
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

RHINE: Robust and High-performance Internet
Naming with E2E Authenticity

Huayi Duan, Rubén Fischer, Jie Lou, Si Liu, David Basin, and
Adrian Perrig, ETH Zürich

https://www.usenix.org/conference/nsdi23/presentation/duan

RHINE: Robust and High-performance Internet Naming with E2E Authenticity

Huayi Duan, Rubén Fischer, Jie Lou, Si Liu, David Basin, and Adrian Perrig
ETH Zürich

Abstract
The variety and severity of recent DNS-based attacks under-
score the importance of a secure naming system. Although
DNSSEC provides data authenticity in theory, practical de-
ployments unfortunately are fragile, costly, and typically lacks
end-to-end (E2E) guarantees. This motivates us to rethink au-
thentication in DNS fundamentally and introduce RHINE, a
secure-by-design Internet naming system.

RHINE offloads the authentication of zone delegation to
an end-entity PKI and tames the operational complexity in an
offline manner, allowing the efficient E2E authentication of
zone data during online name resolution. With a novel log-
ging mechanism, Delegation Transparency, RHINE achieves
a highly robust trust model that can tolerate the compromise
of all but one trusted entities and, for the first time, coun-
ters threats from superordinate zones. We formally verify
RHINE’s security properties using the Tamarin prover. We
also demonstrate its practicality and performance advantages
with a prototype implementation.

1 Introduction

The importance of DNS as an integral part of the Internet can-
not be overstated. If DNS is corrupted, so would be all relying
Internet services [33]. Yet, this critical system has no built-in
protection for data at rest or in transit. The infamous Kamin-
sky attack [57] raised worldwide awareness of the severity
of DNS cache poisoning and thereafter spurred the deploy-
ment of several protocol-level defense mechanisms. Recent
years have, however, witnessed a flurry of new vulnerabili-
ties [17, 66, 67, 90] that revive the threat of cache poisoning
and DNS hijacking in general [50].

The implications of these attacks are profound: they enable
the sabotage of a wide spectrum of online systems, ranging
from web applications and email to time synchronization and
cryptocurrencies [33]. One of most alarming facts is that DNS
plays an essential role in bootstrapping the Internet’s secu-
rity. In the modern web PKI, certificate issuance relies on

DNS-based channels for domain validation. If such channels
are unauthenticated, attackers can manage to acquire fraud-
ulent TLS certificates and impersonate domains [25, 27, 81].
Hence, an end-to-end (E2E) authenticated naming system is
necessary for E2E secure communication.

DNS Security Today. Strengthening plain DNS with security
guarantees has been a decades-long but still largely ongoing
endeavor. DNSSEC [18] is by far the most important security
extension to DNS. It allows a zone owner to cryptographically
sign DNS records which, at least in theory, averts the threat
of DNS hijacking. However, the deployment of DNSSEC is
still far from complete (e.g., it is estimated that only 25% of
DNS responses worldwide are validated as of mid-2022 [15]),
and years’ of practical experience indicates that it is highly
fragile and fraught with problems.

The complexity of DNSSEC makes its operation an error-
prone and expensive process. It requires each zone to synchro-
nize its keying materials with its parent. Any inconsistency
in an authentication chain will cause validation and hence
resolution failure. This has caused frequent outages at all
levels of the DNS hierarchy [54]. Validation failure can in-
cur severe overhead to DNS servers and the name resolution
process [53]. Partly because of these factors, and partly by
design [88], end hosts rarely validate signed records by them-
selves but rely on validating recursive resolvers at best [64].
As a result, DNSSEC fails to provide E2E data authentication
in practice, despite pervasive DNS interception [65, 71, 77].

The trust model of DNSSEC is also controversial. DNS is
not designed for security, and mismanagement of DNSSEC
by DNS operators is commonplace [29, 82]. Compromising a
zone’s secret key implies the control of all its subzones. This
raises the concern that DNSSEC consolidates the power of the
few Internet governance bodies and state governments over
the DNS namespace [83]; in fact, large-scale DNS hijacking
campaigns sponsored by state agencies have already been
observed in the wild [46]. DNSSEC requires a validating
entity to trust all zones on an authentication chain; any one of
them can provide correctly signed yet bogus data [2].

These issues have their root in DNSSEC’s underlying ar-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 531

chitecture, which mirrors the hierarchical namespace, and
therefore they cannot be resolved within DNS. This poses the
question: Is it possible to build a DNS-compatible yet robust
naming system that enables efficient E2E authentication?

Introducing RHINE. We provide an affirmative answer to
this question with the design, verification, implementation,
and evaluation of a system called RHINE. Our key insight is
that the authentication of zone data and zone delegation in
DNS, while treated identically by DNSSEC, should be decou-
pled. The latter form of authentication, which is more delicate
and costly, can be performed by external trusted entities in an
offline manner. Specifically, we employ certificate authorities
(CAs) from the web PKI to certify zone delegation, allowing
clients that already rely on these CAs to efficiently validate
zone data during online name resolution.

Despite its promising opportunities, this architecture also
raises unique challenges. Certifying a zone’s authority with
CAs creates a circular dependency, because, as mentioned
earlier, secure certificate issuance hinges on a secure naming
system in the first place. On a different front, the corruption
of a single CA may put the entire DNS namespace at risk.
Moreover, malicious DNS and PKI authorities can interact in
subtle ways to subvert a zone’s authenticity.

What we strive for is a system of checks and balances
where the parties involved (zone owners, CAs, and loggers)
watch over each other so that no single party or partial collu-
sion between them can undermine a zone’s authority. RHINE
systematically addresses security threats arising from the en-
visioned architecture, offering a set of protocols for secure
zone management and E2E-authenticated name resolution.
At its core is Delegation Transparency (DT), a novel public
logging mechanism to maintain global zone delegation status.

It is essential to rigorously establish the expected security
properties for our design. Using a state-of-the-art security
protocol verifier, Tamarin [68], we have formally proved that
RHINE guarantees E2E data authenticity for legitimately
delegated zones in a highly robust trust model.

Our evaluation with a prototype implementation shows that
RHINE can cope with real-world certificate issuance rates
(millions per day) and, compared with DNSSEC, achieve
lower resolution latency and higher resolver performance.

2 Problem Statement
We start by introducing the basic concepts of DNS. After-
wards, we contextualize the data authentication problem and
analyze the intrinsic weaknesses of DNSSEC.

2.1 Name Resolution Basics
The global DNS namespace is organized as a tree structure,
where each node is a zone that manages resource records
mapping names to IP addresses and other data. Delegating a
portion of a zone creates another node in the tree and hence a
(sub)zone. Below the root zone lie top-level domains (TLDs)

16

Recursive
Resolver

Recursive
ResolverResolver

Name Server
.

Name Server
.

Root
Nameserver

Name Server
.

Name Server
.

com.
Nameserver

Name Server
.

Name Server
.

example.com
Nameserver

Client

Client

Root
Owner

com.
Owner

example.com
Owner

Off-path
Attacker

Interceptor

Figure 1: A simplified DNS infrastructure. Components in red
and dotted lines indicate various threats to data authenticity.

such as .com and .org, second-level domains (SLDs) such
as a.com, and so forth. A zone should be authoritative for
all names under it except those under its delegated subzones.
For example, assuming the zone b.a.com exists but c.a.com
does not, then the zone a.com is authoritative for c.a.com
and d.c.a.com but not b.a.com or d.b.a.com. A zone’s
apex is the name identifying the zone itself.

DNS runs on a distributed infrastructure. We consider a
simplified infrastructure with four types of entities depicted
in Figure 1. The owner of a zone is a logical entity with
legitimate authority over it. When the context is clear, we
extend the term “zone” to also indicate its owner. A zone
hosts its data on multiple (authoritative) nameservers, which
in many cases are not under the control of the zone owner [58,
76]. In the name resolution process, a (recursive) resolver
handles name lookup queries from clients (aka stub resolvers),
by iteratively asking nameservers for matching record(s) in
a top-down manner. Caching at resolvers reduces the overall
lookup costs and helps DNS operate at Internet scale.

2.2 Authentication in DNS
Plain DNS offers no authentication of resource records. They
can be corrupted anywhere before reaching a client, as high-
lighted in Figure 1. Any on-path network node can access,
modify, and fabricate DNS messages. An off-path adversary
can also intervene in the resolution process and inject bogus
data, as demonstrated by the Kaminsky attack and its vari-
ants [66, 67]. Nameservers and resolvers may deviate from
their expected behavior due to domain hijacking [85], mal-
ware infection [32], business incentives [87], or regulatory
pressure [72]. Less obvious threats are posed by malicious
zone owners themselves, who can surreptitiously (and some-
what rightfully) manipulate their subzones [2, 83].

Network attackers can be thwarted by secure channels.
DNSCurve [23] was proposed to protect the communication
between a resolver and nameservers using an in-band key ex-
change scheme. More recent and widely deployed protocols
include DNS over TLS (DoT) [52] and DNS over HTTPS
(DoH) [47], which focus on securing the last-mile communi-
cation between a client and a resolver. These solutions fail to
mitigate risks arising from nameservers, resolvers, and any
intermediary servers on the resolution path.

As the most prominent security addition, DNSSEC en-
hances DNS with data integrity and origin authentication.

532 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Zone A

Zone B

CAClient

DT
Logger

DT
Logger

Distribution
Infrastructure

Name resolution

DT retrieval

offlineonline

Delegation
setup & update

Data
publishing

DT
Logger Sync

DT retrieval

Figure 2: The high-level architecture of RHINE, where operational complexity (e.g., the authentication and management of zone
authority) is pushed towards an offline phase. The arrows represent interactions between (groups of) entities.

It allows a zone to cryptographically sign its records using a
secret key, with the corresponding public key signed by the
parent zone. A security-aware resolver can verify a signed
record by following an authentication chain all the way up to
the root zone (key), without trusting any on-path servers.

2.3 Problems with DNSSEC
Since the signing of the root zone’s key in 2010, DNSSEC has
seen gradual uptake, but the deployments are not all smooth.
It is often cited by practitioners as overly complicated and not
worth the costs it exacts [54]. We analyze its drawbacks in
practical operation and from a security perspective.

Fragile Operation. DNSSEC requires synchronization be-
tween each pair of adjacent nodes in an authentication chain.
Any inconsistency (e.g., missing or mismatching keys or se-
curity parameters) between a zone and its parent will cause
validation and hence resolution failure, blocking not only the
failed zone but also all its subzones. It is thus unsurprising that
Internet outages caused by DNSSEC happen frequently at all
levels including the root, TLDs and SLDs, and across various
organizations including DNS governance bodies themselves
(e.g., ICANN and RIPE) as well as large service providers
(e.g., Verisign, Dyn, and Google) [54].

While DNSSEC already imposes significant performance
overhead with respect to plain DNS resolution, validation
failure can further boost its costs. It is estimated that with fail-
ure factored in, the authoritative nameservers of a DNSSEC-
signed zone should be prepared to handle 10 times the query
traffic volume and 100 times the response traffic volume
of their unsigned counterparts for an Internet-wide deploy-
ment [53]. The potential of abusing DNSSEC for denial of
service (DoS) is well-recognized and many real-world attacks
have been reported [1].

The operational complexity, high failure rate, and perfor-
mance overhead all contribute to the fact that end hosts rarely
validate DNSSEC-signed records [64]. It is actually by design
that end hosts should rely on validating recursive resolvers
to verify records [88]. As a result, DNSSEC almost never
provides E2E data authentication in practice.

Fragile Security. The security of DNSSEC rests on DNS
itself. However, unlike PKIs, DNS is not designed for secu-
rity; and unlike CAs, zone owners and operators may not
be security-savvy. Real-world measurements have revealed
widespread mismanagement of DNSSEC with flawed secu-
rity practices (using weak keys, reusing keys for multiple
zones, etc.) [29, 82]. The compromise of a zone’s secret key
endangers not only the zone itself but also all its subzones.

A common criticism of DNSSEC is that it consolidates
the Internet’s governance [83]. The root zone is governed
by ICANN, the most important TLD .com is managed by
Verisign under the jurisdiction of US law, and each country-
code TLD is ultimately controlled by the corresponding
sovereign state. Large-scale DNS hijacking campaigns spon-
sored by state agencies have been observed in real world [46].

While the governance model of DNS remains a subject
of controversy, from a technical point of view, DNSSEC’s
trust model is fundamentally fragile in that it provides clients
with no option but to trust all zones on a delegation chain. A
malicious zone can surreptitiously claim and serve authenti-
cated data for names belonging to any subzone. This problem
has just begun to gain attention from the Internet commu-
nity, and there is a proposal to mark the root zone and TLDs
as delegation-only so that their ability to serve authoritative
data is limited [2]. However, implemented within DNS, this
mechanism cannot solve the inherent limitations of DNSSEC.

2.4 Desired Properties
Our analysis of DNSSEC reveals the following properties
desired by an ideal authenticated Internet naming system.

• P1: End-to-end (E2E) data authenticity. A validating
client must be assured that any verified resource record is
indeed generated by the genuine authoritative zone.

• P2: Authentication efficiency. The computation and com-
munication costs of authenticating resource records, espe-
cially in case of failure, are lower than DNSSEC.

• P3: Operational robustness. The authentication of a
zone’s data is unaffected by any superordinate zone’s op-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 533

erational faults in managing security, e.g., misconfigured
security policies or keying materials.

• P4: Robust trust model. If a zone relies on a group of en-
tities (including its parent and any external trusted parties)
to establish its authority, then no single entity or partial
collusion between them can claim authority over the zone.

3 RHINE Overview
RHINE is a naming system with built-in security, satisfying
all the properties listed in Section 2.4. Our starting point is
the observation that the authentication of a DNS zone consists
of two parts: authenticating resource records during name res-
olution and, when the zone is created, authenticating the dele-
gation’s legitimacy. The latter can be offloaded from clients
to external trusted entities: in particular, the CAs in today’s
web PKI that billions of clients already rely on. Once a zone
is delegated and certified, it can serve authenticated data and
manage its security independently, without synchronizing
with its parent as in the case of DNSSEC. This isolates the
failures caused by a zone’s security mismanagement from its
subzones. The reduction in validation failure and authentica-
tion chain length also improves name resolution performance.

This new security architecture simultaneously achieves the
desired properties P1, P2, and P3. Yet, it introduces both un-
precedented opportunities and challenges to meet P4, without
which the system can be broken in many ways. This is the
main focus of our design (Section 3.3).
RHINE Architecture. We depict our architecture in Figure 2.
It consists of two parts. In the offline part, zone owners es-
tablish new delegations by acquiring publicly logged RHINE
certificates (RCert) from a CA and loggers (Section 5.1).
An existing zone can update its RCert or delegation status
(Section 5.2). It also periodically retrieves delegation status
proofs (DSP) (Section 5.3) from a public transparency log
(Section 4). A zone signs its resource records using its RCert
and publishes them to a distribution infrastructure. During
online name resolution, a client who already relies on the
web PKI can easily verify an answer’s authenticity using the
associated RCert and DSP (Section 5.4).

This architecture shifts much of DNSSEC’s complexity to
offline operations, minimizing the risk of failure during the
name resolution process. It also clearly separates the distri-
bution and authentication of DNS data. While we intend to
reuse the existing DNS infrastructure consisting of authorita-
tive nameservers, recursive resolvers, forwarders, etc., RHINE
can be instantiated with other distribution architectures such
as a peer-to-peer network [14], or enable client authentication
of records received through DoT or DoH.

3.1 Notation and Primitives
We use uppercase letters (e.g., X) to identify entities (zone
owners, CAs, and loggers) that run RHINE protocols, and
lowercase letters in the subscript to identify zones (e.g., ZNx)

Table 1: Summary of Notation.

Notation Definition

pkX , skX The key pair of entity X (in uppercase)
ZNx A zone identified by x (in lowercase)

RCrtx, zpkx, zskx The RCert and associated key pair of ZNx
:= Definition/assignment operator

(a,b, . . .) A tuple of values encoded as a string
H(·) A secure hash function

⟨m⟩X or ⟨m⟩x A message signed with skX or zskx
Σ.Vf(k,m) Verify a signed message m with a key/cert k

Acc.Vf(ac, p) Verify a membership proof p with digest ac

and their associated data (e.g., RCrtx). For brevity, we some-
times refer to the pair of zones related by delegation and their
corresponding owners simply as the parent and child.

We use standard cryptographic primitives including secure
hash functions and digital signatures. The public keys of CAs
and loggers are known to all entities. To design succinct data
structures, we also use cryptographic accumulators [34] that
can commit sets of values into small digests and generate
compact membership proofs. Classic constructions include
the Merkle hash tree (MHT) [69] and its variants. Table 1
summarizes our notation.

3.2 Threat Model
Table 2 summarizes the adversaries we consider in the design
of RHINE and the expected security properties.

A1 is a conventional Dolev-Yao network attacker [37] (who
can eavesdrop, modify, and inject messages transmitted over
the network) augmented with the ability to control the entire
DNS distribution infrastructure.

The next two types of adversaries pertain to today’s web
PKI ecosystem: A2 can issue arbitrary certificates by compro-
mising a CA; A3 can compromise some loggers and provide
fake or inconsistent log data to users. Since we repurpose the
web PKI to authenticate delegated zone authority, RHINE
must also deal with these adversaries.

For the first time, we systematically address an adversary
(A4) that controls a zone and attempts to subvert its subzones
by declaring authoritative data for them. This capability is
inherent in the hierarchical naming structure of DNS, i.e., a
name under a zone is also under its parent zone. For an authen-
ticated naming system where zone data is cryptographically
signed, A4 has access to the private key of the zone it controls.
As an example, an A4 attacker compromising the TLD xyz
can generate valid records for abc.example.xyz, despite that
the SLD example.xyz has been legitimately delegated.

Overall, we consider attackers that seek to, given the stated
capabilities, break the naming system’s data authenticity but
not availability—that is, tricking clients into accepting mali-
cious data rather than preventing clients from receiving any
answer. We assume that the attackers cannot break the cryp-
tography primitives used by RHINE, and that privacy aspects
of DNS are outside this paper’s scope.

534 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Summary of adversaries considered in DNS and the web PKI. We also list the corresponding security properties and
representative defense mechanisms to achieve them.

Adversary Capability Security property (informal) Defense mechanisms

Dolev-Yao controls communication networks channel security DoT/DoH/DoQ, DNSCurve
A1 + DNS distribution infrastructure data authenticity DNSSEC, GNS [14]
A2 controls some CA(s) certificate misissuance prevention ARPKI [21], F-PKI [28]
A3 controls some logger(s) tolerating all but one compromises LogPicker [36], CTng [63]
A4 controls a DNS zone (e.g., a TLD) authority independence (of subzones) -

A1 + A2 + A3 + A4 (strongest possible adversary) E2E authenticity with robust trust RHINE

3.3 Design Rationale
RHINE strives to counter the strongest possible adversary
that combines all capabilities as shown in Table 2. Before
fleshing out RHINE’s design, we discuss the main aspects
to be considered, analyze why existing approaches fail, and
highlight the intuitions behind our solutions.

3.3.1 Validating Zone Ownership (A1)
Secure delegation in RHINE requires the expected zone owner
to request an RCert from a CA. The issuing CA must ver-
ify that a requesting entity indeed controls the zone to be
certified. Commonly known as domain validation (DV), this
process is mandatory for the issuance of TLS certificates. In
standard practice [20], the requester proves its ownership of
a domain by publishing a challenge token specified by the
contacted CA. A network attacker can exploit an insecure
channel in this process to obtain a fraudulent certificate. Un-
fortunately, all practical DV channels hinge on DNS and are
therefore exploitable by an A1 attacker [24, 27, 81]. Applying
these standard DV methods to our case will lead to a circular
dependency: the CA depends on an authenticated zone for
ownership validation and RCert issuance, but meanwhile, the
zone needs an RCert to authenticate its data in the first place.

RHINE solves this dilemma by engaging the parent to
approve the delegation. This is indeed necessary, as the parent
still legitimately controls the child before it is established.
Specifically, the parent must sign a delegation request using
its own RCert. The CA can then verify that the current owner
of the child zone approves the delegation. In doing so, RHINE
creates an implicit offline authentication chain of delegated
authority, as opposed to what is explicitly constructed by
DNSSEC, and shifts the heavy authentication workload away
from the client side of DNS.

3.3.2 Preventing Certificate Misissuance (A2 & A3)
Security breaches of CAs [49] spurred the deployment of
Certificate Transparency (CT) [61], which employs public
logs to make misissued certificates detectable. Mainstream
browsers have mandated public logging for TLS certificates
to be valid [3, 6]. One limitation of CT is that it provides
deterrence rather than prevention. Fraudulent certificates may
still be used before being detected and revoked. CT loggers

passively accept certificates that meet basic validity criteria
(properly formatted and signed, non-expired, etc.) but never
validate domain ownership as CAs do. Also, the compromise
of loggers has already occurred in practice [79].

RCerts are more critical than TLS certificates in terms of se-
curity, because the naming service is one of the weakest links
in many Internet systems including the web PKI itself [33]. In
addition, the detection of fraudulent RCerts is more involved
in that it requires investigating delegation chains rather than
individual domains. Therefore, we need preventive measures
to foil the misissuance and logging of unauthorized RCerts.

There are proposals to make today’s web PKI more resilient
to the compromise of CAs and loggers [21, 28, 36, 63]. Yet,
they are not applicable to the new security architecture we
envision for RHINE. This is because: (1) they are designed for
TLS certificates and so they will suffer from the bootstrapping
dilemma discussed earlier (Section 3.3.1), and (2) their log
data models, either reusing or building upon CT, do not meet
our security and performance requirements (Section 3.3.3).

We address the A2 and A3 adversaries from several aspects:
(1) integrating loggers into the certificate issuance process for
proactive verification of the data to be logged, (2) enabling
a zone to choose its own trusted loggers rather than relying
on whichever loggers are chosen by CAs (as in the case of
CT), and (3) enforcing loggers and CAs to crosscheck each
other throughout the certificate issuance and logging process.
This allows RHINE to defeat attackers that can compromise
multiple trusted entities designated by a zone.

3.3.3 Countering Parental Attacks (A4)
A zone gains authority independence if its ancestors cannot
claim authoritative data under its authority. The cryptography
of DNSSEC makes the situation even worse than in regular
DNS. Our new security architecture does not immediately
address this challenge. In particular, a malicious parent can
still serve authentic records for delegated children, using its
own RCert or alternative child RCerts acquired by it. In order
to counter such parental attacks, we must enable a dependent
entity (client or CA) to verify the status of the delegations in
question without trusting zone owners themselves.

Since delegation status can be inferred from logged RCerts,
it seems plausible to design a solution atop CT. A closer

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 535

(a, !"#a, c) (c, !"#c, g) (w, !"#w, a)

(Delegation Status Accumulator)

$%!x

(A summary of zone ’s delegations)

$!&&x
'(x

 $%)*x := ('(x, !+#x, !),x, -(./012x), $!&&x) $%)*a.x

(Global Delegation Accumulator)

3$!T

(A summary of the DT log in epoch)

3!&&T
T

 $%)*ab.c.x

Figure 3: The data structures used by DT.

look reveals several pitfalls. First, a dependent entity needs to
ascertain that a zone in question does not exist, but CT has no
native support for absence proofs. Second, such proofs must
have global coverage, but CT loggers operate independently
and maintain only partial views of all issued certificates. It
would be onerous to assemble and synchronize data from all
CT logs with correctness and performance guarantees. Third,
the data structures used by CT are too heavy to represent and
authenticate global delegation status.

These inefficiencies motivate us to create a more efficient
transparency mechanism dedicated to keeping track of the
entire namespace’s delegation structure.

4 Delegation Transparency
At the heart of RHINE is Delegation Transparency (DT), a
lightweight verifiable log design. In contrast to CT, which
maintains the history of all certificates ever issued, DT offers
an up-to-date snapshot of global zone delegation status. A
single DT log is replicated to a consortium of loggers. The
loggers receive requests to update delegation status and peri-
odically synchronize with each other to maintain a consistent
log. They also provide publicly verifiable delegation informa-
tion. Below we introduce the basics of DT. Its operation as an
integral part of RHINE is described in Section 5.

Log Data. Figure 3 depicts DT’s data model. We define the
delegation status of a zone ZNx as a tuple (ALvx,Auxx,CSetx),
where the first item is the authority level of ZNx (explained
below), the second is auxiliary information for ZNx (e.g., ex-
piration time or revocation status of the delegation), and the
third is a set representing ZNx’s child zones and their authority
levels: CSetx := {(c1,ALvc1),(c2,ALvc2) . . . ,}.

We encode the delegation status of ZNx into a data struc-
ture called DSumx (delegation summary). DSumx contains a
cryptographic digest of the zone’s RCert. This ensures that
at any time there is only one valid RCert per zone, captur-
ing that the authority over a zone should be unique. Since
a zone may have many delegations, DSumx stores the digest
(DAccx) of an accumulator DSAx over CSetx rather than CSetx
itself. This reduces the cost of authenticating a specific child’s
(non)existence. Each input element of DSAx contains the label

!"#

¬!"#

$%& #'(¬$%& ∧ ¬#'(
%'!

¬%'!
(1, 0)*

(1, 0)*

(0, 1)*

(0, 2)*

(1, 1)*

(1, 2)

(1, 1)* (0, 1)*

Figure 4: The authority level matrix derived from the interac-
tion of constraint flags. The shaded area indicates the division
caused by the EOI flag. In each pair (a,b), a ∈ {0,1} encodes
a zone’s ability to serve authoritative data for all its names
excluding those of its independent subzones; b ∈ {0,1,2}
encodes a zone’s delegation capability (0: not allowed; 1:
non-independent child only; 2: any child). The cases marked
with * permit fast data validation (see Section 5.4).

and authority level of one child as well as the label of the
next child in a canonical order [19]. This allows a single
membership proof from the accumulator to prove either the
presence or absence of a child zone.

For efficient synchronization and auditing of the DT log, we
introduce a global accumulator GDA over all DSumxs. Loggers
can commit GDA’s digest (GAcc), along with the necessary
data to replay logged changes, into an authenticated data
structure that supports succinct consistency proofs [62].

Authority Level. While we envision that authority indepen-
dence is desired by many zones (including all TLDs and
SLDs), this may not always be the case, for instance when the
parent and child are managed by the same entity. To enable
fine-grained control over zone authority, we introduce the
concept of authority level, which places constraints on what
a zone can do to its data and delegation. We define authority
levels using constraint flags, as depicted in Figure 4.

The flag IND indicates a zone’s authority independence. By
definition, an independent zone has the sole authority over
its names, whereas a non-independent (¬IND) zone’s names
are also under the authority of its parent. The data served
by a zone comes in two types: authoritative and delegation.
A terminating (TER) zone can serve only authoritative data;
all leaf zones are by default terminating. A delegation-only
(DOL) zone can serve only delegation data (i.e., NS records in
DNS); all TLDs are supposed to be delegation-only. Note that
these two flags cannot be set simultaneously as this would
lead to an empty and useless zone. Since a non-independent
zone can never delegate to an independent child, authority
independence can end at some non-leaf zone on a delegation
path; such a zone is marked as end-of-independence (EOI).

Delegation Status Proof (DSP). Clients make use of the
DT log in the form of DSP, which consists of a timestamped
DSumx signed by loggers and, if necessary, a membership
proof from DSAx for some child zone ZNy of ZNx. A DSP en-
ables clients to determine a zone’s realm of authority and
hence whether to accept an answer signed with the corre-
sponding RCert. A malicious parent may use an outdated

536 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Parent Zone

Child Zone

CA

Logger 1

Logger mDe
le

ga
tio

n
Ap

pr
ov

al

(0
-5

)

Request Validation

(6-7)

Log Attestation

(8-11)

Log Confirmation

(12-14)

Certificate Issuance

(15-17)

Figure 5: Overview of the delegation setup protocol.

DSP to trick clients into accepting fraudulent data for the
names belonging to a delegated child. Prudent clients should
accept only DSPs that are recent enough.

5 RHINE Protocols
We specify RHINE’s core functions with a set of protocols,
including the secure management of zone delegation, the
maintenance and usage of DT, and E2E-authenticated name
resolution. The entire system operates in epochs, which are
consecutive time windows of a predetermined length. This
is necessary to keep DT loggers in synchrony and to estab-
lish the system’s security. In each epoch, zone owners can
securely set up new delegations or update existing ones until
a cut-off time. The resulting changes in these zones’ dele-
gation status will be applied to the DT log within the same
epoch and take effect from the next epoch. Zone owners can
actively monitor the log for unexpected events like attacks
or operational faults, and take action accordingly. They also
regularly retrieve signed log entries to prove their authority
over answers served during name resolution.

5.1 Secure Delegation Setup
In RHINE, delegating a zone ZNc begins with the intended
owner C negotiating the delegation with P, the owner of the
parent zone ZNp. This follows standard DNS practices, e.g.,
domain registration. Afterwards, C should run the secure dele-
gation setup protocol specified in Figure 6 to obtain an RCert.
This protocol follows the design intuitions presented in Sec-
tion 3.3. An overview of its flow is depicted in Figure 5.

In the initial phase (Steps 0-5), C asks for a signed approval
(apv) for its delegation request (sdr) from P. The request
encodes the trusted entities selected by C, the delegation pa-
rameters negotiated with P, and most importantly, the public
key to be certified. The corresponding private key is also used
to sign the request. There must be a way for P to authenticate
the association between C and the key. This is done using
an initial secure out-of-band key registration procedure (Step
0), for example, via a secure web portal with account-based
client authentication when P is a domain name registrar.

Next, C sends the request to a CA for validation (Steps 6-7).
In addition to verifying the parent’s approval, the CA checks
the delegation’s legitimacy using the DT log. If everything
is correct, the CA sends a pre-logging request (prl), which
includes a to-be-signed certificate, to the designated loggers
for crosschecking (Steps 8-11). After assembling the loggers’

attestations, the CA randomly picks one of them to store the
logging request (lreq) as an input to the later aggregation
process (Steps 12-14). Finally, C receives an RCert accom-
panied by attestations and a confirmation that the zone ZNc’s
delegation status will be added to the DT log (Steps 15-17).

Our design ensures that the entire delegation setup process
is witnessed by multiple parties and any misbehaving party
will be held accountable for the messages it signs. Any ver-
ification failure will cause the protocol execution to abort,
broadcasting a failure message to all the involved parties. It is
impossible to obtain a valid logged RCert without faithfully
following the protocol. Even in the presence of an omnipo-
tent attacker whose capabilities go beyond our threat model,
RHINE still allows a zone owner to detect and counter attack
attempts before harm is caused (see Section 6).

Secure Bootstrapping. The delegation setup protocol as-
sumes the parent’s RCert already exists. A bootstrapping
problem arises at the top of the namespace. Representing a
critical Internet authority in itself, the root zone should not
depend on another CA. Therefore, we treat the root zone as a
root CA that signs its own RCert. Similarly, TLDs resemble
intermediate CAs with their RCerts signed by the root RCert.
This allows the root zone and TLDs to retain their innate
power over the namespace, effectively restricting an external
CA’s influence over the namespace to SLDs and below.

5.2 Secure Delegation Update
Once delegated, a zone can manage itself mostly indepen-
dently of its parent. This includes updating its RCert and
other delegation parameters. Similarly to delegation setup,
processing an update request involves some CA and loggers
as witnesses. The parent’s involvement is required only for a
request to extend the delegation’s validity period or to change
the child’s authority level from non-independent to indepen-
dent. RHINE has built-in support for certificate revocation.
An updated RCert automatically revokes the old one, because
by design a zone can only have one valid RCert at any time;
a zone can also request for explicit revocation.

The update protocol is similar to the delegation setup pro-
tocol for the message flow and verification procedures. The
major difference is that a zone should now sign the update
request using its own RCert (instead of the parent’s) to prove
its authority. We provide further details in Appendix A.2.

5.3 DT Aggregation and Retrieval
In each epoch, loggers will receive disjoint sets of requests
to update the DT log. To ensure the log’s global consistency,
they must aggregate all requests by synchronizing with each
other. Wanner et al. formalized this problem as secure log
replication—a special case of state machine replication—and
proposed Logres, a formally verified log replication protocol
with Byzantine fault tolerance that is optimal in terms of
round complexity and the number of tolerable faults [86].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 537

0. C generates a key pair (zpkc,zskc) and register zpkc to
P via a secure out-of-band channel.

1. C : select A (a CA) and Lc (a set of loggers)
// t0 is a timestamp within the current epoch T, al is the
requested authority level, aux is auxiliary information.

: rid := H(ZNc,zpkc,A,Lc, t0,al,aux)
// rid is implicitly included in all subsequent messages

2. C → P : sdr := ⟨rid,SDReq(ZNc,zpkc,A,Lc,al,aux)⟩c
3. P : Verify Σ.Vf(zpkc,sdr) and whether al,aux

: match what are agreed upon with C.
4. P →C : RCrtp, apv := ⟨SDApprvl(H(sdr))⟩p
5. C : Verify Σ.Vf(RCrtp,apv) ∧ Match(apv,sdr)
6. C → A : sdr, apv, RCrtp
7. A : Verify Σ.Vf(RCrtp,apv) ∧ Σ.Vf(zpkc,sdr)

: ∧ Match(apv,sdr)
: Retrieve dsp := (⟨DSump,T

′⟩Lc ,mem)
: from local cache or the loggers Lc.

// Check if DSP is valid and the delegation is legit
: Verify Σ.Vf(pkLc ,⟨DSump,T

′⟩Lc)
: ∧ Match(RCrtp,DSump) ∧ T′ = T ∧
: Acc.Vf(DAccp,mem) ∧ Legal(ALvp,al)
: tbsrc := TBSCert(ZNc,zpkc,A)

// Pre-logging requests to all designated loggers

8. A → Lc : prl := ⟨PreLog(sdr,apv, tbsrc)⟩A, RCrtp
9. Li : Verify Σ.Vf(pkA, prl) ∧ Li ∈ Lc

: ∧ Σ.Vf(RCrtp,apv) ∧ Σ.Vf(zpkc,sdr)
// Check if the to-be-signed cert matches the requested

: ∧ Match(apv,sdr) ∧ Match(sdr, tbsrc)
// Check the delegation’s legitimacy using local DT log

: ∧ ZNc not delegated ∧ Legal(ALvp,al)
: nds := (T,A,Lc,ZNc,al,aux,H(tbsrc))

10. Li → A : atti := ⟨LogAttest(Li,H(nds))⟩Li

11. A : Verify Σ.Vf(pkLc ,{atti}) ∧ Match(prl,{atti})
// L is randomly selected from Lc by A

12. A → L : lreq := ⟨LogReq(L,nds,{atti}Li∈Lc)⟩A
13. L : Verify Σ.Vf(pkA, lreq) ∧ Match(nds,{atti})

: ∧ Σ.Vf(pkLc ,{atti}) ∧ L ∈ Lc
: Add lreq to a pending pool for aggregation

14. L → A : lc := ⟨LogCfm(L,H(nds))⟩L
15. A : Verify Σ.Vf(pkL, lc) ∧ Match(lc, lreq)

: RCrtc := ⟨FinalRCert(TbsRCc,Lc)⟩A
16. A →C : RCrtc, {atti}Li∈Lc , lc
17. C : Verify Σ.Vf(pkA,RCrtc) ∧ Match(sdr,RCrtc)

: ∧ Σ.Vf(pkLc ,{atti}) ∧ Match(sdr,{atti})
: ∧ L ∈ Lc ∧ Σ.Vf(pkL, lc) ∧ Match(sdr, lc)

Figure 6: The secure delegation setup protocol. A party stores the messages it sends and receives whenever necessary. The
function Match() checks the consistency between two data objects and Legal() checks a delegation’s legitimacy. Other functions,
such as SDReq() and TBSCert(), construct proper data objects from the input parameters.

This protocol however cannot be directly applied to our case,
because it is agnostic to the validity of inputs: a malicious
logger that participates in the consensus process faithfully can
still inject arbitrary bogus data into the log.

To this end, we enhanced Logres with input validation
(among other technicalities), requiring each logging request to
be attested by the specified trusted entities (Steps 10-13, Fig-
ure 6). Using the modified version as a core consensus routine,
we designed a secure aggregation protocol (Appendix A.3)
that allows a majority of honest DT loggers to efficiently
maintain a consistent log even in case of Byzantine faults.

Within an epoch, DT loggers can run the aggregation pro-
tocol multiple times according to some system-wide policies,
e.g., at regular intervals or whenever their pools of pending
request become filled up. Pipelining log aggregation with del-
egation setup and update improves overall system efficiency.
Loggers should stop accepting new requests when the num-
ber of pending requests is estimated to exceed what they can
aggregate after the cut-off time. This ensures that all requests
confirmed in an epoch (Step 15, Figure 6) can be applied to
the DT log by the end of the epoch.

After a successful execution of the delegation setup or
update protocol in epoch T, the owner of a zone ZNx should
actively monitor the DT log. Once the change to its delegation
status has been admitted, it can retrieve from its designated
loggers Lx a signed log entry ⟨DSumx,T+1⟩Lx (and DSAx as
well if it is updated), which will be used to generate DSPs in

epoch T+1. Each zone should retrieve its (re-)signed log en-
try once per epoch, even if its delegation status is not changed.
Note that using the epoch counter, instead of higher-precision
time units, to timestamp log requests and DSPs effectively
guarantees RHINE’s synchrony while reducing the system’s
reliance on secure global time synchronization (e.g., [40]).

Parameter Selection. Epoch length is an important system-
wide parameter and its selection comes with trade-offs. A
large value means long waiting time for zones’ delegation
status changes to take effect. A small value leads to frequent
retrieval of the DT log and thereby performance issues. On
balance, we suggest a practical epoch length of 48 hours and a
cut-off time 24 hours before the end of an epoch. This is based
on our evaluation results as well as CT’s Maximum Merge
Delay of 24 hours [62]—the longest time period within which
CT loggers must add promised certificates to their logs. We
consider doubling the waiting time in DT acceptable because
the administration of zone delegation happens less frequently
than the management of TLS certificates for domains in al-
ready established zones. With the suggested parameters, it
takes 24–48 hours to set up an operational zone.

5.4 Authenticated Name Resolution
With only minor changes, RHINE can augment the plain name
resolution of unprotected DNS (or any other distribution in-
frastructure) with E2E data authentication. A zone owner

538 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Answer
from !"#

¬$"% ∨
'() ∨ (*$

∈ ,-.#

 %*-
∈ ,-.#

 !"/
∉ %1,#

 ¬$"%
∈ ,-./

Accept

Reject

The record is verified
with a valid RCert, which matches

a valid DSP.

YY

Y

YY

N

N N N N

Figure 7: The flow of validating an answer received from zone
ZNx, which has a potential child ZNy that encloses the queried
name. Dashed arrows indicate shortcuts for verification.

needs to sign its resource records using the zone’s RCert
before publishing them to nameservers. Whenever an authori-
tative answer is to be provided, a nameserver will also return
the corresponding RCert and DSP to the querying client.

Figure 7 depicts the data validation flow. It starts with the
verification of the signed records using RCert, similarly to
DNSSEC. The client then additionally verifies whether the
RCert matches the cryptographic digest contained in the DSP.
Afterwards, the client decides whether the queried name falls
within ZNx’s realm of authority by checking its authority level
ALvx. In most cases (Figure 4), a shortcut can be taken to
make a quick decision: an answer for a non-apex name from
a delegation-only zone is always rejected by definition; an
answer from a non-independent, end-of-independence, or ter-
minating zone is always accepted because there exists no fur-
ther independent subzone. If none of these applies, the client
will examine ZNx’s potential child zone ZNy that encloses the
queried name, which involves verifying a membership proof
from DSAx, and accepts the answer only if ZNy does not exist
or is non-independent.

6 Formal Security Analysis
The overall security goal of RHINE is to preserve a zone’s
data authenticity against powerful adversaries. This can be
broken down into two concrete objectives: (1) preventing
attackers from obtaining a valid RCert to take over a zone
that is not yet delegated, and (2) preventing the forgery of
authoritative data from an already delegated zone. In the first
case, a victim zone is still under the legitimate control of
its parent, and therefore the parent must be assumed trusted
for a meaningful notion of security. In the second case, the
additional protection of a zone from its malicious parent leads
to the notion of authority independence.

We define these two objectives with the following theorems
(presented informally). Table 3 summarizes the main security
parameters in RHINE. The constraint f < n/2 is required by
Logres [86]. We additionally require that m ≤ f +1 holds for
any zone, as otherwise an attacker with the A3 capability can
inject arbitrary data into the DT log.

Table 3: Main Security Parameters in RHINE

Definition Constraint

n Number of loggers in a global DT setup -
f Number of tolerable faulty loggers f < n/2

m Number of loggers chosen by a zone m ≤ f +1

Theorem 1 If a zone ZNx is delegated with RCrtx issued and
logged in epoch T, then a corresponding secure delegation
request must have been approved by the parent earlier in
epoch T, even if an A1+A2+A3 attacker formed by the entities
specified in RCrtx is present throughout epoch T.

The security guarantee provided by Theorem 1 resembles
that of the ACME protocol, which also concerns unauthorized
certificate issuance [24], but RHINE deals with much stronger
attackers. In fact, RHINE allows even better security than is
promised by this theorem. We discuss the following situations
where the threat assumptions are violated.

It may happen that an adversarial parent, despite having
approved a legitimate delegation for a child, front-runs the
delegation setup protocol for the child zone with different
parameters (in particular the key to be certified) in the current
epoch. Yet, the expected owner of the child zone can detect
from the DT log the misissued RCert, which will remain
unusable until the associated DSP becomes valid in the next
epoch (see Section 5.3). The owner being impersonated can
then request to revoke the illegitimate delegation before it
takes effect, by presenting the parent’s approval as evidence
to the relevant CA and loggers.

An even worse, though unlikely, case is that an attacker
manages to control a CA and m loggers. This enables it to
issue an RCert for a target zone and log the corresponding
entry to DT. Still, the zone’s real owner can actively monitor
the log and take action to defeat such attack attempts.

Theorem 2 For a DT-logged zone ZNx with RCrtx in epoch T
and its delegation status not updated between T and T+k (k >
0), if a client accepts an answer for a name under ZNx using
RCrty in epoch T+k, then it must be that RCrtx=RCrty, even
if an A1+A2+A3+A4 attacker formed by the entities specified
in RCrty is present between epoch T and T+ k.

There are several technicalities in the definition above. First,
between epoch T and T+ k (k > 0), RCrtx is zone ZNx’s only
valid certificate whose secure digest is logged in DT; ZNx may
have been delegated and updated before T. Second, because
of the hierarchical naming structure, ZNy is either ZNx or its
ancestor, but not an arbitrary zone. Third, the attacker is de-
fined with respect to the RCrty received by the client instead
of RCrtx. This captures the reality that a client has no prior
knowledge of an RCert’s validity.

Theorem 2 formalizes data authenticity for established
zones. It covers various scenarios where an attacker may
acquire and use invalid, fraudulent or outdated RCerts to trick
clients into accepting bogus data. RHINE maintains security

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 539

Table 4: Summary of our implementation in Go.

Component LoC Supporting System Used by

librhine 2.2K gRPC, CBOR [26] Common
rmanager 0.6K BadgerDB [4] Zone owner
rhine-ca 0.68K BadgerDB CA
dt-log 0.76K BadgerDB, SMT [10] Log operator
rserver 0.35K CoreDNS [7] DNS operator
rresolv 0.7K SDNS [16] DNS operator
rdig 1K miekg/dns [41] End user

as long as one of the involved loggers stays non-compromised.
This assumption is much weaker than that of DNSSEC, which
rests on every node on the chain being honest.

Formal Verification. An informal argument or even pen-
and-paper proof of these theorems can hardly lead to high
assurance of RHINE’s security guarantees. We have formally
proved them using the Tamarin prover [68], an advanced tool
for the verification of security protocols [22, 31, 42]. This
approach helped us identify many subtle flaws in our early
designs. We have modeled all the core protocols of RHINE,
covering the secure setup and update of a zone delegation,
the aggregation and retrieval of the DT log, as well as the
authenticated distribution and resolution of the zone’s data.
This amounts to around 1500 lines of formal specification.
We refer the reader to Appendix B for further details.

7 Implementation
We developed a prototype of RHINE. Table 4 summarizes
our implementation efforts and the system’s dependencies.
The lines of code (LoC) reported do not count the supporting
systems. Our prototype provides two software suites.

Offline Management. This suite includes four components.
The library librhine defines common data structures and
utilities. rmanager is intended to be an all-in-one toolbox
for zone owners: key registration and delegation approval
(in parent mode), request generation and validation (in child
mode), log data retrieval, etc. rhine-ca offers all functions
needed by a CA. dt-agg realizes a DT logger. It implements
a self-balancing MHT for DSA (the per-zone accumulator)
and a sparse MHT for GDA (the global accumulator).

These components operate in synchronous mode. For every
protocol instance, they each create a goroutine that blocks
itself after sending out a request and resumes upon receiving a
response. All components can handle concurrent requests up
to the available computing, memory, and bandwidth resources.

Name Resolution. We implement our nameserver (rserver)
and recursive resolver (rresolv) with existing DNS frame-
works. RHINE introduces new data types, RCert (encoded in
the X.509 format) and DSP. We store them using TXT records
encoded as base64 strings and call them RoA (realm-of-
authority) records. For DSP we store DSum and the member-

ship proofs from DSA separately, as the latter are not required
in most cases. Each zone has just one DSum, whereas the num-
ber of membership proofs equals the number of delegated
child zones. Below are example records for zone eg.com.
_rcert.eg.com 60 IN TXT "Ed25519 MIIBITCB..."
_dsum.eg.com 60 IN TXT "rZXAwGzEZMBcGA1U..."
eg.com 60 IN DNSKEY 257 3 15 8fcCpq...
eg.com 60 IN RRSIG DNSKEY 15 2 60 2...
abc.eg.com 60 IN TXT "DSAPf u+EuVu6xX+..."
xyz.eg.com 60 IN TXT "DSAPf t9GsbAeavK..."

We do not use the private key of an RCert to directly sign
regular records but instead treat this key as an equivalent of
DNSSEC’s key signing key (KSK). A KSK authenticates a
zone signing key (ZSK), which in turn signs regular records.
The record eg.com of type DNSKEY in the example above is a
ZSK, followed by a RRSIG record authenticating it using the
RCert. This layer of indirection in key usage allows a zone
owner to securely store an RCert’s private key offline and
fetch it on demand, reducing the risk of security breaches.

We modified two built-in plugins of CoreDNS for rserver
to serve RHINE-related data: the file plugin parses RoA
records loaded from a zone file and, when processing a query,
places them in the additional section of a response message;
the sign plugin provides signing functions using RCerts.
rresolv augments SDNS with the functions to query, cache,

validate and serve RoA records, reusing most of its codebase
for the resolution of regular DNS records. rresolv always
validates authoritative answers received from nameservers us-
ing RoA records and caches only verified data. It also always
attaches the corresponding RoA records in the response mes-
sage to a client, enabling E2E data authentication by default.

On the client side, we developed rdig, a dig-like tool for
DNS-style name lookup with mandatory data validation.

8 Performance Evaluation
We evaluated our RHINE prototype in a private cloud network
with 2Gbps bandwidth, using cloud servers with dedicated
8-core CPU (2.6GHz) and 16GB RAM running Ubuntu 22.
Unless otherwise specified, the round-trip time (RTT) as re-
ported by ping between any pair of servers is expanded to
100 ms using the tc utility. For the cryptographic algorithms
in both RHINE and DNSSEC, we use Ed25519 for digital
signatures and SHA256 for secure hash functions. In line
with RHINE’s architecture, the evaluation consists of two
independent parts for offline and online operations.

8.1 Offline Management Performance
The first part of our evaluation aims to answer two questions.
(1) Can RHINE’s offline protocols cope with real-world cer-
tificate issuance rates? (2) Is DT practical and scalable in
terms of computation, communication, and storage cost?
RCert Issuance. We measured the throughout of the secure
delegation setup protocol, using two servers to run rmanager

540 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6
Request rate (K request/s)

0

1

2

3

Iss
ua

nc
e

ra
te

 (K
 R

Ce
rts

/s
) 1-core CA, 1-core loggers

3-core CA, 1-core loggers
6-core CA, 2-core loggers
8-core CA, 8-core loggers

Figure 8: RCert issuance throughput.

(one for the child and the other for the parent), one server
to run rhine-ca, and two servers to run dt-log. The child
server generates delegation setup requests for predefined child
zones whose keys have been registered at the parent server.
The log maintained at the logger servers is initialized with
an entry for the parent zone without any child. We limit the
number of CPU cores used by the most critical CA and logger
servers to understand their scaling behavior.

Figure 8 reports the results. With one core, the CA is the
slowest server capping the issuance rate at around 600 RCerts
per second. Using three cores, it can catch up with the loggers
for a throughput of 1.4K RCerts per second. Doubling this
configuration also doubles the achievable throughput. The
decay in throughput with increasing request rates is due to
the child server overwhelming itself with too many pending
requests. Overall, our setup with these 8-core servers can issue
a maximum of 3.3K RCerts per second.

To put this number in context, we consider the performance
requirement of Let’s Encrypt, the largest ACME-backed CA
that accounts for around 80% (5M) of all daily logged CT
entries [11]. Our test servers with moderate resources can
already issue nearly 12M RCerts per hour. This indicates that
our design can easily cope with real-life certificate issuance
workloads. Such a performance is explained by RHINE’s
streamlined issuance process, which unlike ACME does not
involve a time-consuming challenge-response procedure.
DT Consensus. We evaluate the performance-critical DT con-
sensus process with different numbers of loggers (each on a
separate server). We consider only delegation setup requests
as the main consensus routine is agnostic to the type of re-
quests. We limit the bandwidth between each pair of loggers
to 1Gbps to simulate a common network setup. Each server
pre-loads 50K requests into its memory before the protocol
starts. With n = 5 and f = 2, it takes merely 54 seconds for
the honest loggers to achieve consensus. The time increases
slightly to 71 seconds with two more honest loggers. When
considering one more faulty node (n = 7, f = 3), the consen-
sus process finishes after 208 seconds. This trend in perfor-
mance is expected as more faulty nodes mean more rounds of
message exchanges in the consensus routine. Assuming the
loggers run instances of the protocol consecutively with input
batches of size 50K, it will take roughly 2.5 hours to process

50

100

150

200

500

1000

1500

3 4 5 6 7 8
10

20

30

3 4 5 6 7 8
100

200

300

0.0 0.2 0.4 0.6 0.8 1.0

Delegation chain length

0.0

0.2

0.4

0.6

0.8

1.0

Re
so

lu
tio

n
la

te
nc

y
(m

s)

DNS-U DNSSEC-U RHINE-U DNS-L DNSSEC-L RHINE-L

Figure 9: Upper and lower bounds of resolution latency under
two network settings (left: RTT=10 ms; right: RTT=100 ms).
The similar trends on the left and right plots suggest that
network delay dominates the overall resolution latency.

2M requests. This meets the above-mentioned requirement
for daily certificate issuance.

We observe that bandwidth is the determining factor for
the overall performance, as the protocol runs n consensus
routines in parallel. Yet, the bottleneck in our experiment
setup is the memory size of individual servers, each of which
needs to cache the input from all others. With more memory,
the servers can exchange larger batches of requests. We can
thus expect higher performance in a production environment
with more powerful hardware.
Log Size. We estimate the DT log’s overall size by taking into
account the DSums and DSAs of all zones as well as the GDA.
The size is determined by the distribution of zone delegations.
The number of children of each TLD is publicly known from
domain registries (e.g., 159M for .com) [13], but zone enu-
meration is required to learn the exact number of children for
SLDs and further subzones. Developing an accurate view of
the global DNS delegation tree is a challenging task in itself,
and we leave it for future work.

Our estimation uses the statistics collected by enumerating
sample zones from the Tranco list [74] and assumes an expo-
nential decay in delegation: on average, x% of all SLDs have
4 children (and the rest of them have no child), x% of all third-
level domains have 3 children, and so forth. The DT log’s size
is estimated to be 48GB with x = 1, 75GB with x = 10, and
779GB with x = 50 (which is likely an overestimation). This
is only a fraction of the space requirement of CT logs, each
of which can consume TBs of storage [5].

8.2 Name Resolution Performance

The second part of our evaluation investigates how E2E au-
thentication affects name resolution performance from the
perspectives of end users and naming service operators.

We compare RHINE with plain DNS and DNSSEC. For the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 541

0.0 0.1 0.2 0.3 0.4 0.5
Probability of misconfiguration

0
5

10
15
20
25
30
35

Re
so

lv
er

 th
ro

ug
hp

ut
 (K

 q
ry

/s
)

DNS: 31.8

RHINE: 20.7

7.4 5.8 4.9 4.0 3.3 2.7

Figure 10: The resolver’s query processing capacity in differ-
ent systems. For DNSSEC (data shown as bars), we vary the
probability of inconsistency between a zone and its children.

latter two, we use the unmodified CoreDNS as the nameserver
and SDNS as the resolver. For DNSSEC, we implement a
validating client and modify SDNS to always return a complete
authentication chain. For RHINE, we consider fast validation
without membership proof as this covers the vast majority
of cases (Section 5.4). The resolver is preloaded with a root
zone key for DNSSEC and a CA certificate that is used to sign
RCerts. The experiments used synthetic zone files populated
with random resource records. Each record’s name contains
one more label than its residing zone. All labels have a fixed
length of 6, the average calculated from the Tranco list [74].

Resolution Latency. End users are sensitive to the latency
of name lookup queries. We inspect the bounds of resolution
latency as determined by the resolver’s cache. The upper
bound is obtained when a resolver iteratively queries all the
relevant nameservers for a non-cached record. The lower
bound is obtained when a resolver returns an answer directly
from its cache. We set up eight nameservers, which host a
delegation chain of zones, one client, and one resolver. We
run the experiments with two network settings: one with the
RTT between the cloud servers expanded to 10 ms, and the
other to 100 ms. The data reported for each experiment is
averaged over 100 trials. Figure 9 depicts the results.

As can be seen, RHINE constantly outperforms DNSSEC,
and its performance edge comes mainly from the savings in
network communication. If a UDP message carrying a DNS
response exceeds the size limit (512 bytes by default [35]), the
client will retry the query using TCP. Since RHINE has fewer
data authenticating records than DNSSEC, retransmission is
triggered less frequently. This advantage is most pronounced
in case of cache hits. RHINE can sustain its negligible cost
over plain DNS for longer delegation chains than DNSSEC.
The performance gap will further increase should more expen-
sive cryptographic algorithms be used. In fact, most DNSSEC-
signed zones still use RSA signatures [70], which are much
larger than the Ed25519 signatures used in our evaluation.

Resolver Overhead. Since augmenting regular name resolu-
tion with E2E data authentication requires the most changes
to a resolver’s behavior, we focus on analyzing the perfor-

0.0 0.1 0.2 0.3 0.4 0.5
Probability of misconfiguration

0

2

4

6

8

Nu
m

 o
f r

es
ol

ve
r q

ue
rie

s DNS: 1.90
RHINE: 2.96

Figure 11: The average number of resolver queries per client
request in case of cache miss. DNSSEC data is shown in bars.

mance overhead of a validating resolver. Our experiments use
separate cloud servers for one client (running dnsperf [8]
as the load generator), four nameservers each hosting a level
of zones from the root to third-level zones (aka subdomains,
which are common in modern cloud-based web services [45]),
and one resolver under test. More specifically, we generate 15
TLDs each with 8K SLDs; each SLD further delegates to one
third-level zone with one A record for a terminal name. The
client’s query trace contains 480K names randomly sampled
from the 120K terminal names. The resolver’s cache size is
set as 100K1 and the cache is warmed up by querying all
terminal names once before each experiment. With this setup,
we manage to maintain a typical cache hit ratio of around
80% for client queries [30, 56]. For DNSSEC, we simulate
common security mismanagement that causes inconsistencies
in authentication chains and hence validation failure [54], by
programming the nameservers to return incorrect DS records
with a given probability.

Figure 10 reports the resolver’s throughput in terms of the
number of client queries processed per second. The results
indicate that RHINE has a moderate impact on the resolver’s
processing capacity, with a reduction of 34.9% in the over-
all throughput. Suffering from higher costs to retrieve and
validate authentication chains, DNSSEC already reduces the
throughput by 76.7% with successful validation and by even
wider margins as the failure rate rises.

Figure 11 reports the average number of queries that the
resolver sends to authoritative nameservers in case a client
query cannot be directly answered from the cache. RHINE
introduces roughly one additional query per client request
(35.8% increase); this is attributed to the retrieval of RoA
records (Section 7). DNSSEC increases the resolver’s query
load by 2× even in the absence of validation failure. Such
overhead is higher than expected and can be explained by the

1SDNS has several cache instances for different purposes. What matter
in our experiments are the primary PCache for A and RRSIG records as
well as the NSCache for NS and DS records; for RHINE we have another
RoACache. All their sizes are set as 100K. The only exception is that for
the evaluation of DNSSEC we set the size of PCache as 190K, in order to
maintain the 80% client query cache hit ratio for fair comparison. This is
because SDNS also stores DNSSEC’s DNSKEY records in PCache. With this
setup, our measurements show that for DNSSEC, half of all the attempts to
look up DNSKEY records in PCache fail and thereby trigger extra queries.

542 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

contention between DNSKEY and A records in the cache.
Our measurement results suggest that a fine-grained cache

design, which separates security-related records from regular
records, is crucial to a validating resolver’s performance.

9 Related Work
Authenticated Naming Services. Building a decentralized
naming service over a peer-to-peer (P2P) network was first
attempted by CoDoNS [75]. It adopts DNSSEC for data au-
thentication and thus suffers from the same drawbacks. The
GNU Name System (GNS) [14] is a modern incarnation of
this idea. It allows one to define a zone using a unique key
and create its own namespace rooted at the zone. However,
when used for a global consistent namespace, GNS will es-
tablish a chain of trust similarly to DNSSEC with the same
fragility problems. Deploying these radical systems is well
recognized as a practical challenge [43]. In contrast, RHINE
can be deployed on the existing DNS infrastructure.

Several projects use blockchain to design tamper-proof
naming systems [9, 12, 55], but whether they can achieve the
same level of performance and scalability as DNS remains
open. Donovan and Feamster [38] propose to reduce the over-
head of DNSSEC by letting resolvers trust each other for
signed records, but this does not provide E2E authentication.

In an early position paper [39], Fetzer et al. re-purpose SSL
certificates to sign DNS records, each with a separate certifi-
cate. Yet, the authors only sketched a preliminary scheme,
without thoroughly exploring the challenges and large design
space of authenticating DNS with the web PKI as we do.
DNS and PKI. The interplay between DNS and PKIs has a
long history. DANE allows a DNS domain to certify its own
certificates using DNSSEC [48]. To reduce the risk of users
accepting misissued certificates, a domain can also specify
the CA authorized by it using the CAA record [44]. A funda-
mental problem with these designs is that they move users’
trust from CAs to DNS authorities. It is unlikely that the latter
are more trustworthy, since they are not even in the security
business as CAs are. RHINE does not simply reverse the flow
of trust, i.e., relying on CAs for the authentication of name
data, but rather creates a robust system where all authorities
counterbalance each other’s power over the namespace.
Transparency Logs. With the widespread deployment of CT,
transparency logs have proven to be an integral part of modern
PKIs. Many enhancements to their functionality, security, and
performance have been proposed. CIRT [80] extends CT to
store certificate revocation information. CTng [63] and Log-
Picker [36] aim to relax the trust assumptions in CT by having
multiple entities (loggers or monitors) attest log entries. DT’s
design also follows this generic approach. F-PKI [28] intro-
duces a map server to provide a global view of all certificates
and associated policies; this role is akin to a DT logger. New
authenticated data structures are proposed to improve the effi-
ciency of transparency logs [51, 84]. They can be potentially

incorporated into DT for performance improvement.
Formal Analysis of PKI. Bhargavan et al. formally model
an early draft of the ACME protocol and discovered several
attacks [24]. Our formal approach has also helped us identify
many subtle flaws in RHINE’s early designs. ARPKI [21] and
DTKI [89] are PKI designs formally verified with Tamarin.
Compared with them, RHINE involves more subtly interact-
ing entities and hence is more challenging to model and verify.

10 Conclusion and Discussion
After much recent activity in the DNS space (e.g., discovery
of new attacks, frequent service outages, and growing con-
cerns about privacy), a window of opportunity is opening up
for a fundamental re-design of DNS to achieve high levels
of security. We revisit the existing security architecture of
DNS through a modern lens, pinpointing the intrinsic limita-
tions therein and proposing RHINE as our solution to these
long-standing problems. It offloads the heavy and error-prone
authentication task away from the client-facing side of DNS,
enabling efficient authenticated name resolution all the way
to end hosts. The deployment of RHINE can bootstrap the
security of today’s web PKI and Internet at large.

Deployment. We briefly discuss the incentives and costs for
different entities to deploy RHINE. There is no doubt that
the global Internet community shares a common interest for
E2E-authenticated name resolution.

From the perspective of DNS zone owners and operators,
RHINE can offer better security, lower failure rate and opera-
tional costs, and more robust naming services than DNSSEC;
RHINE indeed requires fewer changes to their existing hard-
ware and software, because it obviates the need to frequently
maintain, distribute, and validate DNSSEC-style authentica-
tion chains in regular operation. The extra investments in
operating the offline part of RHINE, which can be fully au-
tomated with our well-defined protocols similarly to ACME,
are comparable to what is already required by the web PKI.

CAs are likely among the most enthusiastic proponents
of RHINE, because the issuance of RCerts will significantly
expand and consolidate their security services. The operators
of transparency logs have the same motivations; DT loggers
will be a select subset of CT loggers.

For end users, RHINE is easier to adopt than DNSSEC
because they already rely heavily on the web PKI. For in-
stance, the RCert-based data validation function can be easily
integrated into web browsers, which have built-in support for
name lookup (e.g., DoT and DoH) and certificate validation.

Acknowledgment
We would like to thank the reviewers and our shepherd,
Matthew Caesar, for their valuable comments that help us
substantially improve the paper. We gratefully acknowledge
support from ETH Zurich, and from the Zurich Information
Security and Privacy Center (ZISC).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 543

References

[1] DNSSEC Targeted in DNS Reflection, Amplification
DDoS Attacks. https://community.akamai.com/,
2016.

[2] The DELEGATION_ONLY DNSKEY flag. Internet-
Draft draft-ietf-dnsop-delegation-only-02, Internet En-
gineering Task Force, 2021.

[3] Apple’s Certificate Transparency Policy. https://
support.apple.com/en-us/HT205280, 2022.

[4] BadgerDB: Fast key-value DB in Go. https://
github.com/dgraph-io/badger, 2022.

[5] Cert Spotter Stats. https://sslmate.com/
resources/certspotter_stats, 2022.

[6] Chrome Certificate Transparency Pol-
icy. https://googlechrome.github.io/
CertificateTransparency/ct_policy.html,
2022.

[7] CoreDNS: DNS and Service Discovery. https://
coredns.io, 2022.

[8] DNS-OARC/dnsperf: DNS Performance Testing Tools.
https://github.com/DNS-OARC/dnsperf, 2022.

[9] Ethereum Name Service. https://ens.domains,
2022.

[10] FPKI/SMT Implementation. https://github.com/
netsec-ethz/fpki/tree/smt, 2022.

[11] Merkle Town. https://ct.cloudflare.com, 2022.

[12] Namecoin. https://www.namecoin.org, 2022.

[13] Registrar Stats. https://www.domainstate.com/
registrar-tld-breakup.html, 2022.

[14] The GNU Name System. https://www.gnunet.org/
en/gns.html, 2022.

[15] Use of DNSSEC Validation for World. https://stats.
labs.apnic.net/dnssec/, 2022.

[16] Yasar Alev. SDNS: Privacy important, fast, recursive dns
resolver server with dnssec support. https://github.
com/semihalev/sdns, 2022.

[17] Eihal Alowaisheq, Siyuan Tang, Zhihao Wang, Fatemah
Alharbi, Xiaojing Liao, and XiaoFeng Wang. Zom-
bie Awakening: Stealthy Hijacking of Active Domains
through DNS Hosting Referral. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2020.

[18] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. DNS Security Introduction and Requirements.
RFC 4033 (Proposed Standard), March 2005. Updated
by RFCs 6014, 6840.

[19] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. Resource Records for the DNS Security Ex-
tensions. RFC 4034 (Proposed Standard), March 2005.
Updated by RFCs 4470, 6014, 6840, 6944, 9077.

[20] R. Barnes, J. Hoffman-Andrews, D. McCarney, and
J. Kasten. Automatic Certificate Management Environ-
ment (ACME). RFC 8555 (Proposed Standard), March
2019.

[21] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim,
Adrian Perrig, Ralf Sasse, and Pawel Szalachowski.
Design, Analysis, and Implementation of ARPKI: an
Attack-Resilient Public-Key Infrastructure. IEEE Trans-
actions on Dependable and Secure Computing (TDSC),
2017.

[22] David Basin, Ralf Sasse, and Jorge Toro-Pozo. The
EMV Standard: Break, Fix, Verify. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P),
2021.

[23] Daniel J. Bernstein. DNSCurve: Usable Security for
DNS. https://dnscurve.org.

[24] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and
Nadim Kobeissi. Formal Modeling and Verification for
Domain Validation and ACME. In Processings of the
International Conference on Financial Cryptography
and Data Security (FC), 2017.

[25] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher
Kruegel, and Giovanni Vigna. Cloud Strife: Mitigating
the Security Risks of Domain-Validated Certificates. In
Proceedings of the Symposium on Network and Dis-
tributed Systems Security (NDSS), 2018.

[26] C. Bormann and P. Hoffman. Concise Binary Object
Representation (CBOR). RFC 8949 (Internet Standard),
December 2020.

[27] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shul-
man, and Michael Waidner. Domain Validation++ For
MitM-Resilient PKI. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
2018.

[28] Laurent Chuat, Cyrill Krähenbühl, Prateek Mittal, and
Adrian Perrig. F-PKI: Enabling Innovation and Trust
Flexibility in the HTTPS Public-Key Infrastructure. In
Proceedings of the Symposium on Network and Dis-
tributed Systems Security (NDSS), 2022.

544 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://community.akamai.com/
https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280
https://github.com/dgraph-io/badger
https://github.com/dgraph-io/badger
https://sslmate.com/resources/certspotter_stats
https://sslmate.com/resources/certspotter_stats
https://googlechrome.github.io/CertificateTransparency/ct_policy.html
https://googlechrome.github.io/CertificateTransparency/ct_policy.html
https://coredns.io
https://coredns.io
https://github.com/DNS-OARC/dnsperf
https://ens.domains
https://github.com/netsec-ethz/fpki/tree/smt
https://github.com/netsec-ethz/fpki/tree/smt
https://ct.cloudflare.com
https://www.namecoin.org
https://www.domainstate.com/registrar-tld-breakup.html
https://www.domainstate.com/registrar-tld-breakup.html
https://www.gnunet.org/en/gns.html
https://www.gnunet.org/en/gns.html
https://stats.labs.apnic.net/dnssec/
https://stats.labs.apnic.net/dnssec/
https://github.com/semihalev/sdns
https://github.com/semihalev/sdns
https://dnscurve.org

[29] Taejoong Chung, Roland van Rijswijk-Deij, Balakr-
ishnan Chandrasekaran, David Choffnes, Dave Levin,
Bruce M. Maggs, Alan Mislove, and Christo Wilson. A
Longitudinal, End-to-End View of the DNSSEC Ecosys-
tem. In Proceedings of the USENIX Security Symposium,
2017.

[30] Secure64 Software Corporation. Lies, Damn Lies and
DNS Performance Statistics. White paper, 2017.

[31] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Au-
rora Naska. Clone Detection in Secure Messaging:
Improving Post-Compromise Security in Practice. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2020.

[32] David Dagon, Chris Lee, Wenke Lee, and Niels Provos.
Corrupted DNS Resolution Paths: The Rise of a Mali-
cious Resolution Authority. In Proceedings of the Sym-
posium on Network and Distributed Systems Security
(NDSS), 2008.

[33] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and
Michael Waidner. From IP to Transport and beyond:
Cross-Layer Attacks against Applications. In Proceed-
ings of the ACM SIGCOMM Conference, 2021.

[34] David Derler, Christian Hanser, and Daniel Slamanig.
Revisiting Cryptographic Accumulators, Additional
Properties and Relations to Other Primitives. In Topics
in Cryptology — CT-RSA 2015, 2015.

[35] J. Dickinson, S. Dickinson, R. Bellis, A. Mankin, and
D. Wessels. DNS Transport over TCP - Implementation
Requirements. RFC 7766 (Proposed Standard), March
2016. Updated by RFCs 8490, 9103.

[36] Alexandra Dirksen, David Klein, Robert Michael,
Tilman Stehr, Konrad Rieck, and Martin Johns. Log-
Picker: Strengthening Certificate Transparency Against
Covert Adversaries. Proceedings on Privacy Enhancing
Technologies, 2021(4):184–202, 2021.

[37] D. Dolev and A. Yao. On The Security of Public Key
Protocols. IEEE Transactions on Information Theory,
29(2):198–208, 1983.

[38] Sean Donovan and Nick Feamster. Alternative Trust
Sources: Reducing DNSSEC Signature Verification Op-
erations with TLS. ACM SIGCOMM Computer Com-
munication Review, 45(4):353–354, 2015.

[39] Christof Fetzer, Gert Pfeifer, and Trevor Jim. Enhancing
DNS security using the SSL trust infrastructure. In
Proceedings of the IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems, 2005.

[40] Marc Frei, Jonghoon Kwon, Seyedali Tabaeiaghdaei,
Marc Wyss, Christoph Lenzen, and Adrian Perrig. G-
sinc: Global synchronization infrastructure for network
clocks. In Proceedings of the Symposium on Reliable
Distributed Systems (SRDS), 2022.

[41] Miek Gieben. DNS library in Go. https://github.
com/miekg/dns, 2022.

[42] Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis
Jackson, Cas Cremers, and David A. Basin. A Spectral
Analysis of Noise: A Comprehensive, Automated, For-
mal Analysis of Diffie-Hellman Protocols. In Srdjan
Capkun and Franziska Roesner, editors, Proceedings of
the USENIX Security Symposium, 2020.

[43] Christian Grothoff, Matthias Wachs, Monika Ermert,
and Jacob Appelbaum. Toward Secure Name Resolution
on The Internet. Computers & Security, 77:694–708,
2018.

[44] P. Hallam-Baker and R. Stradling. DNS Certification
Authority Authorization (CAA) Resource Record. RFC
6844 (Proposed Standard), January 2013. Obsoleted by
RFC 8659.

[45] Shuai Hao, Haining Wang, Angelos Stavrou, and Evge-
nia Smirni. On the DNS Deployment of Modern Web
Services. In Proceedings of the IEEE Conference on
Network Protocols (ICNP), 2015.

[46] Muks Hirani, Sarah Jones, and Ben Read. Global
DNS Hijacking Campaign: DNS Record Manipula-
tion at Scale. https://www.fireeye.com/blog/
threat-research/, 2019.

[47] P. Hoffman and P. McManus. DNS Queries over HTTPS
(DoH). RFC 8484 (Proposed Standard), October 2018.

[48] P. Hoffman and J. Schlyter. The DNS-Based Authen-
tication of Named Entities (DANE) Transport Layer
Security (TLS) Protocol: TLSA. RFC 6698 (Proposed
Standard), August 2012. Updated by RFCs 7218, 7671,
8749.

[49] Hans Hoogstraaten, Ronald Prins, Daniël Niggebrugge,
Danny Heppener, Frank Groenewegen, Janna Wettink,
Kevin Strooy, Pascal Arends, Paul Pols, Robbert Kou-
prie, Steffen Moorrees, Xander van Pelt, and Yun Zheng
Hu. Black Tulip: Report of the Investigation into the
DigiNotar Certificate Authority Breach. Technical re-
port, August 2012.

[50] Rebekah Houser, Shuai Hao, Zhou Li, Daiping Liu,
Chase Cotton, and Haining Wang. A Comprehensive
Measurement-based Investigation of DNS Hijacking. In
Proceedings of the International Symposium on Reliable
Distributed Systems (SRDS), 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 545

https://github.com/miekg/dns
https://github.com/miekg/dns
https://www.fireeye.com/blog/threat-research/
https://www.fireeye.com/blog/threat-research/

[51] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Se-
ung Jin Yang, and Raluca Ada Popa. Merkle2: A Low-
Latency Transparency Log System. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P),
2021.

[52] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels,
and P. Hoffman. Specification for DNS over Transport
Layer Security (TLS). RFC 7858 (Proposed Standard),
May 2016. Updated by RFC 8310.

[53] Geoff Huston. Measuring DNSSEC Performance.
https://labs.apnic.net, 2013.

[54] IANIX. Major DNSSEC Outages and Validation Fail-
ures. https://ianix.com/pub/dnssec-outages.
html, 2021.

[55] Lin Jin, Shuai Hao, Yan Huang, Haining Wang, and
Chase Cotton. DNSonChain: Delegating Privacy-
Preserved DNS Resolution to Blockchain. In Proceed-
ings of the IEEE Conference on Network Protocols
(ICNP), 2021.

[56] Jaeyeon Jung, E. Sit, H. Balakrishnan, and R. Morris.
DNS Performance and The Effectiveness of Caching.
IEEE/ACM Transactions on Networking, 10(5):589–
603, 2002.

[57] Dan Kaminsky. It’s the end of the cache as we know it.
Presented at Black Hat USA, 2008.

[58] Aqsa Kashaf, Vyas Sekar, and Yuvraj Agarwal. Analyz-
ing Third Party Service Dependencies in Modern Web
Services: Have We Learned from the Mirai-Dyn Inci-
dent? In Proceedings of the ACM Internet Measurement
Conference (IMC), 2020.

[59] Cyrill Krähenbühl, Seyedali Tabaeiaghdaei, Christelle
Gloor, Jonghoon Kwon, Adrian Perrig, David Hausheer,
and Dominik Roos. Deployment and scalability of an
inter-domain multi-path routing infrastructure. In Pro-
ceedings of the International Conference on Emerging
Networking Experiments and Technologies (CoNEXT),
2021.

[60] Jonghoon Kwon, Juan A. García-Pardo, Markus Leg-
ner, François Wirz, Matthias Frei, David Hausheer, and
Adrian Perrig. SCIONLab: A next-generation Inter-
net testbed. In Proceedings of the IEEE International
Conference on Network Protocols (ICNP).

[61] B. Laurie, A. Langley, and E. Kasper. Certificate Trans-
parency. RFC 6962 (Experimental), June 2013. Obso-
leted by RFC 9162.

[62] B. Laurie, E. Messeri, and R. Stradling. Certificate
Transparency Version 2.0. RFC 9162 (Experimental),
December 2021.

[63] Hemi Leibowitz, Haitham Ghalwash, Ewa Syta, and
Amir Herzberg. CTng: Secure Certificate and Revoca-
tion Transparency. Cryptology ePrint Archive, Paper
2021/818, 2021.

[64] Wilson Lian, Eric Rescorla, Hovav Shacham, and Stefan
Savage. Measuring the Practical Impact of DNSSEC
Deployment. In Proceedings of the USENIX Security
Symposium, 2013.

[65] Baojun Liu, Chaoyi Lu, Haixin Duan, Ying Liu, Zhou
Li, Shuang Hao, and Min Yang. Who Is Answering My
Queries: Understanding and Characterizing Interception
of the DNS Resolution Path. In Proceedings of the
USENIX Security Symposium, 2018.

[66] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng
Zheng, Youjun Huang, and Haixin Duan. DNS Cache
Poisoning Attack Reloaded: Revolutions with Side
Channels. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2020.

[67] Keyu Man, Xin’an Zhou, and Zhiyun Qian. DNS Cache
Poisoning Attack: Resurrections with Side Channels. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2021.

[68] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The TAMARIN Prover for the Symbolic
Analysis of Security Protocols. In Proceedings of the In-
ternational Conference on Computer Aided Verification
(CAV), 2013.

[69] Ralph C. Merkle. A Digital Signature Based on a Con-
ventional Encryption Function. In Proceedings of Ad-
vances in Cryptology (CRYPTO), 1988.

[70] Moritz Müller, Willem Toorop, Taejoong Chung, Jelte
Jansen, and Roland van Rijswijk-Deij. The Reality of
Algorithm Agility: Studying the DNSSEC Algorithm
Life-Cycle. In Proceedings of the ACM Internet Mea-
surement Conference (IMC), 2020.

[71] Jeman Park, Aminollah Khormali, Manar Mohaisen, and
Aziz Mohaisen. Where Are You Taking Me? Behavioral
Analysis of Open DNS Resolvers. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2019.

[72] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick
Feamster, Nick Weaver, and Vern Paxson. Global Mea-
surement of DNS Manipulation. In Proceedings of the
USENIX Security Symposium, 2017.

[73] Adrian Perrig, Peter Müller, Samuel Hitz, David
Hausheer, David Basin, Markus Legner, and Laurent
Chuat. The Complete Guide to SCION. Springer, 2022.

546 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://labs.apnic.net
https://ianix.com/pub/dnssec-outages.html
https://ianix.com/pub/dnssec-outages.html

[74] Victor Le Pochat, Tom van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczynski, and Wouter Joosen.
Tranco: A Research-Oriented Top Sites Ranking Hard-
ened Against Manipulation. In Proceedings of the Sym-
posium on Network and Distributed Systems Security
(NDSS), 2019.

[75] Venugopalan Ramasubramanian and Emin Gün Sirer.
The Design and Implementation of a next Generation
Name Service for the Internet. In Proceedings of the
ACM SIGCOMM Conference, 2004.

[76] Venugopalan Ramasubramanian and Emin Gün Sirer.
Perils of transitive trust in the domain name system. In
Proceedings of the ACM Internet Measurement Confer-
ence (IMC), 2005.

[77] Audrey Randall, Enze Liu, Gautam Akiwate, Geof-
frey M Voelker, Stefan Savage, and Aaron Schulman.
Home is Where the Hijacking is: Understanding DNS
Interception by Residential Routers. In Proceedings
of the ACM Internet Measurement Conference (IMC),
2021.

[78] rhine-team. https://github.com/rhine-team/
RHINE-Prototype, 2022.

[79] Jeremy Rowley. CT2 Log Compromised via Salt Vulner-
ability. https://groups.google.com/a/chromium.
org/g/ct-policy/c/aKNbZuJzwfM, 2020.

[80] Mark Dermot Ryan. Enhanced Certificate Transparency
and End-to-End Encrypted Mail. In Proceedings of
the Symposium on Network and Distributed Systems
Security (NDSS), 2014.

[81] Lorenz Schwittmann, Matthäus Wander, and Torben
Weis. Domain Impersonation is Feasible: A Study of CA
Domain Validation Vulnerabilities. In Proceedings of
the IEEE European Symposium on Security and Privacy
(EuroS&P), 2019.

[82] Haya Shulman and Michael Waidner. One Key to
Sign Them All Considered Vulnerable: Evaluation of
DNSSEC in the Internet. In Proceedings of the USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2017.

[83] Thomas and Erin. Against DNSSEC.
https://sockpuppet.org/blog/2015/01/15/
against-dnssec/, 2015.

[84] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopou-
los, Charalampos Papamanthou, Nikos Triandopoulos,
and Srinivas Devadas. Transparency Logs via Append-
Only Authenticated Dictionaries. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2019.

[85] Thomas Vissers, Timothy Barron, Tom Van Goethem,
Wouter Joosen, and Nick Nikiforakis. The Wolf of Name
Street: Hijacking Domains Through Their Nameservers.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2017.

[86] Joel Wanner, Laurent Chuat, and Adrian Perrig. A For-
mally Verified Protocol for Log Replication with Byzan-
tine Fault Tolerance. In 2020 International Symposium
on Reliable Distributed Systems (SRDS), 2020.

[87] Nicholas Weaver, Christian Kreibich, and Vern Paxson.
Redirecting DNS for Ads and Profit. In Proceedings of
the USENIX Workshop on Free and Open Communica-
tions on the Internet (FOCI), 2011.

[88] B. Wellington and O. Gudmundsson. Redefinition of
DNS Authenticated Data (AD) bit. RFC 3655 (Proposed
Standard), November 2003. Obsoleted by RFCs 4033,
4034, 4035.

[89] Jiangshan Yu, Vincent Cheval, and Mark Ryan. DTKI:
A New Formalized PKI with Verifiable Trusted Parties.
The Computer Journal, 59(11):1695–1713, 2016.

[90] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang,
Dongjie Zhou, Baojun Liu, Keyu Man, Shuang Hao,
Haixin Duan, and Zhiyun Qian. Poison Over Troubled
Forwarders: A Cache Poisoning Attack Targeting DNS
Forwarding Devices. In Proceedings of the USENIX
Security Symposium, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 547

https://github.com/rhine-team/RHINE-Prototype
https://github.com/rhine-team/RHINE-Prototype
https://groups.google.com/a/chromium.org/g/ct-policy/c/aKNbZuJzwfM
https://groups.google.com/a/chromium.org/g/ct-policy/c/aKNbZuJzwfM
https://sockpuppet.org/blog/2015/01/15/against-dnssec/
https://sockpuppet.org/blog/2015/01/15/against-dnssec/

0. X (the owner of ZNx) publishes RCrtx, DSumx, DSAx
to the infrastructure D to be queried by client U .

1. U → D : QUERY(qname,qtype)
2. D : rec := ⟨RRset(qname,qtype)⟩x

: dsp := ⟨DSumx,T ⟩Lx

// ALv is encoded with four bits: DOL, IND, TER, EOI
// The only case requiring a membership proof

: If ALvx = (IND, ¬DOL, ¬TER, ¬EOI):
// ZNy is a (potential) child zone enclosing qname

: ZNy := GetChild(ZNx,qname)
// Get the membership proof for ZNy’s (non-)existence

: mem := Acc.GenPf(DAccx,ZNy)
: dsp := dsp ∪ {mem}

3. D →U : ANSWER(rec,RCrtx,dsp)
// ZNx is extracted from RCrtx

4. U : Verify ZNx encloses qname
: ∧ Σ.Vf(RCrtx,rec) ∧ Σ.Vf(pkLx ,dsp)
: ∧ T is the current epoch
: ∧ ZNx is not revoked (from Auxx)
: ∧ Match(DSumx,RCrtx)
: // Short-cut cases:
: If DOL in ALvx and qname ̸= Apex(ZNx):
: Reject the answer
: Else if ¬IND or TER or EOI in ALvx:
: Accept the answer
: Else : // Otherwise, check ZNy’s status
: If mem is for absence :
: Accept if Acc.Vf(DAccx,mem)
: Else : // ZNy already delegated
: Verify Acc.Vf(DAccx,mem)
: Accept the answer if ¬IND in ALvy

Figure 12: Authenticated name resolution protocol.

A Protocol Specifications

A.1 Authenticated Name Resolution

RHINE’s name resolution protocol is presented in Figure 12.
It is agnostic to the underlying distribution infrastructure
D, which can be instantiated, for example, with the existing
DNS infrastructure (consisting of authoritative nameservers,
recursive resolvers, forwarders, etc.) or a P2P network such
as GNUnet [14]. RHINE mandates that each answer to a
client query contains, in addition to the authoritative resource
records, the RCert and DSP of the zone that claims the au-
thority, and that a client always validates answers by itself,
thereby enforcing E2E authentication.

A.2 Secure Delegation Update

Figure 14 describes RHINE’s secure delegation update proto-
col. An established zone uses its own RCert and the associated

0. Each Li ∈ G has a set Xi of requests (lreq) as input.
1. Run n rounds of Oi := LogresConsensus+(Li,Xi)

with each Li as the leader proposing input data in a
round. After that, all loggers obtain the same set O
:=

⋃n
i=1 Oi as output.

2. Each Li filters the requests in O by keeping only the
earliest one in case of conflicts, applies the resulting
operations to its local GDAT , and computes a new
digest GAccT+1. Broadcast ⟨GAccT+1⟩Li to L

3. Each Li accepts and finalizes the aggregation result
if it receives f valid signatures over GAccT+1.

Figure 13: DT aggregation protocol.

DSP to prove its realm of authority. The protocol’s overall
flow resembles the delegation setup process, except that the
parent’s involvement is needed only in a few cases.

A zone can freely update its RCert and DT entry within
the validity period of the delegation. The parameter to update
must not include a delegation expiration time beyond what is
currently specified in the zone’s DSum. To extend the validity
period before the delegation expires, a zone must negotiate
with its parent (e.g., renewing the business contract) and get
the latter’s approval. Another type of update that requires
the parent’s consent is changing a non-independent zone to
an independent one, as this affects the parent’s realm of au-
thority. The update of authority level is subject to additional
restrictions. For example, a zone cannot change itself to ter-
minating unless all its existing delegations become invalid
(expired or revoked); similarly, a zone cannot change itself to
end-of-independence if it still has any independent child. A
zone can only update its delegation status (except its DAcc,
which is affected by the changes to its subzones’ delegation
status) once per epoch. For ease of presentation, we abstract
away these checks of an update request’s legitimacy in the
protocol specification.

It is possible for a zone to update the CA and loggers it
relies on, which is important after security breaches of these
trusted entities. In this case, the zone will run the update
protocol with a set of new trusted entities.

The revocation of a secure delegation comes in two forms.
Since RHINE mandates one RCert per zone at any time, the
issuance of a new RCert for a zone implicitly revokes the
old one. A zone can also make an explicit revocation request
through the update protocol. This will fail the validation of
the zone’s data signed with its current RCert. The operation
is irreversible, meaning that a revoked zone can only be re-
established through the secure delegation setup protocol.

One caveat in enforcing one RCert per zone is that the
loss of a zone’s private key may lock up the zone until the
existing delegation expires. This conundrum can be addressed
by having a zone pre-generate a signed revocation request,
preferably immediately after the delegation setup. The zone

548 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0. C prepares a data object Upd that encodes the parame-
ters to be updated.
// A and Lc may be different from those in RCrtc

1. C : Select A and Lc
// rid is implicitly included in all subsequent messages

: rid := H(t0,ZNc,Upd,A,Lc)
: sur := ⟨rid,SUReq(ZNc,Upd,A,Lc)⟩c
: [Get apv := ⟨SUApprvl(H(sur))⟩p
: and RCrtp from the parent P].

2. C → A : sur, RCrtc, [apv, RCrtp]
3. A : Retrieve dspc [, dspp] from Lc

: Verify sur with RCrtc and dspc
: [, apv with RCrtp and dspp]
: Verify the validity of Upd
: [, create a new tbsrc according to Upd]
: prl := ⟨PreLog(sur, [apv, tbsrc])⟩A

4. A → Lc : prl, RCrtc, [apv, RCrtp]
5. Li : Verify prl, sur, [and apv,] using the

: corresponding certificates and the local log
: Verify the validity of Upd
: uds := (T,A,Lc,ZNc,Upd, [H(tbsrc)])

6. Li → A : atti := ⟨LogAttest(Li,H(uds))⟩Li

7. A : Verify {atti} against prl
// L is randomly selected from Lc by A

8. A → L : lreq := ⟨LogReq(L,uds,{atti}Li∈Lc)⟩A
9. L : Verify lreq and {atti} and their consistency

: Add lreq to the pending pool for aggregation
10. L → A : lc := ⟨LogCfm(L,H(uds))⟩L
11. A : Verify lc against lreq

: [, RCrt′c := ⟨FinalRCert(TbsRCc,Lc)⟩A]
12. A →C : prl, {atti}Li∈Lc , lc, [RCrt′c]
13. C : Verify all received data against sur

Figure 14: Secure delegation update protocol (simplified). Messages and operations in square brackets [m] are optional.

can then revoke the existing delegation in case of key loss.
Clearly, the pre-generated revocation request itself should be
stored separately from the private key in a secure place.

A.3 DT Aggregation with Modified Logres

Figure 13 presents the DT aggregation protocol, with the core
modified Logres consensus routine depicted in Figure 15.
Logres obviates the need for leader selection by having each
participating node lead and run an instance of the consensus
routine in parallel with all others. Each consensus instance
contains up to f + 1 rounds of message exchanges among
the nodes, where f is the number of Byzantine faulty nodes
tolerable by the system. In normal situations where the leader
is honest and correctly operates, the consensus routine will
terminate in just two rounds.

Our main modification of Logres is in lines 13–17 of Fig-
ure 15, which describes the additional data validation required
by RHINE. Only valid input values will be added to the output
set. Another important change is that we refine the algorithm
to allow taking sets of values as input, as the original version
abstracts the input data as a single value. This entails several
technicalities including whether to have nodes’ witness on
valid values that may only constitute a subset of the input. For
simplicity, we always treat the witnesses on the original input
set even it may contain invalid data. This results in redundant
data validation in each round. Optimizing performance in this
regard is an interesting future work.

The final output set O from the consensus process may
contain duplicate or conflicting operations as a result of at-
tacks (when RHINE’s threat assumptions are violated; see
Section 6) or operational faults. For example, two requests
may contain different parameters to create a new log entry for
a just delegated zone. This is possible because there is a delay
for the DT log to be synchronized across loggers. In such

situations, the loggers will keep the earliest operation and dis-
carding other conflicting operations for the zone in question;
any potential attacks and faults will become detectable once
the current execution of the aggregation protocol ends.

B Formal Verification of RHINE

This section introduces important aspects of our formal speci-
fication of RHINE and the security properties we verify. We
refer the reader to the project repository [78] for full details.
Abstractions. The formalization of non-trivial protocols us-
ing Tamarin can run into the state explosion problem, which
makes the analysis intractable. To this end, we use several
abstractions to reduce the complexity of our model while still
faithfully capturing the essence of RHINE protocols.

First, rather than modeling the entire namespace, we focus
on a few zones represented symbolically that suffice to de-
scribe generic zone delegation. This includes a parent zone
that can be malicious, a child zone in question (i.e., ZNx in
Theorem 1 and 2), and another child zone (of the same parent)
serving to validate our model’s correctness. We consider all
of them to be independent zones for meaningful a security
analysis. This also obviates the need to model the processing
of authority level.

For the time dimension, we model three epochs. In T0,
the pre-established parent zone can publish data for name
resolution and approve delegation requests. Only one child
zone can be delegated in T0 and the other in T1; the first child
zone can also be updated in T1. Zone delegation or update is
not permitted in the last epoch T2. These symbolic epochs are
intended to enforce the sequence of events and they are not
necessarily consecutive. This arrangement allows the model
to capture security threats throughout a zone’s life cycle.

For the DT aggregation process, we model only RHINE-
specific input validation without specifying the Logres con-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 549

0. This is one of the |L | parallel runs of the consensus
process with Li being the leader. The code is for L j.

1. If j = i:
2. broadcast ⟨Xi,Li⟩Li to all other loggers
3. return Oi := Xi
4. Else:
5. W := /0 // witnessed values
6. Oi := /0 // agreed-upon output

// Start f +1 rounds of message exchanging
7. For round r = 1, . . . , f +1 :

// A timeout is needed to stop waiting for the mes-
sages from faulty nodes.

8. M := received messages
9. V := /0 // valid input values

10. For ⟨X ,Li⟩LW ∈ M
// Logres-specific checking

11. If |LW | ≥ r ∧ Σ.Vf(pkLw ,⟨X ,Li⟩LW)
12. Y := /0

// RHINE-specific data validation. A, Lc are from op
13. For lreq ∈ X :
14. lreq := ⟨LogReq(L,op,attset)⟩A
15. If Σ.Vf(pkA, lreq) ∧ L = Li

∧ Σ.Vf(pkLc ,attset)
∧ Match(op,attset)

16. Y := Y ∪ {lreq}
17. V := V ∪ {Y }

// Continue Logres processing on valid RHINE input
18. If V \ W ̸= /0:
19. If |V ∪W |= 1 :
20. Oi := V // Only one element in V
21. Else :
22. Oi := /0 // No agreed-upon value yet
23. N := /0 // Messages for next round

// Add witness to the original input
24. For Y ∈ V \ W :
25. Find ⟨X ,Li⟩LW ∈ M s.t. Y ⊂ X
26. N := N ∪ {⟨X ,Li⟩LW∪{L j}}
27. multicast N to all non-leader loggers

// Update witnessed value
28. W := V

// In the end of this protocol run, all honest loggers
will have the same Oi, which contain all valid log
operations as a subset of Xi.

29. return Oi

Figure 15: The LogresConsensus+(Li,Xi) protocol.

sensus routine, as its security has been formally verified by
its authors [86] and is inherited by our enhanced version. For
the update protocol, we consider updating the certified key
as well as the designated CA and loggers without the need
for parental approval. This reflects a zone owner’s ability to
independently manage the zone’s security.

We refrain from modeling explicit servers and the name
resolution algorithm, as this would result in a overcomplicated
model. Instead, we create an abstract distribution infrastruc-
ture by taking advantage of Tamarin’s underlying pattern
matching mechanism. Moreover, we represent all data struc-
tures (RCerts, DT log, resource records, etc.) as sets of values
and omit non-essential data such as Aux.

B.1 Protocol Specification
Tamarin models a security protocol as a labeled transition
system (LTS) where a state of the LTS consists of the local
states of the protocol participants, the adversary’s knowledge,
and messages on the network. States are modeled as a finite
multiset of facts. The system’s dynamics are specified by
labeled multiset rewriting rules that transform the facts.
Protocol Roles. Our model introduces five roles: P is the
owner of an established parent zone, C is an entity wishing
to securely establish a child zone, CA is an RCert issuer, L is
a DT logger, and U is an end user trying to resolve a name
under a child zone. The state space of a protocol in a sym-
bolic Tamarin model generally grows exponentially with the
number of involved actors, which are instances of roles in
interleaved protocol sessions. We model P as a singleton that
is instantiated only once. No limitation is imposed on other
roles. RHINE allows a zone to choose the number m of relying
loggers. We set m = 2 for all zones in the model. This keeps
the complexity of verification manageable without weaken-
ing the security properties we verify. The other parameters
f and n are irrelevant in the model because of the simplified
aggregation process.
Adversary. Tamarin provides a built-in network model with
a Dolev-Yao adversary: any outbound message is added to
the adversary’s permanent knowledge; any inbound message
is constructed by the adversary from its knowledge. We lever-
age this feature to create an adversary-controlled distribution
infrastructure without any explicit servers: publishing a zone
simply means sending its signed records to the network, and
name resolution is realized by sending a query to and receiv-
ing the matching record (and associated RCert and DSP) from
the network. To model the compromise of an entity, we reveal
its private key to the network, which enables the adversary
to impersonate the entity by forging its signatures. We also
allow malicious child zone owners so that the adversary’s
capability is not limited by the model itself.
Protocol Rules. We use several example rules to explain
our modeling style and choices. Figure 16 lists two rules
modeling the CA’s processing of an initial request in the
secure delegation protocol. A rule is defined in the form of
[state facts] --[event facts]-> [state facts].
(premise) (conclusion)

The lines in a let ... in block defines macros that are
expanded in the respective rule.

550 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

rule CA_Preissuance_1:
let

sdr_data = <’SDReq’, epoch, zone, $C,
zpkC, $P, $CA, $L1, $L2>

sdr = <sdr_data, sig>
apv_data = <’SDApproval’, h(sdr)>

in
[

In(<$C, $CA, sdr, apv, rcP>)
, !CA_St_0($CA, ~skCA)
, !ZPk_P($P, zpkP)
, Fr(~dsrid)
]
--[

NotEq($CA, $L1)
, NotEq($CA, $L2)
, NotEq($L1, $L2)
, Eq(verify(apv, apv_data, zpkP), true)
, Eq(verify(sig, sdr_data, zpkC), true)
]->

[
CA_St_1($CA, ~skCA, sdr, apv, rcP,

~dsrid, epoch)
, DSPReq(~dsrid, epoch, $CA,

zone(’Parent’), $L1, $L2)]

rule CA_Preissuance_2:
let
sdr_data = <’SDReq’, epoch, zone, $C,

zpkC, $P, $CA, $L1, $L2>
sdr = <sdr_data, sdr_sig>
rcP = <’RCert’, <tbsP, $L1_P, $L2_P>, rcP_sig>
dsum_P = <’DSum’, zone(’Parent’), htbsP,

<’Delegations’, dlgt1, dlgt2>>
dsp_P = <’DSP’, epoch, dsum_P, dsp_sig1, dsp_sig2>
tbsrc = <’TBSCert’, zone, $C, zpkC, $CA>
prl_data = <’PreLog’, sdr, apv, rcP, tbsrc>
prl = <prl_data, sign(prl_data, ~skCA)>

in
[DSPResp(~dsrid, $L1, $L2, $CA, dsp_P)
, CA_St_1($CA, ~skCA, sdr, apv, rcP, ~dsrid, epoch)
, !Pk($L1, pkL1), !Pk($L2, pkL2)
]
--[Eq(verify(dsp_sig1, <dsum_P, epoch>, pkL1), true)
, Eq(verify(dsp_sig2, <dsum_P, epoch>, pkL2), true)
, Eq(htbsP, h(tbsP))
, NotEq(dlgt1, zone), NotEq(dlgt2, zone)
, CAPreissued(epoch, $P, $C, zpkC, $CA, $L1, $L2)
]->

[CA_St_2($CA, ~skCA, sdr, tbsrc)
, Out(<$CA, $L1, $L2, prl>)]

Figure 16: Two rules from our model describing the CA’s actions in Step 7, Figure 6

A fact F(t1, t2, ...) involves symbolic terms t1, t2,
... that contain variables, constants, functions, network mes-
sages, etc. The execution of a rule consumes facts in the LTS’s
current state that match the rule’s premise, and produces new
facts that are added to the state. Persistent facts of the form
!F(t1, t2, ...) are never removed from the state, once
added. A public variable $t (often used to identify an actor)
or a constant ’t’ is always known to the adversary. A fresh
variable ~t is typically used to model random numbers such
as keys. We use several Tamarin’s built-in functions, includ-
ing pair (<t1, t2>), hashing (h(t)), and signing (sign(t1,
t2) and verify(t1, t2, t3)). We also defined our own
functions including zone(t), name(t), and epoch(t). Al-
though we use them to simply record constants in our current
model, it is possible to introduce equational theories for them
to capture a hierarchical naming structure and unlimited epoch
transition.

The rule CA_Preissuance_1 models $CA receiving a
secure delegation request from $C over the insecure net-
work using Tamarin’s built-in In() fact. Facts !CA_St_0(),
CA_St_1() record $CA’s local state. !ZPk_P() models the
access to the parent zone’s public key. The event facts Eq()
and NotEq() specify equality and inequality checks using
Tamarin’s restriction mechanism. We apply them to model
the bulk of an actor’s local processing of a message, including
signature verification and consistency checking. According
to the protocol specification (Figure 6), the CA needs to re-

trieve the parent zone’s DSP from the designated loggers
over an out-of-band secure channel. The facts DSPReq() and
DSPResp() model such a channel. At the end of the rule
CA_Preissuance_1, the CA makes a retrieval request with a
random id generated using the built-in fact Fr().

In the rule CA_Preissuance_2, the CA continues to verify
the received DSP and send out a pre-logging message over
the insecure network using the built-in Out() fact. Event
facts such as CAPreissued() there facilitate the definition of
properties in a model-independent way.

One of the most important event facts we consider is
ZoneDelegated(), which signifies the successful establish-
ment of a child zone. It should not be placed at the last step of
the secure delegation protocol, but where the zone owner has
verified the updated DT log (within the distribution window
of an epoch). Our model precisely captures this consideration
in the rule Child_Accept_T0 shown in Figure 17.

A zone delegated in an epoch can publish its data in the
subsequent epochs. To model this, we introduce a linear fact
ZonePublishable() that allows a zone to publish at most
once in an epoch. The rule Child_Accept_T0 states that a
zone delegated in T0 can publish once in T1 and once in T2.
The parent zone is initialized in T0 and so it can publish in all
three epochs.

The reason why we model three epochs instead of two is
to cover the scenario where an attacker attempts to acquire an
RCert in T1 for a zone delegated in T0. Such an attack sce-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 551

rule Child_Accept_T0:
let // The following are macros used to improve the specification’s readability

sdr_data = <’SDReq’, epoch(’T0’), zone, $C, zpkC, $P, $CA, $L1, $L2>
sdr = <sdr_data, sdr_sig>
tbsrc = <’TBSCert’, zone, $C, zpkC, $CA>
rcert_data = <tbsrc, $L1, $L2>
rcert = <’RCert’, rcert_data, rcert_sig>
lcfm_data = <’LogCfm’, $L1, hnds>
lcfm = <lcfm_data, lcfm_sig>
nds = <epoch(’T0’), $CA, $L1, $L2, zone, h(tbsrc)>

in
[C_St_2($C, ~zskC, sdr)
, In(<$CA, $C, rcert, att1, att2, lcfm>)
, !Pk($CA, pkCA), !Pk($L1, pkL1), !Pk($L2, pkL2)
, DTMonitor(epoch(’T0’), ’Setup’, logged_htbs) // Monitor the updated DT log
]

--[Eq(verify(rcert_sig, rcert_data, pkCA), true) // The cert is issued by the designated CA
, Eq(verify(att1, <’LogAttest’, h($L1, nds)>, pkL1), true) // and attested by the loggers
, Eq(verify(att2, <’LogAttest’, h($L2, nds)>, pkL2), true)
, Eq(verify(lcfm_sig, lcfm_data, pkL1), true) // The logging operation is confirmed
, Eq(h(nds), hnds) // and matches the previous logging request
, Eq(h(tbsrc), logged_htbs) // The monitored log entry is correct
, ZoneDelegated(epoch(’T0’), zone, $P, $C, ~zskC, $CA, $L1, $L2) // Successful delegation event
]->
[ZonePublishable(epoch(’T1’), zone, $C, ~zskC, rcert)
, ZonePublishable(epoch(’T2’), zone, $C, ~zskC, rcert)]

Figure 17: A rule modeling the child zone owner’s acceptance of an RCert in epoch T0.

nario is different from acquiring an RCert for a non-existent
child zone of an existing zone. The former case is captured
by Theorem 2 and the latter case by Theorem 1.

As mentioned, our model uses constants to encode zones
and names. There must be a way to specify the relations
between them. We employ a few hard-coded rules and restric-
tions to model and enforce a hierarchical name structure.

rule Zone_Record_Generator_PX:
[GenRecord(zone(’Parent’))] --[]->
[Record(zone(’Parent’), name(’NameX’))]

rule Zone_Record_Generator_CX:
[GenRecord(zone(’ChildX’))] --[]->
[Record(zone(’ChildX’), name(’NameX’))]

restriction Naming_Structure:
"All z n #i.

NameInZone(z, n)@i ==>
(z = zone(’Parent’) & n = name(’NameX’)) |
(z = zone(’ChildX’) & n = name(’NameX’)) "

These two rules state that the name ’NameX’ is under both
zone ’Parent’ and zone ’ChildX’, and both of them can
publish records for the name. This allows the model to capture
attack scenarios where a malicious parent zone serves bogus

records for an existing child zone.

B.2 Property Specification

In Tamarin, the execution of a protocol generates a trace—
a sequence of event facts, associated with timepoints, from
rules triggered during the execution. A trace property is a
set of traces defined using guarded first-order logic formulae
over event facts and timepoints (denoted as terms of the form
#t). We specify the security theorems introduced in Section 6
as trace property (defined using keyword lemma) shown in
Figure 18. The formal specification is self-explanatory with
the event facts serving as predicates that encode the informally
presented theorems. We discuss a few technicalities.

Using the Compromised() fact, we can flexibly configure
the adversary’s capabilities. The adversary by default has
the A1 capability and can compromise any actor except an
entity requesting the delegation for a child zone. Not allowing
the compromise of the parent zone owner and at least one
of the designated loggers leads to an A1+A2+A3 attacker.
Imposing only the latter constraint gives the adversary the
A1+A2+A3+A4 capabilities.

In the lemma E2E_Authenticity, we do not specify the
order of the event ZoneDelegated and UserAccept, as the
order is implied by the epochs they occur, i.e., the latter hap-

552 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

lemma Delegation_Security:
"All epoch zone P C zskC

CA L1 L2 #i1 #i2.
(RCertRequested(epoch, zone, P, C,

zskC, CA, L1, L2)@i1
& ZoneDelegated(epoch, zone, P, C,

zskC, CA, L1, L2)@i2
& not (Ex #j. Compromised(P)@j & j<i2)
& (not (Ex #j. Compromised(L1)@j & j<i2)

| not (Ex #j. Compromised(L2)@j & j<i2)
)

==>
(Ex #k. SDApproved(epoch, zone, P,

C, pk(zskC), CA, L1, L2)@k
& k < i2)"

lemma E2E_Authenticity:
"All P czone C_0 epoch zone U qid qname #i1 #i2

zskC_0 CA_0 L1_0 L2_0 zskC CA L1 L2.
(ZoneDelegated(epoch(’T0’), czone, P, C_0,

zskC_0, CA_0, L1_0, L2_0)@i1
& UserAccept(epoch, zone, U, qid, qname,

pk(zskC), CA, L1, L2)@i2
& (epoch = epoch(’T1’) | epoch = epoch(’T2’))
& not (Ex #j. UpdateLogged(epoch(’T1’),

czone)@j)
& (not (Ex #j. Compromised(L1)@j & i1<j) |

not (Ex #j. Compromised(L2)@j & i1<j)))
==>
(zone = czone & zskC_0 = zskC
& CA_0 = CA & L1_0 = L1 & L2_0 = L2)"

Figure 18: The specification of Theorem 1 (left) and Theorem 2 (right) we proved for RHINE.

pens only in T1 and T2. For the adversary, we do not limit its
capabilities in epoch 0, which ends at i1 when the concerned
zone czone is delegated. This does not affect security analy-
sis, because our model allows only one zone to be delegated
per epoch and disallows the adversary to obtain a child zone
owner’s private key.

To capture the update protocol’s security, we also formal-
ize the following property. It states that once a zone is dele-
gated, its RCert (in particular, the certified key zskC_1 and
trusted entities C1_1, L1_1, L2_1) can be updated only by
the zone owner generating a signed request using the genuine
key (zskC = zskC_0), even if an A1+A2+A3+A4 is present
after the initial delegation setup.

lemma Update_Security:
"All P C_0 zskC_0 CA_0 L1_0 L2_0 #i1

C_1 zskC_1 CA_1 L1_1 L2_1 #i2
zone zskC.

(ZoneDelegated(epoch(’T0’), zone, P,
C_0, zskC_0, CA_0, L1_0, L2_0)@i1

& ZoneUpdated(epoch(’T1’), zone,
C_1, zskC, zskC_1, CA_1, L1_1, L2_1)@i2

& (not (Ex #j. Compromised(L1_1)@j & i1<j) |
not (Ex #j. Compromised(L2_1)@j & i1<j)))

==>
(Ex #i3. UpdateRequested(epoch(’T1’), zone,

C_1, zskC, zskC_1, CA_1, L1_1, L2_1)@i3
& zskC = zskC_0
& i3 < i2) "

All these properties are defined over all traces. Tamarin
also supports proving lemmas that hold when there exists a
fulfilling trace. This is commonly used for sanity checks of
the specification. We have defined multiple such lemmas to
test whether our model implements the expected semantics.
The following example checks whether the parent zone can
legitimately serve records in T0 when no child is delegated.

lemma Normal_Resolution_Parent_T0:
exists-trace
"Ex P zpk CA L1 L2 U

qid qname #i1 #i2 #i3.
ParentInit(zone(’Parent’), P, zpk,

CA, L1, L2)@i1
& UserSentQuery(U, qid, qname)@i2
& UserAccept(epoch(’T0’), zone(’Parent’),

U, qid, qname, zpk, CA, L1, L2)@i3
// no compromise of any actor
& not (Ex A #k. Compromised(A)@k)"

C Achieving High Availability
DNS is a frequent target of (distributed) DoS attacks [58]. A
massive DNS outage can make a wide swath of online ser-
vices unavailable, for example the historic Facebook outage
in October 2021. By decoupling the authentication and dis-
tribution of a naming system’s data (see Section 3), RHINE
also separates the concerns of data authenticity and service
availability, allowing them to be addressed independently.

One promising direction to ensure the naming service’s
availability, even amid large-scale DDoS attacks, is to pro-
tect the distribution infrastructure with SCION [73], a next-
generation secure Internet architecture. With an array of or-
chestrated mechanisms, including high-speed packet (source)
authentication, traffic monitoring and filtering, as well as
lightweight bandwidth reservation, SCION can defend against
all types of network-level DoS attacks that target network
links and nodes and end hosts, offering guaranteed control-
plane operation and data delivery. SCION has seen real-world
deployments with proven scalability and performance [59].

We plan to deploy RHINE in SCIONLab [60], a full-
fledged global Internet testbed, and thoroughly evaluate its
practicality, usability, and availability against DDoS attacks.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 553

	Introduction
	Problem Statement
	Name Resolution Basics
	Authentication in DNS
	Problems with DNSSEC
	Desired Properties

	RHINE Overview
	Notation and Primitives
	Threat Model
	Design Rationale
	Validating Zone Ownership (A1)
	Preventing Certificate Misissuance (A2 & A3)
	Countering Parental Attacks (A4)

	Delegation Transparency
	RHINE Protocols
	Secure Delegation Setup
	Secure Delegation Update
	DT Aggregation and Retrieval
	Authenticated Name Resolution

	Formal Security Analysis
	Implementation
	Performance Evaluation
	Offline Management Performance
	Name Resolution Performance

	Related Work
	Conclusion and Discussion
	Protocol Specifications
	Authenticated Name Resolution
	Secure Delegation Update
	DT Aggregation with Modified Logres

	Formal Verification of RHINE
	Protocol Specification
	Property Specification

	Achieving High Availability

