
CloudCluster: Unearthing the Functional Structure of a Cloud Service

Weiwu Pang
University of Southern California

Sourav Panda
University of California, Riverside

Jehangir Amjad
Google Inc.

Christophe Diot
Google Inc.

Ramesh Govindan
University of Southern California

Abstract

In their quest to provide customers with good tools to manage
cloud services, cloud providers are hampered by having very
little visibility into cloud service functionality; a provider
often only knows where VMs of a service are placed, how the
virtual networks are configured, how VMs are provisioned,
and how VMs communicate with each other. In this paper,
we show that, using the VM-to-VM traffic matrix, we can
unearth the functional structure of a cloud service and use
it to aid cloud service management. Leveraging the observa-
tion that cloud services use well-known design patterns for
scaling (e.g., replication, communication locality), we show
that clustering the VM-to-VM traffic matrix yields the func-
tional structure of the cloud service. Our clustering algorithm,
CloudCluster, must overcome challenges imposed by scale
(cloud services contain tens of thousands of VMs) and must
be robust to orders-of-magnitude variability in traffic volume
and measurement noise. To do this, CloudCluster uses a novel
combination of feature scaling, dimensionality reduction, and
hierarchical clustering to achieve clustering with over 92% ho-
mogeneity and completeness. We show that CloudCluster can
be used to explore opportunities to reduce cost for customers,
identify anomalous traffic and potential misconfigurations.

1 Introduction
As more online services migrate to the cloud, and as the user
base of these services increases, the complexity and scale of
cloud deployments has increased significantly. Today, cloud
services routinely use tens of thousands of VMs, geographi-
cally dispersed for reliability and low-latency access to cus-
tomers. Monitoring and managing a cloud deployment can
be significantly challenging, since the performance, cost, and
reliability of the service can depend on a large number of
factors: how the cloud customer maps logical functionality to
VMs, how the VMs are provisioned, where they are located,
how well the paths between the VMs are provisioned, and so
on. More generally, how well a cloud service works depends
both on how well a customer designs the service, and how

well the provider provisions the underlying infrastructure.

Cloud service monitoring. Cloud providers struggle to pro-
vide customers with insights on the performance and reliabil-
ity of a cloud service. This is because, while a VM provides
a very convenient abstraction for computing and communi-
cation, the provider has (by design) very little visibility into
cloud service logic embedded in the VM. This lack of visi-
bility prevents providers from being able to relate problems
observed at the service level to issues in the underlying in-
frastructure. For a given service, a provider often only knows
where the VMs are, how much compute and storage each VM
is provisioned with, customer-supplied names for the VMs,
and how much traffic each VM exchanges with other VMs
in the service. Customers are often loath to reveal more, for
business and privacy reasons.1

Today, major cloud providers (such as Amazon Web Ser-
vices [12], Azure Cloud [2] and Google Cloud Platform [3])
provide customers with monitoring services. Their monitor-
ing services (AWS CloudWatch [12], Azure Monitor [2] and
Google Cloud Monitoring [3]) expose, using customizable
dashboards, metrics capturing the state and activity of the
cloud service’s VM instances (e.g., their CPU and disk utiliza-
tion, and the volume of network traffic to and from instances)
as visible to the cloud provider, as well as other measures
of the underlying networking infrastructure (e.g., loss rates
between instances). Some of these monitoring services also
provide custom alerting mechanisms. Customers can define
metrics that capture user-perceived performance, and config-
ure alerts when these metrics exceed service-level objectives
that cloud customers have with their customers.

Goal. Given that cloud service monitoring provides a com-
petitive advantage, cloud providers continuously seek to add

1Ethical considerations: For the 15 cloud projects we used in the evalu-
ations in the paper (§4), we obtained explicit consent. For each project, we
only used information available to the cloud provider: VM locations, VM
names, and the VM-to-VM traffic matrix. We used the VM-to-VM traffic
matrix to generate the clusters, and names and locations to evaluate the per-
formance of CloudCluster. After our evaluations, we shared the results with
each customer, and obtained feedback.

innovative capabilities to their monitoring systems, despite
their limited visibility into cloud services. In this paper, we
describe a new capability not, to our knowledge, previously
considered in the literature: inferring the functional structure
of a cloud service, i.e., how a cloud service is modularized
across its many VMs. Our work is inspired by a body of prior
work on inferring structural relationships between compo-
nents in a distributed system (§6).

To explain what we mean by functional structure, con-
sider Figure 1(a) which shows the connectivity graph of VMs
(which VMs communicate with which other VMs) of a cloud
service. These VMs reside in different cloud regions (roughly,
parts of a continent, see §2); most communication is within a
region, but some communication exists across regions. With
just the information that the cloud provider has, it can only
obtain this kind of a view of the project. Now suppose that
this cloud service is, in fact, architected as in Figure 1(b): it
has a front-end load-balancer and a backend processing layer.
With the information she has, the cloud service operator’s con-
ceptual view of the structure of the service might be as shown
in Figure 1(c): its VM instances are spread across two regions,
with load balancer VMs (in red on the cluster on the left, and
green on the cluster on the right) communicating with the
processing-layer VMs (in magenta and cyan respectively) but
not with other load balancer VMs, and the processing-layer
VMs in each region communicating with each other as well.
In addition, one of the load-balancers communicates with
processing VMs in the other region (e.g., due to overload in
its own region).

The focus of our paper is to unearth the structure in Fig-
ure 1(c) only using information available to the provider.
Specifically, we aim to develop methods that can extract this
structure in which VMs are grouped into VM groupings by
function and location. Ultimately, this will enable the provider
to represent the service by a compact inter-grouping graph
abstraction (Figure 1(d)).

In deriving the representations shown in Figure 1(c-d),
CloudCluster can only determine that VMs in a cluster likely
perform the same function, but cannot tell which function they
perform (for example, whether the VMs run load-balancers,
or image transcoders). This mitigates any privacy concerns
cloud customers might have. Even so, we expect that in an
actual deployment, a cloud provider will obtain consent from
the customer before applying CloudCluster to the customer’s
service.
Approach. We hypothesize that we should be able to infer
VM groupings by clustering the VM-to-VM traffic matrix of
a cloud service. Clustering a traffic matrix implies grouping
together similar rows; two rows are similar if the traffic from
their corresponding VMs to all other VMs is similar. Intu-
itively, two functionally similar VMs are likely to satisfy this
property. For example, how two load-balancer VMs in a re-
gion are likely to communicate with all other processing layer
VMs in the same region is likely to be similar, so clustering

Figure 1: An example of different views of a cloud service: (a)
VM connectivity graph as visible to the cloud provider; (b) The
service architecture; (c) VM connectivity graph colored by func-
tion and location (the desired output of CloudCluster); (d) A
compact inter-grouping graph abstraction.

will group them together. Furthermore, we expect clusters to
be large because of the horizontal scaling employed by cloud
services, which replicate processing or storage at a given layer
using functionally identical VMs (e.g., databases, in-memory
stores, image transcoders etc.).
Challenge. Analyzing large VM-to-VM traffic matrices of
real-world cloud services presents two challenges: scale, and
robustness to variability and noise. At the scale of tens of
thousand of VMs, any analysis must overcome the curse of di-
mensionality [60]; the sparsity of the traffic matrices in these
higher-dimensions makes it difficult to derive insights from
the data. Moreover, cloud services often vary in VM-to-VM
traffic by several orders of magnitude, and methods of infer-
ring their properties must accommodate this variability and
be robust to noise introduced by the underlying measurement
methodology (e.g., by traffic sampling).
Contributions. This paper shows that clustering the VM-
to-VM traffic matrix of a cloud service provider can help
determine the functional organization of a cloud service, and
that these clusters can be a useful abstraction for providing
cloud customers with actionable insights into their service.
To this end, the paper makes three contributions.

First, we develop a clustering algorithm, CloudCluster, that
clusters VMs by similarity in their network communication
characteristics (§3.4). CloudCluster is a novel combination
of techniques, some known, and others new, to address the
scaling and robustness challenges mentioned above. At its
core, it uses a variant of hierarchical clustering, called ag-
glomerative clustering [48] to determine clusters. This ap-
proach clusters VMs by proximity in some high-dimensional
space. It requires a way to determine distance thresholds, and
CloudCluster determines these thresholds dynamically in a
data-driven manner. To scale better, it employs dimensionality
reduction, and to be robust to variability in traffic volumes it
scales traffic features (see §3 for more details).

Second, by evaluating the resulting clusters on 15 different

cloud service projects2 (§4), we experimentally demonstrate
that the resulting clusters group together VMs by location
and function: i.e., all VMs in a cluster are geographically
co-located, and they perform the same function3. We ver-
ify this on cloud services that name VMs by function; for
these projects, CloudCluster has homogeneity and complete-
ness scores (metrics equivalent to precision and recall, respec-
tively) of over 0.92 and 0.94 respectively.

Third, we demonstrate ways in which CloudCluster can
be used to provide customers with actionable insights (§5).
CloudCluster can analyze the inter-cluster graph (Figure 1(d))
to identify opportunities for reconfiguring VM placements to
reduce cost: in one case, we found opportunities to reduce cost
by 41.2% by provisioning an additional cluster to minimize
inter-region traffic. It can also be used to detect anomalous
traffic between clusters, to identify traffic shifts within a cloud
project, or structural changes in the project across time. From
25 traffic anomalies reported either by an internal anomaly
detector or the customer, a CloudCluster-based anomaly de-
tector detected every anomaly, and identified the impacted
clusters. CloudCluster can be used to detect potentially mis-
labeled VM names (names that do not reflect function) or
mis-provisioned VMs. In some projects, up to 1% of VMs
appear to be mis-provisioned. In others, over 7% a project’s
VMs appear to be mis-labeled — their traffic patterns differ
from the majority of VMs that have the same labels.

2 Anatomy of a Cloud Service
In this section, we provide a brief background on the struc-
ture of cloud services. Our description focuses on Google’s
cloud services; different service offerings may differ from
this description in the details.

Google’s cloud resources are hosted in multiple locations
worldwide. The network is subdivided into regions which are
in turn divided into zones [9]. A region represents a part of
a continent, and zones represent disjoint geographical areas
within a region in which infrastructure resides. This partition-
ing permits cloud customers to coarsely control the place-
ment of VMs to, for example, ensure low-latency access to
customers, control cost and ensure high availability.

Customers can organize their cloud service into projects [4],
which are granular functional groupings that simplify man-
agement of a cloud service. For example, an ad-supported
social media service can have different projects for the user-
facing front-end, the ads subsystem, and an analytics backend.
Depending on the scale of the service, projects can be large,
spanning tens of thousands of VMs across multiple regions.
In this paper, we focus on the structure of projects.

VMs in a project are connected by one or more virtual

2As discussed in §2, a project is a granular functional grouping within a
cloud service.

3In this paper, we use the term function to denote a long-lived heavy-
weight service that forms part of a cloud service; we do not consider services
deployed using ephemeral cloud functions (e.g., lambdas).

networks [6] that provide isolation. Customers can organize
VMs into sub-networks [7]: VMs in one sub-network must all
be within the same region, and communicate over the same
virtual network. Sub-networks simplify VM management
tasks: e.g., IP address assignment.

Customers populate projects with VMs. To create a VM,
the customer: (a) selects a configuration for the VM (configu-
rations differ in compute and storage), (b) specifies the VM’s
name (the name is opaque to the provider, but customers may
embed hierarchical structure into a name; some customers
name VMs by function, a feature we leverage in evaluating
CloudCluster in §4), (c) identifies the sub-network and the
virtual network the VM uses, and (d) specifies the region and
zone the VM is located in. This is the only information a
cloud customer explicitly provides to Google. In addition, if
customers opt in to flow logging [10], the logging service
records VM-to-VM traffic for each enabled project.

3 CloudCluster Design
In this section, we describe CloudCluster, whose goal is to
discover the underlying structure of a cloud project. We dis-
cuss how it scales to large cloud projects, while being robust
to noise and variability.

3.1 Goals, Approach, and Overview

Notation. The input to CloudCluster is a VM-to-VM traffic
matrix for a cloud project, containing traffic volumes between
each VM over a fixed aggregation window.4 Traffic volumes
are obtained by sampling flows. In §4, we discuss the actual
values of the aggregation window and the sampling frequency.
Formally, we denote this traffic matrix by Y, with dimensions
n×m, where n is the number of source VMs (belonging to
this specific project under consideration) and m is the number
of destination VMs (which do not all have to belong to the
same project, since VMs in a project can communicate with
external clients or VMs in other projects).5 The i, j-th entry
yi j of Y represents the volume of traffic (in bytes) from VM i
to VM j, where i ∈ [n], j ∈ [m].

Challenge: Noise. Since Y is sampled, it is bound to be noisy.
Aside from the error induced by sampling, measurement er-
rors and randomness in traffic patterns can also induce noise.
To model this, we can write:

Y = M+E (1)

4CloudCluster uses minimum possible aggregated information, namely
the communication volume. Other metadata (e.g., port numbers, process
names) might be helpful in finding the functional structure. CloudCluster
does not use this information. With consent from the customer, it might
be possible to use this to improve our clustering, but we have left it to
future work, in part because it is not clear whether customers will consent to
revealing additional information.

5CloudCluster does not currently model traffic to cloud native services,
like traffic to Google Cloud Storage [5]). Identifying traffic volumes from
these services requires using other instrumentation services (e.g., storage
service logs), and we have left this to future work.

where M is the unobserved noise-free, true traffic matrix and
E is a noise matrix. We assume ei j is independent of all other
entries andE[ei j] = 0 and Var[ei j]<∞,∀i∈ [n],∀ j∈ [m]. This
implies that M = E[Y].
Challenge: Scale. Y can be large, since projects can have
tens of thousands of VMs. We have observed, through manual
inspection of cloud projects, that to enable projects to scale,
designers often group VMs that perform similar functions. At
the front-end, load-balancers redirect requests to VMs that
scale with the request load; all these VMs perform the same
function (e.g., handle requests). In turn, at the back-end, these
VMs may invoke other services that may be replicated across
several identical VMs, or may send the request to a coordi-
nator VM that invokes an iterative distributed computation
spread across several identical VMs. Such structures result
in VM groupings. We hypothesize that VMs in a group have
similar traffic patterns (in terms of which VMs they commu-
nicate with, and the volume of traffic). If this hypothesis is
true, then M must be a low rank matrix.

We can formalize a VM grouping as:

Definition 1 VM Grouping. Let a VM Grouping be denoted
by Si. Let mu denote a row of matrix, M. mu belongs to Si, if

d(mu,mv)< min
r
{d(mu,mr)},∀v ∈ Si,∀r /∈ Si

∧d(mu,mv)< δ,∀v ∈ Si

d(·, ·) is some distance function and δ is a distance threshold.

Definition 1 implies that similar rows will be grouped to-
gether if they are most similar to each other and their similar-
ity, quantified via a distance function, d(·, ·), is less than the
distance threshold. In practice, this threshold can be different
for different cloud projects.
Goal and Approach. Our goal is to discover all VM Group-
ings present in a cloud project. To do this, CloudCluster (a)
estimates M and then (b) clusters VMs (rows of M with simi-
lar traffic patterns) to find the VM groupings.

To estimate M, we leverage prior work, such as [27] and
[21], which show that in a setting like ours, we can estimate
well and with consistency the low-rank and noise-free, but
unobserved, matrix, M, from a random observation of the
noisy matrix Y, where M = E[Y].
Clustering algorithm: Overview. Using the estimate M̂,
CloudCluster’s clustering algorithm6 seeks to extract VM
Groupings according to Definition 1, with M replaced by M̂.
It must also address the scalability and robustness challenges
identified above. To do this, CloudCluster’s algorithm has four
components (Algorithm 1): 1) Feature scaling to transform
the input traffic matrix. 2) Matrix estimation to estimate M.
3) Hierarchical clustering to group similar VMs. 4) Cluster
merging to fuse similar clusters. We describe each component
in the following subsections.

6This is orthogonal to prior work that has explored clustering to group
similar traffic matrices [59].

Algorithm 1: Steps in VM clustering
input : Y, threshold θ to merge similar clusters
output: Clusters merged_clusters

1 scaled_Y = feature_scaling(Y);
2 scaled_M̂ = TruncatedSVD(scaled_Y);
3 clusters = hierarchical_clustering(scaled_M̂);
4 merged_clusters = merging(clusters, scaled_M̂, θ);

3.2 Feature Scaling

What is a feature and why scaling is necessary. Each row
of Y can be treated as a (high-dimensional) feature. Then,
identifying similarity in this feature space is equivalent to
identifying VMs that have similar traffic patterns.

In practice, even within a single project, traffic volumes
between VMs can span several orders of magnitude. This can
make it difficult to discriminate between low and medium
volume traffic patterns. Clustering relies on a distance metric,
and many applicable distance metrics are disproportionately
sensitive to larger values.
Log Scaling. Feature scaling normalizes the range of each fea-
ture to enable clustering algorithms to be robust to highly vari-
able traffic volumes. Of the existing feature scaling method-
ologies, standardization and minmax scaling cannot handle
the range of traffic volumes we see in cloud projects. Standard-
ization replaces each feature’s value by how many standard
deviations it is above or below the mean [1]. Minmax scal-
ing transforms each individual feature value into the ratio
between that value’s distance from the minimum to the range
of values [1]. Traffic in cloud projects can span several orders
of magnitude (from 0 to 109) and have skewed distributions;
linear transformations like minmax scaling, or those that as-
sume Gaussianity, like standardization, do not work well. For
this reason, we choose log scaling, which uses the natural
logarithm of the traffic instead of the original values; this
handles volume variability much better (we demonstrate this
experimentally in §4.4).

3.3 Estimating M

Estimating singular values. Singular value thresholding can
produce a good estimate, M̂, of the low-rank M, using only ob-
servations from Y (see [27], [21], [20]). However, estimating
the number of singular values to keep cannot be determined
exactly. After performing Singular Value Decomposition of
the matrix, we choose the number of singular values to retain
based on an elbow finding heuristic such as one introduced
by [51]. The elbow suggests the approximate number of sin-
gular values to retain because most of the singular values
after the elbow contribute little to the spectrum of the matrix.
Figure 2 shows the spectrum of singular values for a traffic
matrix for a project with over 3000 VMs. The sharp decline
in the spectrum after about 50 singular values is indicative of
a low-rank structure. Singular values in the tail which don’t
quite decay to 0 indicate random noise (which tends to spread

Figure 2: Singular Value spectrum of a traffic matrix with dimen-
sion (3742x3271)

across all orthogonal directions) with small finite variance
(indicated by the small magnitude).

Extracting an r-rank approximation of M. Once the num-
ber of singular values r is heuristically determined, perform-
ing an SVD produces the reduced rank estimate of the original
matrix. Specifically, given the n×m original traffic matrix Y,
SVD produces the reduced dimension matrix M̂, such that:

M̂ = UrΣΣΣrrrVT
r ,

where ΣΣΣrrr is an r× r diagonal matrix of the singular val-
ues of Y, Ur and Vr are orthonormal bases of dimensions
n× r and m× r, respectively. M̂ is a low-rank, i.e., rank =
r�min{n,m}, approximation to the original matrix. How-
ever, M̂ is of dimensions n×m. We need to project this ma-
trix to an n× r subspace which will allow us to retain all the
rows (associated individually to VMs), each of r-dimensional
feature (columns). We denote this desired matrix by M̂r, de-
termined by:

M̂r = UrΣΣΣrrr

Effectively, the retained r singular values of the original ma-
trix Y determine how to scale each of the r−dimensional
orthonormal vectors in Ur. M̂r remains a good approximation
of M (in a reduced dimensional subspace) because it is simply
a projection of each of the rows in M̂ (which is the best rank-r
approximation of M) on to a r-dimensional subspace. Both
M̂ and M̂r are of rank r, and have the same norm.

The key benefit of SVD. Traffic matrices obtained from large
cloud projects can have tens of thousand of rows and columns.
The distance functions (used to compute row-similarity) scale
exponentially in the number of features/columns. Moreover,
in high dimensional feature spaces and with noisy data, dis-
tance metrics are unreliable [60] (the curse of dimensionality).
Given this, a reduced-rank estimation of M, and projection on
to a feature-space of reduced dimensions allows our algorithm
to remain robust to scale while retaining much of its structure.

3.4 Hierarchical Clustering

Infeasible clustering methods. Given the original matrix
Y, or the rank-r estimate M̂r, we can use traditional clus-

tering techniques to find VM Groupings. For instance, prior
approaches like [28] have established links between dimen-
sionality reduction and K-Means clustering. However, for our
use-case we would like to use dimensionality reduction for
robustness to scale and noise but maintain fine control over
the number of clusters to produce. Therefore, given that we
do not know the number of clusters to produce, much of the
existing work around K-Means [41] does not suffice for our
needs. Density-based approaches such as DBSCAN [32] and
OPTICS [22] do not require the number of clusters as input.
However, they rely on other threshold parameters, estimating
which requires domain knowledge (e.g., information about a
project beyond the sampled traffic volumes we have available)
and maybe hard with high-dimensional data. MeanShift [29]
and Affinity Propagation [33] also don’t require the num-
ber of clusters, but their main drawback is time complexity,
which depends on the number of iterations until convergence.
We also show that MeanShift and Affinity Propagation don’t
perform well in the context of VM clustering in section 4.4.

Agglomerative clustering. Similar to density-based ap-
proaches, hierarchical clustering does not require the number
of clusters a priori. CloudCluster uses agglomerative cluster-
ing [48], a bottom-up hierarchical clustering approach: each
VM (row) starts in its own cluster, and clusters are recursively
merged together. It uses Ward linkage [56] to determine which
two clusters should be merged: at each iteration, this tech-
nique selects two clusters that minimize the increase in total
within-cluster sum of squared error [44]. In the context of
clustering VMs, doing this produces clusters of VMs with
homogeneous traffic patterns, and this variance-minimizing
property is similar to the K-Means objective function. The
output of agglomerative clustering is a dendrogram (tree) of
VMs (rows); the leaf nodes are the VMs (rows) and the non-
leaf nodes are the nested clusters. Each non-leaf node has a
value (“height”), which is the Ward distance [44] between the
two entities merging at that node.

From hierarchical to flat clustering. In a dendrogram, each
non-leaf node represents a potential cluster (containing all the
leaf nodes in its sub-tree). CloudCluster must extract disjoint
clusters from this dendrogram. To do this, it can use a static
height threshold: each non-leaf node higher than this threshold
is a distinct cluster. But, determining the threshold requires
domain knowledge for each project. Instead, CloudCluster
cuts the dendrogram based on cluster inconsistency [54]. For
a given non-leaf node in the dendrogram with height h, if
its sub-tree contains nodes with heights H = {h0,h1, ...}, and
mean of the heights is H, and the standard deviation is σ(H),
the inconsistency of the node is: inc = h−H

σ(H) .

When deciding whether to merge two sub-trees (or nested
clusters), the inconsistency metric quantifies how different the
new merged cluster would be compared to the nested clusters
within it. A low value means that the merged cluster would
be similar to the nested clusters under it. Conversely, a high

Figure 3: CDF of inconsistency value and the knee

inconsistency means that the merged cluster contains nested
clusters which are fairly different. Therefore, the algorithm
merges nested clusters when the inconsistency score is less
than a threshold, µ.
Estimating µ. Instead of manually selecting the threshold µ,
we use the following technique to estimate it. Closer to the
leaves of the dendrogram, inconsistency values will be small.
They will increase at non-leaf nodes higher in the dendrogram.
For many projects, the distribution of inconsistency values
is similar to Figure 3. This suggests that the knee of this
curve is a good choice for µ because it identifies a transition
between low and high inconsistency values. We use the knee
locator implemented by [51] to determine µ. Then, we cut
the dendrogram based on the threshold µ, resulting in a set of
clusters.

3.5 Cluster Merging
In practice, we have found that our approach produces, for
projects with thousands of VMs, tens or hundreds of clusters
with small internal variation in terms of VM traffic patterns.
However, it is too aggressive, and we find we can merge some
of these clusters in a fast post-processing step. For this, we
determine the centroid of each cluster produced by hierarchi-
cal clustering. Each centroid can be viewed as a feature of the
candidate clusters. We treat each of these centroids as a new
entity and cluster these entities. Inspired by MeanShift [29]
which fuses clusters that are close to each other by comparing
the distances to a threshold, we calculate the pairwise cosine
distances of the clusters centroids and recursively merge pairs
of clusters until no two clusters have a centroid distance less
than a fixed merging threshold θ.

4 CloudCluster Evaluation
The goal of the evaluation is to demonstrate that CloudCluster
produces clusters that are consistent with VMs grouped by
location and function. In other words, in each cluster, all VMs
are in the same zone, and perform the same function.

4.1 Methodology and Metrics

Dataset. We use anonymized, aggregated flow logs (specifi-
cally, Google VPC logs [10], please see footnote on page 1 for

a statement of the ethical use of customer data.) from cloud
customers to generate our evaluation dataset. Our dataset in-
cludes projects ranging from a few thousand VMs to those
with tens of thousands of VMs. We do not consider smaller
(10-20 VMs) projects in our analysis; at these scales, less so-
phisticated tools can provide actionable insights. The dataset
includes projects of VMs with various type of workloads (e.g.,
web servers, load balancers, image transcoders, key-value
stores etc.). It includes projects that are internal to Google
and those belonging to external customers. Each traffic matrix
in the dataset contains uniformly sampled VM-to-VM traf-
fic aggregated over a 1-hour window. We use sampled data;
sampling is necessary to scale measurement systems, and, as
long as the sampling mechanism is uniform, we expect our
clustering algorithm to work just as well as it would have
on un-sampled data given that uniform sampling ought to
preserve traffic volume relationships between VMs.

Implementation. Customer flow logs are stored in Google’s
Colossus file system [30]. CloudCluster loads the flow logs
into Dremel [43] and uses Dremel’s SQL-like queries to se-
lect data within the aggregation window, group by src-dst
VM pairs and aggregate by volume. CloudCluster runs on a
single VM with 128G memory, loads the aggregated result
from Dremel into a dataframe, extracts the VM-to-VM traffic
matrix, and then runs the algorithm described in §3. Traffic
matrices for the projects we evaluate fit comfortably into a
single VM.

Methodology. To demonstrate that CloudCluster produces
clusters consistent with VMs grouped by location and func-
tion, we conduct two experiments on disjoint sets of the fifteen
projects in our dataset:

i. Carefully-Named Group. The first experiment uses data
belonging to eight projects. These eight projects (called the
Carefully-Named Group) are different from the other seven
projects because we have information about the location and
function of each VM. For these projects, the customers have
carefully named each VM based on function, likely to sim-
plify manageability of the project. For example, VM naming
schemes contain strings identifying well-known services (e.g.
"redis" [25], "cassandra" [39], or "nginx" [53]). We call these
strings VM labels (in addition to labels, VM names may con-
tain, for example, instance identifiers). For projects in this
group, we show that CloudCluster’s clusters, when further
sub-grouped by the VM location (the VM’s zone, §2) match
well with VM groupings by location and VM labels, i.e., func-
tions.

ii. Coarsely-Named Group. The second experiment uses
data belonging to the remaining seven projects. For these, we
have location information for each VM, but the VM naming
scheme does not always indicate the function, or indicates
function coarsely (we explain later precisely what this means).
For this group of projects, we show that CloudCluster’s clus-
ters, when further sub-grouped by the VM location, do not

match well with VM groupings by location (zone) and VM
labels.

We emphasize that the cloud provider will always know a
VM’s location, but cannot always know the VM’s function,
since function-based naming is not a requirement of any cloud-
service API that we are aware of.
Metrics. We use two standard measures of clustering good-
ness, homogeneity and completeness [49]. These are both
scalar real-valued metrics in the range [0,1]. In the context of
VM clustering, homogeneity is the fraction of VMs in a same
cluster that have the same location and VM label. Conversely,
completeness is the fraction of VMs that have the same loca-
tion and VM label that are in a single cluster. These are the
analogs of precision and recall used in classification.

4.2 The Carefully-Named Group
The Carefully-Named Group refers to the eight projects where
the VM’s are carefully named to reflect their function, in
addition to the location (zone) information.
High homogeneity and completeness. We cluster the VMs
in each of the eight projects in the Carefully-Named Group.
As noted earlier, we further sub-group the clusters produced
by location, i.e., zone. Table 1’s third and fourth columns
show the homogeneity and completeness for all the projects
in this group. Across these projects, CloudCluster has high ho-
mogeneity: all projects have a homogeneity of 0.92 or higher,
and for six of them the score is higher than 0.96. Complete-
ness scores are also high: all projects have a completeness of
0.94 or higher. High completeness and homogeneity scores
indicate good matching in the clustering results, and substan-
tiate our central assertion: that CloudCluster’s clusters, when
augmented with zone information, match VMs grouped by
location and function.

What values of homogeneity and completeness are accept-
able? Recall that these measures are the equivalent of preci-
sion and recall (respectively), for which acceptable thresholds
depend upon the specific use case. Similarly, acceptable val-
ues of homogeneity and completeness depend upon what
clustering is used for; we discuss this in §5.5. Also, as with
precision and recall, we can trade-off homogeneity for com-
pleteness and vice versa; see §4.4 for an example.

CloudCluster works well for projects at different scales.
Projects range in size from 500 VMs to over 10,000 VMs
(second column of Table 1). The number of clusters (third
column of Table 1) varies from a handful to around 200.
CloudCluster also discovers clusters at different scales. Within
project A, some clusters have more than 900 VMs, and some
clusters have dozens of VMs or sometimes one. Moreover,
CloudCluster can handle projects with varying functional and
geographical diversity. Projects A, B, E and F each run more
than 20 different kinds of software and span across a number
of zones across the globe. This also explains why they have
many clusters (recall that clusters are distinguished both by
function and location). Projects C and D are functionally

homogeneous and scoped to a single continent; and projects
G and H are moderately functionally diverse (5-6 different
types of functions) but scoped within North America. This
explains why C, D, G and H have only a handful of clusters.

Why location is important. Clustering groups VMs with
a similar traffic pattern. Our hypothesis was that VMs that
perform the same function will have similar traffic patterns.
However, consider two VMs that perform the same function,
but are located in zones on different continents. Although
their traffic distributions to other VMs will be similar, they
will likely send traffic to completely different sets of VMs
(e.g., load-balancers, other services) because they are located
in different zones. Thus, their rows in the traffic matrix will
be different, and CloudCluster will be unable to cluster them.

To illustrate the importance of location, for projects in the
Carefully-Named Group, we compare completeness and ho-
mogeneity scores without using location information. This
means that we no longer sub-group CloudCluster’s clusters
by location (zone) and we do not use the location informa-
tion when computing homogeneity and completeness scores.
Table 1’s 5th and 6th columns show that, in this case, while
homogeneity is reasonably high (all VMs in a cluster tend
to have the same label, i.e., function), completeness drops
significantly for about half of the projects (i.e., VMs with the
same label do not all fall into the same cluster).

Label and cluster conflicts. Prior work has also explored a
different way to characterize the quality of clustering [46].
Consider any pair of VMs. These VMs can either be in differ-
ent clusters, or they can be in the same cluster. If clustering is
perfect, then (a) if the VMs belong to different clusters, they
must have different labels,7 and (b) if they belong to the same
cluster, they must have the same labels. Conversely, clustering
can fail in two ways: (a) the VMs belong to different clusters,
but they have the same label (we call this a cluster conflict,
which results in a completeness score lower than 1.0) and (b)
the VMs belong to the same cluster, but have different labels
(we call this a label conflict, which results in a homogeneity
score less than 1.0).

To understand the magnitude of these conflicts, Table 1’s
7th and 8th column show the rate of cluster and label con-
flicts in each of our projects in the Carefully-Named Group.
Following [46], we compute the rate of cluster conflicts as
the fraction of all VM pairs in different clusters that have the
same label, and the rate of label conflicts as the fraction of
VM pairs in each cluster that have different labels. Table 1’s
7th and 8th column show that these numbers are negligibly
small (less than half a percent) across all projects, and rep-
resents another way of viewing the results in Table 1’s 3rd
and 4th column. For instance, for project D, label conflicts are
zero, so its homogeneity is 1. Similarly, project C has high
homogeneity because its label conflict rate is very small and

7More precisely, different labels or locations; we use labels to simplify
the explanation

CloudCluster w/ location info CloudCluster w/o location info Percentage of Conflict
Project #VM #Cluster Homogeneity Completeness Homogeneity Completeness Cluster conflict Label conflict

A 10000+ 72 0.984 0.966 0.942 0.312 0.020% 0.197%
B 5000+ 206 0.919 0.951 0.888 0.706 0.046% 0.532%
C 500+ 4 0.999 0.964 0.989 0.865 0.001% 0.614%
D 500+ 3 1.000 0.938 0.989 0.831 0.000% 0.427%
E 5000+ 60 0.966 0.940 0.929 0.901 0.212% 0.386%
F 5000+ 177 0.937 0.949 0.873 0.929 0.127% 0.188%
G 5000+ 8 0.996 0.971 0.992 0.971 0.001% 0.169%
H 1000+ 6 0.997 0.997 0.997 0.997 0.000% 0.028%

Table 1: Homogeneity and completeness score (with and without location information) and percentage of conflict for projects in the
Carefully-Named Group

project H has highest completeness and the lowest cluster con-
flict rate. (As an aside, these rates are defined on VM-pairs, so
the actual rates cannot directly be matched to imperfections
in homogeneity and completeness.).

Why CloudCluster is less than perfect. Given the diver-
sity of project in the Carefully-Named Group, CloudCluster’s
agreement with customer-provided functional groupings is
impressive. However, it is less than perfect for several reasons.

Feature scaling compresses the range of each feature, which
changes the relative feature distances of all VMs. Dimension-
ality reduction step removes information from all feature vec-
tors. TruncatedSVD [34] only keeps the information of the
specified number of dimensions. Merging might also induce
errors. We use an approach similar to MeanShift’s postpro-
cessing [29] in that we merge clusters that are similar to each
others by a specified distance. Even though we choose a rather
aggressive merging threshold, it is still possible to merge two
groups of VMs that have different traffic patterns. Similarly,
the merging threshold can also be so high that it breaks other
sub-clusters which should be merged.

Finally, some of these label and cluster conflicts can be
caused by inconsistently assigned VM labels. For instance, in
project F, which has high homogeneity and completeness, we
found some VMs labeled default or pool. Table 1 suggests
that mis-naming of VMs in our Carefully-Named Group is
small. As we discuss in §4.3, CloudCluster works less well
for our Coarsely-Named Group because VM naming does not
reflect function (i.e., from the perspective of this analysis, the
VMs are mis-labeled). Equally important, the non-zero rate of
label and cluster conflicts suggests that, even for well-named
projects, labels may be mis-configured; in §5.3 we discuss
techniques to detect such misconfigurations.

4.3 Coarsely-Named Group
In §4.2, we showed that (a) CloudCluster has high homo-
geneity and completeness for projects where labels reflect
functions, and VM location is taken into account, and (b)
it has high homogeneity and low completeness when VM
location is omitted. The Coarsely-Named Group contains
projects where VM labels do not reflect function well. We ex-

(a) Cluster by customer labels (b) Predicted clusters

Figure 4: Same set of VMs clustered by (a) the customer label
and (b) our algorithm. This figure shows VMs with generic labels
like "default", "pool" or "farm".

pect CloudCluster to perform poorly in this case; we use this
group of projects to rule out the possibility of other factors
contributing to high completeness and homogeneity for the
Carefully-Named Group.

As Table 2 shows, for projects I through O (which have
comparable functional, size and spatial diversity as projects
A-H), homogeneity is high, but completeness is low (for most
projects in the 0.6-0.8 range, but in one case as low as 0.25).
These results indicate that, in these projects VM labeling
has the following property: if two VMs are similar in traffic
characteristics, they are likely to have the same labels, but if
they are different by traffic characteristics (so are in different
clusters) they may still have the same labels. In other words,
labels in these projects lack functional specificity.
Labeling specificity. Table 2 suggests that, if VM grouping
by labels and location should match well with CloudCluster,
labels have to have functional specificity. Some projects have
less specific (or generic) functional labels, as we illustrate in
the following examples.

Project Homogeneity Completeness
I 0.988 0.825
J 0.988 0.740
K 0.952 0.782
L 0.936 0.786
M 0.978 0.250
N 0.983 0.758
O 0.993 0.603

Table 2: Homogeneity and completeness scores for projects in
the Coarsely-Named Group.

Figure 4 shows a group of VMs where the VM labels are
generic (default, pool, or farm). In Figure 4(a), the dots
are colored by the VM group they belong to by customer
label. In this case, all VMs belong to the same group because
they are assigned a generic label, so in Figure 4(a) they all
have the same color (green). However, if we closely examine
the functional structure of this project, we see two distinct
groups densely connected internally, but sparsely connected
externally. Figure 4(b) shows that CloudCluster is able to
correctly distinguish between the two groups (yellow and
black).

Sometimes, making labels specific enough requires careful
thought. Figure 5 illustrates a case where sharding may re-
quire generic labels. In Figure 5(a), the customer has labeled
all nodes within the circled ellipses as “loadbalancer”. How-
ever, from Figure 5(b), we observe that there is an internal
structure to these load-balancers. They can be further sepa-
rated into three groups where each has a distinctive connection
pattern. The clustering algorithm captures this difference and
puts them into different clusters.

Customers are not required to provide specific functional
labels, but these examples give some insight into how Cloud-
Cluster’s clustering might differ from a customer’s notion of
functional labels. At the same time, many projects do label
VMs by function. For these, being able to identify generic
customer labeling (or, more generally, mis-labeling) can help
identify configuration errors (see §5).

4.4 Impact of Design Choices
We now quantify the importance of various design choices.
Dimensionality reduction. Dimensionality reduction re-
duces the runtime of the pipeline and improves the clustering
accuracy. In the absence of dimensionality reduction, the dis-
tance metric can be unreliable for data with high-dimensional
feature spaces [60]. Moreover, distance computation does not
scale well for projects with more than 10,000 VMs; on our
largest project, without dimensionality reduction, the pipeline
takes more than 40 minutes to finish. With dimensionality
reduction, CloudCluster’s pipeline completed in 150 seconds
for the same project. CloudCluster is not latency-sensitive,
but lower computational complexity is important for reducing
the overhead or cost of executing CloudCluster’s algorithms

(a) Cluster by customer labels (b) Predicted clusters

Figure 5: Same set of VMs clustered by (a) the customer and
(b) our algorithm. This figure shows that customer-defined VM
groups contains customer specific sharding.

on the cloud.

Feature scaling. Feature scaling approaches influence Cloud-
Cluster’s performance. If we disable feature scaling, Cloud-
Cluster produces lower homogeneity (0.812) and complete-
ness (0.822) scores for project A, our largest project. By con-
trast, log-scaling is able to achieve 0.984 homogeneity and
0.966 completeness. Using other forms of feature scaling re-
sult in slightly lower homogeneity and completeness scores.
Figure 3 shows that using standardized and minmax scaling
reduces both homogeneity and completeness.

Hierarchical clustering. To validate our choice of our clus-
tering algorithm, we compare with other plausible clustering
approaches. We used OPTICS [22], Affinity Propagation [33]
and MeanShift [29] to produce another set of clusters, and
compared the clusters with project A’s labels. To be fair to
these alternative clustering approaches, we performed the
same feature scaling and dimensionality reduction before
feeding the data into the algorithms. We used default parame-
ters for these other clustering algorithms. We show that OP-
TICS results in significantly lower homogeneity (0.471) and
completeness (0.163). Affinity Propagation produces slightly
better homogeneity (0.994) by producing more than 3000 clus-
ters in the project with 10,000+ VMs. This comes at the cost of
a significantly lower completeness (0.559). Conversely, Mean-
Shift achieves a higher completeness score (0.989) by having
giant, noisy clusters, but with lower homogeneity (0.701).

Merging. Without merging, we achieve a slightly better ho-
mogeneity score (0.996), but a much worse completeness
score (0.547). The high homogeneity is due to the fact that we
produce clusters with small internal variation in the process of
hierarchical clustering. The requirement of small internal vari-
ation divides VMs with similar traffic patterns into different
clusters and lowers the completeness score. Merging com-
bines similar clusters to significantly improve completeness
for project A (from 0.547 to 0.966) at the expense of a small
drop in homogeneity (from 0.996 to 0.984). This benefit of
merging is evident across all projects in the Carefully-Named
Group (Table 4). In some cases, the improvements in com-
pleteness are even more dramatic, increasing from 0.442 to
0.996 for project H.

Homog. Compl.
CloudCluster 0.984 0.966
Without feature scaling 0.812 0.822
Feature scaling: standardizer 0.939 0.953
Feature scaling: minmax scaler 0.974 0.948
Clustering: OPTICS [22] 0.471 0.163
Clustering: Affinity Prop [33] 0.994 0.559
Clustering: MeanShift [29] 0.701 0.989
Disable merging 0.996 0.547

Table 3: Compares the impact of different design choice on
project A’s result

Without Merging With Merging
Homog. Compl. Homog. Compl.

A 0.996 0.547 0.984 0.966
B 0.932 0.896 0.919 0.950
C 0.998 0.522 0.998 0.963
D 1.000 0.442 1.000 0.938
E 0.985 0.698 0.965 0.940
F 0.978 0.781 0.937 0.949
G 0.996 0.386 0.996 0.971
H 0.997 0.442 0.996 0.996

Table 4: Effect of merging on the Carefully-Named Group group

5 CloudCluster For Project Management
In this section, we describe several proof-of-concept ways in
which the output of CloudCluster can help cloud providers
provide their customers with actionable insights about the
configuration and management of their services.

5.1 Reconfiguration to Reduce Cost
Cloud providers often price traffic in multiple tiers: traffic
within the same cloud zone typically costs less than traffic
between VMs from different zones, regions or continents.
Customers engineer VM placements to reduce cost while
balancing availability and proximity to customers. Cloud-
Cluster can help identify opportunities for reconfiguring VM
placements to reduce costs. In this section, we discuss three
examples that illustrate these opportunities; future work can
develop systematic tools to discover such opportunities.

Figure 6 shows the distribution of traffic to other zones
from VMs of project A belonging to VM label L. CloudClus-
ter detects that VMs with this label belong to two different
clusters: one which sends traffic more-or-less uniformly to
VMs in 8 different zones (first cluster in Figure 6) and the
other which sends over 80% of its traffic to a single zone
(second cluster). A customer can potentially reconfigure the
placement of VMs of the latter cluster to avoid inter-zone
traffic. Although the traffic skew is visible across all VMs (so
the customer might have been able to detect it using the VM
label), CloudCluster is able to identify the precise set of VMs
to re-configure.

Using CloudCluster, the cloud provider can determine the
volume of intra-cluster and inter-cluster traffic, and determine
how much of this traffic crosses zone, region, or continent
boundaries. Using this, it can estimate cost savings resulting
from reconfigured VM placements. Figure 7 and Figure 8
illustrate cost savings from reconfiguration in two cases.

The first case is a cluster C from project A of VMs located in
different zones of a single cloud region. Almost 90% of traffic
in C is intra-zone, which is free or relatively cheap on most
cloud providers ([15], [8], [11]). However, the remaining
traffic traverses continental boundaries, and accounts for a
significant fraction of total cost charged to C. If the customer
were to provision a small cluster in the zone on the other
continent where the traffic comes from, it can reduce the cost
attributable to this cluster by 41.2% (Figure 7).

The second case is a cluster C′ of project A whose traffic is
largely inter-region (intra-zone traffic is < 0.1%). 92.3% of
egress traffic from C′ goes to zones in another region R, and
95.9% of its ingress traffic comes from VMs in a single zone
in R. Moving VMs in C′ to R (an egress-favored placement)
reduces cost by 21.1%, while moving these VMs to the zone
in R from which they receive most traffic (an ingress-favored
placement) reduces cost by 15.1% (Figure 8).

These are simplified examples; in practice, tools that sug-
gest re-configuration of VM placements will need to consider
other customer objectives such as availability and latency. We
have left development of such tools to future work, but Cloud-
Cluster’s clustering can be a valuable input to such tools.

5.2 Anomaly Detection
Large-scale cloud project outages are sometimes caused by
rapid increases in service workload, management operations
by the customer (incorrect service configuration), by the
provider (VM migration), or failures in the provider’s net-
work. These are often accompanied by sudden shifts in traffic
between VMs in the service or traffic to and from external en-
tities (e.g., customers of the cloud service). Such traffic shifts
may often be visible in the aggregate traffic between clusters.
Because our clusters correspond to functionally homogeneous
VMs, if one VM in cluster A starts communicating more with
a VM in cluster B, it is likely that all other VMs in A will also
start communicating more with VMs in B.

In this section, we present a preliminary evaluation of an
anomaly detector that tracks significant deviations in aggre-
gate inter-cluster traffic on each link in the inter-cluster graph
(Figure 1(e)). Such a detector can also help localize anomalies,
as we discuss below. In practice, we expect our anomaly detec-
tor to complement other approaches used by cloud providers.

The anomaly detector works as follows. For each edge in
the inter-cluster graph (an edge exists between two clusters if
their VMs communicate), it tracks at each aggregation win-
dow, the total volume in bytes, the total flow count, and the
number of communicating VM pairs between each pair of
clusters. When, for a given edge, any of these quantities de-
viates significantly from a windowed moving median [57],
we flag that deviation as an anomaly (we omit the details for
brevity). Because the inter-cluster graph is sparser than the
inter-VM graph (e.g., Figure 1(a)), we are able to scalably
identify correlated anomalies, where two or more commu-
nicating cluster pairs exhibit anomalous traffic at the same
time.
Trace Analysis and Results. To quantify the effectiveness of
this detector, we identified 25 time windows across different
projects where either (a) an internal anomaly detector that
uses a different methodology flagged anomalous traffic in the
project during the corresponding time window (17 instances)
or (b) the customer filed a trouble ticket (8 instances).

We then ran the CloudCluster-based anomaly detector on
these 25 time windows, and, in each case, were able to con-

0 1 2 3 4 5 6 7
Remote Cloud Zone

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
af

fic
 v

ol
um

e
to

 e
ac

h
zo

ne
 (%

) category
First Cluster of L
Second Cluster of L
All VMs with label L

Figure 6: CloudCluster finds VMs with
same label but different traffic patterns.

Original Reconfigured0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Co

st
Figure 7: Original vs. Reconfigured
placement cost

Original Egress
Favoured

Ingress
Favoured

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Co

st

Figure 8: Original vs. Egress-favored
vs. Ingress-favored placement cost

firm the existence of the anomaly8, and also to pinpoint which
cluster-pairs were responsible for the deviations. We have not
analyzed false positive rates; since we started with known
anomalies flagged by other systems. For the 8 customer-
reported incidents, our detector was able to correctly identify
the offending cluster-pairs (as determined in the post-mortem
reports). We identified two broad classes of anomalies: traf-
fic shifts and structural changes. In the first class, the inter-
cluster graph does not change, but traffic on some subset of
links changes significantly. In the second, new nodes and or
edges are added to the graph or nodes and edges are removed.
Of the 25, three were traffic shifts and the rest were structural
changes.9

Our detector is fast: the maximum processing latency to
compute the deviation scores, across all projects, was 92.3
milliseconds per time window.

The following paragraphs briefly describe some qualita-
tively different anomalies that we were able to detect; §A
contains a more detailed description.

Correlated traffic shift due to peering router failure. This
anomaly was reported by the network operator in reaction to a
peering router failure. Our detector observed that a cluster in
the region nearest the peering router saw a sudden reduction in
flow and byte counts. Concurrently, a cluster in another region,
(which, from label names, we determined was functionally
identical to the first cluster), saw an increase in traffic. We
suspect that the peering router failure diverted external traffic
to enter the cloud provider’s network at a different location,
but don’t have the instrumentation to confirm this.

Structural change due to VM migration. This anomaly
was reported by the internal anomaly detector. Our
CloudCluster-based anomaly detector identified a sequence
of structural changes across successive aggregation windows.
Recall that clusters are distinguished both by function and lo-

8A more detailed analysis of the detector performance, and comparisons
with other detection techniques, is beyond the scope of this paper.

9Some of these structural changes or traffic shifts might be intentional,
even though our approach flags them as (statistical) anomalies.

cation (§4.2). In this case, the structural changes were caused
by a migration of VMs from one server to another due to
scheduler-driven evictions. The migration was spread out
over multiple aggregation windows, so our detector noticed a
sequence of structural changes corresponding to progressive
migration of VMs from one server to another.

Structural change due to project reconfiguration. Our in-
ternal anomaly detector flagged anomalous traffic for a cloud
provider. The CloudCluster-based anomaly detector identified
a structural change: two clusters were removed from the graph
and one was added. The two initial clusters corresponded to
a singleton cluster containing a leader VM and another con-
taining 120 worker VMs. The new cluster contained the 121
VMs, encompassing both the leader and the workers. In this
case, it turns out that the customer had initiated the structural
change, decommissioning the older VMs in favor of another
set of VMs as part of an upgrade.

5.3 Potential Label Misconfiguration
As discussed in §4.2, several customers label VMs with pre-
cise function names and location information. We conjecture
that they use this to simplify project management. These VM
labels are often configured, either by hand or by a script. La-
bel misconfigurations can occur, and CloudCluster can be
used to detect the likely candidates. When a label misconfig-
uration occurs in a project whose VMs appear to be named
by function and location, i.e., when the project has a high
homogeneity and completeness, it manifests either as a label
conflict or a cluster conflict (§4.2).

Cluster Conflict. A cluster conflict occurs when VMs be-
long to different clusters, but have the same labels. Such a
conflict can either result from a misconfigured label, or from
a clustering error. To distinguish between those two cases, we
use a technique inspired by prior work in clustering on sil-
houette analysis [50], which attempts to measure the intrinsic
performance of clustering. This analysis assigns each item (or
VM, in our context) a score in the range [−1,1] that measures
how similar the VM is to its own cluster, compared to other

clusters.
We modified this idea to derive a metric that quantifies

whether a customer label is too generic (i.e., spans multiple
clusters) or too specific. Let Vl be the set of VMs that has a
customer-defined label l, but CloudCluster splits it up into n
clusters {C1,C2, ...Cn}. Let c̄l be the centroid, in feature space,
of the traffic features of all VMs in Vl . Let c̄i be the centroid
of the traffic features of all VMs in Ci (the Cis might contain
VMs not in Vl). For each cluster Ci, let ai be the average
distance of each VM in this cluster to c̄l and bi be the average
distance of each VM in this cluster to c̄i. Then, consider the
following metric: ms(i) = b(i)−a(i)

max(a(i),b(i)) .
Intuitively, if ms(i) < 0, each VM in the cluster is closer

to the cluster center than to the label’s center, so the labeling
is too generic. Conversely, if ms(i)> 0, then the label is too
specific. Either way, this indicates a mismatch between clus-
tering and customer-provided labeling, which can be used in
some cases to identify potential mis-labeled VMs.

To detect mis-labeling VMs using this technique, we apply
the following algorithm. Without loss of generality, assume
that C1 has the largest number of VMs with label l. For all
i > 1, if ms(i)< ψ (a conservative threshold < 0, we use -0.5),
we mark all VMs in Ci with label l as mis-named.

The output of this analysis is a list of potentially (we use
this term to indicate that, ultimately, any such mis-labeling
would have be be verified by a customer, since the customer
understands the intent behind the naming) mis-labeled VMs
that cause cluster conflicts.

Table 5 lists the fraction of potentially mis-labeled VMs
for four of our projects. These four projects belonged to a
customer who gave us feedback on our clustering results. The
fraction of mis-labeled VMs range from negligible amounts
(e.g., project H has 0.1% mis-named VMs) to a few percent
(for projects A, E and F). For these projects, we were able to
verify with the customer that our identification of mis-labeled
VMs was accurate. In these cases, the customer had changed
the functions in some VMs but forgot to update the VM labels.

Label conflicts. Mis-labeling can also cause label conflicts:
different labels within the same cluster. Table 5 also shows
the rate of occurrence of these. They happen less frequently,
and often fall into two categories. VMs labeled generically
such as “default” fall into the same cluster as VMs with more
specific labels (e.g., “app-server”). A second cause of mis-
labeling is inconsistent hyphenation (e.g., “appserver” vs.
“app-server”), or inconsistent abbreviations (e.g., using “es”
instead of “east”). We identified examples in the second cate-
gory using manual inspection; future work can automate the
detection of mis-labeling in this category using edit-distance
based string similarity analysis [55].

5.4 Potentially Mis-provisioned VMs
When configuring a VM, project owners can provision VM
resources by specifying the machine type for each VM. Ma-
chine types determine the capacity of the VM instances

Project Cluster Label Mis-provisioning
Conflict (%) Conflict (%) Rate (%)

A 4.62 0 1.59
E 5.75 3.15 0
F 7.26 0.10 0.80
H 0.09 0.04 0.38

Table 5: The percentage of VMs that are mis-labeled in each
project (§5.3), the rate of misprovisioning (§5.4).

in terms of CPU cores, memory and egress network band-
width [35]. Different machine types are priced differently,
so over-provisioning a VM can have cost implications. Mis-
provisioning can also impact performance: under-provisioned
VMs can result in stragglers, causing services to violate their
latency SLOs.

CloudCluster can identify mis-provisioned VMs by deter-
mining outlier machine types in a cluster. Since CloudClus-
ter’s clusters identify VMs performing a similar function, if
most VMs in a cluster are of machine type a, but a small
number are of machine type b, we can identify the latter set
as mis-labeled VMs. In determining the rate of mis-labeling,
we must filter out mis-labeled VMs. To be more robust to
clustering errors, we flag a VM as mis-labeled if it does not
lie at the edge of the cluster (as determined by distance from
the cluster centroid in feature space).

Table 5 shows the rate of mis-provisioning in 4 of the
projects in the Carefully-Named Group. A small number, 1%,
appear to be mis-provisioned. We say “appear to be” because
the operator cannot know the intent of the customer; they may
have deliberately provisioned these machines differently to
run additional tasks (e.g., compute bound jobs whose footprint
is not visible in the VM-to-VM traffic matrix). Any mis-
provisioning will ultimately have to be verified as such by
manual inspection by the customer.

5.5 Discussion
In §4.2, we said that acceptable values of homogeneity and
completeness depend upon what clustering is used for. We
conclude this section with a brief qualitative discussion of
this issue, leaving quantitative analysis to future work.

We have described two types of use cases in this section.
Reconfiguration and anomaly detection are based upon the
inter-cluster graph abstraction, and specifically upon inter-
cluster traffic volumes. For these cases, if most VMs (e.g.,
90%) in a cluster are functionally similar, the reconfiguration
decision, or the anomaly detection is likely to be correct.

Detecting mis-labeled or mis-provisioned VMs requires
comparing attributes of VMs within a cluster. This can be
more susceptible to false positives and false negatives, un-
less homogeneity and completeness are very high. Because
a cloud provider cannot always know the homogeneity and
completeness a priori, using clustering for these tasks requires
additional filtering steps to minimize false positives. For mis-
provisioned VMs, we filter candidates at the edge of the clus-
ter (§5.4). For mis-labeling, we use silhouette analysis (§5.3).

6 Related Work
Inferring Structure from Traffic. Complementary to Cloud-
Cluster, others have explored inferring host behavior and dis-
tributed system properties from network traffic. The closest
prior work [58] groups Internet hosts within each IP prefix
by traffic similarity, and explores how this can be used to
detect malicious behavior. Other work has modeled host-to-
host communication as a graph to understand properties of
inter-host communication [13, 14, 36], to infer botnet struc-
ture [45], or the logical structure of enterprise networks [16].
The body of work on tracing in distributed systems seeks
to infer the causal structure as well as other properties of
distributed systems from RPC traces to aid performance de-
bugging (e.g., [19,47,52]). Other work has used traffic to infer
specific characteristics of VMs in cloud settings: strongly con-
nected groups of VMs as candidates for migration [26], or
compromised VMs [23]. Some of these use clustering [26,58],
but do not consider scale and robustness to range of traffic
volumes.
Data Clustering. Clustering is a mature area of research,
with many established techniques such as K-Means [41], DB-
SCAN [32], OPTICS [22], AffinityPropogations [33], Hier-
archical Clustering [48], etc. That clustering is susceptible
to the curse of dimensionality is well-known [60]. Cluster-
ing in high dimensions has been explored extensively either
by: (a) using heuristics to determine attributes of sub-spaces
(e.g., CLIQUE [18] or SUBCLU [37]) or (b) designing spe-
cial distance measures (e.g., projected clustering, as in Pre-
DeCon [24] or PROCLUS [17]). In contrast, CloudCluster
explicitly reduces the dimension of the VM-to-VM traffic
to the point where conventional clustering techniques and
similarity measures are applicable.
Cloud Monitoring and Workload Characterization. Tan-
gentially relevant prior work has used CPU and memory uti-
lization traces to infer properties of VMs [31, 38, 42].

7 Conclusion
CloudCluster performs clustering on the VM-to-VM traffic
of cloud projects and yields the functional structure of the
cloud service. It overcomes the challenges imposed by scale
(cloud services contain tens of thousands of VMs), by orders-
of-magnitude variability in traffic volume and measurement
noise, and by the lack of prior knowledge of the cloud projects
(for number of clusters). The output of CloudCluster can help
detect potentially mis-provisioned or mis-labeled VMs, iden-
tify opportunities to reduce cost, and detect anomalies.
Future work. Several directions of future work remain, in-
cluding: identifying the frequency at which to apply Cloud-
Cluster to projects; incrementally adjusting clusters when
VMs leave or join; supporting traffic to cloud native services
such as storage; exploring better methods for determining the
cluster merging threshold; more thoroughly evaluating the ac-
curacy of cost reconfiguration, anomaly detection, or miscon-

figuration determination, and comparing their performance
against other alternatives; determining whether additional in-
formation from customers, obtained with their consent, can
improve the quality of the resulting functional structure.

References
[1] 6.3. preprocessing data. https://scikit-learn.org/stable/

modules/preprocessing.html#preprocessing.

[2] Azure monitor overview - azure monitor. https://docs.
microsoft.com/en-us/azure/azure-monitor/overview.

[3] Cloud monitoring | google cloud. https://cloud.google.
com/monitoring.

[4] Creating and managing projects. https:
//cloud.google.com/resource-manager/docs/creating-
managing-projects.

[5] Google cloud storage. https://cloud.google.com/storage.

[6] Google vpc. https://cloud.google.com/vpc/docs.

[7] Network and subnetwork terminology. https://cloud.
google.com/vpc/docs/vpc#subnets_vs_subnetworks.

[8] Network pricing|compute engine documentation|google
cloud. https://cloud.google.com/compute/network-
pricing.

[9] Regions and zones | compute engine documentation |
google cloud. https://cloud.google.com/compute/docs/
regions-zones.

[10] Using vpc flow logs. https://cloud.google.com/vpc/docs/
using-flow-logs.

[11] Virtual network pricing: Microsoft azure. https://azure.
microsoft.com/en-us/pricing/details/virtual-network/.

[12] Clouds project cloudwatch. https://aws.amazon.com/
cloudwatch/, 2000.

[13] Blinc. ACM SIGCOMM Computer Communication Re-
view, 35(4):229–240, 2005.

[14] Network monitoring using traffic dispersion graphs
(TDGs). Proceedings of the ACM SIGCOMM Inter-
net Measurement Conference, IMC, (c):315–320, 2007.

[15] Aws site-to-site vpn and accelerated site-to-site vpn con-
nection pricing. https://aws.amazon.com/vpn/pricing/,
2020.

[16] Role classification of hosts within enterprise networks
based on connection patterns. Proceedings of the Gen-
eral Track: 2003 USENIX Annual Technical Conference,
pages 15–28, 2020.

https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://cloud.google.com/monitoring
https://cloud.google.com/monitoring
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/storage
https://cloud.google.com/vpc/docs
https://cloud.google.com/vpc/docs/vpc#subnets_vs_subnetworks
https://cloud.google.com/vpc/docs/vpc#subnets_vs_subnetworks
https://cloud.google.com/compute/network-pricing
https://cloud.google.com/compute/network-pricing
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/vpc/docs/using-flow-logs
https://cloud.google.com/vpc/docs/using-flow-logs
https://azure.microsoft.com/en-us/pricing/details/virtual-network/
https://azure.microsoft.com/en-us/pricing/details/virtual-network/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/vpn/pricing/

[17] Charu C Aggarwal, Joel L Wolf, Philip S Yu, Cecilia
Procopiuc, and Jong Soo Park. Fast algorithms for pro-
jected clustering. ACM SIGMoD Record, 28(2):61–72,
1999.

[18] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunop-
ulos, and Prabhakar Raghavan. Automatic subspace
clustering of high dimensional data. Data Mining and
Knowledge Discovery, 11(1):5–33, 2005.

[19] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener,
Patrick Reynolds, and Athicha Muthitacharoen. Perfor-
mance debugging for distributed systems of black boxes.
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, page 74–89,
New York, NY, USA, 2003. Association for Computing
Machinery.

[20] Muhammad Amjad, Vishal Misra, Devavrat Shah, and
Dennis Shen. Mrsc: Multi-dimensional robust synthetic
control. Proc. ACM Meas. Anal. Comput. Syst., 3(2),
June 2019.

[21] Muhammad Amjad, Devavrat Shah, and Dennis Shen.
Robust synthetic control. Journal of Machine Learning
Research, 19(22):1–51, 2018.

[22] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel,
and Jörg Sander. Optics: ordering points to identify the
clustering structure. In ACM Sigmod record, volume 28,
pages 49–60. ACM, 1999.

[23] Behnaz Arzani, Selim Ciraci, Stefan Saroiu, Alec Wol-
man, Jack Stokes, Geoff Outhred, and Lechao Diwu. Pri-
vateeye: Scalable and privacy-preserving compromise
detection in the cloud. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 797–815, Santa Clara, CA, February 2020.
USENIX Association.

[24] Christian Bohm, K Railing, H-P Kriegel, and Peer
Kroger. Density connected clustering with local sub-
space preferences. In Fourth IEEE International Confer-
ence on Data Mining (ICDM’04), pages 27–34. IEEE,
2004.

[25] Josiah L. Carlson. Redis in Action. Manning Publica-
tions Co., USA, 2013.

[26] Marco Cello, Kang Xi, Jonathan H Chao, and Mario
Marchese. Traffic-aware clustering and vm migration in
distributed data center. In Proceedings of the 2014 ACM
SIGCOMM workshop on Distributed cloud computing,
pages 41–42, 2014.

[27] Sourav Chatterjee. Matrix estimation by universal
singular value thresholding. The Annals of Statistics,
43(1):177–214, Feb 2015.

[28] Michael B. Cohen, Sam Elder, Cameron Musco, Christo-
pher Musco, and Madalina Persu. Dimensionality re-
duction for k-means clustering and low rank approxima-
tion. In Proceedings of the Forty-Seventh Annual ACM
Symposium on Theory of Computing, STOC ’15, page
163–172, New York, NY, USA, 2015. Association for
Computing Machinery.

[29] D. Comaniciu and P. Meer. Mean shift: a robust ap-
proach toward feature space analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(5):603–619, May 2002.

[30] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao,
Lindsay Rolig, Dale Woodford, Yasushi Saito, Christo-
pher Taylor, Michal Szymaniak, and Ruth Wang. Span-
ner: Google’s globally-distributed database. In OSDI,
2012.

[31] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 153–167,
New York, NY, USA, 2017. Association for Computing
Machinery.

[32] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Pro-
ceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, page
226–231. AAAI Press, 1996.

[33] Brendan J. Frey and Delbert Dueck. Clustering
by passing messages between data points. Science,
315(5814):972–976, 2007.

[34] Nathan Halko, Per-Gunnar Martinsson, and Joel A.
Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decom-
positions, 2009.

[35] Google Inc. Machine types | compute engine documenta-
tion | google cloud. https://cloud.google.com/compute/
docs/machine-types.

[36] Yu Jin, Esam Sharafuddin, and Zhi-Li Zhang. Unveil-
ing core network-wide communication patterns through
application traffic activity graph decomposition. SIG-
METRICS Perform. Eval. Rev., 37(1):49–60, June 2009.

https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types

[37] Karin Kailing, Hans-Peter Kriegel, and Peer Kröger.
Density-connected subspace clustering for high-
dimensional data. In Proceedings of the 2004 SIAM
international conference on data mining, pages
246–256. SIAM, 2004.

[38] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis.
Workload characterization and prediction in the cloud:
A multiple time series approach. In 2012 IEEE Network
Operations and Management Symposium, pages 1287–
1294. IEEE, 2012.

[39] Avinash Lakshman and Prashant Malik. Cassandra: A
decentralized structured storage system. SIGOPS Oper.
Syst. Rev., 44(2):35–40, April 2010.

[40] Christophe Leys, Christophe Ley, Olivier Klein, Philippe
Bernard, and Laurent Licata. Detecting outliers: Do not
use standard deviation around the mean, use absolute
deviation around the median. Journal of Experimental
Social Psychology, 49(4):764–766, 2013.

[41] James MacQueen et al. Some methods for classifica-
tion and analysis of multivariate observations. In Pro-
ceedings of the fifth Berkeley symposium on mathemati-
cal statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA, 1967.

[42] Shruti Mahambre, Purushottam Kulkarni, Umesh Bel-
lur, Girish Chafle, and Deepak Deshpande. Workload
characterization for capacity planning and performance
management in iaas cloud. In 2012 IEEE International
Conference on Cloud Computing in Emerging Markets
(CCEM), pages 1–7. IEEE, 2012.

[43] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geof-
frey Romer, Shiva Shivakumar, Matt Tolton, and Theo
Vassilakis. Dremel: Interactive analysis of web-scale
datasets. Proc. VLDB Endow., 3(1–2):330–339, Septem-
ber 2010.

[44] Fionn Murtagh and Pierre Legendre. Ward’s hierarchical
clustering method: clustering criterion and agglomera-
tive algorithm. arXiv preprint arXiv:1111.6285, 2011.

[45] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong,
Matthew Caesar, and Nikita Borisov. Botgrep: Finding
p2p bots with structured graph analysis. In Proceedings
of the 19th USENIX Conference on Security, USENIX
Security’10, page 7, USA, 2010. USENIX Association.

[46] William M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American Statistical
Association, 66(336):846–850, 1971.

[47] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul,
Marcos K. Aguilera, and Amin Vahdat. WAP5: Black-
box performance debugging for wide-area systems. Pro-
ceedings of the 15th International Conference on World
Wide Web, pages 347–356, 2006.

[48] Lior Rokach and Oded Maimon. Clustering Methods,
pages 321–352. Springer US, Boston, MA, 2005.

[49] Andrew Rosenberg and Julia Hirschberg. V-measure:
A conditional entropy-based external cluster evaluation
measure. In Proceedings of the 2007 joint conference
on empirical methods in natural language processing
and computational natural language learning (EMNLP-
CoNLL), pages 410–420, 2007.

[50] Peter J. Rousseeuw. Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. Journal
of Computational and Applied Mathematics, 20:53 – 65,
1987.

[51] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath
Raghavan. Finding a" kneedle" in a haystack: Detecting
knee points in system behavior. In 2011 31st inter-
national conference on distributed computing systems
workshops, pages 166–171. IEEE, 2011.

[52] Benjamin H. Sigelman, Luiz André Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. Techni-
cal report, Google, Inc., 2010.

[53] Igor Sysoev et al. Nginx. Inc.,“nginx,” https://www.
nginx. com, 2004.

[54] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cim-
rman, Ian Henriksen, E. A. Quintero, Charles R Har-
ris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Con-
tributors. SciPy 1.0–Fundamental Algorithms for Sci-
entific Computing in Python. arXiv e-prints, page
arXiv:1907.10121, Jul 2019.

[55] Robert A Wagner and Michael J Fischer. The string-to-
string correction problem. Journal of the ACM (JACM),
21(1):168–173, 1974.

[56] Joe H. Ward. Hierarchical grouping to optimize an
objective function. Journal of the American Statistical
Association, 58(301):236–244, 1963.

[57] Eric W Weisstein. Moving median. https://mathworld.
wolfram.com/MovingMedian.html.

[58] Kuai Xu, Feng Wang, and Lin Gu. Network-aware be-
havior clustering of internet end hosts. In 2011 Pro-
ceedings IEEE INFOCOM, pages 2078–2086. IEEE,
2011.

[59] Y. Zhang and Z. Ge. Finding critical traffic matrices. In
2005 International Conference on Dependable Systems
and Networks (DSN’05), pages 188–197, 2005.

[60] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel.
A survey on unsupervised outlier detection in high-
dimensional numerical data. Statistical Analysis and
Data Mining: The ASA Data Science Journal, 5(5):363–
387, 2012.

https://mathworld.wolfram.com/MovingMedian.html
https://mathworld.wolfram.com/MovingMedian.html

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Cluster Pair Leg 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
22
23
25
26
27
28
29
30
31
32
33
34

Cl
us

te
r P

ai
r L

eg
 2

Flow Count

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 9: Cluster to Cluster flow count deviation scores

Appendix

A Detailed Explanation of Anomalies

Correlated traffic shift due to peering router failure. This
anomaly was reported by the network operator in reaction to a
peering router failure. Our detector observed that a cluster in
the region nearest the peering router saw a sudden reduction
in flow and byte counts. Concurrently, a cluster in another
region, (which, from label names, we determined was func-
tionally identical to the first cluster), saw an increase in traffic.
We suspect that the peering router failure diverted external
traffic to enter the cloud provider’s network at a different loca-
tion, but don’t have the instrumentation to confirm this. Figure
9 depicts the cluster to cluster deviations scores expressed
in terms of median absolute deviations (MAD) [40] with the
sign indicating whether the upper (e.g. positive) or lower (e.g.
negative) anomaly detection boundary was crossed. The x-
axis and y-axis represent either the source or destination of
the cluster pairs whose interactions are studied. The values
of the heat map show the MAD deviations observed between
the interacting cluster pair and is assigned a color based on
the color map where the color black indicates no deviation
and warmer (calmer) colors represent anomalous traffic char-
acteristic deviating above (below) the median traffic volume.
In the observed traffic shift, we were quickly able to identify
the cluster pairs impacted by the anomaly (e.g. |dev|> 5 in
Figure 9) that appear as the red, orange, and blue cells in the
heatmap, filter away clusters not impacted by the anomaly
that appear as black cells in the heatmap, and provide a project
wide summary of the anomaly.

Structural change due to VM migrations. This anomaly
was reported by the internal anomaly detector. Our
CloudCluster-based anomaly detector identified a sequence
of structural changes across successive aggregation window.
Recall that clusters are distinguished both by function and lo-
cation (§4.2). In this case, the structural changes were caused
by a migration of VMs from one server to another due to
scheduler-driven evictions. The migration was spread out

Region A
Region B
Region C
Region D

In
te

ra
ct

io
n

B
as

ed
 R

eg
io

na
l S

co
re

Figure 10: Regional anomaly scores during VM evic-
tion/migration

over multiple aggregation window, so our detector noticed
a sequence of structural changes corresponding to progres-
sive migration of VMs from one server to another. Figure
10, shows the regional-score, an average of all the cluster
to cluster deviation scores weighted by the number of VM
communication pairs, computed for every region. The recur-
ring structural changes manifest as plateaus and valleys in
the regional score observed. The valleys represent the time
windows where the new cluster behaviour is learnt and clus-
ters behave as normal, while the plateau’s illustrate the time
windows where there is a migration storm (e.g. significant
number of VM migrations).

Load increase. A customer reported, to the cloud provider, a
trouble ticket asking to root cause a missed service-level agree-
ment. The CloudCluster-based anomaly detector identified a
sudden increase of external traffic to clusters with memcached
servers in one of the customer’s projects. (CloudCluster mod-
els external traffic as a single node in the inter-cluster graph).
This was also concluded in the manual postmortem of the
event. Similar to Figure 9 where we characterize the devi-
ation in cluster pair interactions, here we observed a drift
in interactions against logical clusters (e.g. may not contain
VMs such as client IP) representing connections external to
the project. Using this, we identified the culprit traffic flows
through heavy hitter analysis and their origin, which happens
to be a project that auto scaled to keep up with traffic de-
mand and subsequently flooded the memcached projects with
requests.

Structural change due to project reconfiguration. Our in-
ternal anomaly detector flagged anomalous traffic for a cloud
provider. The CloudCluster-based anomaly detector identified
a structural change: two clusters were removed from the graph
and one was added. The two initial clusters corresponded to
a singleton cluster containing a master VM and another con-
taining 120 worker VMs. The new cluster contained the 121
VMs, encompassing both the master and the workers. In this
case, it turns out that the customer had initiated the structural

0

1
2

Figure 11: VMxVM Communication Graph (grouped by cluster
assignment)

change, decommissioning the older VMs in favor of another
set of VMs as part of an upgrade. Figure 11 shows the project
communication structure using a VMxVM matrix where the
values of the heatmap show the number of bytes sent between
VMs log scaled (e.g. white represents no communication and
warmer colors depict higher bandwidth consumption). The
VMs in the rows and columns are sorted by their cluster as-
signments wherein they are grouped and identified by the
color strip (e.g. cluster id) that appear on the top and left side
of the heatmap (e.g. blue, yellow and green). On visualizing
the project structure using this heatmap, the aforementioned
project re-instantiation evolves in the following manner: a)
Initially the top-left sub-structure (e.g. one master, 120 work-
ers) operated devoid of the bottom-right substructure. b) After
a downtime where the cluster-to-cluster deviation scores ex-
ceed a predefined threshold, we observed the bottom-right
structure, which had displaced the other sub-structure. There-
fore, by analyzing the traffic patterns, the network-engineer
can identify changes to the project structure.

	Introduction
	Anatomy of a Cloud Service
	CloudCluster Design
	Goals, Approach, and Overview
	Feature Scaling
	Estimating M
	Hierarchical Clustering
	Cluster Merging

	CloudCluster Evaluation
	Methodology and Metrics
	The Carefully-Named Group
	Coarsely-Named Group
	Impact of Design Choices

	CloudCluster For Project Management
	Reconfiguration to Reduce Cost
	Anomaly Detection
	Potential Label Misconfiguration
	Potentially Mis-provisioned VMs
	Discussion

	Related Work
	Conclusion
	Detailed Explanation of Anomalies

