
Tiara: A Scalable and Efficient Hardware Acceleration Architecture for Stateful
Layer-4 Load Balancing

Chaoliang Zeng1∗ Layong Luo2 Teng Zhang2 Zilong Wang1∗ Luyang Li3∗ Wenchen Han4∗

Nan Chen2 Lebing Wan2 Lichao Liu2 Zhipeng Ding2 Xiongfei Geng2 Tao Feng2

Feng Ning2 Kai Chen1 Chuanxiong Guo2

1Hong Kong University of Science and Technology 2ByteDance 3ICT/CAS 4Peking University

Abstract
Stateful layer-4 load balancers (LB) are deployed at datacen-
ter boundaries to distribute Internet traffic to backend real
servers. To steer terabits per second traffic, traditional soft-
ware LBs scale out with many expensive servers. Recent
switch-accelerated LBs scale up efficiently, but fail to offload
a massive number of concurrent flows into limited on-chip
SRAMs.

This paper presents Tiara, a hardware architecture for state-
ful layer-4 LBs that aims to support a high traffic rate (> 1
Tbps), a large number of concurrent flows (> 10M), and many
new connections per second (> 1M), without any assump-
tion on traffic patterns. The three-tier architecture of Tiara
makes the best use of heterogeneous hardware for stateful
LBs, including a programmable switch and FPGAs for the
fast path and x86 servers for the slow path. The core idea of
Tiara is to divide the LB fast path into a memory-intensive
task (real server selection) and a throughput-intensive task
(packet encap/decap), and map them into the most suitable
hardware, respectively (i.e., map real server selection into
FPGA with large high-bandwidth memory (HBM) and packet
encap/decap into a high-throughput programmable switch).
We have implemented a fully functional Tiara prototype, and
experiments show that Tiara can achieve extremely high per-
formance (1.6 Tbps throughput, 80M concurrent flows, 1.8M
new connections per second, and less than 4 us latency in the
fast path) in a holistic server equipped with 8 FPGA cards,
with high cost, energy, and space efficiency.

1 Introduction

Large service providers deploy various services inside their
geo-distributed datacenters of different scales. At the bound-
ary of these datacenters, stateful layer-4 load balancers (LB),
a.k.a., multiplexers (Mux), are deployed to distribute user
requests from the Internet to many real servers inside data-
centers while preserving connection consistency. Driven by

∗ This work is done while Chaoliang Zeng, Zilong Wang, Luyang Li,
and Wenchen Han are interns in Bytedance.

exponentially increased content delivery and cloud computing
demands, a typical LB in large service providers usually has
to process terabits per second of Internet traffic, with tens
of millions of concurrent flows [25, 31] and millions of new
connections per second (CPS) [12].

To support such high performance, vendor-proprietary hard-
ware LBs (e.g., F5 [9]) were deployed in the early days
of some datacenters. However, they lacked agility, which is
highly desirable in modern hyper-scale datacenters. In recent
years, the move from vendor-proprietary hardware to in-house
software LBs, or software Muxes (SMux), e.g., Ananta [36]
and Maglev [21], was mainly driven by requirements like man-
ageability, reliability, and agility, but sacrificed efficiency (i.e.,
cost, energy, and space efficiency). For example, Ananta [36]
achieves 10 Gbps per instance, and supporting up to terabits
per second throughput requires scale-out with a large number
of servers. Deploying so many servers for just LB is not only
costly but also challenging at energy- or space-limited bound-
aries of massive small/medium-scale datacenters (e.g., 10s-
100s of servers in PoPs [15] or edge [40]). Moreover, software
LBs usually suffer from high latency and jitter, sometimes
comparable to Internet access latency (in the order of millisec-
onds [24]) when CPU load is high. Such latency churn will
adversely impact users’ network experience.

To improve the efficiency of software LBs without sacrific-
ing agility, there is an emerging trend to accelerate software
LBs with in-house software and hardware co-design. Recent
work [16, 23, 24, 31] leverages programmable switches to
accelerate LBs. Nevertheless, programmable switches have
inherent scalability issues (§2.3). On the data plane, a mod-
ern switch cannot store a large number of concurrent flows
due to its small memory size (typically 50-100 MB on-chip
SRAMs); on the control plane, the switch fails to support a
large CPS given its slow entry insertion speed (∼ 100 Kps).

Existing switch-accelerated LBs do not address both chal-
lenges simultaneously. For example, Silkroad [31] stores a
small hash of a connection instead of the 5-tuple to compress
the connection table. However, its scalability is still bounded
by the switch’s small memory size, and it may suffer from



throughput reduction due to switch pipeline folding. More-
over, Silkroad does not address the scalability problem on
the control plane. Cheetah [16] provides a fast entry insertion
mechanism by storing an index in the packet header but re-
quires modifications on services’ client sides. Thus, applying
such a mechanism is difficult, if not impossible, in the dat-
acenter with thousands of services [19, 36]. Furthermore, it
does not address the scalability issue on the data plane.

One plausible approach to address the above problems
is to leverage traffic locality in hardware offloading. If the
traffic pattern follows a long-tail distribution (i.e., a small
number of flows carry the majority of the traffic), only a few
elephant flows need to be offloaded and stored in the switch,
thus lowering the requirements of both the hardware memory
size and entry insertion speed. However, we observe from
production datacenters that the traffic patterns at datacenter
boundaries do not necessarily follow a long-tail distribution.
Instead, the mix of VIP traffic for multiple services is highly
dynamic and unpredictable, detailed in §2.2.

Based on the above analysis and observation, we ask: can
we design a scalable and efficient stateful LB without any
assumption on traffic patterns? Specifically, the design should
be:

• scalable on both data plane (store > 10M concurrent flows)
and control plane (support > 1M CPS);

• efficient in terms of high cost, energy, and space efficiency;
and

• generic without any assumption on traffic patterns.
To this end, we move one step further beyond the existing

switch-server architecture [23, 24] by exploring more flexi-
ble hardware, i.e., FPGA. FPGA is a high-performance and
programmable device becoming an important building block
in the datacenter infrastructure [22, 28, 29, 42]. The modern
FPGA equipped with gigabytes of high-bandwidth memory
(HBM) is well-suited to improve LB scalability, as HBM can
store a large number of concurrent flows with high lookup
and insertion rate.

In this paper, we present Tiara, a three-tier hardware ac-
celeration architecture composed of a programmable switch,
FPGAs, and commodity servers, for a high-performance state-
ful LB with scalability and efficiency. The core idea behind
Tiara is that we map different LB tasks into different devices
by matching task requirements with device capabilities (§3.1).
Specifically, Tiara divides the LB fast path into real server
selection, a memory-intensive task with both large capacity
and high bandwidth requirements, and packet encap/decap, a
throughput-intensive task. Then, Tiara maps these two tasks
into FPGAs with large HBM and a programmable switch
with high packet processing throughput, respectively. Simi-
lar to other hardware-accelerated systems [23, 24, 37], Tiara
leverages commodity servers as the slow path to handle the
unprocessed traffic from the fast path.

To support high CPS without compromising line-rate

Vendor-proprietary hardware
(e.g., F5)

High-performance,
but poor with agility

In-house design
Agile

Software only
(e.g., Ananta, Maglev)

High-performance via scale out,
but poor with efficiency

Hardware Acceleration

Programmable Switch only
(e.g., Silkroad, Cheetah)
Efficient, but not scalable

Programmable Switch + FPGA
(Tiara)

Efficient and scalable

Design Space

Figure 1: Design space for stateful LB architectures.

packet processing in a heterogeneous system, we optimize
several key design components in Tiara (§3.3). First, for both
fast lookup and insertion, Tiara adopts fixed-length hash chain-
ing, which leverages the parallel processing capability in both
FPGAs and multi-core servers. Second, we design a lock-free
offloading approach to support issuing millions of entry op-
erations per second from a server to an FPGA. Third, Tiara
employs a lightweight aging mechanism to recycle outdated
entries, where FPGAs periodically report connection active-
ness via a dedicated accessing bitmap, preventing interference
with the data plane.

We have implemented a fully functional Tiara prototype
based on a Barefoot Tofino switch, a Xilinx FPGA-based
SmartNIC card, and a commodity server. We modified a
production-level SMux for the slow path and the control plane
(§4). The key results from our experiments (§5) show that our
prototype can support 10M concurrent flows and 1.8M CPS,
9× better than Silkroad [31], at 200 Gbps with less than 4 us
average latency and small jitter in the fast path. In a holistic
server with 8 FPGA cards, Tiara can provide superiority in
throughput (up to 1.6 Tbps) and flow capacity (up to 80M con-
current flows). Meanwhile, Tiara achieves 17.4×, 12.8×, and
16.8× higher cost, energy, and space efficiency, respectively,
compared to SMux.

As a summary, Figure 1 shows the design space for state-
ful LB architectures and the unique position of Tiara. Tiara
is more agile than traditional vendor-proprietary hardware,
faster and more cost-, energy-, and space-efficient than soft-
ware LBs, and more scalable than switch-accelerated solu-
tions. Specifically, Tiara makes the following contributions:

• We propose a three-tier architecture that matches key LB
tasks to the most suitable hardware: programmable switch
for packet encap/decap, FPGA with HBM for connection
management, and x86 CPU for SMux.

• We design and optimize key LB components, including
an efficient hash table structure for fast lookup and effi-
cient insertion, a lock-free offloading approach to improve
connection offloading speed, and a lightweight aging mech-
anism with little overhead and minimal interference on the
data plane.

• We implement the Tiara prototype and conduct testbed
experiments to show its performance superiority.



2 Background

2.1 Layer-4 Load Balancing

Layer-4 LB can be classified into the stateful LB, which stores
the connection-to-real server (RS) mapping as a connection
table (CT), and the stateless LB, which does not maintain
any per-connection state. Most of the industry LBs are state-
ful [3, 5, 8, 21, 36] because stateful LBs can easily ensure
per connection consistency (PCC) [16, 31], which means all
packets of a connection should be delivered to the same RS to
avoid breaking the connection. In this paper, we focus on the
stateful LB, which usually contains the following two parts.

Real server selection: The LB selects an RS for each in-
coming packet by identifying its connection via the 5-tuple
in the packet header. The LB selects RS in two ways. For
the first packet of a connection, the LB selects an RS based
on a pre-defined algorithm, e.g., hash, round-robin, or least-
loaded, and creates a connection entry in the CT to record this
selection. The LB selects the same RS for the other packets
of this connection by looking up the CT. This mechanism
ensures PCC. An RS can be specified by a tuple of {RS_IP,
RS_Port} based on backend service implementations.

Packet encap/decap: After an RS is selected for an in-
bound packet, the LB encapsulates the packet with RS_IP and
RS_Port. The encapsulation process may include multiple
steps in practice. Given a tuple of {RS_IP, RS_Port}, the
LB enforces Port NAT (virtual Port (VPort)→ RS_Port),
IP NAT (virtual IP (VIP)→ RS_IP), and packet encapsu-
lation with VxLAN. Unlike inbound traffic processing involv-
ing both RS selection and packet encapsulation, outbound
traffic processing only needs packet decapsulation.

2.2 Nature of Internet traffic at the Datacen-
ter Boundary

Large service providers usually deploy many Internet services
in a datacenter, and the Internet traffic at the datacenter bound-
ary is a mix of multiple services’ traffic, with the following
properties.

The flow distribution of individual services varies. The
distribution of service traffic depends heavily on the service’s
client- and server-side implementations. For example, certain
service clients may split an elephant flow into multiple smaller
ones to reduce the cost of TCP disconnection over unstable
Internet, leading to a uniform distribution. In contrast, other
service clients may use short connections for synchronization
and long connections for massive data transmission, leading
to a long-tail distribution. To show this fact, we analyze flow
distributions for three different services, as shown in Figure 2.
These three services have various flow distributions: service
C shows a uniform distribution (where top 10% flows carry
19.6% traffic), while service A and B exhibit traffic locality

0 20 40 60 80 100
Percentage of connections (%)

0

20

40

60

80

100

CD
F 

of
 s

er
ve

d 
tr

af
fic

 (
%

)

Service A
Service B
Service C
Long tail distribution

Figure 2: The traffic distribu-
tion varies among three dif-
ferent services.

Month0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

 n
um

be
r 

of
 V

IP
s

Figure 3: The number of
VIPs in a typical LB. It
shows a high variation over
6 months.

(where top 10% flows carry 46.3% and 35.5% traffic, respec-
tively) to different extents.

The traffic volume of a service can dynamically change.
The traffic volume of an individual service keeps chang-
ing independently, with different short-term daily peaks and
troughs [21] and long-term uncertainty due to the change in
user interest [20]. At any given time in the mixed service
traffic, mice flows of one service at peak might consume more
bandwidth than elephant flows of another service at the trough,
making the overall distribution of their mix unpredictable.

The number of VIPs at a datacenter boundary can
change over time. Large service providers keep launching,
stopping, and migrating services, driven by various reasons
like changes in user interest or business opportunities. Fig-
ure 3 reveals a high variation (3.2×) of the number of VIPs
served by an LB over 6 months. The dynamic change of
services inside the datacenter further makes the mixed VIP
traffic at the boundary highly dynamic without any specific
distribution.

Based on these observations, we should not rely on any
assumption of specific traffic distributions (e.g., long-tail dis-
tribution) when designing load balancers at datacenter bound-
aries for mixed services.

2.3 Accelerating LB with Programmable
Switches

Most recent proposals accelerate LBs by realizing hardware
Muxes (HMux) [23, 24, 31] with programmable switches,
where the RS selection and packet encapsulation are imple-
mented in switch processing pipelines. HMuxes can effec-
tively reduce the number of required servers, which is sig-
nificant, especially for small/medium-scale datacenters. Nev-
ertheless, using programmable switches as HMuxes suffers
from scalability issues on both data and control planes.

Data plane: As widely discussed, switching ASICs cannot
support many concurrent flows due to their limited memory
sizes [24,25,31,37]. Considering a CT with an entry size of 64
bytes1 and a typical concurrent flow number of 10M [25, 31],

164 bytes/entry is an empirical value for IPv6, including 37 bytes for the



Internet

Datacenter 
Network Programmable Switch

(T-Switch)
FPGA-based SmartNIC

(T-NIC)
x86 Server
(T-Server)

RS Table
(idx -> RS IP, RS MAC,

RS VTEP IP & VNI)

Forw
arding &

 ECM
P Tables

Parser

Offloaded
Connection Table (OCT)

(5 Tuple -> idx & RS Port)

Encap.

Inbound Pipeline

Outbound Pipeline

Table
Mgmt.

(Insertion & 
aging)Table 

Lookup

Offloading 
Engine

Full
Connection Table

(FCT)

SMux

Ethernet M
AC

PCIe DM
A

Inbound Fast Path

Outbound Path Control Path

Inbound Slow Path

hit

miss

Tiara System

Decap. HBM

1~2 us 1~2 us 10~1000 us

Figure 4: Tiara architecture. Tiara consists of three tiers: T-switch, T-NIC, and T-server. Tiara divides LB into multiple key
tasks and matches them respectively to suitable hardware tiers: T-switch for stateless packet encap/decap, T-NIC with HBM for
connection lookup and management, and T-server as a last resort.

the CT size is 640 MB. However, modern programmable
switches only provide 50-100 MB SRAMs [31]. Moreover,
these SRAMs are typically distributed into multiple pipelines,
e.g., 15 MB/pipeline. To look up a larger table than a single
pipeline’s SRAM size, HMuxes typically use folded pipelines
and resubmit a packet to switch pipelines via different physi-
cal ports, reducing the available throughput.

Control plane: State-of-the-art programmable switches are
slow for entry insertion. For example, a Barefoot Tofino
switch can only do ∼ 100K insertions per second after our
optimizations. We measure the entry insertion overhead. Our
result reveals that the top two time-consuming functions are
the hash computation and the Cuckoo search algorithm [34].
Our result is similar to those of previous work [16, 31]. The
root causes exist in the low-end switch CPU, slow PCIe in-
terconnect between the CPU and the switching ASIC, and
the small memory size in the switching ASIC. The first two
factors affect the speed of hash computation and operation of-
floading. Then the limited memory space forces the switching
ASIC to rely on space-efficient Cuckoo hashing for hash col-
lision resolution. The Cuckoo hashing impedes fast insertion
by (1) multiple entry movements during collision resolution
and (2) incapability of parallelization due to the dependency
between two insertions (the previous insertion location may
affect the latter one). The above hardware constraints make
it difficult for a switch to support > 1M CPS required by
production LBs [5].

5-tuple as match key, 18 bytes for RS_IP and RS_Port as action data, and a
few bytes for packing and alignment overhead.

3 Tiara Design

We now present Tiara, a novel hardware-accelerated LB archi-
tecture, which can support > 1 Tbps traffic, > 10M concurrent
flows, and > 1M CPS, without any assumption on traffic pat-
terns.

3.1 Architecture Overview
Tiara is a three-tier architecture as demonstrated in Figure 4.
The outermost tier is a programmable switch (T-switch),
which sits between the Internet and the datacenter network
as a bump in the wire. The second tier is a group of FPGA-
based SmartNICs (T-NIC), which act as the HMux jointly
with T-switch for LB fast path. The third tier consists of com-
modity servers (T-server), which host T-NICs and implement
SMuxes for LB slow path. The number of T-NICs hosted
by a T-server and the number of T-servers behind T-switch
are configurable, making the three-tier architecture flexible
enough to meet different performance requirements at various
datacenter entrances.

The novel idea of Tiara is that it maps different LB tasks
into their most suitable devices based on their unique capabili-
ties. In the fast path, Tiara divides the HMux between T-NICs
and T-switch. Tiara leverages the large and fast HBM inside
T-NIC’s FPGA for memory-intensive RS selection. One typ-
ical HBM stack comprises 16 256-MB memory channels,
and each channel provides ∼100 million lookups per second
(MLPS)2. To maximize the accessing performance, we should
separate memory accesses to different memory channels. The

2One memory channel provides ∼100 million random read accesses per
second based on our emulation [1].



parallelism among HBM channels is carefully explored to
meet memory capacity and throughput requirements of RS
selection, which will be discussed in §3.3.1. Meanwhile, Tiara
leverages the high performance and programmability prop-
erties of T-switch pipelines for throughput-intensive packet
encap/decap.

Besides the fast path processing, Tiara instantiates several
SMuxes in T-server to act as a backstop for unprocessed traffic.
Each SMux maintains a full connection table (FCT) for all
inbound flows, and is associated with a T-NIC virtual function
with dedicated DMA channels used for packet receiving and
sending.

Programmable switch or fixed-function switch. Another
option of Tiara’s three-tier architecture demonstrated in Fig-
ure 4 is that the programmable T-switch could be replaced
by a fixed-function switch that only performs forwarding and
ECMP routing. If so, the switch packet processing logic, in-
cluding RS table, packet encapsulation, and decapsulation,
can be moved into T-NICs. We do not choose this option for
a few reasons. First, the performance, cost, and power con-
sumption of programmable switches is comparable to that of
traditional fixed-function switches [14]. Second, with packet
decapsulation implemented in programmable T-switch, the
architecture allows outbound traffic to bypass T-NICs (as
described in §3.2.2), thus halving the T-NICs bandwidth re-
quirements and the number of required T-NICs. Third, the
programmability of T-switch relieves T-NIC implementation.
If all fast path functions are implemented in T-NIC, it will
increase not only the FPGA size, power consumption, and
cost, but also the development time, as programming switches
with P4 is easier than programming FPGA with Verilog.

3.2 Control & Data Planes

3.2.1 Control Plane

A typical LB usually includes a centralized controller config-
uring VIP→ RS_IP mappings into Muxes and BGP speakers
for VIP announcements. As they are common and well de-
scribed in previous work [21, 23, 24, 36], we will skip them in
this paper and pay more attention to the acceleration-related
control flow, i.e., the connection management between soft-
ware and hardware. Tiara relies on T-servers to make the local
control plane decisions, including the CT entry insertion and
the entry recycling (connection aging). The powerful CPU
prevents inefficient hash computations like that on the switch-
based HMux. T-servers use offloading engines to offload the
entry operations generated by SMuxes, to a specific T-NIC,
and each offloading engine is associated with a dedicated
DMA channel for entry operations. To efficiently process
entry insertion and aging, a few optimizations are made in
offloading engines, which will be discussed in §3.3.

Moreover, Tiara integrates many more features like man-
agement, telemetry, and fault tolerance in the control plane.

Except for the telemetry, Tiara can support all these function-
alities solely in the control plane. Network telemetry requires
collecting statistic counters from the data plane, and T-NIC
and T-switch can provide them easily without affecting the
fast path performance.

3.2.2 Data Plane

Inbound fast path. Upon receiving a packet from the In-
ternet, T-switch distributes it to one of the T-NICs based
on ECMP. Then, T-NIC parses the packet header and uses
the extracted fields (i.e., 5-tuple) to look up the offloaded
connection table (OCT), which maintains up to tens of mil-
lions of connections in FPGA HBM and sustains fast lookup.
The lookup result from OCT is an LB decision, i.e., a two-
tuple {RS_Index, RS_Port}, where RS_Index represents a
real server and will be used in later RS table lookup in T-
switch. Instead of replacing the RS_Port locally, which will
incur checksum computation, Tiara delays this operation to
T-switch processing. T-NIC encapsulates the retrieved tuple
into a packet metadata header between the Ethernet header
and the IP header, and sends back the packet to T-switch. T-
switch looks up an RS table and gets the corresponding RS
information, including RS_VTEP_IP, RS_MAC, RS_IP, and VNI.
Finally, T-switch enforces Port NAT, IP NAT, and VxLAN
encapsulation sequentially, and forwards the encapsulated
packet to the RS. Since we decouple the RS_Port from the
RS table, the number of entries in the RS table is the same as
the number of real servers, typically 10K-100K3. Compared
to CT, the RS table is relatively stable, updated in second time
granularity [36], which is far slower than the entry insertion
speed provided by T-switch. Based on these two features, the
RS table is achievable in the T-switch SRAMs.

Inbound slow path. When a packet misses in the OCT, the
T-NIC uploads it to an SMux via a PCIe DMA channel chosen
by Receive Side Scaling (RSS). Upon receiving the packet,
the SMux looks up the FCT and moves to one of the following
two workflows according to the lookup result.

If the packet belongs to an established connection, it will
hit in the FCT lookup. SMux retrieves the corresponding
{RS_Index, RS_Port}, and further processes the encapsu-
lation for this packet by looking up the RS table locally4.
Finally, SMux sends the encapsulated packet to the real server
(via T-NIC and T-switch). There is a trick on VxLAN source
port calculation. Since the source port is calculated by hash-
ing [13], SMux reuses the last 2 bytes of RSS hash value from
the T-NIC to avoid duplicate hash computation.

If it is the first packet of a new connection, it will miss in
the FCT lookup. SMux makes the LB decision to create a
connection entry for this connection and inserts the generated

3A typical datacenter supports thousands of services [19, 36], and each
one usually holds 10-100 instances.

4In fact, these two tables can fuse into one table.



entry into the FCT. Then, SMux encapsulates the packet and
sends it out.

In both cases, SMux will try to insert the corresponding
connection entry into OCT. If there are empty slots in the
corresponding hash bucket in OCT, the insertion will be suc-
cessful; otherwise, Tiara will fail the insertion without cache
eviction and keep that flow in SMux. We leave the cache
eviction policy for the LB connection table as future work.

Outbound path. For outgoing packets, real servers leverage
XDP [4] or OVS Conntrack [10] to perform SNAT locally.
The real servers rewrite source IP with VIP and source ports
with VPort, and forward the packets in VxLAN encapsulation
to T-switch. T-switch further performs packet decapsulation
and sends the packets to the Internet. As the only LB operation
(i.e., packet decapsulation) for outbound packets is offloaded
completely in T-switch, outbound traffic can bypass T-NICs
and SMuxes, halving the T-NICs bandwidth requirements.

3.3 Component Design & Optimization

3.3.1 Efficient Hash Table Structure

The hash table design of OCT affects not only lookup perfor-
mance in hardware but also entry insertion speed in software.
We leverage an efficient hash table structure that enables
both fast lookup in T-NIC and fast entry insertion in T-server.
Specifically, we expect the hash table used in T-NIC should
(1) support O(1) and parallel insertions in software and (2)
support line-rate lookup in hardware.

We observe that a hash table with fixed-length chaining
can satisfy all requirements. First, the insertion complexity of
hash chaining is O(1). Second, since the hash computations
of different insertion indexes are independent, we can utilize
multiple cores in T-server to compute the insertion indexes in
a parallel manner. Third, T-NIC can support O(1) lookup by
mapping fix-length chains into multiple HBM channels. Last,
fix-length hash chaining simplifies hardware design. If using
variable-length hash chaining, dynamic memory management
is mandatory and unfriendly to hardware implementation.

T-NIC manages OCT using a hash table with fixed-length
chaining, as illustrated in Figure 5. Despite the simple struc-
ture, determining the proper parameters of the hash table
in HBM to achieve both fast lookup and low collision rate
is non-trivial. For the hash table with fixed-length chaining,
two parameters control the shape of the table: the number
of hash indexes (depth) and the number of entries at each in-
dex (width), following that depth×width = hash table size.
Given a fixed hash table size, a deeper hash table results in a
higher hash collision rate (see analysis in Appendix A), while
a wider hash table poses challenges for line-rate lookup on
HBM, as the number of parallel HBM memory channels is
limited.

Based on the above analysis, T-NIC determines the hash
table parameters with a principle that maximizing the width

entry 0 …

entry 0 …

… …

M

M+1

…

entry 0 …2M-1

Index

entry N-1

entry N-1

…

entry N-1

HBM 
channel pair N

HBM 
channel pair 2N-1

entry 0 …

entry 0 …

… …

0

1

…

entry 0 …M-1

Index

entry N-1

entry N-1

…

entry N-1

HBM 
channel pair 0

HBM 
channel pair N-1

Figure 5: The fixed-length hash chaining design in Tiara OCT,
where depth is M and width is N. Each channel pair saves
a column of the hash table. For a table lookup, T-NIC can
launch multiple parallel accesses of N entries inside 2N HBM
channels.

while guaranteeing line-rate lookup. Take the FPGA card
used in our implementation (§4) as an example. It has two
100GE ports, each requiring 150 MLPS to sustain line rate,
and one HBM stack of 16 256-MB (8M × 256-bit width)
memory channels, each providing up to 100 MLPS. We divide
16 channels evenly between two ports so that there are 8
channels to support 100 Gbps traffic. Moreover, the entry
size is 512 bits, as discussed in §2.3, so we need to pair two
channels for one entry access and construct 4 channel pairs for
each port. Given that each channel pair can support 8M entries,
there are three candidate hash table structures: 8M (depth)
×4 (width), 16M×2, 32M×1, where one lookup operation
involves 4, 2, and 1 channel pair(s), respectively. However,
the lookup performance of the 8M×4 hash table structure is
only 100 MLPS (using all channels for one lookup), failing
to support the 100 Gbps line rate. Based on the principle, the
best hash table structure for one 100GE port is 16M×2 in our
FPGA card.

T-NIC relies on the connected T-server to simplify hash
collision resolution. When there is a hash collision in the table
lookup, T-NIC will forward the packet to the slow path in T-
server; when there is a hash collision in the entry insertion, the
insertion fails in the offloading engine (§3.3.2), and that flow
will be kept in the slow path. As long as the hash collision
rate is low (2.6% in theory for 10M flows in the 16M×2 hash
table), hash collision does not have significant performance
penalty.

3.3.2 Lock-free Offloading Approach

We design a lock-free offloading approach to enable issuing
millions of insertion or deletion operations per second from
SMuxes to T-NIC, which is required to support > 1M CPS.

In Tiara, SMuxes offload the generated entry operations, in-
cluding entry insertion and deletion, to T-NICs via offloading
engines. Given the multi-channel feature of our PCIe DMA
engine, Tiara instantiates a few offloading engines and asso-
ciates each with a dedicated DMA channel, so that offloading
engines can offload entries independently.



SMux

SMux

SMux

Offloading Enginepolling
SMux

OP Queue

DMA Channel
Index Entry 0 Entry 1

2 ✔

Local Offloaded Table

Offloading Enginepolling

DMA Channel

Index Entry 0 Entry 1

0 ✔ ✔

1 ✔

Local Offloaded Table

Figure 6: Tiara’s lock-free offloading design.

A straightforward offloading approach introduces locks in
two places. The first lock happens when multiple SMuxes
are mapped to the same offloading engine with only one OP
queue. SMuxes can write their operations to the OP queue
only when they retrieve a write lock. The second lock exists
when multiple offloading engines insert entries into the same
hash index. A lock is required for unavoidable synchroniza-
tions on a global OCT, maintained in the server to track the
OCT usage among different offloading engines. These two
locks prevent us from fully leveraging the parallelism in both
the multi-core server and the multi-channel DMA to achieve
fast entry offloading.

We design a lock-free offloading mechanism, as shown
in Figure 6. First, to realize lock-free entry delivery from
SMux to the offloading engine, Tiara sets up an OP queue
for each SMux-engine pair. The offloading engine polls OP
queues in a round-robin manner to retrieve the offloading op-
erations. Second, Tiara adopts the mapping method based on
the entry’s hash index, i.e., index-to-engine mapping. Entries
inserted into the same place are delivered to the same offload-
ing engine. Consequently, different offloading engines handle
entries with different hash indexes, and each offloading engine
maintains a local OCT to track the offloaded indexes. Since
the local OCTs are disjoint with each other, it is lock-free
during the table update.

For each entry operation, offloading engines will notify
SMuxes whether the operation is successful or not (an inser-
tion will fail when the corresponding hash bucket is full) via
completion queues (not shown in Figure 6).

3.3.3 Lightweight Aging Mechanism

The purpose of this component is to recycle outdated entries
in the OCT, i.e., when a connection is disconnected, its related
entry in the OCT should be released so that it can be reused
for new connections. To realize it, we need to detect the close
of connections. One naive method is to use the TCP FIN
packet as the signal of the connection close, which can be
captured in T-NICs. However, this method fails on abnormal
close of TCP traffic and connection-free UDP traffic.

To unify the flow removing process for TCP and UDP, Tiara
adopts an entry aging mechanism that removes a flow entry

from the OCT if it is not accessed in a period T . This aging
mechanism may kick out connections whose access interval is
larger than T by mistake, but those connections can be further
processed in the slow path FCT5.

The challenge of this aging mechanism is to monitor the
accessing states of 10M connection entries periodically with
a small memory footprint, minimal performance interference
on the data plane, and low CPU overhead.

To address this challenge, T-NIC leverages an accessing
bitmap to track connection activities, signals activities to
SMuxes, and SMuxes make aging decisions by issuing entry
deletion operations based on signals.

T-NIC maintains the accessing bitmap in on-chip SRAMs,
using each bit as an indicator for a connection entry. All indi-
cators are reset to 0 at the beginning of every detection period
∆t (< T ). An indicator will be marked as active, i.e., set to
1, only if a packet is accessing the corresponding connection
entry. As an active signal, the packet header will be sent to an
SMux by RSS, ensuring that the same SMux processes both
teardown and establishment for a connection. Subsequent
packets accessing active connection entries neither change
the indicator status nor trigger signaling to SMuxes. In this
way, if the connection is active in a detection period, the re-
lated SMux will get a signal. If the SMux does not receive any
signal for a connection in multiple continuous (T/∆t ) periods,
that connection is considered outdated and should be aged.
T-NIC leverages the length of the detection period to control
the reporting frequency, which balances the SMux load and
the detection precision.

This mechanism is lightweight in three aspects. First, the
memory footprint used for tracking connection states in FPGA
is minimal, with one bit per connection in the bitmap. Second,
as the accessing bitmap is stored in on-chip SRAMs, the aging
process will not interfere with HBM lookup in the fast path.
Third, given the low signaling frequency (likely to be minutes
level), the PCIe and CPU overhead are both low.

4 Implementation

We implement a fully functional prototype of Tiara with one
T-switch and one T-server, equipped with one T-NIC through
a PCIe Gen3 x16 link. T-switch and T-NIC are connected via
100G Ethernet cables. In the rest of this section, we discuss
the implementation details of each component.

4.1 T-switch

We build a P4 prototype of T-switch with a Barefoot Tofino
switch, where one pipeline has 12 physical stages, each with
1.25 MB SRAMs and 528 KB TCAMs.

5The aging procedure in the FCT is implemented by the SMux, which
should provide a longer life cycle for a typical entry compared to the OCT
due to its larger memory space.



Ingress pipeline

Egress pipeline

Ingress 
Parser

RS Table I
(idx -> RS IP)

Fast path traffic Routing 
Table

Inbound & slow path traffic

UDP src port 
calc

Egress 
Parser

Next Hop 
Rewrite

Inbound & slow path traffic

RS Table II
(idx -> RS VTEP IP, 

RS MAC, VNI)

Tunnel 
Rewrite

Fast path traffic

Ingress
De-parser

Metadata:
idx, RS_IP, 
RS_Port, 

UDP_src_port

Inner IP 
retrieval

Outbound traffic

DIP = RS IP

DIP = Inner IP

Outbound traffic

Egress
De-parser

Checksum update

Figure 7: T-switch pipeline implementation.

��� �	
���
�

��������
�����

�������
�����

���
�����


�������� ����������	
�����


�������� ����

��

��
�

Figure 8: The metadata format.

We modify a baseline switch.p46 to implement the packet
processing pipeline, including the RS table, routing tables
(forwarding table and ECMP table), and tunnel processing
(VxLAN encapsulation and decapsulation). Figure 7 shows
an overall pipeline of T-switch. It is worth mentioning that we
split the RS table into two parts. The RS table I (RS_Index
→ RS_IP) exists in the ingress pipeline, where T-switch re-
trieves RS_IP for routing tables lookup. T-switch postpones
the lookup of the rest values in RS table II (RS_Index →
RS_VTEP_IP, VNI, RS_MAC), to the egress pipeline. This
decoupling helps mitigate resource contention between RS
Table and routing tables in the ingress pipeline.

The modified switch.p4 takes 53.85% of SRAMs and
13.19% of TCAMs to implement the pipeline described in
Figure 7 with 64K RS table entries, 2K IPv4 addresses, 1K
IPv4 prefixes, 1K IPv6 addresses, and 1K IPv6 prefixes.

Recall that, in slow path processing, the VxLAN source port
is computed based on the last 2 bytes of RSS value (§3.2.2).
To be consistent with the slow path, the fast path in T-switch
should compute this field in the same way. However, T-switch
pipeline does not support the Toeplitz hash [18, 26, 30] used
in RSS computation7. To address this issue, T-NIC carries
the computed RSS value (last 2 bytes) on packets within
an extended metadata header to T-switch (§4.2). T-switch
retrieves the hash value from the packet and performs the
same computations as SMuxes. In our implementation, the
VxLAN source port is computed as followed: port = (RSS∧
(65535−49152))+49152.

6A simplified version can be found at https://github.com/p4lang/
switch

7We follow the standard RSS computation procedure for compatibility

4.2 T-NIC
T-NIC is implemented in a Xilinx FPGA-based SmartNIC
card, with two 100GE ports and one HBM stack of 16 256MB
memory channels. We use Xilinx QDMA IP [11] as the DMA
engine. We implement the T-NIC logic described in Fig-
ure 4, in System Verilog, including the OCT management
and lookup, packet metadata encapsulation, entry aging, and
the slow path delivery.

Tiara relies on a metadata header in the packet to pass
information between T-NIC and T-switch. Figure 8 shows
the format of the metadata header, which is inserted between
the Ethernet header and the IP header. The metadata header
includes a 4-byte RS_Index, a 2-byte RS_Port, a 2-byte RSS,
and a 2-byte EtherType. The field EtherType in the meta-
data header follows the IEEE 802 standard [6] to indicate the
following header type (IPv4 or IPv6). In the Ethernet header,
the original EtherType field is changed to 0x88B5, which
indicates the next header is private. To avoid the drop of over-
sized packets caused by inserting the metadata header, we
increase the MTU of T-NIC and the corresponding T-switch
ports by 10 bytes, i.e., the size of the metadata header.

4.3 T-server
T-server contains 2 Intel(R) Xeon(R) Platinum 8260 CPU.
We run SMuxes and offloading engines in one CPU in the
same NUMA node as T-NIC without hyper-threading. We
build a T-NIC driver as a DPDK [2] PMD and implement the
offloading engine on top of it. We leverage an in-house SMux
implementation modified from DPVS [3]. The SMux has been
deployed over three years, and we make necessary changes
to adapt it for the Tiara architecture. The hash computation
used in both SMuxes and T-NICs is the CRC32 algorithm.

We optimize the DMA transmission between T-NIC and
the PMD. QDMA is a type of Scatter-Gather DMA from Xil-
inx [11]. For any DMA transaction, it first reads a descriptor
from the host to get the physical address of the DMA buffer.
The speed of descriptor filling affects the DMA performance.
Tiara leverages SIMD instructions provided by Intel proces-
sors [7] to accelerate the descriptor filling. For example, we
use _mm_storeu_si128 and _mm_storeu_si128 to copy the
DMA information between the DPDK mbuf and the QDMA
descriptor. Moreover, Tiara decouples DMA control channels
from data channels to avoid head of line blocking and mutual
interference. Tiara guarantees lossless control channels by
fine-grained credit control between T-server and T-NIC while
remaining data channels to be lossy like conventional NIC
data paths.

5 Evaluation

In this section, we use testbed experiments to evaluate the
Tiara prototype as described in §4. We first show the micro-

https://github.com/p4lang/switch
https://github.com/p4lang/switch


32M*1 16M*2 8M*4
Hash Table Structure

60

65

70

75

80

85

90

95

100

Th
ro

ug
hp

ut
 (

G
bp

s)

Figure 9: HBM lookup performance on
different hash table structures with 10M
flows.

1 2 3 4 5 6 7 8
Number of SMuxes

2

3

4

5

6

7

8

M
ill

io
n 

of
 e

nt
ri

es
/s

Figure 10: Entry insertion speed of a
single offloading engine.

1 2 3
Number of offloading engines

1

2

3

Sp
ee

du
p

Tiara
Linear scaling

Figure 11: Insertion speedup with multi-
ple offloading engines.

benchmarks to assess the effectiveness of Tiara component
designs (§5.1). Then, we measure the end-to-end system per-
formance of Tiara (§5.2). Last, we compare Tiara with ex-
isting approaches, i.e., SMux and Silkroad [31] (§5.3). Our
results reveal that:
• A T-server with a single T-NIC can provide 200 Gbps

throughput with 10M concurrent flows and could scale lin-
early up to 1.6 Tbps and 80M concurrent flows by hosting
8 T-NICs within a T-server.

• Tiara fast path can provide less than 4 us average latency
with small jitter even at line rate.
• Tiara can serve up to 1.8M new connections per second,

which is larger than switch-based HMux.
• Tiara is cost-, energy-, and space-efficient, costing 17.4×

less money, consuming 12.8× less energy, and taking
16.8× less rack space than SMux, given the same target
throughput.

Testbed setup. We leverage the same SMux used in the Tiara
slow path as the baseline of software LBs. The Tiara prototype
and the baseline are directly connected to the traffic generator
using 100 Gbps cables. Test traffic is generated by a hardware
traffic generator, sent to the LB (Tiara or baseline), and then
routed back to the generator. In this way, we could test the
throughput and latency for both Tiara and the baseline.

Traffic. We use a hardware generator to inject synthetic
TCP/UDP flows. Since we do not hold any assumption on
traffic patterns in Tiara design, the traffic is generated in a
random manner.

5.1 Micro-benchmarks
A few micro-benchmarks are designed to evaluate the major
component optimizations described in §3.3. Specifically, we
evaluate the lookup performance of our hash table design,
measure the insertion speed of offloading engines, and test
the PCIe overhead incurred by our aging mechanism.

Tiara OCT provides line-rate lookup. We run a benchmark
with 10M flows in the OCT, implemented with three candi-
date hash table structures described in §3.3.1, i.e., 32M×1,

16M×2, and 8M×4. Figure 9 shows the lookup throughput
on 10M flows with 128-byte packet size in three candidate
hash structures. It reveals that both 32M×1 and 16M×2 struc-
tures approach line rate (97.2 Gbps and 97.15 Gbps), but
16M×2 provides a lower theoretic hash collision rate. When
the width expands to 4, the throughput drops to 72.9 Gbps
since all channels are used for each access at this width. This
benchmark is consistent with our analysis in §3.3.1.

Tiara offloading engine achieves fast entry offloading. We
randomly generate new flow entries in SMuxes and offload
them to T-NIC by offloading engines. Therefore, in this exper-
iment, all offloading operations are entry insertions. Figure 10
demonstrates the offloading speed of a single offloading en-
gine, which is shared among SMuxes. The speed sticks to
6.8M operations per second with more than two SMuxes,
which is bounded by the offloading engine. Figure 11 further
shows how offloading speed changes with more offloading
engines working in parallel. It achieves near linear-scaling
with 2.77× speedup when using three offloading engines.
The linear scalability of offloading speed makes Tiara able
to support a high CPS scenario. For example, the LB in [5]
processes 6.9M CPS, requiring at least 13.8M offloading op-
erations (insertion or deletion), which can be supported by
two offloading engines, as shown in Figure 11.

Tiara entry aging mechanism incurs negligible overhead.
We evaluate the PCIe utilization caused by the aging mech-
anism, i.e., sending signals (packet headers) to SMuxes via
PCIe, with 10M flows and a 1 minute detection period. The
average PCIe utilization is less than 0.05%. Given that the
control plane and data plane share the same PCIe interface,
the low PCIe utilization of Tiara aging mechanism incurs
little influence on the data plane.

5.2 Tiara Performance

A complete Tiara system consists of at least one T-switch
connected by multiple T-servers, each hosting up to 8 200GE
T-NICs. We will show in this section whether such a system
could meet the design goals: > 1 Tbps, > 10M concurrent
flows, and > 1M CPS, without any assumption on traffic pat-



128 256 512 1024 1280
Packet Size

1000

1100

1200

1300

1400

1500

1600

1700

1800

Th
ro

ug
hp

ut
 (

G
bp

s)

Throughput
Average latency

0

2

4

6

8

10

Av
er

ag
e 

la
te

nc
y 

(u
s)

Figure 12: Forwarding performance in Tiara fast path. A T-
server with 8 T-NICs achieves up to 1.6 Tbps with less than 4
us latency.

terns.

Throughput and latency. To measure the throughput and
latency of Tiara with 10M concurrent flows, we generate
traffic consisting of 10M flows and send them to Tiara, which
offloads these flows into the fast path.

We first test the performance of Tiara fast path with a single
T-NIC. It can achieve the line rate of 200 Gbps and provide an
extremely low average latency of less than 4 us, with packet
sizes ranging from 128 to 1280 bytes. We further break down
the latency distribution in Tiara fast path, which shows about
1 : 1 latency between T-switch and T-NIC.

The throughput and the number of concurrent flows sup-
ported in one T-server can scale linearly with the number
of T-NICs, as T-NICs plugged in the same server are totally
independent of each other, and they share nothing in the fast
path processing. As a result, with 8 T-NICs in one T-server,
the aggregate throughput of T-server fast path scales linearly
to 1.6 Tbps, and the latency remains exactly the same as that
of a single T-NIC (i.e., less than 4 us), as shown in Figure 12.
Similarly, the number of concurrent flows increases to 80M
for a holistic T-server with 8 T-NICs. If the throughput re-
quirement of an LB system is larger than 1.6 Tbps or the flow
number requirement is larger than 80M, more T-servers can
be connected to the T-switch tier, given the flexibility of this
architecture. The aggregate throughput and the flow capac-
ity of Tiara in the fast path can also scale linearly with the
number of T-servers, as they are physically independent as
well.

CPS. We evaluate Tiara ability to serve new TCP connections
by issuing HTTP transactions, including a TCP connection
establishment, an HTTP GET request, an HTTP response (by-
passing LB), and a closure of TCP connection. We gradually
increase the target CPS in 0.1M granularity at the generator
to find the maximum available CPS that the target LB can
serve all the incoming requests. The result reveals that Tiara
can support up to 1.8M CPS (bounded by SMux), which is
higher than our goal (i.e., 1M CPS).

Resilience to traffic patterns. By leveraging the large ca-
pacity of FPGA HBM for the connection table, almost all

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Throughput (Gbps)

25

50

75

100

125

150

175

200

P9
9 

La
te

nc
y 

(u
s)

Tiara
SMux

Figure 13: Latency-bounded throughput. With the tail (P99)
latency bound of 100us, Tiara can achieve 200Gbps per T-
NIC and 1.6Tbps per T-server with 8 T-NICs. However, since
SMux suffers from high jitter when the load increases, the
maximum latency-bounded throughput of SMux is 38Gbps.

flows can be offloaded to the fast path in Tiara as long as the
number of concurrent flows is less than 10M per T-NIC and
80M per T-server, which is true in most cases as we observed
at our datacenter boundaries. As a result, Tiara is insensitive
to traffic patterns, and it keeps consistent high throughput and
low latency on different traffic patterns.

5.3 Tiara vs. Existing Approaches
In this section, we compare Tiara with existing approaches
(the SMux baseline, Silkroad [31]) in terms of performance
and efficiency. The results are summarized in Table 1.

Performance. SMux suffers from high latency and jitter
when the traffic load is heavy [33] due to high CPU uti-
lization and cache misses. High latency and jitter will ad-
versely impact the user’s network experience. Therefore, we
use "latency-bounded throughput" as the metric to compare
SMux and Tiara more fairly. Given that the end-to-end latency
from Internet users to datacenter services could be as low as
a few milliseconds [35, 39], we should bound the tail latency
of LB to the sub-millisecond level to minimize its impact
on the user’s network experience. In this experiment, we run
SMux on 16 cores of a server with the same configuration
as T-server (§4.3), except that the SMux server is equipped
with a 100 Gbps Mellanox ConnectX-5 NIC rather than T-
NICs. We set the bound of LB P99 latency to 100 us and
compare the latency-bounded throughput with the packet size
of 512 bytes between Tiara and SMux. Figure 13 shows the
P99 latency of Tiara and SMux, respectively, with different
throughputs. For the Tiara fast path, P99 latency is consis-
tently below 4 us at throughput up to 200 Gbps per T-NIC,
while SMux P99 latency breaks the 100 us bound when the
throughput is higher than 38 Gbps. Therefore, we consider
38 Gbps as the maximum latency-bounded throughput of the
baseline SMux. In Tiara, the latency-bounded throughput of a
single T-server with 8 T-NICs is 1.6 Tbps, 42.1× higher than
SMux (38 Gbps), and its P99 latency (4 us) is 25× lower than



Throughput P99 lat. CPS CT size∗ Cost efficiency Energy efficiency Space efficiency

SMux 38 Gbps 100 us 1.8M ∼100 GB 4.75 Gbps/(cost unit) 76 Mbps/Watt 19 Gbps/U
Silkroad∗∗ 1.6 Tbps < 2 us 200K 100 MB 457.14 Gbps/(cost unit) 2909.1 Mbps/Watt 1600 Gbps/U
Tiara 1.6 Tbps < 4 us 1.8M 4 GB 82.05 Gbps/(cost unit) 969.7 Mbps/Watt 320 Gbps/U

Table 1: Performance and efficiency comparison among different LBs. ∗Since the connection table (CT) compression in Silkroad
is orthogonal to Tiara and can be applied in any architecture, we use the CT size as the metric to compare the data plane scalability
of different architectures. ∗∗The Silkroad paper does not report throughput and tail latency explicitly, and we use the same
throughput and latency results as T-switch to simplify comparison.

SMux (100 us).
Silkroad achieves comparable high throughput and low la-

tency as Tiara, as most connections are processed in the hard-
ware fast path in both solutions. However, Silkroad is less
scalable in both control and data paths than Tiara. Silkroad
leverages the embedded management CPU in switch for con-
nection creation and offloading, thus expecting only 200K
CPS [31]. Tiara achieves 1.8M CPS, 9× higher than Silkroad,
thanks to the optimizations in the control plane of Tiara.
Silkroad stores the connection table in the switch’s limited
on-chip SRAMs. Despite compression with hash digest, the
connection table is still bounded by the on-chip SRAM size,
i.e., 50-100 MB in modern switching ASICs. Tiara leverages
4 GB HBM in modern FPGA, increasing the connection ta-
ble size in the fast path by orders of magnitude compared to
Silkroad.

Efficiency. In this section, we quantify and compare the
efficiency of SMux, Silkroad, and Tiara, in terms of cost ef-
ficiency (performance per dollar), energy efficiency (perfor-
mance per watt), and space efficiency (performance per rack
unit).
• Cost efficiency. As the concrete cost numbers of T-NIC,

T-switch, and T-server used in the Tiara prototype are con-
fidential, we normalize them to 1, 3.5, and 8, respectively.
With these cost units, the normalized system costs of SMux,
Silkroad, and Tiara are 8, 3.5, and 19.5 (=3.5+1*8+8),
respectively. Given these normalized system costs and
the throughput data shown in Table 1, the cost efficiency
of these three approaches will be 4.75 Gbps/(cost unit),
457.14 Gbps/(cost unit), and 82.05 Gbps/(cost unit), re-
spectively.

• Energy efficiency. According to hardware datasheets, T-
NIC, T-switch, and T-server used in the Tiara prototype con-
sume 75 Watt, 550 Watt, and 500 Watt power, respectively.
Based on these power consumption and throughput data,
the energy efficiency of SMux, Silkroad, and Tiara will be
76 Mbps/Watt, 2909.1 Mbps/Watt, and 969.7 Mbps/Watt,
respectively.

• Space efficiency. The server used in SMux is 2 rack-unit
(i.e., 2U) high, the switch used in Silkroad is 1U high, and
the entire Tiara system is 5U high, as it includes a 1U T-
switch and a 4U T-server hosting 8 T-NICs. Based on these

heights and throughput data, the space efficiency of SMux,
Silkroad, and Tiara will be 19 Gbps/U, 1600 Gbps/U, and
320 Gbps/U, respectively.

• Tiara vs. SMux in efficiency. The cost, energy, and space
efficiency of Tiara are 17.4× , 12.8× , and 16.8× higher
than those of SMux, respectively. In other words, given
the same target throughput, Tiara costs 17.4× less money,
consumes 12.8× less energy, and takes 16.8× less rack
space than SMux. All these efficiency advantages of Tiara
over SMux come from hardware acceleration, as suitable
hardware (i.e., FPGA and programmable switch in Tiara)
is fundamentally much more efficient than x86 servers in
network packet processing.

• Tiara vs. Silkroad in efficiency. As we can see from Ta-
ble 1, the switch-only solution in Silkroad outperforms
Tiara in all efficiency metrics. This is expected as Silkroad
only leverages a switch, which is fundamentally more cost-,
energy- and space-efficient than FPGA and x86 in network
packet processing. However, as we discussed in the above
section, the efficiency of Silkroad comes at the cost of
lower CPS and smaller connection tables due to switch in-
herent scalability limitations. Compared to Silkroad, Tiara
strikes a better balance between efficiency and scalability.
Furthermore, the switch-only solution may not be that prac-
tical in traffic scenarios with a large number of connections,
where Silkroad suggests operators combine its switch with
an SMux for the slow path [31]. With this hybrid setting
(switch + server), the efficiency of Silkroad will become
similar to Tiara, but its scalability in hardware is still lower
than Tiara.

One more option to further improve the efficiency of Tiara
is to bake its implementation into a custom ASIC, which
makes it as efficient as the Silkroad switch-only solution and
as scalable as current Tiara. However, a custom ASIC incurs
a significant NRE (non-recurring engineering) cost. Without
a big enough volume to amortize the NRE, the cost efficiency
of custom ASIC is worse than that of current Tiara design. As
the performance of a single T-server is already high enough
(up to 1.6 Tbps), we do not necessarily need a large number
of T-servers to load-balance Internet traffic in even hyper-
scale datacenters. Therefore, the design choice of using FPGA
rather than custom ASIC in Tiara is justified in this context.



6 Related Work

Memory enhanced switches: eXtra Large Table (XLT) [17]
enhances programmable switches with FPGA + DRAM com-
plexes to support large tables. It works well when all rule/flow
tables are stored in DRAM, and the switch and FPGA can
handle all data plane processing entirely. However, that is not
the case for stateful load balancers discussed in this paper.
Despite large DRAM, packet lookup may still miss in XLT
FPGA due to hash collision or first packet processing for new
connections, but how to handle these exceptions is unclear.

TEA [25] extends switching ASIC memory virtually by
utilizing the host DRAM via RDMA. However, looking up
a table at the remote memory prevents switches from line-
rate processing. TEA relies heavily on traffic locality that
caches hot traffic in the on-chip SRAMs to preserve high
throughput. Otherwise, its performance approaches the server-
based lookup table, as demonstrated in its experiment (TEA
with and without cache). Moreover, TEA shares the same
scalability issue on the control plane as other programmable
switches.

Layer-4 load balancing: There have been continuous ef-
forts on layer-4 load balancing. In general, two LB categories
are explored: stateful LBs that keep the per-connection state
at Muxes and stateless LBs that do not maintain any per-
connection state.

Ananta [36] and Maglev [21] are two proposed software
stateful LBs with a series of packet processing optimizations,
including batch processing, poll mode NIC driver, and zero-
copy operations. Despite these optimizations, the packet for-
warding throughput on a single server is still limited, so that
they need a large number of servers to support terabits per
second traffic.

Duet [24] and Rubik [23] accelerate Ananta with commod-
ity switches in a stateless style. They store the VIP-to-DIP
(RS_IP) mapping in switch on-chip SRAMs as an ECMP ta-
ble. To support large-scale mapping rules, they leverage the
tail distribution in VIP traffic to configure the heavy-hitting
rules on switches while processing the rest in the software.

Beamer [33] is a recently proposed stateless LB. It relies
on hash functions on the switch to proceed fast real server
selection and uses "daisy chaining" techniques to mitigate the
PCC violations. The "daisy chaining" requires real servers
to redirect unexpected packets. However, it is empirically
impractical to modify the service servers. Moreover, stateless
LBs can only provide suboptimal workload balancing due to
the nature of hash functions as described in [16].

Silkroad [31] is the most related work, which accelerates
stateful LB with programmable switches. It faces the same
problems as mentioned in §2.3, but it only focuses on ad-
dressing the data plane scalability issue with on-chip SRAMs.
Silkroad stores a hash digest of a connection instead of the
5-tuple in the connection table, which reduces the key size

of each connection from dozens of bytes to 16 bits. Such
compression technique scales to support millions of concur-
rent flows. However, Silkroad will suffer from throughput
degradation due to pipeline folding for those switches that
distribute their SRAM resources in multiple pipelines.

Cheetah [16] aims to design a high-speed LB for both
stateless and stateful manners. One of its contributions is to
solve the entry insertion inefficiency problem in stateful LB
by storing unused hash indexes in a connection stack. For
every new coming connection, Cheetah pops an index from
the connection stack and inserts the connection entry into the
hash table with the retrieved index. This index, encoded in the
packet header as a cookie, is carried by the connection in the
following packets. The change on the packet header requires
modifications on services’ client sides. This requirement pre-
vents Cheetah from deploying on large-scale datacenters with
hundreds and thousands of services.

Component design & optimization: Some techniques used
in the component design and optimization in Tiara have
been extensively studied. Tong et al. [41] propose a high-
throughput hash table structure with the idea of fixed-length
hashing in FPGA DRAM. Mogul et al. [32] eliminate the
livelock by a polling-based mechanism, and Kuperman et
al. [27] match each net device TX queue to a hardware send
queue to avoid spin-lock contention. Ross [38] splits tables
into different cores in a multi-core database system to reduce
the synchronization cost. The SmartNIC used in Azure [22]
periodically reports flow states to the software, which allows
the software manager to age the inactive flows. Our contri-
bution is to integrate those techniques to achieve the design
goals of Tiara.

7 Conclusion

Tiara is a novel hardware acceleration architecture for stateful
load balancers. It simultaneously provides high throughput,
low latency, high scalability, and high efficiency by mapping
different LB tasks into their most suitable hardware and care-
fully designing and optimizing a few key components. Al-
though we only show Tiara’s capabilities to accelerate stateful
load balancers in this paper, we believe this architecture is
generic for network function acceleration and can be explored
in the future in more gateway scenarios, such as DDoS pro-
tection and firewall.

Acknowledgments

We thank our anonymous reviewers and shepherd Anuj Kalia
for their insightful comments. We also thank Naiqian Zheng,
Kaicheng Yang, and Yuxuan Gao for their support of the
project. The work of Chaoliang Zeng, Zilong Wang, and Kai
Chen was supported in part by a ByteDance Research Collab-
oration Project and the Hong Kong RGC TRS T41-603/20-R
and GRF 16215119.



References

[1] Axi high bandwidth memory controller v1.0. https:
//www.xilinx.com/support/documentation/ip_
documentation/hbm/v1_0/pg276-axi-hbm.pdf.

[2] Dpdk. https://www.dpdk.org/.

[3] Dpvs is a high performance layer-4 load balancer based
on dpdk. https://github.com/iqiyi/dpvs.

[4] express data path. https://www.iovisor.org/
technology/xdp.

[5] High-performance dpdk-based server load bal-
ancing for alibaba singles’ day shopping festi-
val. https://www.alibabacloud.com/blog/
593984?spm=a2c5t.11065265.1996646101.
searchclickresult.289b2f059llA1a.

[6] Ieee 802 numbers. https://www.iana.
org/assignments/ieee-802-numbers/
ieee-802-numbers.xhtml.

[7] Intel intrinsics guide. https://software.intel.
com/sites/landingpage/IntrinsicsGuide.

[8] Katran: A high performance layer 4 load bal-
ancer. https://github.com/facebookincubator/
katran.

[9] Load balancing 101: Nuts and bolts. https:
//www.f5.com/services/resources/glossary/
load-balancer.

[10] Ovs conntrack. https://docs.openvswitch.org/
en/latest/tutorials/ovs-conntrack/.

[11] Qdma subsystem for pci express. https://www.
xilinx.com/products/intellectual-property/
pcie-qdma.html.

[12] Unveiling the networks behind the 2018 dou-
ble 11 global shopping festival. https://www.
alibabacloud.com/blog/594167?spm=a2c5t.
11065265.1996646101.searchclickresult.
289b2f0575gg5Z.

[13] Virtual extensible local area network (vxlan): A frame-
work for overlaying virtualized layer 2 networks over
layer 3 networks. https://tools.ietf.org/html/
rfc7348.

[14] Anurag Agrawal and Changhoon Kim. Intel tofino2–a
12.9 tbps p4-programmable ethernet switch. In HCS
2020.

[15] João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek,
and Raul Landa. Balancing on the edge: Transport
affinity without network state. In NSDI 2018.

[16] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić,
Gerald Q Maguire Jr, Panagiotis Papadimitratos, and
Marco Chiesa. A high-speed load-balancer design with
guaranteed per-connection-consistency. In NSDI 2020.

[17] Curt Beckmann, Ramkumar Krishnamoorthy, Han
Wang, Andre Lam, and Changhoon Kim. Hurdles for a
dram-based match-action table. In ICIN 2020.

[18] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz,
and Phillip Rogaway. Umac: Fast and secure message
authentication. In CRYPTO 1999.

[19] Peter Bodík, Ishai Menache, Mosharaf Chowdhury,
Pradeepkumar Mani, David A Maltz, and Ion Stoica.
Surviving failures in bandwidth-constrained datacenters.
In SIGCOMM 2012.

[20] Alan Edelman. Akamai technologies: A mathematical
success story. In SIAM News 1999.

[21] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software
network load balancer. In NSDI 2016.

[22] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smartnics
in the public cloud. In NSDI 2018.

[23] Rohan Gandhi, Y Charlie Hu, Cheng-Kok Koh,
Hongqiang Harry Liu, and Ming Zhang. Rubik: un-
locking the power of locality and end-point flexibility
in cloud scale load balancing. In ATC 2015.

[24] Rohan Gandhi, Hongqiang Harry Liu, Y Charlie Hu,
Guohan Lu, Jitendra Padhye, Lihua Yuan, and Ming
Zhang. Duet: Cloud scale load balancing with hardware
and software. In SIGCOMM 2014.

[25] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. Tea: Enabling state-intensive network functions
on programmable switches. In SIGCOMM 2020.

[26] Hugo Krawczyk. Lfsr-based hashing and authentication.
In CRYPTO 1994.

[27] Yossi Kuperman, Maxim Mikityanskiy, and Rony
Efraim. Hierarchical qos hardware offload (htb).

[28] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In SOSP 2017.

https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.dpdk.org/
https://github.com/iqiyi/dpvs
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://www.alibabacloud.com/blog/593984?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f059llA1a
https://www.alibabacloud.com/blog/593984?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f059llA1a
https://www.alibabacloud.com/blog/593984?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f059llA1a
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://www.f5.com/services/resources/glossary/load-balancer
https://www.f5.com/services/resources/glossary/load-balancer
https://www.f5.com/services/resources/glossary/load-balancer
https://docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/
https://docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348


[29] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Ren-
qian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng,
and Enhong Chen. Clicknp: Highly flexible and high
performance network processing with reconfigurable
hardware. In SIGCOMM 2016.

[30] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The
computational complexity of universal hashing. In TCS
1993.

[31] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
SIGCOMM 2017.

[32] Jeffrey C Mogul and KK Ramakrishnan. Eliminating
receive livelock in an interrupt-driven kernel. In TOCS
1997.

[33] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu,
and Costin Raiciu. Stateless datacenter load-balancing
with beamer. In NSDI 2018.

[34] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. In Journal of Algorithms 2004.

[35] Fabio Palumbo, Giuseppe Aceto, Alessio Botta,
Domenico Ciuonzo, Valerio Persico, and Antonio
Pescapé. Characterization and analysis of cloud-to-user
latency: the case of azure and aws. In CN 2021.

[36] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, et al.
Ananta: Cloud scale load balancing. In SIGCOMM
2013.

[37] Kun Qian, Sai Ma, Mao Miao, Jianyuan Lu, Tong Zhang,
Peilong Wang, Chenghao Sun, and Fengyuan Ren. Flex-
gate: High-performance heterogeneous gateway in data
centers. In APNet 2019.

[38] Kenneth A Ross. Multicore processors and database
systems: The multicore transformation. In Ubiquity
2014.

[39] Ao-Jan Su, David R Choffnes, Aleksandar Kuzmanovic,
and Fabian E Bustamante. Drafting behind akamai:
Inferring network conditions based on cdn redirections.
In TON 2009.

[40] Ao-Jan Su and Aleksandar Kuzmanovic. Thinning aka-
mai. In SIGCOMM 2008.

[41] Da Tong, Shijie Zhou, and Viktor K Prasanna. High-
throughput online hash table on fpga. In IPDPS 2015.

[42] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng He,
Feifei Li, Wei Cao, et al. Fpga-accelerated compactions
for lsm-based key-value store. In FAST 2020.

A Analysis on Hash Collision

Suppose there are n random entries inserted into a hash table
with width w and depth d. The probability that any i entries
are hashed to the same index is:

p(i) =Ci
n(

1
d
)i(1− 1

d
)n−i (1)

The probability for any indexes that hold 0∼ w entries is:

p(num≤ w) =
w

∑
i=0

Ci
n(

1
d
)i(1− 1

d
)n−i (2)

For all indexes, this probability becomes:

p(num≤ w)all = (
w

∑
i=0

Ci
n(

1
d
)i(1− 1

d
)n−i)d (3)

Therefore, the probability for all indexes that exist at least
once collision, i.e., holding more than w entries, is:

p(num > w)all = 1− (
l

∑
i=0

Ci
n(

1
d
)i(1− 1

d
)n−i)d (4)

1 2 4 8 16
width

12

10

8

6

4

2

0

lo
g 

(c
ol

lis
io

n 
ra

te
)

width * depth = 2 * #entry
width * depth = 4 * #entry
width * depth = 8 * #entry

Figure 14: The numerical simulation on collision rates in dif-
ferent widths and depths with #entry = 32768. The collision
rates are shown in the log scale.

To get an intuitive relationship between the collision rate
and the width, we conduct a numerical simulation on different
settings based on Equation 4. The results are demonstrated
in Figure 14, and show that given a fixed hash space (> n), a
larger width results in a lower hash collision rate.


	Introduction
	Background
	Layer-4 Load Balancing
	Nature of Internet traffic at the Datacenter Boundary
	Accelerating LB with Programmable Switches

	Tiara Design
	Architecture Overview
	Control & Data Planes
	Control Plane
	Data Plane

	Component Design & Optimization
	Efficient Hash Table Structure
	Lock-free Offloading Approach
	Lightweight Aging Mechanism


	Implementation
	T-switch
	T-NIC
	T-server

	Evaluation
	Micro-benchmarks
	Tiara Performance
	Tiara vs. Existing Approaches

	Related Work
	Conclusion
	Analysis on Hash Collision

