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Abstract

Global cloud applications are composed of thousands of com-
ponents. These components are constantly generating large
volumes of network traffic, which is a major cost of cloud
applications. Identifying the traffic contributors is a critical
step before reducing the traffic cost. However, this is chal-
lenging because the measurement has to be component-level,
cost-effective, and under strict resource restrictions. In this
paper, we introduce NetPanel, which is a traffic measurement
platform for the Exchange Online (EXO) service of Microsoft.
NetPanel fuses three data sources, namely IPFIX, Event Trac-
ing for Windows (ETW), and application logs, to jointly mea-
sure the service traffic at the component level, where each
component is owned by a service team. NetPanel uses several
schemes to reduce the measurement overhead.

NetPanel has been in operation for more than one year. It
has been used to profile network traffic characteristics and
traffic cost composition of EXO. With the insights obtained
through NetPanel, we have saved millions of dollars in net-
work resources. The overhead of running NetPanel is rela-
tively small, which requires less than 1% CPU and disk I/O on
production servers and less than 0.01% of EXO computation
cores to process the data in our big-data platform.

1 Introduction

Cloud applications, such as Exchange Online (EXO), are com-
posed of thousands of components running on hundreds of
thousands of servers, developed and maintained by engineers
from many different teams. In EXO, one component is a mod-
ule that performs a specific function, as an entire or part of
a process. The Internet Information Services (IIS) [4] based
proxy, running on frontend (FE) servers, routes traffic for dif-
ferent components such as REST [23], EWS [5] and MAPI [6].
The traffic of each component is owned by a specific engi-
neering team. These components are sending tremendous traf-
fic across data centers, which incurs great costs. Any defect
in a single component may lead to widespread traffic flood.

Furthermore, due to the massive number of components, the
limited shared bandwidth could be easily drained by low-
priority traffic. In these cases, customers could suffer from
long latency or even connection loss [7,9, 12, 14]. For exam-
ple, an incident caused by anomalous traffic was reported by
Azure [2] on June 14", 2021 where some customers received
errors when performing service management operations. The
root cause was high CPU consumption and request timeouts
caused by an unexpected surge in internal traffic. The issue
was mitigated by adding rules to block internal traffic on a
subset of backend servers.

Cloud application owners have built plenty of monitors
for incidents and performance regressions [1, 3,20]. Such
monitors are typically based on availability or latency met-
rics, which are insensitive to traffic issues. Therefore, there
is still undesired traffic caused by various reasons, such as
code bugs or misconfigurations. Over time, these hidden bugs
become extremely difficult to trace as everyone takes them
as necessary bandwidth requirements. Unnecessarily more
capacity planning budget is therefore needed in subsequent
years. The extra cost will be millions of dollars per year given
the application scale. For example, in one case, we caught
a configuration error that nearly quadrupled its peak traffic.
In another case, we found that one service was sending re-
quests globally, while these requests can actually be handled
within a location. These cases will be detailed in Section
5.2. Although there is existing work to detect anonymous
traffic bursts [29,31,39,44], few have provided insights for
continuous traffic optimization. There is a body of work on
misconfiguration detection [51, 53] and safe deployment [34],
but their solutions are not specially designed for traffic-related
issues. In particular, some traffic issues can only be identified
through long-term continuous monitoring.

While it is vital to continuously monitor the traffic flow for
a cloud application, the dynamic and heterogeneous nature of
a global cloud application makes this difficult. An efficient
traffic monitoring system for cloud applications must satisfy
the following requirements:

(1) The measurement should provide component-level
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results. To efficiently identify the owner of the traffic,
component-level measurement is required. A component is
typically owned by a single engineering team. Researchers
have been exploiting network measurement tools such as IP-
FIX/Netflow in the last decade [22,37,55] to gain insights
into the network traffic in large-scale cloud infrastructures.
These approaches operate on network routers, so they cannot
identify components at the application layer. Server network
analysis tools [8, 11,36,43] can observe the traffic sent by
each process. However, multiple components can share a sin-
gle process. These tools cannot distinguish the traffic emitted
by components sharing the same process.

(2) The size of daily measurement results should be
small (in GB). To draw an effective conclusion on traffic ob-
servation, engineers need to query data over a long period of
time. In addition, there are cases where successive interactive
analysis is needed, such as the case we discuss in Section
5.2.1. A user query response should be returned within a few
seconds. On the other hand, global cloud applications are con-
stantly generating a vast amount of traffic logs. For instance,
the size of IPFIX data is more than 10TB per day. Event Trac-
ing for Windows (ETW) [11] data and application logs are
in PB. Directly joining PB and TB data at a daily frequency
is impractical due to resource constraints. Directly running
queries on these log data imposes huge data processing costs
and unacceptable query latency.

(3) The collector in production environment should run
under strict resource restrictions. Cloud applications such
as EXO provides high Service Level Agreements (SLA) [13]
to the customers. Therefore, the service has strict restrictions
in terms of the resource used by any single component on the
servers to ensure a quick response to customer requests. To
collect event logs, ETW needs to run on the servers by the side
of service components. Pulling all the network metrics from
ETW regularly is prohibited in the production environment
because it will exhaust the CPU and disk I/O on the production
servers.

To address the aforementioned challenges, we design Net-
Panel, a cost-effective continuous traffic profiling tool for
EXO. NetPanel takes three data sources, including IPFIX,
ETW, and application logs. We fuse these data sources to
jointly provide component-level measurement results. We re-
duce the data size with feature translation, data splitting, and
data aggregation to keep all measurement results at several
GB per day, which will be detailed in Section 4. To reduce
the resource consumption of ETW, we only retain the data for
the top k ports obtained from IPFIX.

NetPanel has been safeguarding the network traffic of EXO
for more than 1 year. It brought us valuable insights into our
traffic and helped us save millions of dollars per year. We
introduce 4 real-world cases in Section 5.2. NetPanel runs
with negligible impact on our production servers (less than
1% increase in CPU and disk 10). The data processing cost
for our big-data platform is also minor given the scale of

Roles Abbr.
Frontend FE
Backend BE
Active Directory | AD

Functionality
Connects with customers and routes customer requests
Stores mailboxes, delivers emails, and provides site resilience
Holds and queries customer metadata

Table 1: Server roles and their functionalities.

EXO (Iess than 0.01% of EXO cores). For a query for data
in a 60-day period, the response can be returned within 30
seconds.

Our key contributions and insights in this work are summa-
rized as follows:

* We discuss the requirements and challenges of measur-
ing the traffic for a global scale application, i.e., EXO.
We show that telemetry data should be attributed to an
organizational structure, such as a team of engineers,
to actually drive cost reduction. Moreover, daily data
size should be small enough to provide insight into how
traffic data changes over time.

* We present our novel traffic measurement design which
fuses IPFIX, ETW, and application logs to achieve
component-level measurement. We demonstrate that,
with proper data volume reduction, it is feasible to join
data sources across routers and servers. We show that
cross-validating data for integrity is feasible and crucial.

* We share our observations on traffic characteristics of
EXO in production environment. Specifically, we figure
out that heavy hitters (top ports/components) are stable
in EXO, and this feature can be used to reduce data
volume. We also demonstrate how NetPanel can help
reduce traffic costs through real-world case studies.

We believe that the experience of operating NetPanel pro-
vides valuable guidance to other cloud applications on how
to monitor and optimize their network traffic.

2 Background

This section introduces the EXO service traffic and explains
how these traffic flows are generated. Then, we share the
measurement tools available in EXO and their capabilities.

2.1 EXO Service Traffic

EXO operates in numerous datacenters around the world.
There are hundreds of thousands of servers all over the world
serving its enormous user community. The servers are cate-
gorized into three server roles: frontend routing proxy (FE),
backend mailbox (BE), and directory (AD), as summarized
in Table 1. FE servers, which sit behind load-balancers, serve
customer requests over direct connections. AD servers hold
information about users, mailboxes, and other customer meta-
data. BE servers provide storage for mailboxes and are respon-
sible for the delivery of emails to/from mailboxes. Multiple
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Figure 1: EXO traffic overview. When Bob sends an email to Alice, replication occurs, and Alice later reads the email replica.
During the email-reading process, 6 Internal Long-haul traffic flows and 2 Internet traffic flows are generated.

copies of mailboxes are geographically-dispersed to provide
high availability and site resilience. Each role of servers (i.e.,
FE, AD, or BE) hosts a group of services in order to provide
functionalities as designed.

EXO servers communicate with each other when serving
customers. We divide EXO traffic into two types: WAN traffic
and Metro traffic. The WAN traffic goes through routers in
WAN; and the rest, namely Metro traffic, travels within data-
centers in the same location. We are particularly interested in
the WAN traffic because it costs more than 90% of the annual
bill. There are two subtypes of WAN traffic. The first is the
traffic between EXO servers and user clients (Internet traffic)
and the other among EXO servers (Internal Long-haul traffic).
Internet traffic is responsible for around 10% of WAN traffic
and Internal Long-haul traffic takes the rest.

The Internal Long-haul traffic are assigned to different
priority tiers, Tier O and Tier I, by Bandwidth Broker [52].
Tier O is of higher priority with higher Quality of Service
(QoS). Tier 1 traffic has a lower priority, and it is routed
through sub-optimal paths and is dropped by routers first
when congestion occurs.

2.2 How EXO Traffic Generated?

We use a typical scenario shown in Figure | to describe how
the traffic is generated in EXO. In this scenario, Bob uses the
Desktop client to send an email to another user Alice. Alice
then reads her email through a web client. Bob in Location F
sends the email to Alice’s mailbox in Location E. The mailbox
is replicated to Location D for high availability. These are
annotated by the gray dashed line and the blue dotted line

in Figure 1. Later, Alice reads her email from the mailbox.
There are 4 steps in this email-reading process, detailed as
follows:

Step 1: Alice uses the web client in Location A to send a
request to the closest FE server. In this example, we assume
the closest FE server resides in another Location B.

Step 2: The FE server talks to an AD server in Location
C to query which BE server knows where the active copy
of Alice’s mailbox is hosted. In this case, the BE server in
Location D is returned by the AD server.

Step 3: The FE server queries the BE server in Location D
to ask which BE server hosts Alice’s mailbox. In this example,
the BE server in Location D happens to host Alice’s mailbox,
so it responds with itself.

Step 4: The FE server in Location B forwards the request
to another FE server in Location D and that FE server in
Location D will further transfer the request to the BE server
in Location D. The mailbox’s response is returned to Alice in
the opposite direction along the paths of Step 1 and Step 4.

During the email-reading process, the traffic in Step 1 and
the traffic from FE to the web client in the mailbox’s response
is Internet traffic because the FE server is talking to an ex-
ternal client outside of Microsoft. The traffic in Steps 2 and
3, and the traffic from the FE in Location B to the FE in
Location D in Step 4 is Tier O traffic because the source and
destination EXO servers are in different locations. In Step 4
(the orange arrow in Figure 1), the traffic between FE servers
is Tier O traffic, while the traffic between FE and BE servers
in Location D is Metro traffic. We use the example shown in
Figure | only to explain the generation of Tier O traffic. Most
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of the traffic would be Metro traffic when the servers involved
are in the same location.

The replication traffic, represented as the blue dotted line
in Figure 1, is Tier 1 traffic. Tier 1 traffic mostly consists
of background traffic that does not serve user activities and
therefore does not have rigorous latency requirements. Typical
cases include: (1) data replications for high availability; (2)
non-urgent mailbox migrations; (3) uploading logs.

In the example in Figure 1, Alice’s request first hits the FE
server in Location B (step 1), then is routed to the FE server
in Location D (step 4), and finally reaches the BE server in
Location D (step 4). The request is served by the REST [23]
component on the BE server. In this situation, only the ap-
plication logs of the FE servers capture this long-haul traffic
between the two FE servers (Location B = D). The com-
ponents on BE servers in Location D, such as REST [23],
MAPI [6], and EWS [5], are behind the FE proxy in the same
location. As a result, the BE servers are unaware if the re-
quest originates from another location. Sometimes, multiple
components on one BE server may even share the same pro-
cess. Therefore, server network analysis tools [8, 11,36,43]
are insufficient to provide component-level traffic measure-
ments. In summary, application logs are necessary to perform
component-level traffic measurements.

2.3 Traffic Measurements

There are two kinds of traffic measurement methods available
in our data centers: on-router and on-server measurements.
One of the commonly used on-router measurements is flow
monitoring [26, 35,41]. There are two standards, i.e., Net-
flow [21] and IPFIX [15], that have been used for years. Flow
monitoring samples packets with a certain probability and
aggregate them into flows. A flow is a sequence of packets
with the same IP 5 tuples (src./dst. addresses, src./dst. ports,
and protocol). Flows are uploaded to a centralized storage.
When measurements are made on the servers, common tool-
kits include Tcpdump [8] and Event Tracing for Windows
(ETW) [11]. Tcpdump is a well-known library that provides
powerful packet analysis capabilities on Linux, while Win-
dows uses ETW to collect system network events. These tools
can monitor the traffic usage of all processes on a machine.
We annotate these measurement schemes in Figure 1. IP-
FIX collects traffic data on WAN routers. ETW collects sys-
tem network events and provides traffic statistics for processes
on servers. We further add application logs, which are gen-
erated within the services and are owned by different teams
for debugging purposes. Application logs are request-focused.
For a specific request, application logs record the timestamp,
the component that serves the request, the local server name,
the remote server name, the latency, the request and response
content size, the remote port, etc.
We summarize the measurement capabilities of the three
schemes in Table 2. TimeStamp, IP, Port, Process, and Traffic

Timestamp | IP | Port | DSCP | Process | Component | Traffic Size | Request Size
IPFIX v v v X X v X
ETW v 1V X v X v X
App logs v a4 X v v X v

Table 2: Available Measurement Methods

Size are general definitions. TimeStamp, an IP pair (source
and destination), and a Port pair identify a unique flow. Pro-
cess is the information of processes that are sending and
receiving the traffic. We need a Differentiated Services Code
Point (DSCP) tag [18] because Bandwidth Broker uses it for
traffic QoS classification. Packets with different DSCP tags
are classified into different priority tiers. IPFIX covers IP,
port, and DSCP but cannot cover the process and component
information which are available only on servers. ETW can
further measure processes, but cannot cover the exact compo-
nent as discussed in our example in Sec. 2.2. Application logs
contain the request and response content sizes of components
but not counting the sizes of the packet headers. In addition,
application logs do not capture packet loss or retransmission.
In conclusion, we need to fuse IPFIX, ETW, and application
logs to achieve component-level measurement.

3 Motivation and Design Goals

In this section, we state our motivation to design NetPanel
and further define the goals to be met for our design along
with the challenges to be resolved.

3.1 Motivation

In the EXO service, many components are working together
to serve customers. These components send large amounts of
traffic globally, which is very expensive. The large cost has
motivated the application owner to understand the current traf-
fic, reduce the traffic cost, and ensure there is no traffic waste.
Furthermore, when a development team adds a new feature to
reduce their traffic, they also need a tool to validate the traffic
change of their component. Before NetPanel, each team only
monitors their own request amount, leading to an isolated
and incomplete view, which makes it hard to motivate traffic
optimization efforts, verify data correctness, and detect traffic-
related issues. On the other hand, without component-level
information, it is non-actionable even if anomalous traffic is
detected. With the increasing complexity of modern global-
scaled software, this requirement becomes more and more
urgent, which motivates us to build NetPanel.

3.2 Design Goals and Challenges

The design of NetPanel has to meet the following goals and
address the corresponding challenges.

Goal-1: The measurement should provide component-
level results. The overall EXO traffic should be divided into
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various components. EXO runs on hundreds of thousands of
machines of three server roles. Machines of the same server
role hold the same set of components. A component is owned
by an engineering team. As long as the component’s traffic is
identified, the engineering team can take action to optimize
its cost. NetPanel should provide the capability to establish
the mapping between the components and their traffic flow.

Recent measurement works [33,45,46,48,54] are on-router
measurements, so they cannot support measurement at com-
ponent granularity. Traffic Refinery [19] identifies the com-
ponent flows by inspecting DNS queries and manually spec-
ifying matches between components and their IP prefixes.
This does not work in EXO because it assumes that each 1P
must correspond to at most one component. However, in our
case, an IP can be shared by many components at the same
time. Google uses Bandwidth Enforcer (BWE) [32] to allocate
bandwidth at task granularity. A task may contain multiple
processes, and therefore, BWE cannot be used to monitor the
bandwidth for components sharing a process. NetPanel ad-
dresses this challenge by leveraging application logs to fill in
the component property. We will describe how to jointly con-
sider the three data sources, i.e., IPFIX, ETW, and application
logs, to recover component-level traffic throughout Section 4.

Goal-2: The daily measurement result size should be
small (in GB). In EXO, IPFIX generates several TB of data
every day, while the daily application log in PB. After com-
pression, the data size will be reduced to ~10%. However,
IPFIX data is more than 10TB per day, so the data size will
still be too large after compression. To draw an effective con-
clusion on traffic, engineers usually have to do consecutive
analysis over long time intervals and compare the results. The
system should provide quick responses to user queries and
consume few resources. From our experience, we need to
limit the result size to several GB per day, so that analysis
over a long time interval is allowed.

The data used for analysis should cover a continuous time
interval of at least several weeks to overcome the dynamic
nature of network traffic. Figure 2a shows the traffic variation
in EXO over a time interval of more than one week in North
America and Europe. The traffic volume highly aligns with
user activities, with more traffic during working hours and
much less at night and on weekends. The valley values are
nearly half of the peak values. The large fluctuation rate is
likely to override the traffic change introduced by a new fea-
ture if we make queries only over a short time interval of a few
hours. Moreover, different components can have different traf-
fic patterns. We show the traffic patterns of two components
in Figure 2b. The traffic of Component 1 fluctuates greatly,
while that of Component 2 is relatively stable.

Many approaches have been proposed to reduce the data
size. However, they cannot satisfy our requirements for dif-
ferent reasons. IBM cloud [39] is dealing with a 2.35TB log
each day, but their approach only reports anomalies without
any details on current and historical traffic usage. Analysis
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(a) All geographical regions have fluctuations between day-
time and night but follow a similar weekly pattern. The valley
values could be half of the peak values.
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(b) Different components have various traffic patterns.

Figure 2: Huge variations in time and components domain.

farm [47] proposes a cloud log analysis platform and ag-
gregates IP addresses to IP-groups. We achieve something
similar with feature translation (detailed in Section 4.2.1), but
this alone would only reduce the data size to hundreds of GB
per day. Anwar et.al. [16] claim to reduce the data size by
up to 80% using different sampling frequencies and storage
aggregation for different metrics. In our case, we collect only
one metric but the data size must be reduced thousands of
times. NetPanel addresses the challenge with multiple steps,
which will be introduced in Section 4.2.

Goal-3: The collector in the production environment
has to run under strict resource restrictions. The data col-
lector has to run continuously in the production environment.
There are strong resource restrictions (CPU, memory, disk
I/0, etc.) for measurement tools in order to reserve as many
resources as possible to serve user requests. The resource
consumption of the collectors has to be very small.

We abandoned pulling all network metrics from ETW in the
EXO production environments because of performance issues.
In EXO, every single component should use no more than
5% CPU. It is restricted to log no more than 32MB of data
on local disks every five minutes. Running ETW and writing
all the metrics to the local disk exceeds the limit as shown
in Section 6.1. The ETW data size for a single day is in PB.
NetPanel reduces ETW collectors’ resource consumption by
only recording the traffic data of the top k ports. This greatly
reduces the log size as well as the computation resource and
disk I/O throughput. We explain how the top k ports are
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Figure 3: NetPanel Architecture Overview.

identified in Section 4.2.2.

4 System Design

Figure 3 shows the overview of our design. The data sources
include IPFIX, ETW, application logs, and management data.
There are two separate pipelines in the system. The first one
(blue arrows) is responsible for reducing the data size while
preserving important attributes. The second one (yellow ar-
rows) is used to cross-validate the data from IPFIX and ETW
to ensure data integrity.

The output of both pipelines is fed into the result database.
The result database is a light-weighted database that can re-
spond to web services as well as user queries in near real-
time. We use Azure Data Explorer (Kusto) [10] for the result
database. The result database contains tables for different
features. The schema of the tables is available in Table 3.
We use port tables in the result database to derive the top k
ports with the largest traffic volume and use them as a filter
for ETW collectors to reduce their resource consumption in
the production environment (grey arrows). We also set up a
monitoring service to help component owners detect anoma-
lies and continuous upticks in their traffic usage. A WebUI is
provided for traffic data visualization.

4.1 Data Sources

Before NetPanel, EXO deployed a background packet trace
monitor on its servers to provide network statistics such as
throughput, RTT, etc. However, without component-level in-
formation, this background tracking is not adequate to drive
owners to optimize their traffic. This experience drives us to
choose a different set of data sources for NetPanel.
NetPanel takes three measurement inputs: IPFIX, ETW,
and application logs. The data is uploaded to COSMOS [38]
on an hourly basis. COSMOS is a Hadoop-like distributed
data storage and processing platform. We convert different
types of data into a uniform format like Table 2. In addition
to the measurement data, NetPanel also takes in management

data. The management data contains the mapping between an
IP address and its location and server role. The management
data is uploaded daily because it is relatively static.

NetPanel handles the three data sources independently. IP-
FIX data size is more than 10TB per day. ETW and applica-
tion logs data sizes are several PB per day. It is too expensive
to directly join the three data sources based on shared features
(i.e., TimeStamp, Port, IP, and Process). We thus process the
raw data independently and only store aggregation results in
the result database as detailed in the next section.

4.2 Data Processing

The data processing pipeline consists of three consecutive
steps. (1) Feature translation: translate the raw information of
the traffic data into a set of features. (2) Data split: divide the
traffic data associated with source-destination port pairs into
two separate views, i.e., source-port view and destination-port
view. (3) Data aggregation: aggregate the traffic data into
various feature tables.

4.2.1 Feature Translation

In Microsoft, different services occupy different blocks of
IP ranges, so we use IP addresses' to retrieve EXO traffic.
Then, we use management data to translate machine IPs into
locations and server roles. The server role is among AD, FE,
and BE. Location is the metropolitan area where the server
locates. This translation reduces the storage requirements
from trillions of IP pairs to millions of feature pairs.

We translate location pairs to Rate-Regions. Location pairs
are only used to get the prices of traffic flows. A longer dis-
tance implies a higher price. We thus use a new feature called
Rate-Region to replace the location pair of a flow. Azure
charges Microsoft internal services a unified price ($/Mbps)
for the flows traveling a geographical continent or an ocean,
like North America, Europe, Atlantic, etc. There are only

IThe IP addresses here are all Microsoft IPs.
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Table Data Source Schema - Keys Schema - Value (Bytes)
Source/Destination-Port IPFIX TimeStamp, ServerRole, RateRegion, Port, DSCP TrafficSize
Process ETW TimeStamp, ServerRole, RateRegion, Port, Process TrafficSize
Component Application logs | TimeStamp, ServerRole, RateRegion, Port, Process, Component RequestSize
Table 3: Columns in result tables.
Source port ranking handful of ports dominate the traffic usage. The outputs are
T — s e streamed into Kusto on a daily basis.
Port E3 99 We aggregate the records from different data sources to
Source | Destination | Bytes Port E4 99 obtain different feature tables. The schemas of these tables are
:Zi PM = 100 P ” shown in Table 3. We generate the Process table from ETW
PotA | Port E2 100 Port E6 98 data, the Component table from application logs, and the
PortEs |PortB % Source-Port table and Destination-Port table from IPFIX data.
— ::z = :i:“am“ "‘;;:’"ki“g We aggregate the TirpeStamp with §-minute intervals. Trafﬁc-
PortE5 | PortC 98 — S Size is aggregated with sum operation for all the records with
Port C Port C 98000 the same key. For example, the tuple of <TimeStamp, Server-
Port6 [Portc % Port E1 100 Role, RateRegion, Port, DSCP> is the key for the Source-Port
o = table. The TrafficSize in the Source/Destination-Port table

Figure 4: Split the port pair view into the source-port view and
the destination-port view, separately. Port Es are ephemeral
ports. Well-known ports A, B, and C pop up in the ranking
list after the split.

about 10 Rate-Regions. Translating location pairs to Rate-
Regions reduces the data size by ~99.1%. We note that the
feature translation does not hinder traffic debugging. One
component is deployed on all machines of the same role.
In case we detect anomalous traffic for one component in a
Rate-Region, engineers can randomly pick a server in that
Rate-Region and start the debugging from there.

4.2.2 Data Split and Aggregation

We aggregate the raw data based on the source port and
destination port, separately, ranked based on the traffic vol-
ume. This results in two views: the source-port view and the
destination-port view, which have two benefits: (1) signifi-
cantly reduces the table size, i.e., from O(# source port x
# destination port) to O(# source port + # destination port);
(2) helps pop up “well-known” ports in ranking because the
traffic of ephemeral ports will converge to relatively smaller
numbers than the traffic of “well-known” ports after aggrega-
tion. An example of port view splitting is shown in Figure 4.

Once we have identified the “well-known” ports, we take
an additional step to filter the ephemeral ports in the source-
port table and destination-port table. For every single time
slot, we aggregate all ports that contribute less than 1% of the
total traffic to one record and mark it with a special tag. Recall
that our goal is to reduce overall traffic cost, the threshold
of 1% is small enough. We will show in Section 5.1.1 that a

and the Process table is the sum of network traffic while
the RequestSize of the Component table is the sum of re-
quest/response content sizes, excluding packet headers.

4.3 Data Validation

As a global-scale system, there are many factors that result
in data corruption such as broken hardware and data loss.
During the development of NetPanel, we experienced a partial
data loss of the IPFIX data due to the data collector pipeline
change. In fact, data missing issues are non-trivial to detect
due to the vast amount of data being processed. NetPanel
resolves the problem by cross-validating the results obtained
from its multiple data sources.

The key idea is to cross-validate the ETW data and IP-
FIX data because the traffic size captured with ETW should
match that with IPFIX. However, because IPFIX does packet
sampling while ETW captures all traffic, we need to recover
IPFIX data before comparing them. The recovery function
is shown in Eq. (1). We do not validate the traffic size using
application logs, because they only capture the content sizes
without the request headers.

(PacketSize + HeaderSize) * PacketNumber
SamplingRate

IPFIXBytes =
ey

PacketSize, PacketNumber, and SamplingRate are available
from the IPFIX data. Note that we add the ethernet header
length (i.e., HeaderSize) to PacketSize to get the actual ether-
net frame size on the wire. Based on the law of large numbers,
we believe that: Given a machine pair that continuously send
a lot of traffic to each other, an effective estimation of IPFIX
should be close to ETW data. We conducted an experiment to
validate our recovery approach. The result shown in Figure 5
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Figure 5: Recovered traffic for a single pair of machines in
one day from IPFIX matches the traffic from ETW.

can confirm that the recovered IPFIX traffic size matches the
ETW measurement precisely.

We selected the top 1000 pairs of machines in EXO that
send the most traffic in a day for data validation. Machine
pairs are re-selected daily as machine pairing relationships
may change when machines become online or offline. Af-
ter selecting the machine pairs, we insert their IPFIX data
and ETW data into the validation table. Direct data compari-
son could be done with queries to the validation table. Data
validation is done on a daily basis.

4.4 Result Database

The result database contains the Source-Port table, the
Destination-Port table, the Process table, and the Component
table. These tables are used to analyze traffic for component
owners. A validation table is stored for data integrity checks.
A top k ports table is created based on the Source-Port table
and Destination-Port table. It picks the top k ports in both
tables. These top k ports will be used as filters for the ETW
collector in the future.

NetPanel uses the latest top k ports as a filter for the ETW
collector to save production resources. These top k ports are
usually obtained last day. IPFIX and Application Logs have
been deployed in our environment for a long time. These data
collectors have been optimized to guarantee no impact on
SLA. ETW collector is a newly added collector running on
production servers. As we will show in Section 6.1, directly
collecting all ETW records will result in tens of times the CPU
and disk 10 usage. We must reduce ETW collector’s resource
consumption on production servers. With the observation in
Section 5.1.1 that the top 10 ports cover more than 94% of
the traffic and stay stable over weeks. We decide to use the
Top-k algorithm as a filter in the ETW collector to reduce the
data to be collected and thus reduce its resource consumption.

4.5 Component Traffic Estimation

We built a web UI to provide engineers with a convenient way
to analyze the traffic. The dashboard shows component-level

traffic like shown in Figure 2b (in Section 3). If the component
monopolizes a process, its traffic could be directly obtained
from the Process table as described in Table 3. Otherwise, we
calculate its traffic in an approximated fashion. The details
are presented in Algorithm 1.

Input: Component C
Output: Traffic size of Component C per second
1 if Process Contains C then

2 | return Process[C]

3 else

4 P = Component C’s RemotePort

5 PortTraffic = Source-Port[P] + Destination-Port[P]
6 return S22t lCPL o poyTraffic

Component [*,P]
7 end
Algorithm 1: Calculation Algorithm

If a component shares a process with other components,
we have to estimate its network traffic following Line 4 to 7.
In Line 4, we first find the port P used by component C with
the Component table. Then, in Line 5, we calculate the total
network traffic of this port P with the Source-Port table and
Destination-Port table. In Line 6, Component[*, P] is the total
request/response size of all components (* is the wildcard)
going through port P. Component[C, P] is the request/response
size of Component C going through port P. We use the ratio of
Component[C, P] and Component[*, P], and the PortTraffic of
P to estimate the TrafficSize of component C. The underlying
assumption is that different components suffer from similar
packet loss patterns (i.e., similar retry rate) and the packet
header size is proportional to the payload size.

4.6 Monitoring

Aside from the dashboard, we also create monitors on the
Source-Port table and Destination-Port table in the result
database to safeguard the overall traffic usage of EXO. We
now support two types of monitors, one to capture the static
trend and the other to capture the dynamic changepoints.

We use Mann-Kendall trend test [25] to obtain the static
trend and use LinkedIn’s Greykite [27] to capture dynamic
change points. The static trend monitor could help us find
feature roll-out that potentially generates sub-optimal traffic.
The dynamic change-points monitor could discover sudden
bursts in traffic. These sudden bursts are usually caused by
code regression or configuration errors.

5 Production Results

We used NetPanel to support traffic analysis in EXO. In this
section, we share the observed traffic characteristics and use
case studies to show the effectiveness of NetPanel.
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Figure 6: Traffic percentage taken by the top 10 ports. The
percentage stays stable during the half-month observation.

5.1 Traffic Overview

Recall that there are two tiers of traffic in Sec. 2.1. To use
Tier 1 traffic, the owner team must register a specific port. All
traffic to or from that port is labeled with a Tier 1 DSCP tag.
The registration prevents other components from using the
same port. Therefore, all Tier 1 traffic through that port is
used exclusively by a single component. In the following, we
only discuss the characteristics of Tier O traffic.

5.1.1 Several ports dominate the overall traffic

From the Source-Port and Destination-Port tables, we observe
that several top ports contribute to most traffic usage. Figure 6
shows the percentage of total traffic generated by the top 10
ports over half a month period. The lowest value during this
period is 94.8%. This result confirms that the Top-k ports
filter algorithm could cover at least 94% of the total traffic
for ETW collector when k = 10. Furthermore, the list of top
ports remains unchanged during our observation. This obser-
vation supports us to use the latest top k ports obtained as a
filter for the ETW collectors as described in Section 4.4. The
concentrated traffic distribution at a few top ports saves us
a lot of traffic optimization work. We can focus on a small
number of ports when we want to reduce network traffic costs.
We engage the partner teams that use these ports instead of
calling every team in EXO.

5.1.2 Several components dominate the traffic of a top
port

When multiple components share the same port (as in Fig-
ure | REST and EWS share the same port), there are many
contributors to the port traffic. We analyze the traffic distri-
bution for top ports. We show the traffic contribution of the
top 5 components for the top 2 ports separately in Figure 7,
labeled as A and B. For both ports, the contribution of the 6"
component is less than 5%. Investigation into lower-ranked
components does not have a significant benefit in reducing
overall traffic usage. With the help of NetPanel, engaging with
a few partner teams is usually enough to optimize the traffic
of a top port. For example, when we want to reduce the traffic

W 1st
I Others
m 2nd
= 3rd
u 4th
® 5th

Port A Port B

Figure 7: Component-level traffic distribution for the top 2
ports.
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Figure 8: The traffic with destination port A decreased by
20% after switching from external to internal endpoint. The
vertical dotted line indicates the recover time.

for Port A, we only need to engage the owners of the top 5
components.

5.2 Case Studies

In this section, we show how we use NetPanel to refine the
WAN traffic for EXO. We present 4 cases where we leveraged
NetPanel for: (1) service traffic optimization; (2) legacy traffic
discovery; (3) anomaly traffic burst detection; and (4) WAN
feature validation. These actions save millions of dollars per
year for EXO.

5.2.1 Service Traffic Optimization

In this case, we introduce how we use NetPanel to identify
sub-optimal traffic and optimize the utilization of network
resources. NetPanel provides long-term data visualization.
This makes it easy for the application to identify its major
traffic contributor. After engaging the owning team, it is easy
to make a conclusion on whether the traffic is necessary.
During our investigation of the traffic composition of EXO,
we discovered that the Tier O traffic from our BE servers to
port A on FE servers is too large. Because EXO has optimized
the internal service endpoint (URL) to serve requests with the
nearest FE server, we expect that there should be little Tier
0 traffic from BE to FE. We then used the Component table
to find the main contributors. We identified that a component
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Figure 10: Traffic volume change with source port C and
source port D after the removal of legacy code. The vertical
dotted line indicates the change time.

that is used to extract plain text content from different formats
of documents in emails took up most of the traffic. Then, we
contacted the owning team and figured out that the component
was using an external service endpoint. It had no control of
where the requests were sent to and thus caused massive Tier
0 traffic worldwide. After identifying the issue, we worked
together with the owning team to change to use an internal
service endpoint so that this component could serve its re-
quests within a single location. This action saved millions
of dollars per year. The traffic change is shown in Figure 8.
The traffic with destination port A decreased by 20% after the
change. Prior to NetPanel, it relied heavily on code reviews to
prevent such cases. This manual approach was likely to lead
to omissions.

5.2.2 Legacy Traffic Discovery

There is another case where NetPanel helped discover legacy
traffic and its source code. As the system grows, the source
code becomes overwhelming. The work to remove outdated
settings and services is necessary. However, it turns out that
it is hard to discover legacies while do not break anything.
We figured out there was one component on BE machines
that was sending traffic to certificate authorities to validate
some certificates that had been retired. We started from the
continuous unexpected high traffic volume from port C in
the NetPanel Source-Port table. According to our knowledge,
EXO had finished the migration from Port C to Port D, so
there should be very little traffic from port C, but massive

1.00

Normalized Traffic

Apr11 Apr 18 Apr 25 May 02 May 09

Figure 11: Traffic volume change of the log uploading ser-
vice during the configuration error. The vertical dotted lines
indicate the start time and the end time, respectively.

traffic from port D. The left pie chart in Figure 9 shows the
ratio of the traffic from port C to the traffic from port D. The
traffic from port C is 42% of the traffic from port D, which is
much higher than our expectation. We used NetPanel to find
the suspicious component and its owning team. After reaching
out to the team, they investigated the issue and removed the
legacy code. After the fix, the ratio of the traffic from port C
to the traffic from port D became much smaller, where the
traffic from port C was reduced to 4.2% of the traffic from
port D, as shown in the right pie chart of Figure 9. The traffic
of both ports during the fix is shown in Figure 10. After the
removal, the traffic with source port C dropped to lower than
10% of the original traffic. That fix led to a savings of inbound
capacity in the Gbps for Microsoft.

5.2.3 Anomaly Traffic Burst Detection

This case shows how we leverage NetPanel to detect an
anomaly traffic burst caused by a configuration error. Some
configuration errors at the application level may cause abnor-
mal network behaviors. For example, a configuration error
may cause the component to keep sending requests to an end-
point and thus leads to a traffic burst. These bugs are hard to
detect unless the affected machines get so hot and break criti-
cal services [28]. In NetPanel, the change in request volume
can be detected. When anomalies are reported by NetPanel,
we could contact the component owner to debug the issue.
Figure 11 visualizes the traffic change during a configu-
ration error for one component in EXO. An engineer acci-
dentally changed a log uploading compression algorithm to
an older version. The decrease in compression rate led to an
increase in the total data volume sent to the log center and
eventually hit the throttling limit. However, the component
had a retry mechanism and kept sending data. This resulted
in nearly quadruple the traffic volume sent during peak hours.
The error was detected late after the change rolled out world-
wide and drove a dramatic increase in traffic volume. We
caught this abnormal burst and contacted the owner to dig
into their component. After rolling back the change, the ab-
normal traffic disappeared and the traffic dropped back to the
previous level. Without NetPanel, the problem could only be
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Figure 12: The volume change of Tier O traffic sent to reg-
istered ports after RWA devices support QoS Policy. The
vertical dotted line indicates the change time.

discovered until the availability of the affected component is
severely impacted, which would take a much longer time to
fix the error and waste much more bandwidth.

5.2.4 WAN Feature Validation

This section introduces how NetPanel triggers a feature vali-
dation on newly deployed devices. When a new type of device
starts to be deployed in the network, it may miss some func-
tionality. Regional WAN Aggregator (RWA) is a kind of core
router recently added to the Azure Network that sits on the top
of datacenters and is responsible to connect the datacenter net-
work to the backbone WAN. In this case, the newly deployed
RWA devices do not support the QoS policy. They ignore the
DSCP tag and treat all traffic with Tier O priority. NetPanel
helped fix the bug at an early stage and avoid purchasing tens
of millions of dollars in redundant capacity.

Bandwidth Broker routes traffic with different priorities.
Our replication service has registered ports on the Bandwidth
Broker service to lower the priority of non-urgent replications
to Tier 1. However, from NetPanel data, we found that these
ports have a significant amount of traffic classified as Tier 0.
Together with the owning team, we picked a machine pair and
captured packets on routers along the routing path. We found
that the RWA device on the path does not support the QoS
policy. Even though only 2 locations had RWA devices de-
ployed at an early stage, this fix already saved several million
dollars each year. If RWA devices were deployed worldwide,
the value of this fix would be tens of millions of dollars per
year. As shown in Figure 12, the Tier O traffic for those reg-
istered ports dropped to zero after the fix. NetPanel builds a
map between components and ports, which makes it easy for
component owners to monitor the priority tier of its traffic.
Once any bug is introduced on the routing plane, they could
discover and fix it quickly.

6 Evaluation

In this section, we evaluate the overhead of NetPanel in two
categories: overhead inside and outside the production en-
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Figure 13: Normalized CPU and Disk 10 usage on a BE
machine when only services are running, when raw ETW is
running, and when NetPanel is running.

vironment. The production environment serves customer re-
quests and thus has strong restrictions on resource consump-
tion, while the restrictions on overhead outside the production
environment are more relaxed.

6.1 Overhead in the Production Environment

Figure 13 shows our evaluation of NetPanel overhead in the
production environment. We ran the test on a single server.
The overhead of NetPanel in the production environment
is introduced by the ETW collector, which has extremely
high CPU and disk 10 consumption. If we enable ETW fully
on machines, it will occupy 25 x more CPU and 77 x more
disk IO compared to those when ETW is disabled. When we
deploy NetPanel on production machines, less than 1% rise of
the total available CPU and disk IO are observed because of
retaining only top ports as mentioned in Section 4.4. It saves
99.1% CPU and 99.7% Disk 10 compared with Raw ETW.

6.2 Overhead outside the Production Environ-
ment

The overhead outside the production environment includes
two parts: data storage and computation. These are the over-
head of processing and storing data in the big-data platform.

6.2.1 Data Storage

Table 4 shows the ratio between result data and raw data using
our approach. The result size is 0.00361% of the origin for
IPFIX, 0.00076% for ETW, and 0.00003% for application
logs. The daily result sizes of all three data sources are in GB
and are close to each other. The huge difference in the ratios
is caused by the huge difference in the size of the original
data. ETW data is much larger than IPFIX because it does
not perform data sampling and covers Metro traffic (traffic
within a location). Application log data is even larger because
a machine pair could send multiple requests in one connection.
The log data contains many extra columns for debugging.
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Data Size Ratio | Daily Calculation

IPFIX 0.00361% 1.1 hours

ETW 0.00076% 2.5 hours
Application Logs | 0.00003% 6.8 hours

Table 4: Result data size ratio (compared to the raw data) and
calculation time.
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Figure 14: The CPU time for a query on a port and a query
on a process increase linearly with the days of data. It takes
27 CPU seconds to get the 60 days of traffic for a port, and
15 CPU seconds to get the 60 days of traffic for a process.

6.2.2 Computation

The computational overhead consists of two parts. The first
part is the overhead of background data processing and vali-
dation pipelines. The jobs run every day. The second part is
the overhead of user queries.

We show the computational overhead for NetPanel’s data
processing and validation pipelines in Table 4. We use less
than 0.01% of our production computation resources to pro-
cess the data. It takes 1.1 hours to process IPFIX data, 1.6
hours to process ETW data, and 6.8 hours to process appli-
cation logs every day. The validation pipeline takes around
1.5 hours. The tight resource restriction leads to a long cal-
culation time. We make this trade-off because the goal of
NetPanel is to support the reduction of traffic costs in the long
run, and therefore a delay of hours is acceptable.

It typically takes no more than 30 seconds for NePanel to
respond to a user query for the traffic of a set of specific ports
or processes over months. We show the CPU time NetPanel
needs to respond to a user query in Figure 14. The CPU time
is proportional to data size. The actual waiting time is usually
much smaller than the CPU time because multiple CPUs can
calculate the result in parallel. The overall overhead of user
queries is usually negligible.

7 Related Work

EXO runs on Azure architecture, further details of Azure
architecture are shown in [30]. Gunawi [24] provided a sum-
mary of 597 cloud outages from 2009 to 2015. Ardelean [17]
used Gmail as an example to analyze the performance of
cloud applications. They studied the dynamic nature of cloud

applications in short time intervals. There are multiple efforts
to minimize the cost of operating data centers. Cascara [42]
tried to optimize the edge cost. Yang et. al. [50] scheduled
the bulk transfer among datacenters. ROTOS [49] designed
an optical DCN architecture to improve power efficiency.

Large investments have been made in data-center monitor-
ing. There is a body of work on server monitors for Linux and
Windows [8, 11,36,43]. Trumpet [36] is a monitor that pro-
cesses every packet at line rate on end-hosts and tests the pres-
ence of user-specified network events. PathDump [43] designs
a server stack to retrieve metadata from arrived packets on
edge devices to help debug network issues. Monitoring data-
center networks has been a hot topic for years. Commonly
used protocols include IPFIX/Netflow and sFlow [15,22,37].
A detailed review [26] of the general flow monitoring tech-
nique is provided. In recent years, researchers have refined
flow monitoring for different purposes [33,40]. To monitor all
the flows without sampling, FlowRadar [33] encodes per-flow
counters at switches and leverages the computing power at
the remote collector to perform decoding. To handle the large-
scale challenge of data-centers, many have turned to query-
based solutions, including Stroboscope [46], OFRewind [48],
and PacketScope [45]. Stroboscope [46] mirrors millisecond-
long traffic slices on routers according to user queries to
monitor network forwarding behavior including traffic paths,
one-way delays, and load-balancing ratios. IBM [29] uses
HTTP logs to detect component failure and provide reports
over the last 48 hours when an anomaly is detected.

8 Conclusion

The vast amount of network traffic generated by the compo-
nents in cloud applications consumes significant resources.
It is vital to identify the composition of network traffic to
reduce the cost. Component-level measurement is needed to
drive the traffic optimization effort for systems developed
by a large number of teams. NetPanel analyzes the network
traffic for EXO at the component level and at a low cost. One
primary challenge is caused by the huge amount of measure-
ment data. We design several schemes to reduce the data size
without losing fidelity. We discuss real cases where NetPanel
is applied to save millions of dollars per year. We believe that
the insights we gained during the design and operation of
NetPanel provide valuable experience in traffic measurement
and reduction of other cloud applications.
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