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Abstract. State machine replication (SMR) is a core mech-
anism for building highly available and consistent systems.
In this paper, we propose Waverunner, a new approach to ac-
celerate SMR using FPGA-based SmartNICs. Our approach
does not implement the entire SMR system in hardware; in-
stead, it is a hybrid software/hardware system. We make the
observation that, despite the complexity of SMR, the most
common routine—the data replication—is actually simple.
The complex parts (leader election, failure recovery, etc.) are
rarely used in modern datacenters where failures are only oc-
casional. These complex routines are not performance critical;
their software implementations are fast enough and do not
need acceleration. Therefore, our system uses FPGA assis-
tance to accelerate data replication, and leaves the rest to the
traditional software implementation of SMR.

Our Waverunner approach is beneficial in both the common
and the rare case situations. In the common case, the system
runs at the speed of the network, with a 99th percentile latency
of 1.8 µs achieved without batching on minimum-size packets
at network line rate (85.5 Gbps in our evaluation). In rare
cases, to handle uncommon situations such as leader failure
and failure recovery, the system uses traditional software to
guarantee correctness, which is much easier to develop and
maintain than hardware-based implementations. Overall, our
experience confirms Waverunner as an effective and practical
solution for hardware accelerated SMR—achieving most of
the benefits of hardware acceleration with minimum added
complexity and implementation effort.

1 Introduction

Variants of State Machine Replication (SMR) are responsible
for all reliable, consistent, and highly available online services.
SMR is at the core of massive-scale systems such as cloud
infrastructure coordination services [6, 26], large-scale dis-
tributed databases [13,25,63,69], and many other systems that
require high availability and consistency [2, 14]. Due to their
central nature in critical infrastructure, SMR implementations
must be extremely robust and resilient. At the same time, the
performance characteristics of the SMR dictate the perfor-
mance of the overall service. As a result, mechanisms for
reducing SMR operation latency and increasing throughput
have received significant research attention.

A fundamental requirement of SMR implementations is
that networked hosts must exchange multiple messages to

agree on the shared state. While implementations that use
traditional NICs and process all packets through the OS net-
work stack are the most straight-forward, their performance
is bounded by the large amount of CPU time spent on packet
processing [8, 22, 28, 46, 57, 58, 68], limiting the throughput
and drastically impacting the operation latency due to many
traversals of the software network stack.

To overcome the CPU bottleneck, researchers have begun
exploring hardware acceleration of network processing. For
example, a recent work demonstrated the ZooKeeper broad-
cast protocol implemented entirely in reconfigurable hard-
ware on an FPGA (Field-Programmable Gate Array). This
implementation is able to approach line-rate throughput with
operation latencies that are only marginally higher than the
on-the-wire latency of the messages [30].

Unfortunately, although it is an impressive demonstration
of hardware-acceleration capabilities, the hardware-only ap-
proach is too complex and brittle for practical deployment.
Despite the improvements in the ease-of-use of hardware de-
velopment toolchains, the ZooKeeper FPGA implementation
required significant expertise, including a hardware version
of the TCP/IP stack and all of the protocol details such as
leader election and failure recovery. Implementing and debug-
ging distributed protocols in hardware is significantly more
difficult than user-level software implementations. Moreover,
consensus algorithms—the core of SMR—are well known for
being complex and error-prone in design and implementation.
Properly capturing all corner-case behaviors in a hardware
implementation is challenging and difficult to verify.

We observe that the complexity of SMR is actually in the
uncommon routines. Indeed, the most common operation, the
one that limits throughput and dictates operation latency, is ex-
tremely simple: a leader node receives requests and broadcasts
them to the follower nodes, locally committing requests only
after receiving acknowledgements from the followers. Other
SMR routines, such as leader election and failure recovery,
are indeed considerably more complex.However, these com-
plex operations are used only in special circumstances, such
as system bootstrap or replica failures. These operations are
rare, not performance critical, and their traditional software
implementations are fast enough for all practical purposes.

We propose a new approach to accelerate SMR by creat-
ing a hybrid hardware/software organization that implements
only a small, simple, but performance-critical portion of the
protocol in hardware and leaves the vast majority of the imple-
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mentation in traditional user-level software. We showcase Wa-
verunner, our approach for hardware acceleration of Raft [52],
a well-known consensus protocol, where the entirety of the
robust software implementation remains intact, adding only
an extra high-performance hardware-accelerated path for the
common-case operation. The Waverunner approach permits a
clean separation of the complex operations from simple ones
in the Raft application software, and reduces the complexity
of transport protocol handling. Waverunner uses UDP for the
common routines, but leaves all complex cases, such as er-
ror handling and view changes, to the traditional TCP-based
software. Moreover, by restricting the Waverunner hardware
to only the common case, we are able to leverage FPGA
HLS (high-level synthesis) tools to automatically generate
the hardware from its C++ description, significantly reducing
implementation and adoption effort. Although our prototype
system is based on Raft, the Waverunner technique is generic
and can be easily adapted for other distributed protocols.

Waverunner is notable for its performance and simplic-
ity. We achieve line-rate operation of Raft (85.5 Gbps af-
ter accounting for Ethernet frame overheads on a 100 Gbps
network), with the vast majority of the SMR broadcast re-
quests handled in three wire-delay latencies (median latency is
1.8 µs). At the same time, we retain the robustness, flexibility,
and completeness of a software implementation—Waverunner
includes a fully operational implementation of Raft without
hardware acceleration and can smoothly transition between
hardware-accelerated and software-only modes. In a failure
test, Waverunner can recover from a leader crash within 1 sec-
ond. While the implementation of Raft is by no means simple,
leaving it in software is appealing for debugging, upgrades,
and maintainability. Moreover, the 220-line HLS-based C++

implementation of the hardware, made possible by limiting
the hardware only to a simple core routine, greatly simplifies
modification and maintainability of the hardware components
compared to a full-hardware implementation.

2 Background & Motivation

In this section, we briefly introduce the concepts of state
machine replication and FPGAs, as well as the key idea and
motivation of our Waverunner approach.

2.1 State Machine Replication

State machine replication (SMR) is the standard approach
to build highly consistent and available systems [6, 13, 26].
It aims to provide a consistent view among replicas while
tolerating replica failures in a practical environment where
messages can be arbitrarily delayed and there are no perfect
failure detectors. In the most common model, SMR replicates
a sequence of log entries that contain the operations to be
executed by each replica. The application is modeled as a

deterministic state machine so that all replicas will have iden-
tical states after executing the same sequence of operations.

At the center of an SMR system is a consensus protocol,
which is known to be complex and delicate. Most consen-
sus protocols share a common leader-follower model, from
early academic ones (e.g., Viewstamped Replication [51] and
Paxos [40]) to more recent ones that are widely adopted in in-
dustry (e.g., Zookeeper Atomic Broadcast [26], and Raft [52]).
Despite their differences, these protocols largely follow a two-
stage structure: a leader election and recovery stage when the
system elects a new leader and synchronize all replicas after
possible failures, and a data replication stage when the leader
replicates log entries to the followers as new requests arrive.1

2.2 Programmable NIC with FPGA

The last three decades have witnessed the emergence of a great
mismatch between network speed and CPU performance. The
bottleneck of a networked system has gradually moved from
the network (NIC and switch) to the CPU and the OS software
stack. To mitigate this problem, the use of programmable
NICs with Field Programmable Gate Arrays (FPGAs) has
emerged. Equipped with on-chip processing units and mem-
ory, FPGA-based NICs can process packets at line rate (e.g.,
100 Gbps), with stable nanosecond-range latency. In com-
parison, the traditional software approach can process only
several gigabits per second on a CPU core, with latencies
measured in milliseconds.

Although capable of high throughput and low latency,
FPGA hardware is notoriously difficult to program. Program-
ming FPGAs is particularly challenging because it requires
hardware development skills and knowledge of hardware de-
scription languages. Although high-level synthesis (HLS)
tools make the FPGA programming process more accessible
by translating functions from C++ to hardware, these tools are
difficult to use effectively when the logic being implemented
is complex. As a result, one of our goals in the design of Wa-
verunner is to make sure that all functions that we implement
in FPGA hardware are straightforward and simple, so they
can be easily implemented with HLS.

2.3 Motivation

As the critical building block of large-scale systems, the per-
formance of SMR has been a focus in many recent studies.
High-performance SMR implementations use a wide range of
advanced hardware, including programmable NICs with FP-
GAs [30], RDMA [2], and programmable switches [16,32,42].
In this work, we propose a unique hybrid approach to acceler-
ating SMR with FPGAs: only accelerating the data plane and
leaving the control plane, including election and recovery, to

1(Multi-)Paxos does not have a universally agreed algorithm, whether to
implement it as a two-stage structure depends on the implementation [2, 10].
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Usage Ratio (%)
Control plane Data plane Application

Our Raft ∼0 (1e-8) 88 12
NuRaft ∼0 (1e-4) 92 8
etcd ∼0 (1e-4) 72 28

(a) CPU cycle breakdown of Raft implementations.
LOC (approx.)

Control plane Data plane Application
Our Raft 1500 200 5400
NuRaft 3600 1100 6000
etcd 1700 180 8900

(b) LOC estimates of Raft implementations.
Usage ratio (%)

Network descriptor read 6.1
Network descriptor write 16.8
Other RPC cost 5.9
Memory allocation 9.6
Reference counting and memory free 13.3

(c) Breakdown of the data plane usage on system-related
(non-logic) code in our Raft implementation.

Table 1: Raft Implementation Analysis

be processed by software. Our approach leverages the obser-
vation that the data plane dominates the system performance
when the system is stable (most of the time), while the recov-
ery part is only used in rare cases and is usually fast (seconds
or less), so there is no need to accelerate it.

Table 1a and 1b show a CPU cycle analysis of various Raft
implementations, including our own implementation in C++.
In our experiments, we set the failure rate to once a year, and
observe that the data plane consumes the majority of the CPU
cycles while the control plane consumes almost none. More-
over, the majority of data plane usage is on common utilities
such as networking, data serialization, memory allocation, etc.
(Table 1c). Implementing the data plane in FPGA can avoid
these costs. Implementing the control plane with software can
minimize the programming effort needed in the hardware; it
also allows us to rapidly iterate on the software implementa-
tion, as required when developing complex modules.

In this paper, we choose Raft as our acceleration target.
This is another advantage of our approach: we can accelerate
existing protocols and systems rather than develop entirely
new ones. The hardware acceleration in deployment can then
be optional. That is, the system can run either with or without
the programmable NIC. This approach adds great flexibility
in practice. Though we use Raft for our prototype, we believe
our approach similarly applies to other common consensus
protocols, as they have similar structure [64, 67].

3 Waverunner System Overview

Waverunner takes the standard state machine replication
model: it replicates a sequence of operation log entries (mes-
sages) identically onto each replica. The target of replication
is referred to as the application (e.g., a key-value store or a

Replica
Replica

Replica

SW

HW

Network
InterfaceWaverunner

Op Log Vanilla
Raft

Normal Path

Accelerated Path

Kernel

Client

Network Switch

Figure 1: System Design Overview. The solid black lines
represent the normal path when Waverunner is disabled,
where network packets travel between the application (Vanilla
Raft) and NIC via the POSIX interface and Kernel device
driver; the dashed lines represent the accelerated path, where
the NIC diverts incoming packets to Waverunner, which can
send messages into the network via the NIC and/or deliver
them directly into a buffer allocated by the application.

lock service). The application must be deterministic; after all
replicas process the messages in the order they are recorded
in the log, the replicas will all reach the same state. A client
for SMR can be either the replicated application itself or an
independent client that sends requests to the application. A
replica server is either a leader or a follower. Only the leader
accepts client requests and replicates these requests to the
followers. Followers reject client requests, causing the clients
to resend requests to the leader.
System Architecture. The system architecture, including its
hardware and software components, is shown in Figure 1. The
software includes a complete vanilla Raft implementation that
uses conventional TCP sockets provided by the Linux kernel.
Additionally, the software can access hardware configuration
registers to control the Waverunner hardware. The software
can disable Waverunner hardware acceleration, causing all
received network packets to be delivered via the conventional
network stack. However, if the software enables hardware ac-
celeration, the network interface examines all received packets
to identify those carrying Raft messages, and directs packets
containing the most common Raft messages (client requests
and data replication messages) to the Waverunner hardware
protocol handler instead of the kernel network stack. To com-
municate with the software, the Waverunner hardware writes
messages into a pre-allocated user-space log buffer, bypassing
the kernel. Uncommon Raft messages and all other network
traffic (e.g., ARP requests and ssh connections) are handled by
the kernel like with a conventional NIC, regardless of whether
Waverunner hardware acceleration is enabled or not.
Typical Waverunner Workflow. Waverunner takes advan-
tage of the Raft leader election protocol to coordinate enabling
and disabling hardware acceleration (Figure 2). When the sys-
tem is first initialized, hardware acceleration is disabled by

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    359



Election
Enable accl. 

Replication
Accelerated

Election
Disable accl. 

Recovery/Rep.
Software-only

Figure 2: Waverunner Workflow

default. The Raft software triggers a leader election, select-
ing one of the replicas as the leader, and enables hardware
acceleration. The system then replicates data with the assis-
tance of hardware acceleration. The hardware takes care of
the data replication operations and deposits the committed
log messages into the user-space log buffer for the software
application to handle. If a leader failure occurs, the system
disables acceleration, conducts another leader election, and
performs the requisite Raft protocol actions to resolve the
problem before re-enabling acceleration. Other uncommon
and complex operations are handled in a similar way. For
example, after a series of failure events, the replicas may have
diverged log sequences. The leader software will synchronize
replicas by re-sending the missing log entries and potentially
overwriting existing entries in the followers if necessary. After
the complex conditions are addressed and all replicas are in
the same state, the system can conduct another leader election
and re-enable hardware acceleration.

The safety and consistency properties of SMR guarantee
that 1) all replicas will commit the same log entry at the same
position in the buffer, and 2) if an operation starts after another
one commits, then the two operations will appear in the same
order in the logs of all replicas.

4 Waverunner Hardware

In this section, we describe the Waverunner hardware (§ 4.1),
explain its hardware data replication operation (§ 4.2), and
detail the design of the communication mechanism necessary
for Waverunner to achieve high performance (§ 4.3).

4.1 Hardware Architecture
Our Waverunner prototype is based on a traditional PCIe NIC
architecture, where a NIC DMA engine, controlled by the
host kernel network stack, streams data between the network
interface and the host using the PCIe bus. When receiving
packets from the network interface, the NIC transfers the
packet contents into host memory and raises an interrupt
to alert the CPU that the transfer is completed. To transmit
packets, the NIC uses the PCIe bus to traverse a queue of
packet contents populated in host memory by the software,
transferring packets to the network interface.
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Figure 3: Waverunner Hardware Overview

Waverunner uses a bump-in-the-wire organization to ex-
tend the traditional NIC functionality with SMR hardware
acceleration, as shown in Figure 3.

When packets arrive over the network 1 , they are first
streamed through a packet parser 2 module to identify pack-
ets containing SMR protocol messages. Packets that do not
contain SMR messages are streamed to the NIC DMA engine
3a and are handled by the host kernel. If hardware accelera-
tion is enabled and the packet parser detects a supported Raft
message, the message is streamed to the Waverunner hardware
protocol handler 3b instead of the NIC DMA. The protocol
handler performs internal bookkeeping on the protocol state,
tracking Raft messages forwarded to the followers and their
acknowledgements. If the received messages require one or
more packets to be sent out (e.g., client requests must be repli-
cated to the follower nodes), the protocol handler streams the
messages to a packet generator module 4 , which generates
the packets and transmits them into the network. Outgoing
packets are buffered in a circular buffer 5 that includes re-
transmission logic; when packet loss or reordering is detected,
the protocol handler can signal the buffer to retransmit its
contents. Notably, in this case, Raft packets are received and
transmitted with minimum latency, entirely without host CPU
involvement. Finally, the protocol handler determines if the
received message must also be sent via User-Space MCDMA
6 to the Raft software for further processing 7 . For each

data replication Raft message, Waverunner will write two op-
eration messages into the user-space log buffer in the host
memory: 1) when the client request is received and forwarded
to the follower replicas, the request is also written into the log
buffer, and 2) when a sufficient number of acknowledgements
are received from the followers, a commit operation is written
into the log buffer. Application software then processes the
log in order and performs the committed operations.

Messages to be delivered to the software are streamed to
a descriptor-based, high-performance Multi-Channel DMA
(MCDMA) engine that transfers the message contents di-
rectly to the user-space Raft software, bypassing the kernel
network stack in a similar way to DPDK [21]. Each channel
of MCDMA has a ring buffer of descriptors. Each descriptor
consists of metadata such as the size and address of the data
buffer, complete bit, and the pointer to the next descriptor.
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Once the MCDMA completes a transaction, it updates the
metadata, allowing the CPU software to consume the data.
In the case that Raft traffic arrives too fast to transfer to the
host and the MCDMA ring buffer becomes full, the Waverun-
ner hardware will drop the packets before the packet parser,
preventing the scenario where a message is processed by the
Raft protocol handler but not transferred to the software.

To facilitate coordination between the host software and
the hardware acceleration modules, the Waverunner hardware
exposes a set of control and status registers (CSRs) accessible
from the host software. Some registers, such as follower MAC
and IP address, are used to configure the Waverunner system
before the operation. An ACC_ENABLE register can be used
to enable or disable the accelerated packet processing. Finally,
the Waverunner hardware and software use several CSRs to
maintain the Raft protocol state. After disabling hardware
acceleration, the software can read the latest values of these
registers from the hardware. The complete set of Raft protocol
registers is listed in Appendix (§ C).

4.2 Raft Leader and Follower Operation

Although Raft is complex, Waverunner implements only the
most common operations in hardware (pseudocode shown in
Figure 4) and relies on the software to handle uncommon and
complex interactions. Uncommon hardware-generated mes-
sages such as AppendEntryReject are sent to the software
via the user-space log without additional processing, while
complex messages such as leader election are not identified
by the packet parser at all, allowing these messages to be
delivered via the traditional NIC DMA (also passing through
the OS network stack, and therefore allowing these messages
to naturally leverage features such as reliable TCP transport).

When configured to act in a leader role, the hardware accel-
erator includes protocol handling logic for only two message
types: client requests and follower acknowledgements. Upon
receiving a client request (Figure 4, lines 2-12), the accel-
erator updates the Raft protocol state (e.g., lastLogIndex,
lastLogTerm), streams the message contents to the packet
generator (to transmit AppendEntry messages to the follow-
ers), and also sends the message to software. Upon receiving
a follower acknowledgement (Figure 4, lines 33-43), the ac-
celerator updates the protocol state and, if the operation is
ready for commit (half of the followers have acknowledged),
the acknowledgement message is sent to the user-space log.
Only one acknowledgement is delivered to the software, sub-
sequent acknowledgements for the same request are ignored.
All other protocol messages identified by the packet parser
are delivered to the software without updating protocol state
and without response packet generation by the accelerator.

The follower role is even simpler, as it handles only
AppendEntry messages. Upon receiving a message (Figure 4,
lines 15-30), the follower first conducts several safety checks,
including the is_leader check, checking if the previous log

-

1 // FPGA receives client request
2 function FPGA -AppendEntry(fs, op):
3 if fs.isLeader
4 prevLogIndex = fs.lastLogIndex
5 prevLogTerm = fs.lastLogTerm
6 logEntry = makePair(op, fs.currentTerm)
7 push(fs.host.log, logEntry)
8 fs.lastLogIndex++
9 fs.lastLogTerm = fs.currentTerm

10 send <‘FPGA-append’, op, prevLogIndex,
prevLogTerm, fs.currentTerm, fs.commitIndex>
to all except self

11 else
12 reject
13 .

14 // FPGA receives <‘FPGA-append’, op,
prevLogIndex, prevLogTerm, term,
commitIndex>

15 function FPGA-ReceiveAppend(fs, op, prevLogIndex,
prevLogTerm, term, commitIndex):

16 if not fs.isLeader
17 and fs.currentTerm == term
18 and fs.lastLogTerm == prevLogTerm
19 if prevLogIndex > fs.lastLogIndex
20 reply with retransmission request
21 else if prevLogIndex < fs.lastLogIndex
22 ignore and return
23 fs.host.commitIndex = commitIndex
24 logEntry = makePair(op, fs.currentTerm)
25 push(fs.host.log, logEntry)
26 fs.lastLogIndex++
27 fs.lastLogTerm = fs.currentTerm
28 reply <‘FPGA -appendOK’, term , fs.id, fs.

lastLogIndex >
29 else
30 reply <‘FPGA -appendReject’, fs.id>
31 .

32 // FPGA receives <‘FPGA-appendOK’, term, id,
lastLogIndex>

33 function FPGA -ReceiveAppendAck(fs, term , id,
lastLogIndex):

34 if fs.isLeader and fs.currentTerm == term
and fs.matchIndex[id] < lastLogIndex

35 fs.matchIndex[id] = lastLogIndex
36 if fs.commitIndex < lastLogIndex
37 if a (majority -1) elements in matchIndex

>= lastLogIndex
38 fs.commitIndex = lastLogIndex
39 fs.host.commitIndex = fs.commitIndex
40 if the request does not read the

system state (e.g., a blind write
in a key-value store)

41 notify the client of commit and skip
the reply from the host

software (in ApplyLog)
42 else
43 halt and notify host to handle failures

Figure 4: Pseudocode of the hardware accelerator.
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index and term match (ruling out the case of lost or duplicated
packets), and confirming that the message term value matches
the currentTerm variable. Then the follower updates the pro-
tocol state, streams the message into the packet generator to
produce an acknowledgement (AppendEntryAck) or rejec-
tion (AppendEntryReject) message, and updates its local
commitIndex according to the message commitIndex.

It is worth noting that the protocol-specific Waverunner
hardware accelerator actions and logic are intentionally prim-
itive. For an FPGA implementation, the logic of these opera-
tions is automatically translated from their C++ description.

4.3 User-Space Log Considerations

The behavior of communication between the hardware and
software is critical for high Waverunner performance. Raft
messages must be delivered by MCDMA (shown in Figure 3)
to the log accessible in user-space software without being a
bottleneck in the system. We describe three critical aspects of
the design of the User-Space MCDMA block.

First, the MCDMA component requires fast write response.
In our platform, MCDMA is connected to the PCIe bridge
using AXI Memory Mapped (AXI-MM) interfaces, where
the MCDMA’s AXI master interface writes data to the PCIe
bridge’s AXI slave interface to transfer data to the user-space
buffer. Under the AXI-MM protocol, MCDMA first issues the
write address to the PCIe bridge, followed by the write data.
After the data transfer is complete, the PCIe bridge sends
a write acknowledgement response to the MCDMA. In our
experiments, we observed a very high latency (300 to 400 cy-
cles) for the PCIe bridge to send the write acknowledgement
response after the data transfer. During this period, MCDMA
stops processing descriptors and accepting packets from the
protocol handler, negatively affecting the system performance.
To solve this problem, we insert a small custom FIFO between
the MCDMA and the PCIe bridge. The custom functionality
of this FIFO is to send write acknowledgement responses
immediately after the write operations are completed on the
MCDMA side, thereby hiding the high acknowledgement la-
tency introduced by the PCIe bridge and allowing MCDMA
to process descriptors for the other channels.

Second, we introduce batched MCDMA operation in the
hardware. For each MCDMA operation, in addition to the data
transfer, there are also descriptor read and write operations
across PCIe. The descriptor reads and writes are overheads,
which significantly reduce the effective bandwidth for the ac-
tual PCIe data transfers. To minimize the descriptor overhead,
we designed a hardware module to batch multiple consecutive
message writes into a single transfer to amortize the descriptor
overheads, solving the performance bottleneck and improv-
ing throughput over PCIe. The batching hardware collects
messages until one of two conditions is met: either a pre-
configured batch size is reached or a pre-configured timeout
is reached without new messages arriving on the given chan-

nel. With the second condition, the latency increase caused
by batching is negligible.

Finally, although Waverunner hardware acceleration sig-
nificantly reduces the work that must be done by the CPU
of the leader replica, the application code that executes com-
mitted operations still consumes CPU resources and can be-
come the bottleneck in the system. One design option is to
use a software dispatcher to handle incoming log messages
from the hardware and coordinate spreading the handling
of the log messages across software threads running on dif-
ferent cores. However, at our target throughput, a software
dispatcher would itself become the system bottleneck. In-
stead, Waverunner shards log messages in hardware, using
separate DMA channels to write log messages destined for
processing by different application software instances. The
leader replica runs multiple application processes, one per
core, with each process having its own user-space log buffer
into which the hardware deposits Raft messages belonging
to the corresponding shard. This approach mirrors the op-
eration of high-performance NICs that allow the software
(e.g., DPDK) to install rules into the NIC hardware to steer
incoming packets to different descriptor rings or queues to be
handled by different cores.

4.4 Transmission with UDP

Our implementation uses UDP to transmit packets between
FPGAs. UDP is unreliable for transmission and suffers from
packet loss, duplication, and reordering with traditional hard-
ware and software stacks. However, using UDP in the Wa-
verunner hardware greatly reduces the hardware complexity
compared to a TCP implementation. To handle the cases of
UDP packet loss and reordering, our hardware implements
a small retransmission buffer. The buffer, placed between
our packet generator and the TX Mux (shown in Figure 3),
holds all recently sent packets. In the event of packet loss or
reordering being detected in AppendEntry, the protocol han-
dler requests the packet generator to create a retransmission
request packet (Figure 4, lines 19-20). When a retransmission
request arrives at the retransmission buffer, instead of writing
it into the buffer, the control logic triggers a retransmission
of all packets currently in the buffer. The retransmission is
finished when all the packets in the buffer have been transmit-
ted. During the retransmission, incoming packets continue to
be written to the tail of the buffer. The buffer is 256 KB, en-
suring that in the worst-case scenario in our system (192 byte
packets at 26 Mpps) packets will remain in the buffer, eligible
for retransmission, for 52 µs. This time is sufficient to tolerate
28 consecutive retransmission requests in our testbed, and
is well beyond the round-trip latency of modern datacenter
networks. Notably, the retransmission buffer does not affect
system correctness; it simply avoids triggering software fail-
ure recovery in case of UDP packet loss or reordering in the
network. In the extremely unlikely case that persistent retrans-
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missions repeat until a lost packet is no longer present in the
retransmission buffer, the hardware triggers a conventional
Raft failure recovery in software.

5 Waverunner Control Plane

In this section, we describe our software components. The
software is primarily in charge of the uncommon routines
of the system, such as bootstrapping and recovering from an
abnormal system state. This functionality includes electing
a new leader, synchronizing data between a new leader and
the replicas, and controlling hardware acceleration. We begin
with a vanilla Raft software implementation and add support
for interaction with the accelerator hardware. For complete-
ness, we include a discussion of the full Raft implementation,
and we explicitly highlight the Waverunner-specific design
decisions and additions for software-hardware interaction.

5.1 Switching to Software via Leader Election

Leader failures are handled by re-electing a new leader.
Leader election can be initiated by any replica. Each replica
keeps a timer in software, starting an election if a timeout is
triggered due to a lack of new messages received from the
leader. Each replica uses a randomized timeout value, thereby
reducing the probability of competition. When the system is
idle, a timed loop in the leader’s software sends empty re-
quests to the hardware to avoid unnecessary elections. This
does not cause extra overhead compared to a software-only
Raft implementation, as it would have a similar timed loop to
send empty AppendEntry heartbeats.

When a follower triggers an election and requests to be-
come leader (referred to as a candidate), its software will
first disable the hardware acceleration and wait for the hard-
ware to complete processing of the packets in the hardware
accelerator pipeline and MCDMA batch queues.

The candidate software will increment its own term and
stop responding to replication requests with lower terms, and
send a RequestVote message to the other replicas. Even if
the replicas that receive the message are using hardware ac-
celeration, the message will pass through the hardware trans-
parently and be directly handled by the software. Each replica
will confirm that its term is smaller than that of the candi-
date, and then disable hardware acceleration and check if
the candidate has a more up-to-date log by comparing the
lastLogIndex and lastLogTerm of the candidate with its
own. If the candidate is more up-to-date (or the same), the
receiver grants the vote and sets the leader id to the candidate.
If the candidate receives enough votes (including itself for a
majority), it transitions into the leader role.

When the new leader software takes over, the system is a
fully capable software Raft. It can perform any traditional
system maintenance operations, such as view change. The

software handles all Raft routines not implemented in hard-
ware, such as synchronizing logs on the replicas.

5.2 Synchronizing Missing Logs
When a leader crashes or communication with it fails, the
replicas may be left unsynchronized, such that some replicas
may have longer logs. In more complex cases, such as elec-
tion competition or consecutive leader crashes, replicas may
even have different uncommitted logs at the same log position.
Raft’s (or any consensus protocol’s) logic for handling these
situations is complex. To ensure a simple hardware imple-
mentation, Waverunner keeps the implementation of replica
log synchronization entirely in software.

After a new leader is elected, it initiates synchronization
of the replica logs by sending an AppendEntry message con-
taining a special noop operation to all replicas. If a follower
has fallen behind or has non-matching logs, it will reply with
an AppendEntryReject message, indicating a log mismatch.
The leader will then send earlier log entries until the follower
acknowledges accepting these logs, ensuring that the follower
is synchronized with the leader. The noop commit entry is
necessitated by the Raft protocol, as simply counting existing
log entries in all replicas may fail due to a corner case in the
Raft algorithm. (This is a documented idiosyncrasy of the
Raft protocol (§5.4.2) [52].)

Note that there is a limit on the maximum number of entries
that a replica can hold in its in-memory log. If a replica is
down for an extensive amount of time, or a new replica is
added to the system, that replica cannot catch up via the afore-
mentioned approach because the leader will have discarded
its older logs from memory. In this case, the leader should
send a snapshot of the application dataset to the failed replica.
The snapshot will contain the system state up to a particular
log position which is still in the leader memory, allowing the
leader to catch up the replica by sending it the entries starting
from the snapshot log position. Similar to the original Raft
work [52] and other recent works on speedy SMR [2, 49],
the creation of the snapshot is application-specific and is or-
thogonal to the scope of this paper. For example, a standard
approach is available in [65].

5.3 Enabling Hardware Acceleration
After the logs of all reachable replicas are synchro-
nized, the leader will increment the term and send out
RequestVoteFPGA messages to the synchronized followers.
This message is identical to a normal leader election, with
the additional side-effect of causing the followers to enable
hardware acceleration. Once the leader receives acknowledge-
ments from half of the followers (reaching a majority when
including itself), the leader enables its own hardware accel-
eration. All future log entries are replicated by the hardware,
without involving the CPU.
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Separating hardware and software into different terms pro-
vides several benefits. First, it keeps the Raft algorithm intact,
eliminating the need to prove correctness of our changes. Sec-
ond, this approach is easy to implement, debug, and maintain,
because the term of a log entry indicates whether it was ini-
tially replicated by software or hardware.

If a replica does not receive RequestVoteFPGA, but later
receives an AppendEntry (e.g., a crashed replica rejoins), it
will see a higher term in the message. Whenever a replica
sees a higher term in AppendEntry than its currentTerm,
or if it cannot find an entry at prevLogIndex in its log, it
will disable hardware acceleration (if it is enabled) and re-
ply with AppendEntryReject. When the leader receives an
AppendEntryReject, it will disable hardware acceleration,
trigger an election to go into a new term, and synchronize
with the straggling replica using software. Afterwards, the
system will transition back to running with hardware accel-
eration using the previously described steps. To summarize,
Waverunner uses a unified approach to address all possible
cases that deviate from the normal replication routines, includ-
ing the possible loss of messages, message delays, temporary
server anomalies, etc.

6 Evaluation and Results

We evaluate Waverunner with real-world applications and
off-the-shelf hardware. The major questions we answer are:

• What is Waverunner’s replication performance?
• Can Waverunner efficiently recover from a failure?
• How well does the Waverunner approach perform with real-

world applications?
• How does Waverunner compare to other hardware-

accelerated SMR approaches?

6.1 Setup
We conduct our evaluation on a 3-replica Waverunner cluster,
with several additional client machines to issue requests in
an open-loop manner. Each replica has two Intel E5-2695v4
CPUs, 1TB DDR4 memory, and a Xilinx U280 FPGA con-
nected via PCIe gen 3 x16. Each FPGA has two 100 Gbps
QSFP28 ports. Our replicas are connected to one switch and
clients to another, and there is a 100 Gbps fiber connecting the
two switches. On the FPGAs, we implemented the Waverun-
ner hardware accelerator using Vivado HLS. For the control
plane, we modified our C++ Raft implementation to coordinate
with the Waverunner FPGA hardware.

In addition to Waverunner, we also evaluate the replication
performance of two SMR systems for comparison:

• Mu [2]: An RDMA-based SMR implementation, which
aims to provide microsecond level latency for application
replication. It has a custom leader-follower consensus proto-
col. In the Mu implementation, all requests originate from

the leader. This gives it an advantage over Waverunner,
where requests are sent over the network from clients.

• DPDK-Raft: An in-house DPDK-based Raft implementa-
tion. We built our own DPDK-Raft implementation because
the state of the art Raft implementation (in eRPC [34]) is
equipped to perform latency tests and we are interested in
both latency and throughput experiments. Our DPDK-Raft
achieves similar latency as eRPC Raft.

Both Mu and DPDK-Raft use a 100 Gbps Mellanox
ConnectX-4 NIC included in the replicas with the same con-
nection specifications as the FPGA (i.e., PCIe gen 3 x16 and
100 Gbps QSFP28).

6.2 Methodology

We present two key metrics: throughput and latency. We re-
port throughput in millions of request packets per second
(Mpps) and total network bandwidth used (Gbps). For la-
tency, we report the time in microseconds (µs) and present the
median (50th percentile) and tail (90th and 99th percentile)
measurements. To improve accuracy, whenever possible, we
collect the results using internal hardware performance coun-
ters on the FPGAs, NICs, and switches.

We implement our client using DPDK to achieve high per-
formance and accurate measurement. Precise control of the
offered load at the client is difficult to achieve, so we set
approximate targets and plot all results by using the actual
measured request rates. As a result, experiments that vary
the request rate may not have results with round throughput
values (e.g., our plots may show 4.1 and 5.2 Mpps, rather than
precisely 5 Mpps). For measuring end-to-end latency from
the client and to avoid subjecting latency measurements to
client-side queueing, we use a sampling approach by concur-
rently running two DPDK client configurations: one to apply
the target load and a second lightly-loaded client (using a
separate NIC) to precisely measure the latency.

6.3 Replication Performance Results

We first focus on evaluating the SMR replication performance
without a specific application (where the “application” sim-
ply discards committed operations) to better understand the
capability of Waverunner in a clean environment. The clients
send requests to the replica cluster using small random pack-
ets (50 bytes for Waverunner and DPDK-Raft, 64 bytes for
Mu due to its implementation restriction). We sweep the re-
quest rate in steps of approximately 1 Mpps and measure the
replication throughput and latency at each step. We described
Waverunner’s MCDMA batching with timeout mechanism
in Section 4.3. An adaptive batching strategy can minimize
latency under all load scenarios, however, we found that for
our evaluation, a constant batch size was sufficient to limit
PCIe transfer overheads.
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Figure 5: Performance of Packet Replication

Throughput. Figure 5 shows that the maximum request rate
Waverunner can achieve is 26 Mpps, which is bounded by
the leader’s network receive bandwidth. Under this request
rate, the bandwidth utilization of the leader FPGA approaches
85.5 Gbps, the maximum theoretical bandwidth achievable
by the network transceivers and switch.2

Beyond this throughput, the FPGA transmit FIFOs expe-
rience back pressure from the MAC, which cascades to the
Waverunner protocol handler and causes packet loss of in-
coming client requests and follower acknowledgements. This
result indicates that Waverunner can fully utilize the available
network bandwidth and achieve the maximum request rate.

On the contrary, Mu and DPDK-Raft cannot saturate the
network bandwidth with one request per packet, resulting in
only ∼2 Mpps and ∼5 Mpps peak request rate, respectively.
Mu has to rely on client-side batching (aggregating multiple
requests into one packet) to increase the request rate and
utilize the available network bandwidth. However, doing so
also drastically increases the latency. For DPDK-Raft, the
throughput is bottlenecked by descriptor ring handling via
PCIe. At peak throughput, DPDK-Raft starts to drop packets
because the CPU cannot process and release RX descriptors
at the same rate as the incoming packet stream, a situation
we overcome in Waverunner by transferring multiple requests
using each descriptor (§ 4.3).
Latency. Figure 5 also shows the replication latency for Wa-
verunner, Mu, and DPDK-Raft at various request rates. Repli-
cation latency is measured from when the leader receives
a client request, until the leader receives the corresponding
acknowledgements from half of the followers.

The Waverunner replication latency is effectively constant
at 1.8 µs, only marginally higher than the RTT of a minimum-
sized packet in our network (1.68 µs). There are two charac-
teristics of Waverunner’s latency that are notable: the median,
90th-, and 99th-percentile latencies are all nearly identical,
and as the request rate increases, the latency does not increase,
all the way until network bandwidth is exhausted. These la-

2Each Ethernet frame includes a 7-byte preamble, a 1-byte start of line
delimiter, and a 12-byte inter-packet gap, which together account for the
approximately 14.5 Gbps gap to the advertised 100 Gbps line rate.
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Figure 6: End-to-end Latency

tency characteristics are a unique advantage of an FPGA
implementation [30], as most of the components in the FPGA
hardware have low and constant latency that is immune to
queuing effects, allowing the replication latency to remain
stable. In contrast, both Mu and DPDK-Raft exhibit substan-
tially higher 90th- and 99th-percentile latency compared to
the median latency, and the latency grows as the request rate
increases and the CPUs become busier, amplifying interfer-
ence and system queuing effects. As a result, the replication
latency of Waverunner is significantly lower than Mu and
DPDK-Raft. The worst Waverunner 99th-percentile tail la-
tency is approximately 1/3 (36%) of the best median latency
of DPDK-Raft (5 µs) and 40–80% of Mu (2.5–4.3 µs).

For completeness, we also measure the end-to-end latency
on the client for Waverunner and DPDK-Raft, as shown in
Figure 6. The end-to-end latency on the client includes the
replication latency, the RTT between the client and the leader
(with 1 switch placed between the two), and the time for the
client to process the packets. For Waverunner, this adds an-
other 4–6 µs for the median and tail latencies. For DPDK-Raft,
the additional time is much larger because DPDK-Raft relies
on batching and buffering to achieve maximum throughput,
which add extra cost to overall latency.
Performance with Different Packet Sizes. In addition to
minimum sized packets, we investigate the effect of larger
requests on Waverunner, shown in Figure 7. We maintained a
constant throughput of 1 Mpps and varied the payload size ac-
cordingly. For minimum-sized packets, the replication latency
is 1.79 µs. As the payload grows, the latency increases slowly
to a maximum of 2.13 µs. Importantly, the 99th-percentile
latency remains approximately the same as the median.
CPU Utilization. Compared to the RDMA and DPDK ap-
proaches, Waverunner has an important advantage, especially
at high request rates: it places far less pressure on the host
CPU cores. For example, to achieve peak performance in our
tests, DPDK-Raft saturates 18 CPU cores. In contrast, Wa-
verunner consumes negligible host CPU resources because
it only needs to manage the MCDMA descriptors for the op-
eration log. This leaves CPU resources almost entirely free,
allowing them to be used by the target application.
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Figure 8: Request rate during failure
recovery.
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Figure 9: Request rate during view
change.

6.4 Fault Tolerance and View Change
We evaluate Waverunner fault tolerance by injecting a leader
failure on a healthy cluster. As expected, the leader failure
triggers a leader election. At a later point, we resume the
old leader, allowing it to rejoin the SMR cluster. Figure 8
presents the behavior by showing the request rate measured
at the client as these failure-related events take place.

In this experiment, the system first runs normally for ten
seconds, then we halt the leader to simulate a failure. At this
point, requests from the clients fail to proceed because the
system has no available working leader, and the throughput
of the system drops to 0.

We configured the followers with a one second timeout.
After timeout, a new leader election begins. This can be seen
on the graph slightly more than one second after the failure,
where the system resumes processing requests after the clients
discover the new leader and resume sending requests.

At 15 seconds, we resume the old leader; this is recognized
by the new leader when the old leader rejects the replication
requests that it receives from the new leader. Because the
old leader is missing log entries from its down time, the new
leader starts recovery by catching up the old leader’s replica.
After approximately 200 ms, the log recovery completes and
the system re-enables hardware acceleration, showing that
the hybrid architecture of Waverunner can correctly and effi-
ciently recover from failure.

Similar to the failover test, we performed a view change
test; results are shown in Figure 9. Initially, the system runs
with three replicas. After ten seconds, we send a view change
command to the leader to reconfigure the system down to
two replicas (removing one follower). The leader disables
hardware acceleration, initiates a leader election to advance to
a new term, completes the view change, and then re-enables
hardware acceleration.

6.5 Real-world Applications
To understand how Waverunner performs with real-world ap-
plications, we evaluate three key-value stores: an in-memory
hash table, Memcached, and Redis. We modified the appli-
cations to receive requests from Waverunner instead of the

conventional network sockets. This enables low latency and
high throughput operation as Waverunner bypasses the ker-
nel to send and receive packets. Scalability across cores is
achieved through sharding; the number of replication groups
is the same as the number of threads. Unless otherwise indi-
cated, we use 8-byte keys and values, which makes the packets
(including network header) 135 bytes for the hash table, 150
bytes for Memcached, and 156 bytes for Redis. We use open-
loop clients that perform operations on uniformly distributed
keys. Although the applications were not originally designed
with SMR in mind, using them with Waverunner transforms
them into consistent high-availability systems.

Throughput. To evaluate applications throughput, our client
can send a mixture of PUT and GET requests. Both PUT and
GET requests are replicated in Waverunner, but are processed
differently. For PUT requests, Waverunner responds to the
client when the request is committed in Raft (acknowledged
by the majority of replicas), allowing the application to handle
the request log in the background, eventually updating the key-
value store. For GET requests, Waverunner does not generate
a client response, instead relying on the application to execute
the operation from the log by retrieving the relevant data
and sending them to the client. Figure 10 shows the peak
sustained throughput we observed. The peak throughput of the
original Memcached and Redis implementations is 1.5 Mpps,
while the Waverunner implementations reach 20.7 Mpps and
19.9 Mpps, respectively. Redis has a lower throughput because
it dynamically increases the size of its hash table and needs to
rehash every entry. However, Memcached has a constant-size
hash table that is initialized at the start.

We also examined the effect of different GET/PUT ratios
on Memcached, shown in Figure 11. We observed that Mem-
cached needs more CPU cycles for PUT requests than GET
requests because, in addition to fetching the query in the
key-value store (like a GET does), it also locks the region
containing the key to update. As a result, higher GET ra-
tios observe higher throughput. For Redis, we observed that
changing the GET/PUT ratio does not affect the throughput.

Latency. We measured the end-to-end latency of GET and
PUT operations in a 50% GET/PUT test for Memcached and
Redis, as shown in Figure 12. To show the effect of different
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packet sizes, we varied the size of the value from 8 to 1024
bytes. Without Waverunner, Memcached and Redis exhibit a
stable end-to-end latency of 41–44 µs, which is much lower
than reported in the prior work [2, 17]. We attribute the lower
latency to our high-end Mellanox NICs, both in client and
server. When run on commodity NICs, the results (not shown)
are much higher and closer to the previously published work.

Waverunner has a lower latency of 11.69 µs and 12.07 µs
for Memcached and Redis respectively in most cases. With
Waverunner, the leader FPGA generates responses for PUT
requests without any CPU involvement, resulting in signifi-
cantly lower end-to-end latency. For incoming GET requests,
Waverunner delivers them to the application and transmits
the responses to the network without involving the kernel. In
summary, applications using our Waverunner framework can
achieve performance comparable to kernel bypassing tech-
niques (e.g., DPDK) for processing GET requests, and better
performance for PUT requests.

6.6 Comparison to Prior Work
In this section, we discuss a comparison of Waverunner with
Consensus in a Box [30] (referred to as ZABFpga below), a
recent implementation of the ZooKeeper SMR protocol on an
FPGA. We did not find the exact code release corresponding
to ZABFpga online, which complicated our ability to study
its operation in our environment. Although we did locate a
project that appears to include ZABFpga’s code [1], we found
it challenging to port to our platform and extract from it just
the ZABFpga components. A ground-up re-implementation
of ZABFpga would constitute a major development effort.
Such difficulties highlight the challenges in the development,
portability, and maintenance of FPGA-based systems, stress-
ing the benefits of the Waverunner approach in leaving the
majority of the SMR protocol in software and implementing
the hardware components using relatively portable HLS.

Based on what we can infer from the description of ZABF-
pga, the system has excellent performance, and would likely
exhibit throughput and latency on par with Waverunner if

ported to our environment, which has 100 Gbps NICs com-
pared to 10 Gbps in the original paper. However, the ZABFpga
system clearly required a drastically more complex develop-
ment effort and would incur massively higher maintenance
and troubleshooting cost. This is because ZABFpga imple-
mented the ZooKeeper protocol completely, including the
leader election and failure recovery, in custom FPGA hard-
ware. This approach also required implementing the applica-
tion (a key-value store) on the FPGA, including the ability to
store the replication log in DRAM connected to the FPGA.
Based on the description in the paper, the replication latency
is 3 µs while Waverunner has 1.8 µs. It would be unfair to
compare two designs on the throughput as the ZABFpga uses
10Gbps NICs to communicate with other nodes.

7 Related Work

Hardware Accelerated Networking. Early works on hard-
ware acceleration in NICs offered a range of features, from
simple ones such as checksum calculation and receive-side-
scaling (RSS), to complex ones such as RDMA and TCP of-
floading engines [48]. Although earlier network hardware ac-
celerators hard-wired the acceleration functionality, the trend
has shifted toward programmability, with modern SmartNIC
devices comprising programmable CPU cores [47] or pro-
grammable FPGA fabrics [50]. Modern advanced accelera-
tors include functionality such as in-line handling of protocol
encapsulation, VLAN processing, and encryption and decryp-
tion of data streams [18, 43]. Waverunner is a SmartNIC that
accelerates replication routines of the Raft protocol. Like
other SmartNICs, we utilized a bump-in-the-wire architecture
to accelerate the replication routines in the FPGA. Accel-
Net [20] accelerates network services for virtual machines
on SmartNICs in data centers. However, the acceleration is
only loosely coupled with the application, such that when-
ever AccelNet does not have a rule for a packet, it consults
the application to install the missing rule. On the other hand,
Waverunner is more specialized, as it identifies Raft packets
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and does not need software support to handle other protocols.
P4 [4] is a high-level language for network functions with
implementations on FPGAs [3, 7, 9, 27, 45, 66]. hXDP [5], an
FPGA-based NIC, uses soft cores to execute eBPF, another
high-level language to describe network functions. These
systems target system-wide packet processing, whereas Wa-
verunner is specialized and optimized for processing only the
Raft replication routines.

Caribou [29] implements a hardware accelerator for high-
performance databases computations, including the full func-
tionality of a fault-tolerant key value store inside an FPGA.
KV-Direct [41], CliqueMap [61], Xenic [59], and RedN [55]
extend RDMA primitives to enable remote key value opera-
tions to main memory. Waverunner takes a similar approach
which puts requests in the follower’s memory through PCIe.
This is unlike Caribou, which does not use the host and relies
on the FPGA to execute the database application. Floem [53],
NICA [19], iPipe [44], FlexTOE [60], and FairNIC [23] pro-
vide a framework that can offload network applications such
as Memcached on programmable SmartNICs. Although its
goals of low latency and high throughput are similar to Floem
and NICA, Waverunner targets the Raft distributed protocol,
using hardware acceleration for the communication among
multiple nodes rather than for the application logic.
State Machine Replication. State machine replication
achieves fault tolerant, highly available services by leveraging
consensus protocols [26, 40, 52]. From among the popular
consensus protocols, Waverunner implements the Raft proto-
col [52], offloading the replication routines to a hardware ac-
celerator. Several prior studies proposed ways to increase the
performance of SMRs. eRPC [34], FaSST [35], and Breakwa-
ter [12] use an RPC library on top of the NIC API and RDMA,
respectively, to provide low latency communication for ap-
plications. PigPaxos [11] relays messages by subgouping
followers. These works optimize the network IO bottleneck,
increasing the performance considerably, but they still suffer
from the CPU bottleneck for implementing all parts of the pro-
tocol. Increasing parallelism of SMR [14, 24, 36, 56, 62] can
further improve the performance, which Waverunner can ben-
efit from for the application design. HovercRaft [39] moves
SMR from the application layer to the transport layer and
optimizes Raft to avoid the CPU and network IO bottleneck.
Similarly, Waverunner addresses the same bottlenecks by of-
floading the network communication and replication to the
hardware accelerator. Some SMR systems leverage high per-
formance programmable switches [15,32,33,42]. Rather than
changing the network infrastructure, Waverunner employs a
hardware accelerator in the NIC of each replica to accelerate
the replication communication and operations.

There are several studies on low latency SMR through
RDMA [17, 31, 37, 38, 54, 65], some of which are based on

variants of Paxos. Although these works offer low latency,
they are still bounded by the CPU bottleneck, as all of them
cannot send packet at line rate with minimum size packets,
and have high replication latency. Mu [2] introduces a mi-
crosecond latency SMR in which the leader writes requests in
the log of each replica in only one round of RDMA transfers,
without involvement from the CPUs on the follower nodes.
Comparably, Waverunner achieves constant microsecond la-
tency using FPGAs without changing core routines of the Raft
protocol, while achieving high throughput on minimum size
packets. ZABFpga [30] accelerates the Zookeeper consensus
protocol using an FPGA and shows the benefits of hardware
accelerator for SMRs in terms of latency and throughput. Wa-
verunner achieves similar performance, but presents a design
for the replication routines of Raft protocol while leaving all
complex functionality of the Raft protocol (such as leader
election and failure recovery) and the application (a key-value
store) in traditional software.

8 Conclusions

We presented Waverunner, a hardware-software hybrid ap-
proach for implementing state machine replication. Our ap-
proach relies on the observation that, despite the complexity
of SMR, the most frequently used routines can be easily im-
plemented in hardware, while leaving the complex protocol
and application logic in traditional software. Using this ap-
proach, we attain the best characteristics of the prior work,
achieving the performance of full-hardware implementations
while retaining the flexibility of software implementations
with hardware-assist mechanisms such as DPDK and RDMA.

Waverunner is a practical realization of our approach. It
is elegant and simple, leveraging a complete software imple-
mentation of the Raft protocol at its core and demonstrating
how the most-frequently used functionality can be offloaded
to hardware using only 220 lines of C++ HLS code. Waverun-
ner achieves network line-rate throughput, nearly constant
mean and tail (99th percentile) replication latency regardless
of throughput, and leaves the majority of the CPU processing
power available for the target application.
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Figure 13: Waverunner Operation.9 represents an election that disables hardware acceleration;8 represents an election
that enables the hardware acceleration; ⊗ represents a fail stop and , a recovery. The numbers inside the boxes refer to the term
numbers in each log entry. The blue boxes refer to regular log entries; the yellow boxes refer to empty noop log entries.

A Correctness

Here we discuss the correctness of our approach. One reason
we choose to implement Raft instead of inventing a consensus
protocol is that Raft is widely used and proved correct.3 Using
Raft can help us avoid having any errors in inventing a new
protocol, which is known to be an error-prone process.

We show that with or without the hardware acceleration,
including the transition, the system follows Raft protocol.

Fact 1. When the hardware acceleration is off at a replica, the
replica follows the Raft protocol.

Therefore, if hardware acceleration at all replicas is off, the
system design is a standard Raft and it is correct.

Lemma 2. When the hardware acceleration is on (and during
the process it is switched on) at a replica, the replica follows
the Raft protocol.

This is the principle throughout the system design. The
hardware part is designed to switch back to software when-
ever it sees a message that it is not expecting. Not responding
to that particular message is not a behavior that violates Raft’s
safety because Raft’s original assumption is that the network
is asynchronous and messages could be lost. Therefore, the
replica as a whole (both hardware and software) is still fol-
lowing the Raft protocol, except that it requests an election.
In Raft (and other consensus protocols), doing an election is
always safe.

As a replica follows the Raft protocol regardless of whether
the hardware acceleration is on or off (or during transition),
the system is a Raft and thus correct.

3By “correct” we mean the system has both safety and liveness. Because
Raft has already proved on these, we will use “correct” to refer to our system
is either a standard Raft or is equivalent to it.

B An Example of Waverunner Operations

Figure 13 walks through an example of Waverunner failure
recovery with five replicas A,B,C,D, and E. The numbers in
the boxes refer to the term numbers in each log entry.

(a) Replica A is the leader, using hardware acceleration to
replicate log entries to followers until it stops.

(b) Replica E is first to detect a lack of new messages from
leader A. E disables hardware acceleration and triggers a
leader election, which it wins (becoming the new leader)
after receiving votes from C and D.

(c) Replica E commits a noop, indicated in yellow, to all
replicas except A (which remains unavailable). Note that
a log entry in replica B is overwritten because it was
ahead of the new leader. This operation is safe because
the log entry was not committed.

(d) Replica E starts a round of RequestVote2FPGA, en-
abling hardware acceleration on all replicas.

(e) Replica E operates as the leader, replicating log entries
using the hardware accelerator.

(f) Replica A recovers, immediately observing new
AppendEntry messages arriving from leader E. Replica
A reports a mismatch with its existing logs by rejecting
the new entries.

(g) Having learned of the mismatch on replica A from the
rejection message, replica E disables hardware accelera-
tion with another leader election.

(h) Replica E then commits another noop and sends the
missing log entries to replica A. In this process, the
mismatched logs on replica A are also overwritten.
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Variables shared by hardware and software:
Used only by leader:
matchIndex[] for each follower , index of highest

log entry known to be replicated ,
initialized to 0, increases
monotonically

commitIndex index of highest log entry known to
be committed , initialized to 0

Used by all replicas:
id a globally unique integer that

identifes the server
isLeader hint that suggests whether the

server is leader
currentTerm latest term server has seen ,

initialized to 0
lastLogIndex index of the last log entry , is a

sequentially increasing counter ,
initialized to 0

lastLogTerm term of the last log entry

Variables in host software:
Used only by leader:
nextIndex[] for each server , index of the next

log entry to send to that server ,
initialized to leader’s
lastLogIndex+1

Used by all replicas:
votedFor candidateId that received vote in

current term (or null if none)
log[] log entries; each entry contains

command for state machine , and term
when entry was received by leader
(first index is 1)

lastApplied index of highest log entry applied
to state machine (initialized to 0,
increases monotonically)

Figure 14: Variables in Hardware and Software.

C Hardware and Software Variables

Figure 14 presents the complete set of Raft protocol variables
that are used by hardware and software.
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