
RDMA is Turing complete, we just did not know it yet!

Waleed Reda
Université catholique de Louvain

KTH Royal Institute of Technology

Marco Canini
KAUST

Dejan Kostić
KTH Royal Institute of Technology

Simon Peter
University of Washington

Abstract
It is becoming increasingly popular for distributed systems

to exploit offload to reduce load on the CPU. Remote Direct
Memory Access (RDMA) offload, in particular, has become
popular. However, RDMA still requires CPU intervention
for complex offloads that go beyond simple remote memory
access. As such, the offload potential is limited and RDMA-
based systems usually have to work around such limitations.

We present RedN, a principled, practical approach to im-
plementing complex RDMA offloads, without requiring any
hardware modifications. Using self-modifying RDMA chains,
we lift the existing RDMA verbs interface to a Turing com-
plete set of programming abstractions. We explore what is
possible in terms of offload complexity and performance with
a commodity RDMA NIC. We show how to integrate these
RDMA chains into applications, such as the Memcached key-
value store, allowing us to offload complex tasks such as key
lookups. RedN can reduce the latency of key-value get opera-
tions by up to 2.6× compared to state-of-the-art KV designs
that use one-sided RDMA primitives (e.g., FaRM-KV), as
well as traditional RPC-over-RDMA approaches. Moreover,
compared to these baselines, RedN provides performance
isolation and, in the presence of contention, can reduce la-
tency by up to 35× while providing applications with failure
resiliency to OS and process crashes.

1 Introduction
As server CPU cycles become an increasingly scarce resource,
offload is gaining in popularity [23, 28, 30–32, 36]. System
operators wish to reserve CPU cycles for application execu-
tion, while common, oft-repeated operations may be offloaded.
NIC offloads, in particular, have the benefit that they reside in
the network data path and NICs can carry out operations on
in-flight data with low latency [31].

For this reason, remote direct memory access (RDMA)
[15] has become ubiquitous [20]. Mellanox ConnectX NICs
[4] have pioneered ubiquitous RDMA support and Intel has
added RDMA support to their 800 series of Ethernet network
adapters [7]. RDMA focuses on the offload of simple message

passing (via SEND/RECV verbs) and remote memory access
(via READ/WRITE verbs) [15]. Both primitives are widely
used in networked applications and their offload is extremely
useful. However, RDMA is not designed for more complex
offloads that are also common in networked applications. For
example, remote data structure traversal and hash table access
are not normally deemed realizable with RDMA [39]. This led
to many RDMA-based systems requiring multiple network
round-trips or to reintroduce involvement of the server’s CPU
to execute such requests [18, 22, 26, 27, 35, 37, 41].

To support complex offloads, the networking commu-
nity has developed a number of SmartNIC architectures
[2, 3, 11, 14, 17]. SmartNICs incorporate more powerful com-
pute capabilities via CPUs or FPGAs. They can execute arbi-
trary programs on the NIC, including complex offloads. How-
ever, these SmartNICs are not ubiquitous and their smaller
volume implies a higher cost. SmartNICs can cost up to 5.7×
more than commodity RDMA NICs (RNICs) at the same
link speed (§2.1). Due to their custom architecture, they are
also a management burden to the system operator, who has to
support SmartNICs apart from the rest of the fleet.

We ask whether we can avoid this tradeoff and attempt to
use the ubiquitous RNICs to realize complex offloads. To
do so, we have to solve a number of challenges. First, we
have to answer if and how we can use the RNIC interface,
which consists only of simple data movement verbs (READ,
WRITE, SEND, RECV, etc.) and no conditionals or loops, to
realize complex offloads. Our solution has to be general so
that offload developers can use it to build complex RDMA
programs that can perform a wide range of functionality. Sec-
ond, we have to ensure that our solution is efficient and that
we understand the performance and performance variability
properties of using RNICs for complex offloads. Finally, we
have to answer how complex RNIC offloads integrate with
existing applications.

In this paper, we show that RDMA is Turing complete,
making it possible to use RNICs to implement complex of-
floads. To do so, we implement conditional branching via self-
modifying RDMA verbs. Clever use of the existing compare-

and-swap (CAS) verb enables us to dynamically modify
the RNIC execution path by editing subsequent verbs in an
RDMA program, using the CAS operands as a predicate. Just
like self-modifying code executing on CPUs, self-modifying
verbs require careful control of the execution path to avoid
consistency issues due to RNIC verb prefetching. To do so,
we rely on the WAIT and ENABLE RDMA verbs [28, 34] that
provide execution dependencies. WAIT allows us to halt exe-
cution of new verbs until past verbs have completed, provid-
ing strict ordering among RDMA verbs. By controlling verb
prefetching, ENABLE enforces consistency for verbs modified
by preceding verbs. ENABLE also allows us to create loops
by re-triggering earlier, already-executed verbs in an RDMA
work queue—allowing the NIC to operate autonomously with-
out CPU intervention.

Based on these primitives, we present RedN, a principled,
practical approach to implementing complex RNIC offloads.
Using self-modifying RDMA programs, we develop a number
of building blocks that lift the existing RDMA verbs interface
to a Turing complete set of programming abstractions. Using
these abstractions, we explore what is possible in terms of
offload complexity and performance with just a commodity
RNIC. We show how to integrate complex RNIC offloads,
developed with RedN principles, into existing networked ap-
plications. RedN affords offload developers a practical way
to implement complex NIC offloads on commodity RNICs,
without the burden of acquiring and maintaining SmartNICs.
Our code is available at: https://redn.io.

We make the following contributions:
•We present RedN, a principled, practical approach to offload-
ing arbitrary computation to RDMA NICs. RedN leverages
RDMA ordering and compare-and-swap primitives to build
conditionals and loops. We show that these primitives are
sufficient to make RDMA Turing complete.
• Using RedN, we present and evaluate the implementation of
various offloads that are useful in common server computing
scenarios. In particular, we implement hash table lookup with
Hopscotch hashing and linked list traversal.
•We evaluate the complexity and performance of offload in a
number of use cases with the Memcached key-value store. In
particular, we evaluate offload of common key-value get oper-
ations, as well as performance isolation and failure resiliency
benefits. We demonstrate that RNIC offload with RedN can
realize all of these benefits. It can reduce average latency of
get operations by up to 2.6× compared to state-of-the-art one-
sided RDMA key-value stores (e.g., FaRM-KV [22]), as well
as traditional two-sided RPC-over-RDMA implementations.
Moreover, RedN provides superior performance isolation, im-
proving latency by up to 35× under contention, while also
providing higher availability under host-side failures.

2 Background
RDMA was conceived for high-performance computing
(HPC) clusters, but it has grown out of this niche [20]. It

is becoming ever-more popular due to the growth in network
bandwidth, with stagnating growth in CPU performance, mak-
ing CPU cycles an increasingly scarce resource that is best
reserved to running application code. With RNICs now con-
sidered commodity, it is opportunistic to explore the use-cases
where their hardware can yield benefits. These efforts, how-
ever, have been limited by the RDMA API, which constrains
the expression of many complex offloads. Consequently, the
networking community has built SmartNICs using FPGAs
and CPUs to investigate new complex offloads.

2.1 SmartNICs

To enable complex network offloads, SmartNICs have been
developed [1,2,10,11]. SmartNICs include dedicated comput-
ing units or FPGAs, memory, and several dedicated accelera-
tors, such as cryptography engines. For example, Mellanox
BlueField [11] has 8×ARMv8 cores with 16GB of memory
and 2×25GbE ports. These SmartNICs are capable of running
full-fledged operating systems, but also ship with lightweight
runtime systems that can provide kernel-bypass access to the
NIC’s IO engines.
Related work on SmartNIC offload. SmartNICs have been
used to offload complex tasks from server CPUs. For exam-
ple, StRoM [39] uses an FPGA NIC to implement RDMA
verbs and creates generic kernels (or building blocks) that
perform various functions, such as traversing linked lists. KV-
Direct [30] uses an FPGA NIC to accelerate key-value ac-
cesses. iPipe [31] and Floem [36] are programming frame-
works that simplify complex offload development for primar-
ily CPU-based SmartNICs. E3 [32] transparently offloads
microservices to SmartNICs.
The cost of SmartNICs. While SmartNICs provide the ca-
pabilities for complex offloads, they come at a cost. For ex-
ample, a dual-port 25GbE BlueField SmartNIC at $2,340
costs 5.7× more than the same-speed ConnectX-5 RNIC at
$410 (cf. [13]). Another cost is the additional management re-
quired for SmartNICs. SmartNICs are a special piece of com-
plex equipment that system administrators need to understand
and maintain. SmartNIC operating systems and runtimes can
crash, have security flaws, and need to be kept up-to-date with
the latest vendor patches. This is an additional maintenance
burden on operators that is not incurred by RNICs.

2.2 RDMA NICs

The processing power of RDMA NICs (RNICs) has doubled
with each subsequent generation. This allows RNICs to cope
with higher packet rates and more complex, hard-coded of-
floads (e.g., reduction operations, encryption, erasure coding).

We measure the verb processing bandwidth of several gen-
erations of Mellanox ConnectX NICs, using the Mellanox
ib_write_bw benchmark. This benchmark performs 64B
RDMA writes and, as such, it is not network bandwidth lim-
ited due to the small RDMA write size. We find that the verb
processing bandwidth doubles with each generation, as we can

https://redn.io

Client

CPU

3

4

S
e
rv

e
r

Host Memory

NOP

READ

Trigger Function (invoked as necessary)

1

WAIT

User buffers

Example: RDMA chain

5

Response Ready

Send back reply
RPC request

triggers WAIT

Conditional branch using

Compare-and-Swap (CAS)

Read/Write arbitrary

memory +

Conditional branching

= RDMA NIC is

Turing Complete
?CAS

2

Compile offload RDMA program

Post RDMA Code

(chain of work

requests)

Work Queues

(WQs)
WRITE

RECV

if (x == 5)
return true;

else
return false;

Example offload

Setup Offload
(done once)

RDMA NIC

Figure 1: RDMA NICs can implement complex offloads if we allow conditional branches to be expressed. Conditional branching can
be implemented by using CAS verbs to modify subsequent verbs in the chain, without any hardware modification.

see in Table 1. This is primarily due to a doubling in process-
ing units (PUs) in each generation.1 As a result, ConnectX-6
NICs can execute up to 110 million RDMA verbs per second
using a single NIC port. This increased hardware performance
further motivates the need for exploiting the computational
power of these devices.
Related work on RDMA offload. RDMA has been em-
ployed in many different contexts, including accelerating
key-value stores and filesystems [19, 22, 26, 35, 44], consen-
sus [18,27,37,41], distributed locking [45], and even nuanced
use-cases such as efficient access in distributed tree-based
indexing structures [46]. These systems operate within the
confines of RDMA’s intended use as a data movement offload
(via remote memory access and message passing). When com-
plex functionality is required, these systems involve multiple
RDMA round-trips and/or rely on host CPUs to carry out the
complex operations.

Within the storage context, Hyperloop [28] demonstrated
that pushing the RNIC offload capabilities is possible. Hyper-
loop combines RDMA verbs to implement complex storage
operations, such as chain replication, without CPU involve-
ment. However, it does not provide a blueprint for offloading
arbitrary processing and cannot offload functionality that uses
any type of conditional logic (e.g., walking a remote data
structure). Moreover, the Hyperloop protocol is likely incom-
patible with next-generation RNICs, as its implementation
relies on changing work request ownership—a feature that is
deprecated for ConnectX-4 and newer cards.

Unlike this body of previous work, we aim to unlock the
general-purpose processing power of RNICs and provide an

1Discussions with Mellanox affirmed our findings.

RNIC PUs Throughput
ConnectX-3 (2014) 2 15M verbs/s
ConnectX-5 (2016) 8 63M verbs/s
ConnectX-6 (2017) 16 112M verbs/s

Table 1: Number of Processing Units (PUs) and performance of
various ConnectX generations.

unprecedented level of programmability for complex offloads,
by using novel combinations of existing RDMA verbs (§3).

3 The RedN Computational Framework
To achieve our aforementioned goals, we develop a framework
that enables complex offloads, called RedN. RedN’s key idea
is to combine widely available capabilities of RNICs to enable
self-modifying RDMA programs. These programs—chains of
RDMA operations—are capable of executing dynamic control
flows with conditionals and loops. Fig. 1 illustrates the usage
of RedN. The setup phase involves (1) preparing/compiling
the RDMA code required for the service and (2) posting
the output chain(s) of RDMA WRs to the RNIC. Clients can
then use the offload by invoking a trigger (3) that causes the
server’s RNIC to (4) execute the posted RDMA program,
which returns a response (5) to the client upon completion.

To further understand this proposed framework, we first
look into the execution models offered by RNICs, and the
ordering guarantees they provide for RDMA verbs. We then
look into the expressivity of traditional RDMA verbs and
explore parallels with CPU instruction sets. We use these
insights to describe strategies for expressing complex logic
using traditional RDMA verbs, without requiring any hard-
ware modifications.

3.1 RDMA execution model

The RDMA interface specifies a number of data movement
verbs (READ, WRITE, SEND, RECV, etc.) that are posted as
work requests (WRs) by offload developers into work queues
(WQs) in host memory. The RNIC starts execution of a se-
quence of WRs in a WQ once the offload developer triggers a
doorbell—a special register in RNIC memory that informs the
RNIC that a WQ has been updated and should be executed.
Work request ordering. Ordering rules for RDMA WRs dis-
tinguish between write WRs and non-write WRs that return a
value. Within each category of operations, RDMA guarantees
in-order execution of WRs within a single WQ. In particular,
write WRs (i.e., SEND, WRITE, WRITEIMM) are totally or-

WAIT

WR

WR

1

2

WAIT waits for a completion

before executing a WR

WR WR

SymbolPattern

1 2

TailHead

WQ1

WQ2

(a) Completion order.

Tail

WAIT

WR

Head

1

WR

WAIT + ENABLE waits for a

completion before

fetching & executing a WR

WR 21WR 2ENABLE

WQ1

WQ2

Managed queue fetch barrier

(b) Doorbell order.
Figure 2: Work request ordering modes that guarantee a total
order of operations 2a and, a more restrictive “doorbell” or-
der 2b, where operations are fetched by the NIC one-by-one.
The symbols on the right will be used as notation for these WR
chains in the examples of §3.

dered with regard to each other, but writes may be reordered
before prior non-write WRs.

We call the default RDMA ordering mode work queue
(WQ) ordering. Sophisticated offload logic often requires
stronger ordering constraints, which we construct with the
help of two RDMA verbs. Fig. 2 shows two stricter ordering
modes that we introduce and how to achieve them.

The WAIT verb stops WR execution until the completion
of a specified WR from another WQ or the preceding WR
in the same WQ. We call this completion ordering (Fig. 2a).
It achieves total ordering of WRs along the execution chain
(which potentially involves multiple WQs). It can be used to
enforce data consistency, similar to data memory barriers in
CPU instruction sets—to wait for data to be available before
executing the WRs operating on the data. Moreover, WAIT
allows developers to pre-post chains of RDMA verbs to the
RNIC, without immediately executing them.

In all the aforementioned ordering modes, the RNIC is free
to prefetch into its cache the WRs within a WQ. Thus, the
execution outcome reflects the WRs at the time they were
fetched, which can be incoherent with the versions that reside
in host memory in case these were later modified. To avoid
this issue, the RNIC allows placing a WQ into managed mode,
in which WR prefetch is disabled. The ENABLE verb is then
used to explicitly start the prefetching of WRs. This allows for
existing WRs to be modified within the WQ, as long as this
is done before completion of the posted ENABLE—similar to
an instruction barrier. We achieve a full (data and instruction)
barrier, by using WAIT and ENABLE in sequence. We call
this doorbell ordering (Fig. 2b). Doorbell ordering allows
developers to modify WR chains in-place. In particular, it
allows for data-dependent, self-modifying WRs.

(4) Send response

(2) Modify
posted WR

WRITE

RECVSEND

WRITE

WRITE

(1) Send RPC

(3) Trigger
response

Server

Client
WQ2

WQ1

WQ

Figure 3: Clients can trigger posted operations. Thick solid lines
represent (meta)data movements.

Thus, we have shown that we can control WR fetch and
execution via special verbs, which we will exploit in the next
section to develop full-fledged RDMA programs. These verbs
are widely available in commodity RNICs (e.g., Mellanox
terms them cross-channel communication [34]).

3.2 Dynamic RDMA Programs

While a static sequence of RDMA WRs is already a rudi-
mentary RDMA program, complex offloads require data-
dependent execution, where the logic of the offload is depen-
dent on input arguments. To realize data-dependent execution,
we construct self-modifying RDMA code.

Self-modifying RDMA code. Doorbell ordering enables
a restricted form of self-modifying code, capable of data-
dependent execution. To illustrate this concept, we use the
example of a server host that offloads an RPC handler to its
RNIC as shown in Fig. 3. The RPC response depends on the
argument set by the client and thus the RDMA offload is data-
dependent. The server posts the RDMA program that consists
of a set of WRs spanning two WQs. The client invokes the
offload by issuing a SEND operation. At the RNIC, the SEND
triggers the posted RECV operation. Observe that RECV spec-
ifies where the SEND data is placed. We configure RECV to
inject the received data into the posted WR chain in WQ2 to
modify its attributes. We achieve this by leveraging doorbell
ordering, to ensure that posted WRs are not prefetched by the
RNIC and can be altered by preceding WRs.

This is an instance of self-modifying code. As such, clients
can pass arguments to the offloaded RPC handler and the
RNIC will dynamically alter the executed code accordingly.
However, this by itself is not sufficient to provide a Turing
complete offload framework.

Turing completeness of RDMA. Turing completeness im-
plies that a system of data-manipulation rules, such as RDMA,
are computationally universal. For RDMA to be Turing com-
plete, we need to satisfy two requirements [25]:
T1: Ability to read/write arbitrary amounts of memory.
T2: Conditional branching (e.g. if/else statements).

T1 can be satisfied for limited amounts of memory with
regular RDMA verbs, whereas T2 has not been demonstrated
with RDMA NICs. However, to truly be capable of accessing
an arbitrary amount of memory, we need a way of realizing
loops. Loops open up a range of sophisticated use-cases and

CAS old: NOOP new: WRITE

NOOP data: 1 dst: R3→data

WRITE data: 0 dst: client

► R1 changes R2’s opcode from NOOP to WRITE
► R2 changes R3’s data to 1

𝑥 𝑦R1

If 𝑥 equals 𝑦:

R2

R3

opcode id

Pseudocode

Input 𝑥, 𝑦
If (𝑥 == 𝑦)

send(1);

else

send(0);

1

2

3

4

RDMA code

Figure 4: Simple if example and equivalent RDMA code. Con-
ditional execution relies on self-modifying code using CAS to
enable/disable WRs based on the operand values.

lower the number of constraints that programmers have to
consider for offloads. To highlight their importance, we add
them as a third requirement, necessary to fulfill the first:
T3: The ability to execute code repeatedly (loops).

In the next sub-sections, we show how dynamic execution
can be used to satisfy all the aforementioned requirements. A
proof sketch of Turing completeness is given in Appendix A.

3.3 Conditionals

Conditional execution—choosing what computation to per-
form based on a runtime condition—is typically realized us-
ing conditional branches, which are not readily available in
RDMA. To this end, we introduce a novel approach that uses
self-modifying CAS verbs. The main insight is that this verb
can be used to check a condition (i.e., equality of x and y)
and then perform a swap to modify the attributes of a WR.
We describe how this is done in Fig. 4. We insert a CAS
that compares the 64-bit value at the address of R2’s opcode
attribute (initially NOOP) with its old parameter (also initially
NOOP). We then set the id field of R2 to x. This field can
be manipulated freely without changing the behavior of the
WR, allowing us to use it to store x. Operand y is stored in
the corresponding position in the old field of R1. This means
that if x and y are equal, the CAS operation will succeed and
the value in R1’s new field—which we set to WRITE—will
replace R2’s opcode. Hence, in the case x = y, R2 will change
from a NOOP into a WRITE operation. This WRITE is set to
modify the data value of the return operation (R3) to 1. If x
and y are not equal, the default value 0 is returned.

Now that we have established the utility of this technique
for basic conditionals, we next look into how to can be used
to support loop constructs.

3.4 Loops

To support loop constructs efficiently, we require (1) condi-
tional branching to test the loop condition and break if neces-
sary, and (2) WR re-execution, to repeat the loop body. We
develop each, in turn, below.

Consider the while loop example in Figure 5. This offload
searches for x in an array A and sends the corresponding
index. The loop is static because A has finite size (in this case,
size =2), known a priori. To simplify presentation, consider
the case A[i] = i,∀i. Without this simplification, the example
would include an additional WRITE to fetch the value at A[i].

Input 𝑥

ADDWQ2

WQ1 RECV NOOP

If 𝑥 == A[𝑖]:
Send response (change NOOP to WRITE)

increment 𝑖
set old to A[𝑖]CAS

Input 𝑥𝑖 = 0;

while (𝑖 < 2)

if(𝑥 == A[𝑖])
send(𝑖)𝑖++;

CAS

NOOP

ADD

Iteration 1 Iteration 2

1

2

3

1

2

3

4

5

Figure 5: while loop using CAS. Loop is unrolled since loop size
is fixed and set to 2.

ADDWQ2

WQ1 RECV NOOP

If 𝑥 == A[𝑖]:
change NOOP to BREAK

BREAK changes NOOP to WRITE

and stops next iteration from executing

CAS

Input 𝑥𝑖 = 0;

while (1)

if(𝑥 == A[𝑖])
send(𝑖)
break;𝑖++;

NOOP

Input 𝑥1

2

NOOP

3

ADD1

2

3

4

5

6

Figure 6: while loop with breaks realized using CAS. To imple-
ment breaks, we use CAS to change a NOOP WR to an RDMA
WRITE, which then stops subsequent iterations from executing.

The loop body uses a CAS verb to implement the if condi-
tion (line 3), followed by an ADD verb to increment i (line 6).
Given that the loop size is known a priori (size = 2), RedN
can unroll the while loop in advance and post the WRs for all
iterations. As such, there is no need to check the condition
at line 2. For each iteration, if the CAS succeeds, the NOOP
verb in WQ1 will be changed to WRITE—which will send
the response back to the client. However, it is clear that, re-
gardless of the comparison result, all subsequent iterations
will be executed. This is inefficient since, if the send (line 4)
occurs before the loop is finished, a number of WRs will be
wastefully executed by the NIC. This is impractical for larger
loop sizes or if the number of iterations is not known a priori.

Unbounded loops and termination. Figure 6 modifies the
previous example to make it such that the loop is unbounded.
For efficiency, we add a break that exits the loop if the element
is found.The role of break is to prevent additional iterations
from being executed. We use an additional NOOP that is for-
matted such that, once transformed into a WRITE by the CAS
operation, it prevents the execution of subsequent iterations
in the loop. This is done by modifying the last WR in the
loop such that it does not trigger a completion event. The next
iteration in the loop, which WAITs on such an event (via com-
pletion ordering), will therefore not be executed. Moreover,
the WRITE will also modify the opcode of the WR used to
send back the response from NOOP to WRITE.

As such, break allows efficient and unbounded loop execu-
tion. However, it still remains necessary for the CPU to post
WRs to continue the loop after all its WRs are executed. This
consumes CPU cycles and can even increase latency if the
CPU is unable to keep up with the speed of WR execution.

RedN Constructs Number of WRs Operand limit [bits]
if 1C + 1A + 3E

48while Unrolled 1C + 1A + 3E
Recycled 3C + 2A + 4E

Table 2: Breakdown of the overhead of our constructs with
different offload strategies. C refers to copy verbs, A refers
to atomic RDMA verbs, and E refers to WAIT/ENABLE verbs.
while loops that use WQ recycling incur 2 additional READs, 1
ADD, and 1 ENABLE WR.

Unbounded loops via WQ recycling. To allow the NIC to
recycle WRs without CPU intervention, we make use of a
novel technique that we call WQ recycling. RNICs iterate over
WQs, which are circular buffers, and execute the WRs therein.
By design, each WR is meant to execute only once. However,
there is no fundamental reason why WRs cannot be reused
since the RNIC does not actually erase them from the WQ.
To enable recycling of a WR chain, we insert a WAIT and
ENABLE sequence at the tail of the WQ. This instructs the
RNIC to wrap around the tail and re-execute the WR chain
for as many times as needed.

It is important to note that WQ recycling is not a panacea.
To allow the tail of the WQ to wrap around, all posted WAIT
and ENABLE WRs in the loop need to have their wqe_count
attribute updated. This attribute is used to determine the index
of the WR that these ordering verbs affect. In ConnectX NICs,
these indices are maintained internally by the RNIC and their
values are monotonically increasing (instead of resetting after
the WQ wraps around). As such, the wqe_count values need
to be incremented to match. This incurs overhead (as seen
in Table 2) and requires an additional ADD operation in
combination with other verbs. As such, loop unrolling, where
each iteration is manually posted by the CPU, is overall less
taxing on the RNIC. However, WQ recycling avoids CPU
intervention, allowing the offload to remain available even
amid host software failures (as we will see later in §5.6).

3.5 Putting it all together

With conditional branching, we can dynamically alter the
control flow of any function on an RNIC. Loops allow us
to traverse arbitrary data structures. Together, we have trans-
formed an RNIC into a general processing unit. In this section,
we discuss the usability aspects from overhead, security, pro-
grammability, and expressiveness perspectives.
Building blocks. We abstract and parameterize the RDMA
chains required for conditional branching and looping into if
and while constructs. The overhead in terms of RDMA WR
chains of our constructs is shown in Table 2. We can see a
breakdown of the minimum number of operations required
for each. Inequality predicates, such as < or >, can also be
supported by combining equality checks with MAX or MIN,
as seen later in Table 3. However, their availability is vendor-
specific and currently only supported by ConnectX NICs.
Operand limits. RedN’s limit is based on the supported size
for the CAS verb, which is 64 bits. The operand is provided

as a 48-bit value, encoded in its id and other neighboring
fields (which can also be freely modified without affecting
execution). The remaining bits are used for modifying the
opcode of the WR depending on the result of the compari-
son. We note that our advertised limits only signify what is
possible with the number of operations we allocate for our
constructs. For instance, despite the 48-bit operand limit for
our constructs, we can chain together multiple CAS opera-
tions to handle different segments of a larger operand (we do
not rely on the atomicity property of CAS). As such, there is
no fundamental limitation, only a performance penalty.
Offload setup. To offload an RDMA program, clients first
create an RDMA connection to the target server and send an
RPC to initiate the offload. We envision that the server already
has the offload code; however, other ways of deploying the
offload are possible. Upon receiving a connection request, the
server creates one or more managed local WQs to post the
offloaded code. Next, it registers two main types of memory
regions for RDMA access: (a) a code region, and (b) a data
region. The code region is the set of remote RDMA WQs
created on the server, which are unique to each client and
need to be accessible via RDMA to allow self-modifying code.
Code regions are protected by memory keys—special tokens
required for RDMA access—upon registration (at connection
time), prohibiting unauthorized access. The data region holds
any data elements used by the offload (e.g., a hash table). Data
regions can be shared or private, depending on the use-case.
Security. RedN does not solve security challenges in existing
RDMA or Infiniband implementations [40]. However, RedN
can help RDMA systems become more secure. For such sys-
tems, one-sided RDMA operations (e.g., RDMA READ and
WRITE) are frequently used [22,28,33,35,42,43] as they avoid
CPU overheads at the responder. However, doing so requires
clients to have direct read and/or write memory access. This
can compromise security if clients are buggy and/or malicious.
To give an example, FaRM allows clients to write messages
directly to shared RPC buffers. This requires clients to behave
correctly, as they could otherwise overwrite or modify other
clients’ RPCs. RedN allows applications to use two-sided
RDMA operations (e.g., SEND and RECV), which do not re-
quire direct memory access, while still fully bypassing server
CPUs. As we demonstrate in our use-cases in §5, SEND op-
erations can be used to trigger offload programs without any
CPU involvement.
Isolation. Given that RedN implements dynamic loops,
clients can abuse such constructs to consume more than their
fair share of resources. Luckily, popular RNICs, like Con-
nectX, provide WQ rate-limiters [6] for performance isolation.
As such, even if clients trigger non-terminating offload code,
they still have to adhere to their assigned rates. Moreover, of-
floaded code can be configured by the servers to be auditable
through completion events, created automatically after a WR
is executed. These events can be monitored and servers can
terminate connections to clients running misbehaving code.

Parallelism. RDMA WR fetch and execution latencies are
more costly compared to CPU instructions, as WRs are
fetched/executed via PCIe (microseconds vs. nanoseconds).
As such, to hide WR latencies, it is important to parallelize
logically unrelated operations. Like threads of execution in
a CPU, each WQ is allocated a single RNIC PU to ensure
in-order execution without inter-PU synchronization. As such,
we carefully tune our offloaded code to allow unrelated verbs
to execute on independent queues to be able to parallelize
execution as much as possible. The benefits of parallelism are
evaluated in §5.2.

4 Implementation
Our offload framework is implemented in C with ∼2,300
lines of code—this includes our use cases (∼1400), and con-
venience wrappers for RDMA verbs (libibverbs) API (∼900).

Our approach does not require modifying any RDMA li-
braries or drivers. RedN uses low-level functions provided by
Mellanox’s ConnectX driver (libmlx5) to expose in-memory
WQ buffers and register them to the RNIC, allowing WRs to
be manipulated via RDMA verbs. We configure the ConnectX-
5 firmware to allow the WR id field to be manipulated freely,
which is required for conditional operations as well as WR
recycling. This is done by modifying specific configuration
registers on the NIC [12].

RedN is compatible with any ConnectX NICs that support
WAIT and ENABLE (e.g., ConnectX-3 and later models).

5 Evaluation
We start by characterizing the underlying RNIC performance
(§5.1) to understand how it affects our implemented program-
ming constructs. Then, in our evaluation against state-of-the-
art RNIC and SmartNIC offloads, we show that RedN:

1. Speeds up remote data structure traversals, such as hash
tables (§5.2) and linked lists (§5.3) compared to vanilla
RDMA offload;

2. Accelerates (§5.4) and provides performance isolation
(§5.5) for the Memcached key-value store;

3. Provides improved availability for applications (§5.6)—
allowing them to run in spite of OS & process crashes;

4. Exposes programming constructs generic enough to en-
able a wide-variety of use-cases (§5.2–§5.6);

Testbed. Our experimental testbed consists of 3× dual-socket
Haswell servers running at 3.2 GHz, with a total of 16
cores, 128 GB of DRAM, and 100 Gbps dual-port Mellanox
ConnectX-5 Infiniband RNICs. All nodes are running Ubuntu
18.04 with Linux Kernel version 4.15 and are connected via
back-to-back Infiniband links.
NIC setup. For all of our experiments, we use reliable con-
nection (RC) RDMA transport, which supports the RDMA
synchronization features we use. All WQs that enforce door-
bell order are initialized with a special “managed” flag to
disable the driver from issuing doorbells after a WR is posted.
The WQ size is set to match that of the offloaded program.

L
a

te
n

c
y
 (

u
s
)

0
.0

0
.5

1
.0

1
.5

2
.0

Copy Atomic Calc NOOP

READ WRITE CAS ADD MAX

R
e
m
ot
e

L
o

c
a
l

D
o

o
rb

e
ll

Network

Execution

Figure 7: Latencies of different RDMA verbs. The solid line
marks the latency of ringing the doorbell via MMIO. The differ-
ence between dashed and solid lines estimates network latency.

5.1 Microbenchmarks

We run microbenchmarks to break down RNIC verb execution
latency, understand the overheads of our different ordering
modes, and determine the processing bandwidth of different
RDMA verbs and of our constructs.

5.1.1 RDMA Latency

We break down the performance of RDMA verbs, configured
to perform 64B IO, by measuring their average latencies after
executing them 100K times. All verbs are executed remotely,
unless otherwise stated. As seen in Fig. 7, WRITE has a la-
tency of 1.6 µs. It uses posted PCIe transactions, which are
one-way. Comparatively, non-posted verbs such as READ or
atomics such as fetch-and-add (ADD) and compare-and-swap
(CAS) need to wait for a PCIe completion and take ∼1.8 µs.2

Overall, the execution time difference is small among verbs,
even for more advanced, vendor-specific Calc verbs that per-
form logical and arithmetic computations (e.g., MAX).

To break down the different latency components for RDMA
verb execution, we first estimate the latency of issuing a door-
bell and copying the WR to the RNIC. This can be done
by measuring the execution time of a NOOP WR. This time
can be subtracted from the latencies of other WRs to give
an estimate of their execution time once the WR is available
in the RNIC’s cache. We also quantify the network cost by
executing remote and local loopback NOOP WRs (shown on
the right-hand side) and measuring the difference—roughly
0.25 µs for our back-to-back connected nodes. Overall, these
results show low verb execution latency, justifying building
more sophisticated functions atop. We next measure the im-
plications of ordering for offloads.

5.1.2 Ordering Overheads

We show the latency of executing chains of RDMA verbs
using different ordering modes. All the posted WRs within a
chain are NOOP, to simplify isolating the performance impact
of ordering. We start by measuring the latency of executing
a chain of verbs posted to the same queue but absent any
constraints (WQ order), and compare it to the ordering modes

2Older-generation NICs (e.g., ConnectX-4) use a proprietary concurrency
control mechanism to implement atomics, resulting in higher latencies than
later generations that rely on PCIe atomic transactions.

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Number of Ops

L
a
te

n
c
y
 (

u
s
)

●
●

●
●

●
●

●

1 5 10 20 30 40 50

● WQ order Completion order Doorbell order

Figure 8: Execution latency of RDMA verbs posted using differ-
ent ordering modes. More restrictive modes such as Doorbell
order add non-negligible overheads as it requires the NIC to
fetch WRs sequentially.

that we introduced in Fig. 2—completion order and doorbell
order. WQ order only mandates in-order updates to memory,
which allows for increased concurrency. Operations that are
not modifying the same memory address can execute concur-
rently and the RNIC is free to prefetch multiple WRs with a
single DMA3. We can see in Fig. 8 that the latency of a sin-
gle NOOP is 1.21 µs and the overhead of adding subsequent
verbs is roughly 0.17 µs per verb. The first verb is slower
since it requires an initial doorbell to tell the NIC that there
is outstanding work. For completion ordering, less concur-
rency is possible since WRs await the completions of their
predecessors, and the overhead of increases slightly to 0.19
µs per additional WR. For doorbell order, no latency-hiding
is possible, as the NIC has to fetch WRs from memory one-
by-one, which results in an overhead of 0.54 µs per additional
WR. These results signify that, doorbell ordering should be
used conservatively, as there is more than 0.5 µs latency in-
crease for every instance of its use, compared to more relaxed
ordering modes.

5.1.3 RDMA Verb Throughput

We show the throughput of the common RDMA verbs in Ta-
ble 3 for a single ConnectX-5 port. ConnectX cards assign
compute resources on a per port basis. For ConnectX-5, each
port has 8 PUs. Atomic verbs, such as CAS, offer a compara-
tively limited throughput (8× lower than regular verbs) due
to memory synchronization across PCIe.

In addition, we measure the performance of RedN’s if and
while constructs. Using 48-bit operands, a ConnectX-5 NIC
can execute 700K if constructs per second. This is due to the
need for CAS to ensure doorbell ordering between CAS and
the subsequent WR it modifies. This causes the throughput
to be bound by NIC processing limits. Unrolled while loops
require the same number of verbs per iteration as an if state-
ment and their throughput is identical. while loops with WQ
recycling have reduced performance due to having to execute
more WRs per iteration.

3The number of operations fetched by the RNIC can change dynamically.
The Prefetch mechanism in ConnectX RNICs is proprietary.

Operation Throughput (M ops/s) Support

Atomic CAS 8.4
NativeADD

Copy READ 65
WRITE 63

Calc MAX 63 Mellanox

Constructs
if 0.7

RedNwhile Unrolled 0.7
Recycled 0.3

Table 3: Throughput of common RDMA verbs and RedN’s con-
structs on a single port of a ConnectX-5. if and unrolled while
have identical performance. while loops with WQ recycling re-
quire additional WRs and therefore have a lower throughput.

5.2 Offload: Hash Lookup

After evaluating the overheads of RedN’s ordering modes and
constructs, we next look into the performance of RedN for
offloading remote access to popular data structures. We first
look into hash tables, given their prominent use in key-value
stores for indexing stored objects. To perform a simple get op-
eration, clients first have to lookup the desired key-value entry
in the hash table. The entry can either have the value directly
inlined or a pointer to its memory address. The value is then
fetched and returned back to the client. Hopscotch hashing is
a popular hashing scheme that resolves collisions by using H
hashes for each entry and storing them in 1 out of H buckets.
Each bucket has a neighborhood that can probabilistically
hold a given key. A lookup might require searching more
than one bucket before the matching key-value entry is found.
To support dynamic value sizes, we assume the value is not
inlined in the bucket and is instead referenced via a pointer.

For distributed key-value stores built with RDMA, get op-
erations are usually implemented in one of two ways:
One-sided approaches first retrieve the key’s location using a
one-sided RDMA READ operation and then issue a second
READ to fetch the value. These approaches typically require
two network round-trips at a minimum. This greatly increases
latency but does not require involvement of the server’s CPU.
Many systems utilize this approach to implement lookups,
including FaRM [22] and Pilaf [35].
Two-sided approaches require the client to send a request
using an RDMA SEND or WRITE. The server intercepts the
request, locates the value and then returns it using one of the
aforementioned verbs. This widely used [19, 26] approach
follows traditional RPC implementations and avoids the need
for several roundtrips. However, this comes at the cost of
server CPU cycles.

5.2.1 RedN’s Approach

To offload key-value get operations, we leverage the offload
schemes introduced in §3.3 and §3.4.

Fig. 9 describes the RDMA operations involved for a single-
hash lookup. To get a value corresponding to a key, the client
first computes the hashes for its key. For this use-case, we
set the number of hashes to two, which is common in prac-
tice [24]. The client then performs a SEND with the value of

READ

set src to H1(𝑥)

set old to 𝑥
H1(𝑥)𝑥

NOOP
(WRITE)

set opcode to WRITE iff 𝑥 == H1(𝑥)→key

CAS

RECV

R1 R2

R4 R3

Client inputs

Figure 9: Hash lookup RDMA program. Black arrows indicate
order of execution of WRs in their WQs. Brown arrows indi-
cate self-modifying code dependencies and require doorbell or-
dering. x is the requested key and H1(x) is its first hash. The
acronym src indicates the “source address” field of WRs. old in-
dicates the “expected value” at the target address of the CAS
operation. The id field is used for storing conditional operands.

the key x and address of the first bucket H1(x), which are then
captured via a RECV WR posted on the server. The RECV
WR (R1) inserts x into the old field of the CAS WR (R3)
and the bucket address H1(x) into the READ WR (R2). The
READ WR retrieves the bucket and sets the source address
(src) of the response WR (R4) to the address of the value (ptr).
It also inserts the bucket’s key into the id field to prepare it
for the conditional check. Finally, CAS (R3) checks whether
the expected value old, which is set to key x, matches the id
field in (R4), which is set to the bucket’s key. If equal, (R4)’s
opcode is changed from NOOP to WRITE, which then returns
the value from the bucket. Given that each key may be stored
in multiple buckets (two in our setup), these lookups may
be performed sequentially or in parallel, depending on the
offload configuration.

5.2.2 Results

We evaluate our approach against both one-sided and two-
sided implementations of key-value get operations. We use
FaRM’s approach [22] to perform one-sided lookups. FaRM
uses Hopscotch hashing to locate the key using approximately
two RDMA READs — one for fetching the buckets in a neigh-
borhood that hold the key-value pairs and another for reading
the actual value. The neighborhood size is set to 6 by default,
implying a 6× overhead for RDMA metadata operations. For

64 1K 4K 16K 64K

Value Size (B)

L
a
te

n
c
y
 (

u
s
)

0
1
0

2
0

3
0

4
0

Ideal RedN One−sided Event Polling

Two−sided

Figure 10: Average latency of hash lookups. Ideal shows the la-
tency of a single network round-trip READ.

64 1K 4K 16K 64K

Value Size (B)

L
a
te

n
c
y
 (

u
s
)

0
5

1
0

1
5

2
0

2
5

Ideal One−sided Two−sidedSeq. Parallel
RedN

Figure 11: Average latency of hash lookups during collisions.
Ideal shows the latency of a single network round-trip READ.

two-sided lookups, our RPC to the host involves a client-
initiated RDMA SEND to transmit the get request, and an
RDMA WRITE initiated by the server to return the value after
performing the lookup.
Latency. Fig. 10 shows a latency comparison of KV get oper-
ations of RedN against one-sided and two-sided baselines. We
evaluate two distinct variations of two-sided. The event-based
approach blocks for a completion event to avoid wasting CPU
cycles, whereas the polling-based approach dedicates one
CPU core for polling the completion queue. We use 48-bit
keys and vary the value size. The value size is given on the
x-axis. In this scenario, we assume no hash collisions and that
all keys are found in the first bucket. RedN is able to outper-
form all baselines — fetching a 64 KB key-value pair in 16.22
µs, which is within 5% of a single network round-trip READ
(Ideal). RedN is able to deliver close-to-ideal performance
because it bypasses the server’s CPU and fetches the value in
a single network RTT. Compared to RedN, one-sided opera-
tions incur up to 2× higher latencies, as they require two RTTs
to fetch a value. Two-sided implementations do not incur any
extra RTT; however, they require server CPU intervention.
The polling-based variant consumes an entire CPU core but
provides competitive latencies. Event-based approaches block
for completion events to avoid wasting CPU cycles and incur
much higher latencies as a consequence. RedN is able to out-
perform polling-based and event-based approaches by up to
2 and 3.8×, respectively. Given the much higher latencies of
event-based approaches, for the remainder of this evaluation,
we will only focus on polling-based approaches and simply
refer to them hereafter as two-sided.

Fig. 11 shows the latency in the presence of hash collisions.
In this case, we assume a worst case scenario, where the
key-value pair is always found in the second bucket. In this
scenario, we introduce two offload variants for RedN— RedN-
Seq & RedN-Parallel. The former performs bucket lookups
sequentially within a single WQ. The latter parallelizes bucket
lookups by performing the lookups across two different WQs
to allow execution on different NIC PUs. We can see that
RedN-Parallel maintains similar latencies to lookups with no
hash collisions (i.e., RedN in Fig. 10), since bucket lookups
are almost completely parallelized. It is worth noting that
parallelism in this case does not cause unnecessary data move-
ment, since the value is only returned when the corresponding

Hash lookup IO Size
≤ 1 KB 64 KB

Port config. Single Dual Single Dual
Rate (ops/s) 500K 1M 180K 190K
Bottleneck NIC PU IB bw PCIe bw

Table 4: NIC throughput of hash lookups and its bottlenecks.

READ

set old to 𝑥
NOOP

(WRITE) CAS

RECV WRITE
set src to N0

N0𝑥
Client inputs

R1 R2 R3

R4R5

id

set opcode to WRITE iff 𝑥 ==

Copy N𝑖+1 = N𝑖 →next to next
iteration

Figure 12: Linked list RDMA program.

key is found. For the other bucket, the WRITE operation (R4
in Fig. 9) is a NOOP. RedN-Seq, on the other hand, incurs at
least 3 µs of extra latency as it needs to search the buckets
one-by-one. As such, whenever possible, operations with no
dependencies should be executed in parallel. The trade-off is
having to allocate extra WQs for each level of parallelism.

Throughput. We describe our throughput in Table 4. At lower
IO, RedN is bottlenecked by the NIC’s processing capacity
due to the use of doorbell ordering—reaching 500K ops/s on
a single port (1M ops/s with dual ports). At 64 KB, RedN
reaches the single-port IB bandwidth limit (~ 92 Gbps). Dual-
port configs are limited by ConnectX-5’s 16× PCIe 3.0 lanes.

SmartNIC comparison. We compare our performance for
hashtable gets against StRoM [39], a programmable FPGA-
based SmartNIC. Since we do not have access to a pro-
grammable FPGA, we extract the results from [39] for com-
parison, and report them in Table 5. RedN uses the same
experimental settings as before. Our hashtable configuration
is functionally identical to StRoM’s and our client and server
nodes are also connected via back-to-back links. We can
see that RedN provides lower lookup latencies than StRoM.
StRoM uses a Xilinx Virtex 7 FPGA, which runs at 156.25
MHz, and incurs at least two PCIe roundtrips to retrieve the
key and value. Our evaluation shows that RedN can provide
latency that is in-line with more expensive SmartNICs.

IO Size System Median 99thile

64 B RedN 5.7 µs 6.9 µs
StRoM ~7 µs ~7 µs

4 KB RedN 6.7 µs 8.4 µs
StRoM ~12 µs ~13 µs

Table 5: Latency comparison of hash gets. Results for StRoM
obtained from [39].

1 2 4 8

List range

L
a
te

n
c
y
 (

u
s
)

0
1
0

2
0

3
0

4
0

5
0

RedN (+break) One−sided Two−sided

Uses ~30 WRs
RedN

Uses ~50 WRs

Figure 13: Average latency of walking linked lists.

5.3 Offload: List Traversal

Next, we explore another data structure also popularly used in
storage systems. We focus on linked lists that store key-value
pairs, and evaluate the overhead of traversing them remotely
using our offloads. Similar to the previous use-case, we focus
on one-sided approaches, as used by FaRM and Pilaf [22, 35].

Linked list processing can be decomposed into a while
loop for traversing the list and an if condition for finding
and returning the key. We describe the implementation of our
offload in Fig. 12. The client provides the key x and address
of the first node in the list N0. A READ operation (R2) is then
performed to read the contents of the first node and update the
values for the return operation (R5). We also use a WRITE

operation (R3) to prepare the CAS operation (R4) by inserting
key x in its old field. As an optimization, this WRITE can be
removed and, instead, x can be inserted directly by the RECV
operation. This, however, will need to be done for every CAS
to be executed and, as such, this approach is limited to smaller
list sizes, since RECVs can only perform 16 scatters.

For this use-case, we introduce two offload variations. The
first, referred to simply as RedN, uses the implementation
in Fig. 12. The second uses an additional break statement
between R4 and R5 to exit the loop in order to avoid executing
any additional operations.

5.3.1 Results

Fig. 13 shows the latency of one-sided and two-sided variants
against RedN at various linked list ranges — where range rep-
resents the highest list element that the key can be randomly
placed in. The size of the list itself is set to a constant value of
8. We setup the linked list to use key and value sizes of 48 bits
and 64 bytes, respectively, and perform 100k list traversals for
each system. The requested key is chosen at random for each
RPC. In the variant labelled “RedN”, we do not use breaks
and assume that all 8 elements of the list need to be searched.
RedN outperforms all baselines for all list ranges until 8 —
providing up to a 2× improvement. RedN (+break) executes
a break statement with each iteration and performs worse than
RedN due to the extra overhead of checking the condition
of the break. However, using a break statement increases the
offload’s overall efficiency since no unneeded iterations are
executed after the key is found — using an average of 30
WRs across all experiments. Without breaks, RedN will need
to execute all subsequent iterations even after the key-value

64 1K 4K 16K 64K

Value Size (B)

L
a
te

n
c
y
 (

u
s
)

0
1
0

2
0

3
0

4
0

5
0

RedN One−sided Two−sided (VMA)

Figure 14: Memcached get latencies with different IO sizes.

pair is found/returned and it uses more than 65% more WRs.
As such, while RedN is able to provide better latencies, using
a break statement is more sensible for longer lists.

5.4 Use Case: Accelerating Memcached

Based on our earlier experience offloading remote data struc-
ture traversals, we set out to see: 1) how effective our afore-
mentioned techniques are in a real system, and 2) what are
the challenges in deploying it in such settings. Memcached
is a key-value store that is often used as a caching service
for large-scale storage services. We use a version of Mem-
cached that employs cuckoo hashing [24]. Since Memcached
does not natively support RDMA, we modify it with ∼700
LoC to integrate RDMA capabilities, allowing the RNIC to
register the hash table and storage object memory areas. We
also modify the buckets, so that the addresses to the values
are stored in big endian — to match the format used by the
WR attributes. We then use RedN to offload Memcached’s get
requests to allow them to be serviced directly by the RNIC
without CPU involvement. We compare our results to various
configurations of Memcached.

To benchmark Memcached, we use the Memtier bench-
mark, configure it to use UDP (to reduce TCP overheads
for the baselines), and issue 1 million get operations using
different key-value sizes. To create a competitive baseline
for two-sided approaches, we use Mellanox’s VMA [9]—a
kernel-bypass userspace TCP/IP stack that boosts the per-
formance of sockets-based applications by intercepting their
socket calls and using kernel-bypass to send/receive data. We
configure VMA in polling-mode to optimize for latency. In
addition, we also implement a one-sided approach, similar to
the one introduced in section 5.2.

Fig. 14 shows the latency of gets. As we can see, RedN’s
offload for hash gets is up to 1.7× faster than one-sided and
2.6× faster than two-sided. Despite the latter being configured
in polling-mode, VMA incurs extra overhead since it relies
on a network stack to process packets. In addition, to adhere
to the sockets API, VMA has to memcpy data from send and
receive buffers, further inflating latencies—which is why it
performs comparatively worse at higher value sizes.

5.5 Use Case: Performance Isolation

One of the benefits of exposing the latent turing power of
RNICs is to enforce isolation among applications. CPU con-

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Number of clients

L
a
te

n
c
y
 (

u
s
)

● ●
●

●

●

●
●

●

●

●

1 2 4 8 16

●

●

RedN Avg.

RedN 99
th

−%ile

Two−sided Avg.

Two−sided 99
th

−%ile

Figure 15: Memcached get latencies under hardware contention
with varying numbers of writer-clients.

tention in multi-tenant and cloud settings can lead to arbitrary
context switches, which can, in turn, inflate average and tail
latencies. We explore such a scenario by sending background
traffic to Memcached using one or more writer (clients). These
writers generate set RPCs in a closed loop to load the Mem-
cached service. At the same time, we use a single reader
client to generate get operations. To stress CPU resources
while minimizing lock contention, each reader/writer is as-
signed a distinct set of 10K keys, which they use to generate
their queries. The keys within each set are accessed by the
clients sequentially.

We can see in Fig. 15 that, as we increase the # of writers,
both the average and 99th percentile latencies for two-sided
increase dramatically. For RedN, CPU contention has no im-
pact on the performance of the RNIC and both the average
and 99th percentiles sit below 7 µs. At 16 writers, RedN’s 99th

percentile latency is 35× lower than the baseline.
This indicates that RNIC offloads can also have other useful

effects. Service providers may opt to offload high priority
traffic for more predictable performance or allocate server
resources to tenants to reduce contention.

5.6 Use Case: Failure Resiliency

We now consider server failures and how failure is affected
by RNICs. Table 6 shows failure rates of server software and
hardware components. NICs are much less likely to fail than
software components—NIC annualized failure rate (AFR) is
an order of magnitude lower. Even more importantly, NICs
are partially decoupled from their hosts and can still access
memory (or NVM) in the presence of an OS failure. This
means that RNICs are capable of offloading key system func-
tionality that can allow servers to continue operating despite
OS failures (albeit in a degraded state). To put this to the test,
we conduct a fail-over experiment to explore how RedN can
enhance a service’s failure resiliency.
Process crashes. We look into how we can allow an RNIC to
continue serving RPCs after a Memcached instance crashes.
We find that this is not simple in practice. RNICs access
many resources in application memory (e.g., queues, doorbell
records, etc.) that are required for functionality. If the process
hosting these resources crashes, the memory belonging to

Component AFR MTTF Reliability
OS 41.9% 20,906 99%

DRAM 39.5% 22,177 99%
NIC 1.00% 876,000 99.99%

NVM < 1.00% 2 million 99.99%
Table 6: Failure rates of different server components [8, 37].
AFR means annualized failure rate, whereas MTTF stands for
mean time to failure and is expressed in hours. RNICs can still
access memory even in the presence of an OS failure.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time, failure = 5 [s]

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

● ●
● ● ●

● ●
● ● ●

●
● ●

●
●

● ●

●

● ● ● ●

●

●

●

●

●

●
● ● ● ●

● ●
●

●

●

● ● ● ● ●
●

● ● ●

1 2 3 4 5 6 7 8 9 10 11 12

●RedN Vanilla Memcached

Process crashes

OS detect crash and
immediately restarts
Memcached

Recover: Pass over data items,
and regenerate hash table

Figure 16: RedN can survive process crashes and continue serv-
ing RPCs via the RNIC without interruption.

these components will be automatically freed by the operat-
ing system resulting in termination of the RDMA program.
To counteract this, we use [38] forks to create an empty hull
parent for hosting RDMA resources and then allow Mem-
cached to run as a child process. Linux systems do not free
the resources of a crashed child until the parent also termi-
nates. As such, keeping the RDMA resources tied to an empty
process allows us to continue operating in spite of application
failures. We run an experiment (timeline shown in Fig. 16)
where we send get queries to a single instance of Memcached
and then simply kill Memcached during the run. The OS de-
tects the application’s termination and immediately restarts it.
Despite this, we can see that a vanilla Memcached instance
will take at least 1 second to bootstrap, and 1.25 additional
seconds to build its metadata and hashtables. With RedN, no
service disruption is experienced and get queries continue to
be issued without recovery time.
OS failure. We also programmatically induce a kernel panic
using sysctl, freezing the system. This is a simpler case than
process crashes, since we no longer have to worry about the
OS freeing RDMA resources. For brevity, we do not show
these results, but we experimentally verified that RedN of-
floads continue operating in the presence of an OS crash.

6 Discussion
Client scalability. RedN requires servers to manage at least
two WQs per client, which is not higher than other RDMA
systems. RedN can still introduce scalability challenges with
thousands of clients since RNIC cache is limited. However,
Mellanox’s dynamically-connected (DC) transport service
[5], which allows unused connections to be recycled, can
circumvent many such scalability limits.

Offload for sockets-based applications. Protocols such as
rsocket [16] can be used to transparently convert sockets-
based applications to use RDMA, making them possible tar-
gets for RedN. Although rsocket does not support popular
system calls, such as epoll, other extensions have been pro-
posed [29] that support a more comprehensive list of system
calls and were shown to work with applications like Mem-
cached and Redis.
Intel RNICs. Next-generation Intel RNICs are expected to
support atomic verbs, such as CAS—which RedN uses to
implement conditionals. To control when WRs can be fetched
by the NIC, Intel uses a validity bit in each WR header. This
bit can be dynamically modified via an RDMA operation
to mimic ENABLE. However, there is no equivalent for the
WAIT primitive, meaning that clients cannot trigger a pre-
posted chain. One possible workaround for this is to use
another PCIe device on the server to issue a doorbell to the
RNIC, allowing the WR chain to be triggered. We leave the
exploration of such techniques as future work.
Insights for next-generation RNICs. Our experience with
RedN has shown that keeping WRs in server memory (to
allow them to be modified by other RDMA verbs) is a key
bottleneck. If the NIC’s cache was made directly accessible
via RDMA, WRs can be pre-fetched in advance and unneces-
sary PCIe round-trips on the critical path can be avoided. We
hope future RNICs will support such features.

7 Conclusion
We show that, in spite of appearances, commodity RDMA
NICs are Turing-complete and capable of performing com-
plex offloads without any hardware modifications. We take
this insight and explore the feasibility and performance of
these offloads. We find that, using a commodity RNIC, we can
achieve up to 2.6× and 35× speed-up versus state-of-the-art
RDMA approaches, for key-value get operations under un-
contended and contended settings, respectively, while allow-
ing applications to gain failure resiliency to OS and process
crashes. We believe that this work opens the door for a wide
variety of innovations in RNIC offloading which, in turn, can
help guide the evolution of the RDMA standard.
RedN is available at https://redn.io.

Acknowledgements. This work has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 770889), as well as
NSF grant 1751231. Waleed Reda was supported by a
fellowship from the Erasmus Mundus Joint Doctorate
in Distributed Computing (EMJD-DC), funded by the
European Commission (EACEA) (FPA 2012-0030). We
would like to thank Gerald Q. Maguire Jr. and our anony-
mous reviewers for their comments and feedback as well
as Jasmine Murcia. Thanks also go to our shepherd Ang Chen.

https://redn.io

References
[1] Agilio CX SmartNICs. https://www.netronome.

com/products/agilio-cx/.

[2] Catapult. https://www.microsoft.com/en-us/
research/project/project-catapult/.

[3] Cavium-Xpliant. https://www.openswitch.net/
cavium/.

[4] ConnectX series. https://www.mellanox.com/
products/ethernet/connectx-smartnic.

[5] Dynamically Connected (DC) QPs. https:
//docs.mellanox.com/display/rdmacore50/
DynamicallyConnected(DC)QPs.

[6] ibv_modify_qp_rate_limit(3) - Linux man page.
https://man7.org/linux/man-pages/man3/ibv_
modify_qp_rate_limit.3.html.

[7] Intel Ethernet 800 Series Network Adapters.
https://www.intel.com/content/www/us/en/
products/docs/network-io/ethernet/network-
adapters/ethernet-800-series-network-
adapters/e810-cqda1-100gbe-brief.html.

[8] Intel Optane DC Persistent Memory - Product
Brief. https://www.intel.com/content/dam/
www/public/us/en/documents/product-briefs/
optane-dc-persistent-memory-brief.pdf.

[9] LibVMA. https://github.com/Mellanox/libvma/
wiki/Architecture.

[10] LiquidIO II SmartNICs. https://www.marvell.
com/products/ethernet-adapters-and-
controllers/liquidio-smart-nics/liquidio-
ii-smart-nics.html.

[11] Mellanox BlueField. https://www.mellanox.com/
products/bluefield-overview.

[12] Mellanox PCX. https://github.com/Mellanox/
pcx/tree/master/config.

[13] Mellanox store. http://store.mellanox.com/.

[14] NetFPGA platform. https://netfpga.org/.

[15] RDMA RFC. https://tools.ietf.org/html/
rfc5040.

[16] rsocket(7) - Linux man page. https://linux.die.
net/man/7/rsocket.

[17] Stingray. https://www.broadcom.com/products/
ethernet-connectivity/smartnic.

[18] M. K. Aguilera, N. Ben-David, R. Guerraoui,
V. Marathe, and I. Zablotchi. The Impact of RDMA on
Agreement. arXiv preprint arXiv:1905.12143, 2019.

[19] T. E. Anderson, M. Canini, J. Kim, D. Kostić, Y. Kwon,
S. Peter, W. Reda, H. N. Schuh, and E. Witchel. Assise:
Performance and Availability via NVM Colocation in a
Distributed File System. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), 2020.

[20] O. Cardona. Towards Hyperscale High Per-
formance Computing with RDMA, 2019.
https://pc.nanog.org/static/published/
meetings/NANOG76/1999/20190612_Cardona_
Towards_Hyperscale_High_v1.pdf.

[21] S. Dolan. mov is Turing-complete. Cl. Cam. Ac. Uk,
pages 1–4, 2013.

[22] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson.
FaRM: Fast remote memory. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 401–414, 2014.

[23] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein.
NICA: An Infrastructure for Inline Acceleration of Net-
work Applications. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 345–362, 2019.

[24] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent memcache with dumber
caching and smarter hashing. In 10th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 13), pages 371–384, 2013.

[25] M. Gabbrielli and S. Martini. Programming Languages:
Principles and Paradigms, page 145. Undergraduate
Topics in Computer Science. Springer London, 2010.

[26] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA efficiently for key-value services. In ACM SIG-
COMM Computer Communication Review, volume 44,
pages 295–306. ACM, 2014.

[27] M. Kazhamiaka, B. Memon, C. Kankanamge, S. Sahu,
S. Rizvi, B. Wong, and K. Daudjee. Sift: resource-
efficient consensus with RDMA. In Proceedings of the
15th International Conference on Emerging Networking
Experiments And Technologies, pages 260–271, 2019.

[28] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu,
J. Padhye, S. Raindel, S. Swanson, V. Sekar, and S. Se-
shan. Hyperloop: group-based NIC-offloading to ac-
celerate replicated transactions in multi-tenant storage
systems. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
pages 297–312, 2018.

https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.openswitch.net/cavium/
https://www.openswitch.net/cavium/
https://www.mellanox.com/products/ethernet/connectx-smartnic
https://www.mellanox.com/products/ethernet/connectx-smartnic
https://docs.mellanox.com/display/rdmacore50/Dynamically Connected (DC) QPs
https://docs.mellanox.com/display/rdmacore50/Dynamically Connected (DC) QPs
https://docs.mellanox.com/display/rdmacore50/Dynamically Connected (DC) QPs
https://man7.org/linux/man-pages/man3/ibv_modify_qp_rate_limit.3.html
https://man7.org/linux/man-pages/man3/ibv_modify_qp_rate_limit.3.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-100gbe-brief.html
https://www.intel.com/content/dam /www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam /www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam /www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://github.com/Mellanox/libvma/wiki/Architecture
https://github.com/Mellanox/libvma/wiki/Architecture
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.mellanox.com/products/bluefield-overview
https://www.mellanox.com/products/bluefield-overview
https://github.com/Mellanox/pcx/tree/master/config
https://github.com/Mellanox/pcx/tree/master/config
http://store.mellanox.com/
https://netfpga.org/
https://tools.ietf.org/html/rfc5040
https://tools.ietf.org/html/rfc5040
https://linux.die.net/man/7/rsocket
https://linux.die.net/man/7/rsocket
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://pc.nanog.org/static/published/meetings/NANOG76/1999/20190612_Cardona_Towards_Hyperscale_High_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG76/1999/20190612_Cardona_Towards_Hyperscale_High_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG76/1999/20190612_Cardona_Towards_Hyperscale_High_v1.pdf

[29] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang. Socks-
Direct: Datacenter sockets can be fast and compatible.
In Proceedings of the ACM Special Interest Group on
Data Communication, pages 90–103. 2019.

[30] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 137–152, 2017.

[31] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter,
and K. Gupta. Offloading distributed applications onto
SmartNICs using iPipe. In Proceedings of the ACM
Special Interest Group on Data Communication, pages
318–333. 2019.

[32] M. Liu, S. Peter, A. Krishnamurthy, and P. M.
Phothilimthana. E3: Energy-Efficient Microservices
on SmartNIC-Accelerated Servers. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
363–378, 2019.

[33] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: An RDMA-
enabled distributed persistent memory file system. In
2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 773–785, 2017.

[34] Mellanox RDMA Aware Networks Programming User
Manual. https://www.mellanox.com/related-
docs/prod_software/RDMA_Aware_Programming_
user_manual.pdf.

[35] C. Mitchell, Y. Geng, and J. Li. Using One-Sided
RDMA Reads to Build a Fast, CPU-Efficient Key-Value
Store. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 103–114, 2013.

[36] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter,
R. Bodik, and T. Anderson. Floem: A Programming
System for NIC-Accelerated Network Applications. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 663–679, 2018.

[37] M. Poke and T. Hoefler. Dare: High-performance State
Machine Replication on RDMA Networks. In Pro-
ceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing, pages
107–118. ACM, 2015.

[38] A. Rosenbaum. Multiprocess Sharing of RDMA Re-
sources, 2018. https://openfabrics.org/images/
2018workshop/presentations/103_ARosenbaum_
Multi-ProcessSharing.pdf.

[39] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and
G. Alonso. StRoM: Smart Remote Memory. Proceed-
ings of the Fifteenth EuroSys Conference, 2020.

[40] A. K. Simpson, A. Szekeres, J. Nelson, and I. Zhang.
Securing RDMA for High-Performance Datacenter Stor-
age Systems. In 12th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 20), 2020.

[41] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui. APUS:
Fast and Scalable Paxos on RDMA. In Proceedings
of the 2017 Symposium on Cloud Computing, pages
94–107, 2017.

[42] X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstructing
RDMA-enabled distributed transactions: Hybrid is bet-
ter! In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 233–251,
2018.

[43] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-
memory transaction processing using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 87–104, 2015.

[44] J. Yang, J. Izraelevitz, and S. Swanson. Orion: A dis-
tributed file system for non-volatile main memory and
RDMA-capable networks. In 17th USENIX Confer-
ence on File and Storage Technologies (FAST 19), pages
221–234, 2019.

[45] D. Y. Yoon, M. Chowdhury, and B. Mozafari. Dis-
tributed lock management with RDMA: decentralization
without starvation. In Proceedings of the 2018 Inter-
national Conference on Management of Data, pages
1571–1586, 2018.

[46] T. Ziegler, S. Tumkur Vani, C. Binnig, R. Fonseca, and
T. Kraska. Designing distributed tree-based index struc-
tures for fast RDMA-capable networks. In Proceedings
of the 2019 International Conference on Management
of Data, pages 741–758, 2019.

https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://openfabrics.org/images/2018workshop/presentations/103_ARosenbaum_Multi-ProcessSharing.pdf
https://openfabrics.org/images/2018workshop/presentations/103_ARosenbaum_Multi-ProcessSharing.pdf
https://openfabrics.org/images/2018workshop/presentations/103_ARosenbaum_Multi-ProcessSharing.pdf

Appendix A Turing completeness sketch
To show that RDMA is turing complete, we need to establish
that RDMA has the following three properties:

1. Can read/write arbitrary amounts of memory.
2. Has conditional branching (e.g., if & else statements).
3. Allows nontermination.

Our paper already demonstrates that these properties can
be satisfied using our constructs but, for completeness, we
also analogize our system with x86 assembly instructions
that have been proven to be capable of simulating a Turing
machine. Dolan [21] demonstrated that this is in fact possible
using just the x86 mov instruction. As such, we need to prove
that RDMA has sufficient expressive power to emulate the
mov instruction.

A.1 Emulating the x86 mov instruction

To provide an RDMA implementation for mov, we first need
to consider the different addressing modes used by Dolan [21]
to simulate a Turing machine. The addressing mode describes
how a memory location is specified in the mov operands.

Table 7 shows a list of all required addressing modes, their
x86 syntax, and one possible implementation for each with
RDMA. R operands denote registers but, since RDMA op-
erations can only perform memory-to-memory transfers, we
assume these registers are stored in memory. For simplicity,
we only focus on mov instructions used to perform loads but
note that stores can be implemented in a similar manner.

For immediate addressing, the operand is part of the in-
struction and is passed directly to register Rdst . This can be
implemented simply using an WRITEIMM which takes a con-
stant in its immediate parameter and writes it to a specified
memory location (register Rdst in this case). To perform more
complex operations, indirect allows mov to use the value of

the operand as a memory address. This enables the dynamic
modification of the address at runtime, since it depends on
the contents of the register when the instruction is executed.
To implement this, we use two write operations with door-
bell ordering (refer to §3.1 for a discussion of our ordering
modes). The first WRITE changes the source address attribute
of the second WRITE operation to the value in register Rsrc.
This allows the second WRITE operation to write to register
Rdst using the value at the memory address pointed to by
Rsrc. Lastly, indexed addressing allows us to add an offset
(Ro f f) to the address in register Rsrc. This can be done by
simply performing an RDMA ADD operation between the
two writes with doorbell ordering, in order to add the offset
register value Ro f f to Rsrc. This allows us to finally write the
value [Rsrc +Ro f f] to Rdst . With these three implementations,
we showcase that RDMA can in fact emulate all the required
mov instruction variants.

A.2 Allowing nontermination

To simulate a real Turing machine, we need to also satisfy
the code nontermination requirement. In the x86 architecture,
this can be achieved via an unconditional jump [21] that loops
back to the start of the program. For RDMA, this can also
be achieved by having the CPU re-post the WRs after they
are executed. While this is sufficient for Turing completeness
it, nevertheless, wastes additional CPU cycles and can also
impact latency if CPU cores are busy or unable to keep up
with WR execution. As an alternative, RedN provides a way
to loop back without any CPU interaction by relying on WAIT
and ENABLE to recycle RDMA WRs (as described in §3.4).
Regardless of which approach is employed, RDMA is capable
of performing an unconditional jump to the beginning of the
program. This means that we can emulate all x86 instructions
used by Dolan [21] for simulating a Turing machine.

Addressing mode x86 syntax RedN equivalent

Immediate mov Rdst , C

–

WRITE

imm

C
Rdst

Indirect mov Rdst , [Rsrc]

–

set src to Rsrc

WRITE WRITE

[Rsrc]
RdstRsrc

Indexed mov Rdst , [Rsrc + Ro f f]

–

set src to Rsrc

WRITE WRITE

[Rsrc + Roff]
RdstRsrc ADD

Roff Add Roff to src

Table 7: Addressing modes for the x86 mov instruction and their RDMA implementation in RedN.

	Abstract
	Introduction
	Background
	SmartNICs
	RDMA NICs

	The RedN Computational Framework
	RDMA execution model
	Dynamic RDMA Programs
	Conditionals
	Loops
	Putting it all together

	Implementation
	Evaluation
	Microbenchmarks
	RDMA Latency
	Ordering Overheads
	RDMA Verb Throughput

	Offload: Hash Lookup
	RedN's Approach
	Results

	Offload: List Traversal
	Results

	Use Case: Accelerating Memcached
	Use Case: Performance Isolation
	Use Case: Failure Resiliency

	Discussion
	Conclusion
	Appendix Turing completeness sketch
	Emulating the x86 mov instruction
	Allowing nontermination

