-
formance of the demodulator only, which outputs data sym-
bols rather than bits; this can perhaps be attributed to the
difficult task of recreating LoRa’s encoder and decoder. In
the absence of the decoder, one can only evaluate the average
symbol error rate, but not bit or packet error rates and hence
network throughput in kbps. As we demonstrate in Section
§5.1, lower symbol error rates do not necessarily translate to
lower packet error rates and corresponding higher network
throughput. In fact, seemingly lower symbol error rates com-
pared to standard LoRa might still result in lower throughput!
Lack of co-existence evaluation. Although co-existence of
LoRa networks has been identified as a key challenge [11–13],
to the best of our knowledge existing literature has not studied
the impact of interference due to other LoRa and non-LoRa
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Figure 1: Overview of OpenLoRa, the proposed open-source framework

networks on the efficiency of collision resolution. In this
paper, we design and perform a new set of experiments to
measure the impact of LoRa interference from networks with
different SF and non-LoRa interference such as FSK on the
network throughput performance.
Lack of a uniform evaluation and a benchmark datasets.
Understanding and analyzing the performance of various tech-
niques in different settings is crucial to future research. Exist-
ing evaluations differ in terms of evaluation metrics, method-
ology, scenarios that impact performance such as signal-to-
noise-ratio (SNR), indoor/outdoor settings, nature of traffic,
effect of bursts etc. In some cases, these have only been stud-
ied using simulations. In this paper, we create a set of bench-
mark datasets spanning various important LoRa scenarios that
can be used to evaluate uniformly. In our experiments we find
that existing techniques under-perform compared to standard
LoRa in very low SNR scenarios.
Implementation variability. Current implementations do
not use a common tool: Python, GNURadio, and MATLAB
are some of the tools used. Additionally, each of the imple-
mentations have a different data preprocessing methodology,
making it a challenging task to input a sample file and deter-
mine the metrics of interest. Therefore, despite the availability
of public code repository, it is a challenging task to input a
new file and obtain the performance of the demodulator.

In order to address the above gaps, we have implemented
an evaluation framework (depicted in Figure 1) with the goal
of providing a common framework to benchmark existing
methods. We believe that our extensible framework will help
future researchers evaluate LoRa collision resolution tech-
niques uniformly against prior works with common datasets,
and analyze them. OpenLoRa includes a pipeline of four key
stages. First, a suite of experimental datasets comprising re-
ceived raw samples of LoRa transmissions obtained from
various experimental deployments, specifically designed to
evaluate various important aspects of collision resolution algo-
rithms. Second, a uniform Python based interface to interact
with each demodulator. A future LoRa demodulator algorithm
can be simply plugged into this framework and compared
against other implementations on the metrics of interest for

real-world deployments. Third, a standard LoRa decoder that
can convert symbols generated by any demodulator into pack-
ets, so that we can measure bit error rates, packet error rates,
and throughput. Last but not the least we provide a suite of
important metrics such as bit error rate, packet reception rate,
and network throughput.

In summary, we make the following contributions towards
our verification of state-of-the-art LoRa demodulators:

• We present OpenLoRa, an extensible, open-source frame-
work to evaluate and compare different techniques that we
hope future researchers will be able to use (provided in
GitHub repository1 as well as in a Docker container2 en-
abling environment-independence to run the demodulators
locally). Our framework comprises benchmark datasets, a
standard interface to plug in various demodulators, a LoRa
decoder that outputs bits and a suite of relevant metrics.

• We implement and verify the performance of four state-of-
the-art LoRa collision resolution demodulators and standard
LoRa, comparing their throughput (in kbps) improvements.
We find a surprising fact that even though many techniques
decode more symbols on average than standard LoRa, this
does not necessarily translate to throughput improvements.
As the network traffic increases in long-range outdoor sce-
narios, standard LoRa outperforms all existing techniques.

• In order to cross-validate the results reported in original
works, we recreate the key experimental scenarios presented
by each and compare the results. Our results are in line with
the results in the respective papers evaluated. This extra
effort validates the fidelity of our framework and implemen-
tation of various demodulators.

• We develop a web interface3 for users to easily add new
custom demodulation techniques for benchmarking and
analyze the performance of implemented techniques.

1https://github.com/UW-CONNECT/OpenLora
2Linked in OpenLoRa Github page.
3https://openlora.wisc.edu
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• We implement and validate the standard LoRa decoder in
Python, allowing the comparison of different demodulation
techniques based on end-to-end metrics such as throughput
(in kbps) and the number of successfully received packets
after error correction. We hope this openly accessible im-
plementation enables future researchers to evaluate their
works based on similar end-user metrics.

• We design new experiments to study the effects of colli-
sions under extremely-low SNR, interference from LoRa
networks with different spreading factor and non-LoRa in-
terference such as Frequency-Shift-Keying from other net-
works on the throughput performance.

2 LoRa Demodulators Validated

In LoRa, data is modulated using a Chirp Spread Spec-
trum (CSS) scheme which confers it long range and sub-
noise decoding ability. We present details on LoRa’s mod-
ulation/demodulation and effects of collision on network
throughput in Appendix A. Choir [14] is a pioneering work in
LoRa collision resolution with the goal of improving network
throughput. It leverages the inherent hardware imperfections
in the radio of LoRa transmitters and distinguishes collid-
ing packets by uniquely mapping their imperfections to the
transmitters. mLoRa [18] leverages Successive Interference
Cancellation to iteratively decode the symbols with the high-
est power and remove them from consideration. In this paper,
we implement four demodulator algorithms that improve upon
Choir and mLoRa to decode multi-packet collisions. We dis-
cuss these demodulators in the rest of the section.

2.1 FTrack [15]
FTrack is one of the first approaches to use time and fre-
quency domain features to resolve LoRa collisions. FTrack
relies on Short Time Fourier Transform (STFT) to obtain time
and frequency features. FTrack proposes to apply STFT on
the dechirped LoRa symbol to leverage the spread spectrum
gain as well as to remove the linear change in frequency with
time. Appendix B.1 explains how FTrack chooses an appropri-
ately sized window and leverages time-frequency resolution
to resolve collisions.

2.2 CoLoRa [17]
CoLoRa, similar to FTrack, leverages time offsets and fre-
quency features to resolve collisions. CoLoRa observes that
collided packets are misaligned in time and therefore have
different lengths of symbol segments appearing in the de-
modulation window. This results in FFT peaks with heights
proportional to the length of the symbol in the current demod-
ulation window. CoLoRa also observes that the ratio of FFT
peak between two consecutive windows remains the same

throughout a packet. It uses these key insights to translate
time offsets to frequency features and differentiate colliding
packets. Details on CoLoRa’s demodulation window choice
and the use of peak ratios can be found in Appendix B.2.

2.3 NScale [16]
As the range increases, the SNR of LoRa packets decreases
and the relative performance improvement of FTrack and
CoLoRa degrades. NScale [16] focuses on decoding packet
collisions at SNRs as low as -10dB. Similar to CoLoRa, it
translates the timing offsets to frequency features and further
amplifies the time offsets by non-stationary signal scaling.
NScale’s strength lies in its ability to decode and resolve
LoRa packet collisions at SNRs below -10 dB. In Appendix
B.3, we explain how NScale achieves sub-noise decodability.

2.4 Concurrent Interference Cancellation [19]
Concurrent Interference Cancellation (CIC) also leverages
time and frequency domain analysis to decode multi-packet
collisions. CIC identifies that due to Heisenberg’s Time Fre-
quency Uncertainty Principle, one can achieve either the best
frequency resolution or best time resolution, not both. CIC
attempts at getting the best of both resolutions by accumulat-
ing multiple windows of varying lengths, resulting in varying
time and frequency resolutions. Appendix B.4 explains CIC’s
technique to resolve packet collisions.

3 Framework Implementation

We implement OpenLoRa and evaluate standard LoRa,
FTrack, CoLoRa, NScale, and CIC in a uniform framework
using Python as illustrated in Fig. 1. The extensible frame-
work also provides the ability to add a new demodulator and
evaluate its performance against the implemented techniques
over the datasets collected over a range of scenarios.

We have built an easy-to-use web interface to help users
analyze the implemented demodulators’ performance in more
detail. We also provide the option to plug-in one’s own new de-
modulator for benchmarking, with a few simple steps. Some
screenshots to walk through the web page are provided in
Fig. 2. The homepage asks for user selection to either add
a new demodulator or run existing techniques as shown in
Fig. 2(a). Fig 2(b-c) show the flow to add a new custom de-
modulator with the user downloading the existing framework,
adding their files, testing on a sample dataset and uploading
to run and compare against already implemented techniques.
Similarly, Fig 2(d-f) show the flow to analyze the existing de-
modulators in detail by choosing a scenario and configuration
among those presented in Section §5 and presenting detailed
data points as well as plots.
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OpenLoRa has a pipeline of four major blocks: datasets,
interface to the demodulators, decoder, and metrics. We de-
scribe each one of these blocks in detail below.

3.1 Datasets : Experimental setup for data col-
lection

For a thorough and fair evaluation of the demodulation algo-
rithms, a uniform set of data sample files is necessary. We
deployed practical networks of LoRa nodes in varying config-
urations (SF and BW) and scenarios (Line-of-Sight, SNR) as
shown in Fig 3. We believe the presented evaluation accounts
for a comprehensive (but not exhaustive) set of conditions
to assess the feasibility of real-world usage, and serve as a
benchmark to gauge the performance of future work in this
domain. We will make the datasets, along with the ground
truth, publicly available for reproducibility. We believe this
will help other researchers to evaluate their work on a variety
of scenarios as well.

We used 20 battery-powered Adafruit Feather M0 with
RFM95 [22] as LoRa transmitters deployed in the following
settings, with a USRP B200 as the receiver. Unless other-
wise mentioned, by default, each transmitter sends a known
message, while the duty cycle and the load follows a Poisson
distribution. The arduino code flashed onto Adafruit Feather
M0 boards and the circuit diagram to setup the boards can
be found in the github repository 4 under the folder Exper-
iment_ Setup. At each of the locations (red dots in Fig. 3),
the individual transmitters were verified to be reachable from
the receiver i.e.,in the absence of collisions, LoRa packets
from each of the transmitters were successfully received us-
ing the standard LoRa demodulator. Each data point in the
evaluation results was averaged over multiple iterations of
data transmissions (ranging from a minimum of 200 packets
to over 6000 packets depending on the scenario). The details
on each experimental setup and the methodology specific to
each experiment can be found in the Appendix E. The three
settings used in our experiments are:

1. Indoor Line-of-Sight (LoS) : This setting serves as a high-
SNR scenario in our experiments. Twenty LoRa nodes
were deployed in a 15m x 10m room, distributed uniformly
in LoS with the receiver as shown in Fig. 3 (a). This setting
emulates a deployment similar to a smart home, with IoT
nodes distributed in a small space, many of which have LoS
to the receiver. In this setup, we performed experiments
which required precise control over collision parameters,
parametric analysis with controlled time offset between
colliding packets, concurrent collisions, and high SNR
collisions.

2. Indoor Non-Line-of-Sight (NLoS) : This setting serves
as a low-SNR setting inside a building spanning an area of

4https://github.com/UW-CONNECT/OpenLora/tree/main/Experiment_
Setup

150 m x 75 m (per floor) over two floors. The transmitters
were deployed as per Fig. 3 (c) and (d), showing the distri-
bution of nodes on first and second floor respectively. The
nodes were distributed in NLoS setting, separated from
the receiver by multiple concrete walls, elevator shafts,
and metal obstructions. This setting emulates a typical
deployment of IoT nodes in an indoor office or factory
building, with human movement as well as wireless traf-
fic interfering with active transmissions. This setup was
used to collect datasets for collisions with increasing ag-
gregate transmission rate. We also performed controlled
interference experiments here.

3. Long-range outdoor : This setting serves as an extremely
low-SNR setting with nodes at distances of 1 to 8.25 km
from the receiver. The nodes were distributed across urban
areas and along a lake shore as seen in Fig. 3 (b). This set-
ting emulates applications which particularly befit the use
of LoRa modulation where communication over long dis-
tances is necessary, such as city monitoring applications or
sensor deployment across huge agricultural fields. We col-
lected datasets for various transmission rates in extremely
low-SNR conditions.

3.2 Demodulators Block
Fig. 13 in Appendix C.1 shows an overview of the Python
implementation and how the demodulators were integrated
into the overall flow of the framework. Appendix C.2 also
describes the organization of the implementation code into
Python modules. We thank the authors of each of the works
presented here for sharing their implementations with us. In
addition to re-implementing the code in Python, the following
refinements were made to accept and pre-process a variety
of datasets, as well as to reduce the computation time of
demodulation using parallel processes:
FTrack : FTrack processes the entire input data file at once.
While it is feasible for slices with a few packets, it is com-
putationally intensive for real-life data capture with tens of
million of samples. This also posed a challenge in the mem-
ory constraints for practical datasets such as those from our
experiments. To mitigate this, we built a pre-processing block
that separates out the active data transmission from silence
periods based on energy thresholds of the signal and passes
only the valid transmission data to the demodulator. FTrack’s
demodulator algorithm uses a number of threshold parame-
ters for separating collisions such as peak power ratio, noise
floor power, and ratio of stronger to weaker peaks, among
others. These parameters need to be modified based on the
input dataset for accurate functioning of the algorithm. We set
these parameters based on our datasets empirically, however a
formal procedure for the derivation of these thresholds would
be highly beneficial for any user.
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(a) (b) (c)

Figure 2: Screenshots from the system interface web page : (a) Flow to add a new demodulator (b) choose a scenario to
benchmark (c) Flow to run an existing demodulator for analysis with network setting and SF configuration

NScale : In addition to re-implementing in Python, we param-
eterized NScale implementation to accept datasets with differ-
ent LoRa configurations. Various parameters and thresholds
for recognizing sync words, clustering packets from the same
transmitters together, and choosing the correct demodulation
window were generalized to get the optimal demodulation
results. The original implementation resulted in missed or
repeated symbols when any of the collided packets was split
approximately in half by the demodulation window due to am-
biguity in length and peak ratios. We implemented an up-chirp
correlation-based packet identification, as described in the pa-
per, and aligned the demodulation window appropriately to
avoid this corner case.
CoLoRa :We implemented an up-chirp correlation based strat-
egy to process the input file parallelly using Python multipro-
cessing. This enabled us to identify the start of packets and
choose a reception window, ensuring any symbol’s split ratio
to be between 1/3 and 3 as derived in the paper. We imple-
mented the Akaike Information Criterion based algorithm to
detect the onset of the received packet.
CIC: CIC iteratively decodes packets and hence stores the
entire data transmission session. At higher data rates, frequent
transmissions can lead to very long packet transmissions that
can overflow the memory. We overcome this challenge by
splitting active data transmissions longer than a threshold into
multiple sessions and process them separately.
Std-LoRa Demodulator: For the implementation of the stan-
dard LoRa demodulator, we used rpp0/gr-LoRa [23], an open
source GNURadio block for decoding LoRa packets. gr-LoRa
has demodulator and decoder integrated as a single block. We
split the two into separate blocks and used the demodula-
tor as part of our std-LoRa demodulator implementation. It
looks for the strongest peak in each demodulation window
and tries to find consecutive occurrences of the same symbol
to detect preambles. Once all the preambles are detected and
the preamble indices saved, it continues finding the strongest

peak in every demodulation window of the detected packet
and outputs the corresponding symbols.

3.3 Standard LoRa Decoder Block
Majority of the existing works focus on demodulator perfor-
mance as a function of the symbols received. A LoRa receiver
consists of a demodulator followed by a decoder. The de-
coder maps received symbols to message. LoRa decoder (and
encoder) is responsible for performing forward error correc-
tion using Hamming codes, interleaving, whitening, and gray
coding to decode symbols to bits and then message. LoRa
supports four coding rates ranging from 4/5 having the least
redundancy to 4/8 having the highest. This redundancy allows
the LoRa signal to endure interferences and correct small
errors. While the demodulated symbols provide some under-
standing of the receiver, the output of the decoder is required
to obtain metrics such as throughput, bit error rate, and num-
ber of packets successfully received. Additionally, the number
of symbol errors that can be corrected by the receiver depends
on the coding rate used by the LoRa transmitter.

In order to evaluate the throughput performances of the
demodulators, we implemented LoRa decoder in Python.
We used an open-source LoRa receiver framework [23] that
jointly demodulates and decodes LoRa samples and separated
the decoder and demodulator modules. We then implemented
the decoder module separately in Python such that the output
of any demodulator can be decoded. This allows for a modu-
lar implementation of a LoRa receiver pipeline. Our decoder
implementation first extracts the symbols corresponding to
LoRa header from the demodulator output. It infers the pay-
load CRC and payload length information by reversing the
process of Gray encoding, interleaving, shuffling, and Ham-
ming encoding. Finally, these operations are performed on
the symbols corresponding to the payload and the final mes-
sage is displayed as the output. This process is repeated for
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(a) (b)

(c) (d)

Figure 3: Experimental Setup for LoRa deployments. (a) Indoor LoS, (b) Outdoor, (c) 1st and (d) 2nd Floor Indoor NLoS.
Triangle:Base Station, Circles:Transmitters

each demodulator’s symbols and the final output is used to
calculate the metrics. We validate this Python implementation
of the standard LoRa decoder in Section §4. As shown in
Fig. 13 in Appendix C.1, the implemented decoder is inde-
pendent of the demodulators and thus can be integrated with
any other demodulator in the pipeline. This openly accessible
implementation we have made available, can be used by other
researchers to evaluate their demodulator on end-user metrics.

3.4 Metrics
The final module of OpenLoRa is the set of metrics that eval-
uate the end-to-end-performance. This module takes in the
demodulated symbols and decoded bits and outputs the calcu-
lated metrics. We use the following definitions for the metrics
exposed by our framework:

1. Symbol Error Rate (SER): SER is calculated as the ratio
of number of incorrect symbols to the total number of
transmitted symbols. This metric evaluates the efficiency
of demodulator algorithms. With prior knowledge of the
transmitted symbols, a one-to-one comparison is used to
determine the number of incorrect symbols per packet.

2. Packet Reception Rate (PRR): PRR is calculated as the
ratio of number of correct packets received to the total
number of transmitted packets. A packet is considered
correct if and only if the received message (after error
correction) is equal to the transmitted message. Thus, PRR
is determined from the output of the decoder.

3. Throughput: This is the one of the most important metrics
from an end-to-end workflow perspective. Throughput is
defined as the number of correct bits received per second.
Towards calculating throughput, we only consider correct
packets i.e.,packets where all the received bits are correct.

Calculating metrics from the decoded bits provides a holis-
tic evaluation of the receiver performance of the demodulator
algorithms, which we believe is critical in practical LoRa de-
ployments. We will use the metrics used in the papers being
validated first, in order to cross-validate our implementation
in Section §4. Then, we will present our evaluations using the
end-to-end metrics of Packet Reception Rate and Through-
put obtained from the output of decoder in Section §5 under
varying settings, configurations, and scenarios.

4 Cross Validation of the Demodulators

In order to validate the fidelity of our framework and imple-
mentation of the various demodulators, we recreate a repre-
sentative result from each of the four papers considered. As
mentioned in Section §2, each existing work proposes unique
techniques to resolve multi-packet collisions. Existing works
compare their performance against standard LoRa and a few
other existing state-of-the-art. However, each one of them
uses a dataset that has been captured in different experimental
scenarios, using different configurations for Spreading Factor,
Bandwidth, duty cycle and concurrency.

In this section, we recreate the experimental setup as dis-
cussed in the original papers to the best of our knowledge and
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Figure 4: Cross-validation of results from original papers : (a) FTrack: SER vs SNR (b) CoLoRa: Network Throughput vs SNR
(c) NScale: SER vs SNR (d) CIC: Throughput vs Aggregate rate

(e) Cross-validation of Std-LoRa Decoder : SER and BER for varying coding rates of a single transmitter

report the same result metrics. The goal of this exercise is
two-fold : 1) To validate our implementation by recreating
the original reported results in each of the papers considered
2) To provide a module in our framework for future works to
recreate the existing works and their results.

We have selected the following results to recreate :
1. FTrack’s Fig. 14 : SER vs SNR
2. CoLoRa’s Fig. 12 : Throughput vs SNR
3. NScale’s Fig. 11a : SER vs SER
4. CIC’s Fig. 28 : Throughput vs transmission rate

FTrack: Following FTrack’s setup, we created the two-node
collisions initiated by beacon packets. Upon listening to the
beacon packets, the two LoRa nodes send packets with a ran-
dom delay within a packet duration ensuring collisions. Each
node transmitted packets of fixed length with SF8 and BW
250kHz. To achieve the SNR ranges of low (<5dB), medium
(5 – 20 dB) and high (>20dB) as mentioned in the paper, we
installed nodes at appropriate distances to achieve SNRs of
5, 15 and 25dB respectively. Fig. 4 (a) shows that the SER
decreases with increasing SNR, implying better collision res-
olution at high SNRs by FTrack. SER of ≈ 0.1 is in complete
agreement with the results presented in the original work.

CoLoRa: We design the experiment with a 20-node architec-

ture that closely follows the description in the original paper.
Each node transmitted SF10, BW 250kHz packets at a fixed
rate of 1 packet per second. As mentioned in the paper, we
captured data for high SNR packets and then added Additive
White Gaussian Noise (AWGN) on the captured data to vary
its SNR in a controlled manner. Fig. 4 (b) shows the through-
put that we obtain for varying levels of emulated SNR. As the
SNR increases from -15dB to 10dB, the network throughput
increases from 200 bits/s to over 400 bits/s. This result is in
complete agreement with the original work.

NScale: For NScale, we generated beacon-initiated collisions
with the responding nodes transmitting packets with SF10 and
BW 125kHz, following the experimental setup of NScale. We
installed nodes at distances that ensured SNRs of -10, 0, 10,
and 20 dB. As shown in Fig. 4 (c), lower SER of 0.04 at 20dB
SNR indicates strong collision resolution capability of NScale.
SER increases slightly for -10dB SNR to approximately 0.1,
close to the results presented in NScale. This trend is similar
to the original results presented and verifies that NScale is
able to achieve low SER even at -10dB SNR.

CIC: In order to recreate the result in CIC, we used the open
source data-set provided by CIC in the GitHub repo instead of
designing a new experiment. The results, as shown in Fig. 4
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(d) are in complete agreement with actual results presented
in the paper. CIC’s throughput improves from 5 packets per
second to over 40 packets per second as the aggregate rate
increases, indicating its ability to resolve collisions.

Std-LoRa Decoder : We also validate the correctness of our
decoder implementation, since it forms the basis of through-
put in Section §5. To validate the decoder, we designed an
experiment to study the impact of Forward Error Correction
(FEC) over raw symbols. LoRa offers 4 coding rates : 4/5, 4/6,
4/7, 4/8 where 4/8 implies twice as many redundant bits as
data bits. Therefore, higher coding rates lead to better reliabil-
ity and resilience to bit errors, but lowers effective data-rate.
We placed a LoRa transmitter in a NLoS setting from the
receiver to ensure low SNR of approximately -15dB. We
transmit SF8 packets with 250 kHz BW and vary the coding
rate of the transmitter for the same message. Fig 4 (e) shows
SER and BER for varying coding rates. We can observe that
the SER remains almost constant, since SER is unaffected by
the coding rate and only depends on the SNR. However as
the coding rate varies from 4/5 to 4/8, redundancy increases
and as expected, the decoder is able to correct more errors
such that the Bit Error Rate decreases from 7.7% to 1.2%.
This result establishes the expected decoder operation and
validates our implementation of the standard LoRa decoder.
This reliability comes at the cost of longer packet time with
the coding rate of 4/8 needing 64 ms to transmit the same
data as compared to 49 ms for 4/5 coding rate.

To summarize, we recreated one representative result from
each of the papers being validated to verify the correctness
of our implementation as well as validate the results with the
exact same experimental setup described in the respective
papers. We show that the results recreated are in complete
agreement with that in the original papers. We also validated
the decoder block implemented by comparing the SER and
BER performance for varying coding rates. In the next section,
we design new experiments to further test the throughput
performance of each of these demodulators integrated with
our LoRa decoder block.

5 Experimental Evaluation

We evaluate the performance of the five demodulators on
several metrics and configurations. We aim to answer the
following questions in this section through our experiments:

• Do collision resolution techniques improve the overall
network throughput in the presence of collisions?

• What is the impact of variations in the SNR for different
transmitters on decoding multi-packet collisions?

• What is the impact of LoRa and other non-LoRa narrow-
band interferers in decoding concurrent transmissions?

• How many concurrent transmissions can be successfully
decoded from the cumulative signal?

• How does the time offset between two colliding packets
affect the demodulation and throughput performance?

In the rest of this section, we describe the experiments per-
formed and the results observed to answer these questions.
Most of the experiments were repeated for two different con-
figurations: SF8, BW 125kHz and SF10, BW 250kHz, to
represent low and high air-times respectively. Unless other-
wise mentioned, the default configuration is the larger packet
airtime with SF10, BW 250kHz, and a coding rate of 4/5.

5.1 Impact of transmission rate on Network
Throughput

In this section we evaluate the overall network throughput
achieved by various techniques for Indoor LoS, Indoor NLoS
and Outdoor data sets for a 20-node network. The transmis-
sion rate of each node is varied from 1 packet/s to 5 pack-
ets/s, resulting in an aggregate network rate of 20 packets/s
to 100 packets/s as the x-axis. Packets were generated with
inter-arrival times following an exponential distribution. We
collected upto 6000 packets for each iteration of this exper-
iment for different transmission rates, repeated for both SF,
BW configurations. Each data point in the figures presented
is averaged over all these packets.
Indoor LoS: In this scenario, packets from almost all the
nodes are captured at high SNR therefore, all techniques per-
form at their best. We present the results and analysis of this
scenario in Appendix D.1.
Indoor NLoS: At low-SNR indoor NLoS scenario, where 20
nodes are deployed across two floors in an office building, a
trend similar to indoor-LoS can be observed with increasing
Transmission Rate. As shown in Fig. 5 (a) and (b), at low
SNR, the average network throughput is lower than that of
higher SNR for most demodulators. All the demodulators
achieve their peak throughput at 40 packets/s in case of SF8
transmissions, beyond which it decreases with an increase
in the aggregate transmission rate. In case of SF10 transmis-
sions, a much sharper descent in the throughput curve can be
seen due to the compounding of the lower SNR with more
severe collisions. As noted by the authors themselves in [15],
FTrack fails to detect packets at SNRs lower than 10dB. Since
majority of the nodes operated near the noise floor (0dB SNR)
in this setting, FTrack failed to detect any packets and is not
shown in the corresponding Fig. 5.
Long Range Outdoor: To test the long-range capability of
LoRa and the demodulators, we deployed LoRa nodes in
outdoor environments at distances as far as 8 km from the
receiver. Transmissions from these devices were received at
SNRs as low as -15dBm. At this low SNR, even schemes that
are specifically designed for low-SNR such as NScale were
unable to detect any packets. While only CIC was able to

1172    20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



20 40 60 80 100
Transmission Rate (packets/s)

200

400

600

800

1000

1200

T
hr

ou
gh

pu
t 

(b
it

s/
s)

(a)

20 40 60 80 100
Transmission Rate (packets/s)

0

200

400

600

800

1000

T
hr

ou
gh

pu
t 

(b
it

s/
s)

(b)

20 40 60 80 100
Transmission Rate (packets/s)

0

20

40

60

80

100

T
hr

ou
gh

pu
t 

(b
it

s/
s)

(c)

Figure 5: Throughput of a 20-node indoor NLoS network with increasing aggregate transmission rates
(a) SF8, 125kHz bandwidth (b) SF10, 250 kHz bandwidth

(c) Throughput of a 20-node outdoor network with SF10, 250 kHz bandwidth

receive packets, its network throughput is worse than that of
standard LoRa as seen in Fig. 5 (c).
Summary: In summary we arrive at the following conclu-
sions : on an average, the network throughput is higher for
SF8/125kHz than that of SF10/250kHz for every demodu-
lator. This is because, for the same message, SF10/250kHz
packets have twice the duration of SF8/125kHz, which leads
to a higher probability of collisions. As the aggregate rate
increases, the network throughput peaks due to higher traffic.
Further increments lead to an increased number of collisions,
thus reducing network throughput. Extreme combination of
configuration parameters: NLoS, SF10, 100 packets/s (Fig. 5
(b)), leads to comparable throughput for all demodulators,
with excessive collisions nullifying any gains from the elabo-
rate demodulation techniques as compared to the simplistic
Std-LoRa. CIC demonstrates significant throughput gains
over Std-LoRa in both high (>10dB) and low SNR (around
0dB) settings, followed by FTrack (in high SNR scenario) and
NScale. CoLoRa despite performing better on the metrics of
SER and BER, falls short of matching Std-LoRa’s throughput.
FTrack fails to demodulate any packets in the low SNR set-
tings. Most techniques perform poorly at extremely low SNRs
(around -15dB) as their preamble detection fails and is not as
robust as Std-LoRa. Based on our experiments we believe that
further study and novel techniques for packet detection and
collision resolution, especially in low-SNR regimes is needed.

5.2 Impact of Signal to Noise Ratio (SNR) on
Network Throughput

We note from the network throughput in the long-range out-
door settings above that none of the existing techniques per-
form better than Std-LoRa at extremely low SNR scenarios.
To study the impact of SNR on the throughput performance
of each demodulator, we design a new controlled experiment.

In the Indoor setup, we deploy 20 LoRa nodes and accurately
control their transmit power and physical placement such that
all the nodes have comparable SNR that falls under one of
the following categories. We repeat the experiment such that
all the nodes are in High, Medium, Low, and Extremely-low
SNR categories, as defined below :

• High SNR : >10 dB

• Medium SNR : 5 to 10 dB

• Low SNR : -5 to 5 dB

• Extremely Low SNR : <-5 dB

Each transmitter was configured at SF10, BW 250kHz; we
collected upto 3000 colliding packets for each combination
of SNR and transmission rate. Fig. 6 shows the throughput
of the network as a function of decreasing SNR regime de-
fined above, repeated for aggregate transmission rates of 20,
60 and 100 packets/s respectively. Due to the controlled set-
ting needed for this experiment, it was not performed in the
outdoor setting.
Summary: The results corroborate the earlier observations in
indoor and outdoor experiments. CIC, NScale, and FTrack out-
perform Std-LoRa in high SNR, low traffic scenarios (Fig. 6
(a)) because of lesser collisions. However, as the SNR drops
below noise floor, the throughput gains delivered by these
demodulators decline sharply. FTrack fails to detect packets
in lower SNR settings, whereas the throughput for other de-
modulators drop as we move towards lower SNR and higher
transmission rates (Figs. 6 (b) and (c)). As stated in NScale,
its performance is comparable to FTrack at high and medium
SNR, and outperforms FTrack at lower SNRs. CIC improves
the most over Std-LoRa in most of the scenarios, NScale
also performs well in medium and low SNR regimes, not
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Figure 6: Throughput of a 20-node SF10 network with varying SNR and aggregate transmission rates
(a) 20 packets/s (b) 60 packets/s (c) 100 packets/s

suffering excessive drop in throughput with lower SNR. At
extremely-low SNR settings, all these techniques fail to de-
modulate most of the packets, which is further worsened at
higher traffic rate. Similar to our earlier observations, the SER
analysis of CoLoRa indicates that even though it has low
SER, at low and extremely low SNRs, the overall throughput
is worse than that of Std-LoRa. From these experiments, we
conclude that further research is required to achieve signifi-
cant throughput gains over standard LoRa in extremely-low
SNR and/or dense deployments, that are typical scenarios for
LoRa applications.

5.3 Impact of Interference on Network
Throughput

In addition to underutilized network capacity, co-existence
of multiple LoRa networks as well as across technologies
was identified as a bottleneck for scalability [11, 13]. In this
experiment, we evaluate the throughput performance of the
five demodulators in the presence of LoRa transmissions from
neighboring LoRa networks as well as non-LoRa, Gaussian
Frequency Shift Keying (GFSK) narrow-band transmissions,
representing other LPWANs operating in the same band. To
the best of our knowledge, this is the first work to design an
experiment and evaluate the impact of interference on the
demodulator performance.

The primary LoRa network in this setup consists of 20
nodes, configured at SF10, BW 250kHz setting. We study the
impact of the following three interfering nodes, each placed
within few meters from the receiver; the interfering signal
transmits at a duty cycle of 50% with an SNR of approxi-
mately 7 dB at the receiver.

i SF8, BW 125kHz LoRa node sending 93 ms packets

ii SF12, BW 500kHz LoRa node sending 290 ms packets

iii GFSK node sending 50 ms packets

Summary: Fig 7 shows the network throughput under these
three types of interference. Ambient shows the results with
no added interference. Due to the orthogonality of CSS, we
expected no impact from SF8, BW 125kHz node. However, it
does have a very minor impact on the performance of SF10
nodes for most demodulators. Although LoRa signals with
different SFs are typically assumed to be perfectly orthogo-
nal, this result attests to the Quasi-Orthogonality of different
SFs (discussed in [24]). This quasi-orthogonality leads to
residual interference even after dechirping which raises the
noise floor and consequently reduces the SINR (Signal to In-
terference + Noise Ratio). GFSK interference has a minimal
impact on the throughput performance, with a minor drop
attributed to SINR. This showcases the inherent robustness of
CSS to other narrow-band interference. SF12, BW 500kHz
interference however notably reduces the throughput of all
demodulator algorithms by almost 50%. This is primarily due
to the longer packet duration of SF12 which has higher prob-
ability of interfering with complete SF10 packets whereas
shorter duration of SF8 packets are less likely to interfere
complete SF10 packets. Thus, higher SFs have more impact
on lower SF transmissions due to the increased probability
of collision. This is critical to notice in practical deployments
where multiple LoRa networks, each operating at a different
SF would co-exist. Additionally, SF-based MAC protocols
have been proposed as a way to improve LoRa’s scalability.
Thus, we believe that collision resolution techniques that con-
sider the impact of interference from other LoRa networks
with multiple SFs remains to be developed.

5.4 Impact of concurrent transmissions on
Packet Reception Rate

In the experiments so far, the nodes transmitted packets ran-
domly at a predetermined rate. As the rate increased, packet
collisions increased, affecting network throughput. To under-
stand the efficacy and limitations of each algorithm in decod-
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Figure 7: Throughput of a 20-node SF10 network in the pres-
ence of various interference signals

ing concurrent collisions, we performed controlled collision
experiments. We synchronized all the nodes with a beacon
packet: on receiving a beacon, each sender transmits a single
packet with a random delay between 0 and packet duration.
We define concurrency to be the number of colliding packets
within one packet duration i.e.,each packet partially overlaps
with every other packet.

We evaluate the number of colliding packets that can be
resolved by each demodulator using the metric Packet Recep-
tion Rate (PRR). We measure PRR as we increase the number
of concurrent packets from 2 to 12 in indoor LoS setup. We
define PRR as the ratio of fully correct packets decoded at
the receiver to the total number of packets transmitted from
the transmitters. We collect upto 180 such colliding packets
for each iteration of the experiment and present the metrics
averaged over this dataset. Figs. 8 (a) and (b) show the PRR
for SF8/125kHz and SF10/250kHz.

As the number of concurrent transmissions increases, PRR
decreases for every demodulator. As expected, Std-LoRa has
a sharp decrease in PRR since it demodulates at most one
packet at a given time. We notice that irrespective of the
number of nodes, Std-LoRa aligns with the strongest signal
and successfully demodulates symbols corresponding to that
packet. CoLoRa intentionally misaligns its demodulation win-
dow to detect more packets. Although CoLoRa detects most
of the packets, it fails to demodulate when the majority of a
packet overlaps with other packets. This is because of errors
in finding peak ratios accurately. NScale builds on CoLoRa
and improves demodulation; PRR using NScale is higher than
that of CoLoRa. However, it suffers from not recognizing
frequency bins of the detected peaks in presence of collisions,
often leading to small offsets in the demodulated symbols.
FTrack’s use of time and frequency domain features to create
frequency tracks and separate out collisions enables it to infer
more number of colliding packets. FTrack is able to correctly

output 3% to 5% more packets as compared to Std-LoRa.
CIC, which improves on FTrack has the highest PRR. CIC’s
use of interference cancellation and spectral intersection fea-
tures to demodulate enables it to demodulate most number of
colliding packets. Beyond 8 concurrent collisions, PRR of all
the approaches is below 0.2.
Summary: We observe a sharp decrease in PRR with in-
creasing concurrency for all techniques because increasing
concurrency reduces SINR. In this controlled collision setting,
we see that SF10 transmissions result in a higher PRR, in con-
trast to the observations for scenarios with random collisions.
This is because higher packet air-time with SF10 works in
favor of demodulators here as there is more leeway in how
closely in time the transmitters can collide. As the network
scale of LoRa deployments increases, we expect concurrent
collisions to occur with higher probability. We study the im-
pact of the time between two colliding transmissions in more
detail in the following section. We believe that there is still
room to improve in decoding collisions with more than two
concurrent transmissions.

5.5 Impact of Packet Time Offset (PTO) on
Packet Reception Rate

It is evident from the concurrent transmission experiments
that as the number of concurrent transmissions increases, the
packet reception rate and hence network throughput decreases.
Prior work [15] has also observed that the relative time (and
frequency) offsets between two colliding packets plays a criti-
cal role in the throughput performance. Therefore, the impact
of concurrent transmissions on throughput is a function of the
time offset between the colliding packets. To understand the
impact of time offsets, we design the following experiment:
two LoRa nodes are connected to an Arduino microcontroller
(MCU). The MCU, using a hardware interrupt, triggers the
LoRa nodes such that the difference in the start of their packet
transmission is configurable, thus controlling time offsets.
Both the nodes transmit the same data. We repeat the exper-
iment 20 times for each offset value and present the PRR
metric averaged over the whole data.
Summary: Figs 9 (a) and (b) show the PRR as a function of
increasing time offsets between two LoRa nodes. NScale and
CoLoRa depend heavily on packet offsets and peak ratios to
demodulate symbols and to group symbols from each trans-
mitter together. As the packet time offset increases, their PRR
performance improves as accuracy in peak estimation and
peak ratio will increase. So, these show significantly better
performance as the packet offset time increases, with NScale
improving its PRR from 0 to 0.9 when changing collision
time offset from 5% to 30% for SF8 packets. Similarly, CoL-
oRa shows a notable improvement in PRR over the same
range, going from 0 to 0.4. Std-LoRa is unaffected by the
time offsets since it always decodes the strongest signal. CIC
and FTrack demodulate packets iteratively and use time and
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Figure 8: Reception rate of fully correct packets with increasing concurrent transmissions
(a) SF8, 125kHz bandwidth (b) SF10, 250 kHz bandwidth

frequency information to separate collisions. The impact of
time offsets on FTrack and CIC is also therefore negligible.
We conclude that although most demodulators focus on im-
proving network throughput by resolving collisions, some
are better suited for collisions with a higher overlap in time
than others. We observe that demodulation techniques that
utilize both time and frequency resolutions are more resilient
to PTO. Therefore, more study is needed on improving time-
frequency resolution when multiple concurrent nodes collide
within short time offsets.

6 Discussions and Limitations

Our results shows that packet decobability and hence network
throughput differs significantly under varying network condi-
tions. Therefore, rigorous evaluation of the existing and future
LoRa demodulators over a wide variety of network conditions,
as described in Section 5. We have made the datasets of the
various network conditions and scenarios evaluated publicly
available. Although this is an extensive set of scenarios, it
certainly is not an exhaustive list. We strongly encourage the
community to share new scenarios and datasets.

In OpenLoRa, we focused on network throughput com-
parisons across multiple demodulators. However, we did not
compare the computational complexity of existing techniques.
Since we relied on accurate recreation of existing works, op-
timizing each technique’s implementation was not the focus.
In order to evaluate the practical usability of a demodulator,
computational complexity is critical. For example, Std-LoRa
and CoLoRa rely on dechirping followed by FFT for packet
detection and demodulation and cost the least in terms of
number of computations, but also have the lowest throughput
improvements, i.e., the computational complexity for both

is Nlog(N) where N is the number of samples per symbol
and is typically the size of the FFT window as well. On the
other hand, FTrack, NScale, and CIC use auto-correlation to
detect the start of packets and therefore their packet detec-
tion cost these schemes N2 computations. FTrack computes
the spectrogram for the whole received buffer using a sliding
window and tracks the frequencies in each window of the
spectrogram; therefore, its demodulation block has N2log(N)
complexity per window. CIC computes spectrogram for a
fixed number of sliding windows regardless of SF as opposed
to sliding over whole demodulation window and therefore
has computation cost of cNlog(N) where c is a constant that
depends on the number of fixed sliding windows. NScale
performs multiple dechirpings followed by FFT to translate
timing offsets to frequency features and have a computation
cost of kNlog(N) where k is the number of multiple dechirp-
ings. The computation cost for CIC and NScale is therefore
lower than that of FTrack and more than standard LoRa’s
and CoLoRa’s computation cost. Thus, further evaluations
on the network throughput improvements along with their
computational complexity is needed to idenitfy the practical
challenges in deploying the demodulators.

In this work, we focused on novel demodulators that receive
from commercially available LoRa transmitters. More recent
works such as CurvingLoRa [25] and NetScatter [26] have
proposed changes to the transmitter to improve resilience to
packet collisions, communication range, and network through-
put. Although our framework cannot be used for non-standard
LoRa transmitters, the new techniques can still use our experi-
mental scenarios to test their performance in different network
conditions and compare against standard LoRa.
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Figure 9: Reception rate of fully correct packets with increasing collision time offset
(a) SF8, 125kHz bandwidth (b) SF10, 250 kHz bandwidth

7 Conclusions

In this work, we implement and validate four state-of-the-art
collision resolution techniques for LoRa on a variety of sys-
tem configurations and scenarios. We developed OpenLoRa, a
Python framework that provides a uniform platform to evalu-
ate existing works over the same datasets and metrics. We also
design a standard LoRa decoder in order to study the end-to-
end performance. This platform will allow future researchers
to plug-in their demodulator and benchmark against existing
works. We observe that metrics such as network throughput
are more meaningful for practical deployments. We study the
impact of interference and variations in SNR on the network
throughput performance. We perform a wide range of experi-
ments to emulate practical deployment settings, showcasing
the strengths and challenges of existing LoRa demodulators.
Our evaluations show that there are open challenges in the
low-SNR, long-range regime, with more room for innovations
in LoRa packet collision resolution.
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A Appendix: LoRa Primer

LoRa Modulation. In LoRa, data is modulated using a Chirp
Spread Spectrum (CSS) scheme. In CSS, symbols are chirp
signals whose instantaneous frequency increases linearly with
time as shown in Figure 10 (a). A base chirp starts from a
frequency of −BW

2 and increases linearly to BW
2 over a symbol

duration of Ts where BW is the bandwidth of transmission
and Ts can be defined as Ts =

2SF

BW . SF ∈ {7,8,9,10,11,12}
defines a packet’s Spreading Factor, a value that dictates the
data-rate, resistance to interference and range of transmission.

Every symbol S(t, fsym) is derived by cyclically shifting
a base chirp C(t), as shown in Equation 1. For example in
Figure 10 (b) and (c), S(t, f1) and S(t, f2) are obtained by in-
troducing a frequency offset of f1 and f2 to the base chirp. The
data to be transmitted modulated these starting frequencies
viz., f1 and f2.

C(t) = e j2π(0.5 BW2

2SF t− BW
2 )t

, 0 ≤ t ≤ Ts (1)

S(t, fsym) =C(t) · e j2π fsymt (2)

LoRa Demodulation. To demodulate a symbol, a LoRa re-
ceiver aligns and multiplies a down-chirp C−1(t) (the complex
conjugate of C(t)) with the received symbol S(t, fsym) (Equa-
tion 3). Dechirping transforms the chirp signal to a sinusoid
with a constant frequency equal to the start frequency fsym.
This frequency is located by finding the peak in the FFT of
the dechirped signal. The operation of dechirping followed by
FFT concentrates the symbol’s energy into a single frequency,
thus providing the spread spectrum gain necessary to decode
symbols in sub-noise conditions.

C−1(t) ·S(t, fsym) = e j2π fsymt (3)

Since dechirping requires the downchirp to align with the
received symbol, a LoRa receiver determines the onset of a
new packet by searching for its preamble and uses it to identify
the symbol boundaries of symbols. LoRa preamble comprises
of a sequence of N = 6 to 65535 consecutive C(t) symbols,
followed by two SYNC symbols S(t,s1),S(t,s2)(s1 ̸= 0, s2 =
s1 +8) and 2.25 down-chirps C−1(t). To detect a new packet,
the receiver continuously de-chirps and performs an FFT until
it finds N consecutive peaks with the same frequency. The
SYNC words and down-chirps then help locate the symbol
boundaries. In CSS, time offsets are equivalent to frequency
offsets. For example, as shown in Figure 11 time shifting
a chirp symbol by τ will introduce an equivalent frequency
offset in the starting frequency. Therefore, frequency offsets in
LoRa can easily be compensated by identifying the equivalent
time shifts during preamble detection.
Effect of collisions on demodulation. Standard LoRa is in-
capable of demodulating data symbols in case if multiple
packets collide. Should multiple LoRa packets arrive simulta-
neously at the receiver, there will be multiple fsym values to

detect for any given symbol window, making it difficult for
standard LoRa to choose one. Standard LoRa assumes that
the maximum peak in the FFT always corresponds to the data
value of the packet of interest. Whereas, in case of packet col-
lision, multiple peaks from interfering packets show up in the
FFT as shown in Figure 12 and the assumption of maximum
peak’s link to the packet of interest is not guaranteed anymore
since height of interfering peaks may surpass the height of
true peak.

B Appendix: LoRa Demodulators Validated

B.1 FTrack [15]
FTrack [15] relies on Short Time Fourier Transform (STFT)
to obtain time and frequency features. Applying STFT to the
LoRa symbols would result in frequency tracks that increases
linearly with time. An appropriate STFT window size that
offers good frequency resolution to identify the frequency
and good time resolution to follow the progression of a chirp
is challenging to determine. FTrack proposes to apply STFT
on the dechirped LoRa symbol to leverage the spread spec-
trum gain as well as to remove the linear change in frequency
with time. Dechirping the received buffer results in a sinusoid
whose frequency remains constant throughout the symbol
duration. This allows FTrack to choose a window size of a
symbol length that yields a good frequency resolution (of
upto 1 bin) if perfectly aligned with the symbol boundaries.
Dechirping allows STFT to have the least possible frequency
variation with time (single frequency over a symbol duration)
and therefore yields the best possible frequency resolution.
It yields a constant frequency track over a symbol duration,
rendering it simpler to track the frequency of a packet of in-
terest. FTrack, thus, employs dechirping followed by STFT
to extract the longest frequency tracks to detect preamble as
well as data symbols. Typical LoRa preambles consists of 8
base upchirps, that promise a constant frequency track for a
duration of 8 symbols in the final spectrum. FTrack extracts
symbol edges from preambles and uses this time information
to detect the symbol boundaries of payload. FTrack builds on
the observation that all the interfering packets are misaligned
in time and hence their symbol boundaries are misaligned in
time. FTrack detects the preambles of all colliding packets
and leverages the time offset between colliding packets to
differentiate transmitters. The receiver aligns itself with the
boundaries of a packet of interest : once aligned, it observes
the frequency tracks of current packet as well as that of the
interfering tracks. The frequency track of the packet of in-
terest will be continuous in the given window whereas all
the interfering tracks will change abruptly. Therefore, after
detecting all the LoRa packets in a received buffer, FTrack
iteratively demodulates each packet. While demodulating a
specific packet, FTrack cancels out interfering symbols by
tracking the frequency continuity. At the end of this itera-
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(a) (b) (c)
Figure 10: An illustration of Chirp spread spectrum (a) Base Upchirp (b) Data-Chirp 1 (c) Data-Chirp 2

Figure 11: Time offsets in LoRa symbols translates to
Frequency offsets

Figure 12: Symbol spectrum with and without collisions

tive process, FTrack receiver detects and demodulates data
symbols from multiple transmitters that collided with each
other. FTrack’s performance suffers in low-SNR conditions.
At SNRs below 5 dB, energy of the frequency tracks corre-
sponding to preamble and data symbols are not high enough
and hence are buried in the noise floor and is not decoded.
Thus, it fails to detect and/or demodulate LoRa packets at
SNRs below 5 dB.

B.2 CoLoRa [17]
CoLoRa [17] proposes a novel technique to translate time
offsets to frequency features, in turn using that to resolve
packet collisions at low-SNR regimes. CoLoRa starts with a
misaligned window size of one symbol length. It determines
the presence of interference based on the number of peaks
appearing in the FFT obtained after dechirping; since multi-
ple peaks imply packet collisions as discussed in Appendix
A. Once collisions are confirmed, CoLoRa proposes an in-
terleaved window selection strategy. It chooses a misaligned
window such that no chirp is covered fully by the window
i.e.,each chirp is segmented and thus falls into two consecu-

tive windows such that the normalized FFT peak is bounded
within [1/3,3] in each window. It then jumps the window over
received buffer and performs dechirping followed by FFT
at each point.The resulting spectrum contains peaks whose
height is proportional to the segment of chirp appearing in the
current window. CoLoRa observes that when a chirp is split
into 2 windows, the frequency at which the peaks appear in
the FFT remains the same across the 2 windows. However,
the energy and hence the height of the FFT peak at the cor-
responding frequency in each window is proportional to the
duration of the chirp segment within that window.

CoLoRa proposes Peak Ratio, which is defined as the ra-
tio of peak heights of a chirp appearing in two consecutive
windows; it captures time misalignment through frequency
features. It proves that the peak ratio is identical for all chirps
of the same packet since the in-window distribution of chirps
is identical for all the symbols of the same packet. Addition-
ally, peak ratios differ across packets since the in-window
distribution of chirps is different due to misalignment of inter-
fering packets. Since CoLoRa relies on accurate estimation
of Peak ratio, it proposes an iterative peak recovery algorithm
to estimate the heights of strong peaks first and cancel their
contribution while estimating the low-SNR peaks. Since the
chirps are segmented, wide side lobes appear around peaks
that may bury low SNR peaks. CoLoRa uses k-means cluster-
ing (where k is the number of packets detected) to classify the
packets of different clients. Peaks with identical peak ratios
are clustered together, following the observation that the sym-
bols of the same packet have the same peak ratio. Each cluster
represents a unique packet, thus decoding multiple packets
from the collided signal.

B.3 NScale [16]
While FTrack and CoLoRa focus on decoding multi-packet
collisions, their performance improvements over standard
LoRa demodulator is noticeable at high SNR. NScale [16]
focuses on decoding packet collisions at SNRs as low as -
10dB where the relative performance improvement of FTrack
and CoLoRa degrades. Similar to CoLoRa, NScale translates
the timing offsets to frequency features and further amplifies
the time offsets by non-stationary signal scaling. NScale’s
strength lies in its ability to decode and resolve collisions
of LoRa packets below -10 dB SNR. Instead of sliding the
window as FTrack does, NScale jumps the window of size
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that promises maximum frequency resolution i.e.,duration
of a symbol. To retain sub-noise decodability, NScale relies
on dechirping to accumulate energy at the single frequency.
While jumping the window across the received buffer, NScale
observe that, for a specific LoRa packet, all the symbols of
interest will have same in-window distribution in consecu-
tive windows whereas in-window distribution for interfering
symbols will be different. Simply put, the location of symbol
edges where the symbols transition to next symbol is same
across all the windows of a given packet but across different
packets, these symbol edges are different. This essentially
stems from the fact that collisions are misaligned in time.
Similar to CoLoRa, NScale translates symbol edge offsets to
the peak heights.

NScale introduces a novel non-stationary scaled window as
opposed to conventional rectangular window of FTrack and
CoLoRa. Non-stationary scaling across the windows ampli-
fies the timing misalignment of symbols of interfering packets.
The linear amplitude scaled window scales the amplitude of
peaks with respect to their in-window distribution and there-
fore amplifies the misalignment of different packets. This
amplification helps estimate the time offsets for very low
SNR packets. Consequently, different packets get a unique
fingerprint in terms of peak heights while symbols of a spe-
cific packet share the same fingerprint. NScale detects the
number of packets and their corresponding start and end in-
dices using correlation and then performs k-means clustering
to classify symbols based on their fingerprint.

B.4 Concurrent Interference Cancellation [19]
Concurrent Interference Cancellation (CIC) [19], similar to
FTrack, leverages time and frequency domain analysis to
decode multi-packet collisions. CIC introduces the concept
of sub-windows, which are a portion of the demodulation
window. It observes that, for a given packet of interest, sym-
bols from the packet appear in all the sub-windows; sym-
bols from interfering packets appear only in a subset of the
sub-windows. Therefore, the intersection of FFT of all the
sub-windows would result in the symbol of interest. CIC
proposes a sub-window selection algorithm that maximizes
interference cancellation.

CIC looks for the best sub-window which promises an
acceptable time resolution while compromising the least on
frequency resolution. It uses packet detection to determine the
start of all the colliding packets inorder to select the best set of
sub-windows. Unlike standard LoRa, CIC uses downchirp cor-
relation to detect the start of a packet. With prior knowledge of
symbol duration, CIC determines symbol boundaries within
each of the colliding packet. The sub-windows are chosen
such that it contains the most of each interfering symbol, us-
ing CIC’s knowledge of the symbol boundaries of interfering
packets. Spectral intersection of the FFT of the demodulating
window and the optimum set of sub-windows selected results

in a single FFT peak that corresponds to the symbol of inter-
est. It iteratively demodulates the rest of the packets in the
collided signal. CIC also proposes fractional frequency offset
to filter out interfering peaks that were not cancelled in the
spectral intersection. Additionally, it uses power-filtering to
estimate received power of each packet from its preamble and
discards symbols which do not qualify a certain power thresh-
old. Finally Spectral Edge Difference, filters interfering peaks
further and chooses one peak to be the final demodulated
peak.

B.5 Other recent works on LoRa demodula-
tion

In addition to the works presented above, other papers have
focused on LoRa demodulator design. The modular design of
our proposed framework renders it simple to integrate them.
Pyramid [20] is one such work which tries to resolve LoRa
collisions by tracking the change in FFT peak heights corre-
sponding to different interfering symbols. AlignTrack [21]
tracks and translates time offsets to frequency features, i.e.
peak heights, similar to CoLoRa. AlignTrack chooses a win-
dow which completely overlaps the packet of interest instead
of a misaligned window used by CoLoRa. AlignTrack’s com-
plete overlap gives highest peaks in FFT and therefore, has
least SNR loss. NeLoRa [27] is another work which tries to
push the limit of LoRa’s range by using deep-neural-network.
Their results show that its ability to decode packets with SNR
as low as -30dB.

C Appendix: Implementation Overview

C.1 Python Implementation

Figure 13: Flowchart of the Python implementation of the
proposed framework

C.2 Code Organization
The implementation has been organized into the following
major Python modules:

• config.py: Configures demodulation parameters such as
SF, BW, sampling rate to pass to the demodulators as
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Figure 14: Throughput of a 20-node Indoor LoS network with increasing aggregate transmission rates
(a) SF8, 125kHz bandwidth (b) SF10, 250 kHz bandwidth

well as the transmitted symbols and bits to compare
against and evaluate the desired metrics.

• master.py: Performs the highest level tasks and interfaces
with other modules. Reads in the input file, calls each
demodulator module to get the symbols and gets calcu-
lated metrics after decoding. Also implements parallel
upchirp-based preamble detection using Python multi-
processing capabilities.

• demod.py: Imports each demodulator implementation
and interfaces with each block to pass the data and pa-
rameters in appropriate format. Returns demodulated
symbols to the master block.

• decode.py: Implements the standard LoRa decoder as
described in the following subsection. Returns decoded
bits to the master block.

• metrics.py: Takes in the demodulated symbols, decoded
bits, and the configuration information to calculate all
the relevant metrics and saves then in the specified output
file.

D Appendix: Additional Results

D.1 Impact of transmission rate on Network
Throughput

Indoor LoS: Figs. 14 (a) and (b) depict the average network
throughput as a function of aggregate transmission rate in in-
door LoS setting. Network throughput is calculated as the sum
of the bits of successfully decoded packets per unit time. In
case of SF8 transmissions, the network throughput increases
with increasing aggregate rate upto the rate of 40 packets/s
for most demodulators, due to increase in traffic. However,

beyond a threshold, packet collisions are too high for a de-
modulator to resolve, leading to a drop in throughput. CIC
achieves its peak throughput at 60 packets/s because of its
power filtering and down-chirp based preamble detection fea-
tures. FTrack and NScale perform considerably well in this
high SNR scenario giving significant gains over Std-LoRa.
Even though Std-LoRa is unable to demodulate concurrent
transmissions, it latches on to the strongest signal due to cap-
ture effect and often correctly demodulates the packet from
the strongest transmission. This results is throughput num-
bers of Std-LoRa being comparable to other demodulators at
higher transmission rates when they suffer from abundance
of collisions. Another interesting observation is CoLoRa’s
throughput being slightly lesser than that of Std-LoRa despite
having a lower Symbol Error Rate (SER) and Bit Error Rate
(BER). Our analysis indicates that the reason is its erroneous
identification of peak frequencies and calculation of peak ra-
tios in the presence of high amount of collisions. CoLoRa
detects and correctly demodulates larger number of symbols
on average but the symbol errors are distributed across all
concurrent transmissions. It consistently makes errors in a
few of the bits in packets, which result in those packets being
discounted from throughput calculation.

This result is an important observation we make in noticing
the significance of end-to-end metrics such as Throughput
and Packet Reception Rate over Symbol Error Rate, which
could be misleading for end users. For SF10 transmissions,
due to its longer air-time, the impact of collisions lead to a
decreasing network throughput for all demodulators even at
transmission rates as low as 1 packet/second per node.
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E Appendix: Experimental Setup & Method-
ology

E.1 Network Experiments
All the network experiments and SNR experiments were per-
formed using 20 transmitting nodes T1 through T20, a roll-call
node R, as well as a beacon node B. R helped in setting up
the parameters for each experimental setup without manually
changing the setting at each location serially. Each transmit-
ter node (T1 through T20) would reply only to their specific
roll-call message from R. The roll-call messages were sent
at a predefined SF and BW. Therefore, all the nodes reset to
this SF and BW to listen and respond to the roll-call message.
These replies were also used for calculating node-specific
SNR at the USRP B200 (serving as a base station for each
experiment). Using the received SNR for each node Ti, we
could ensure every Ti would hear broadcasts from B. Simi-
larly, B transmits a broadcast to inform the nodes about the
settings such as SF, BW, transmission rate for the upcoming
experiment. After setup, B would broadcast control messages
to all 20 nodes telling each to begin transmitting messages
randomly. The beacon information about transmission rates
that each node Ti had to follow with a random time offset.
The time offsets were generated through Poisson distribution.
Each node transmitted to the base station for approximately
30 seconds. All network and SNR experiments were repeated
following the aforementioned roll-call and beacon process to
ensure no nodes were lost.

E.2 Interference Experiments
Interference tests utilized a similar setup to the Network Ex-
periments, however interfering transmitters were deployed
near(<10m) the receiving USRP B200. Interfering nodes in-
cluded a LoRa transmitter with varying SF’s and BW’s as
well as a GFSK transmitter. Network and interference ex-
periment Arduino code can be located within the Experi-
ment_Setup/Random_Network directory on the OpenLoRa
Github page5.

E.3 Concurrent Transmissions Experiment
Concurrent transmission experiments were performed using
a separate beacon node B to continually synchronize up
to 12 transmitting nodes T1 through T12. B would broad-
cast a short message instructing all nodes Ti to respond
within a pre-determined time. These time-limits were de-
termined by recording transmissions from a USRP B200
and measuring total transmit time. Offsets followed a uni-
form distribution within these time limits thus ensuring ran-
dom transmission overlaps. The concurrent transmission ex-
periment’s Arduino code can be located within the Exper-

5https://github.com/UW-CONNECT/OpenLora

iment_Setup/Random_Offset directory on the OpenLoRa
Github page5.

E.4 Packet Time Offset Experiment
To achieve reliable, and precise collisions with microsecond
accuracy, we relied on interrupt-driven transmissions. Two
transmitting nodes T1 and T2 (Adafruit Feather M0 boards),
were connected to a third driving node D periodically trig-
gering interrupts via a pin tied on T1 and T2. Upon receiving
the interrupt, T1 immediately transmitted its LoRa packet.
Node T2 however utilized a pre-determined delay before
transmitting. Delays on T2 were experimentally gathered
ahead of time by measuring packet transmission times on
a USRP B200. These delays were then calculated as some
fraction of the total transmit time for a single packet, and then
flashed onto T2. Both transmitting nodes were connected to
the same breadboard with similarly oriented antennas thus
ensuring similar SINR at the receiver. The packet time offset
experiment’s Arduino code can be located within the Ex-
periment_Setup/Precise_Offset directory on the OpenLoRa
Github page5.
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