
Gearbox: A Hierarchical Packet Scheduler for Approximate Weighted Fair
Queuing

Peixuan Gao
New York University

Anthony Dalleggio
New York University

Yang Xu *

Fudan University
H. Jonathan Chao

New York University

Abstract

Bandwidth allocation and performance isolation are crucial
to achieving network virtualization and guaranteeing ser-
vice quality in data centers as well as other network sys-
tems. Weighted Fair Queuing (WFQ) can achieve cus-
tomized bandwidth allocation and flow isolation; however,
its implementation in large-scale high-speed network sys-
tems is very challenging due to the high complexity of the
scheduling and the large number of queues required.

This paper proposes Gearbox, a scheduler primitive for
next-generation programmable switches and smart NICs that
practically approximates WFQ. Gearbox consists of a logi-
cal hierarchy of queuing levels, which accommodate a wide
range of packet departure times using a relatively small
number of FIFOs. Gearbox’s enqueue and dequeue opera-
tions have O(1) time complexity, which makes it suitable to
cope with high-speed line rates. Gearbox provides its sim-
plicity and performance advantages by allowing slight dis-
crepancies in packet departure time from strict WFQ. We
show that Gearbox’s normalized departure time discrepancy
is bounded and has a negligible impact on bandwidth alloca-
tion and flow completion time (FCT).

We implement Gearbox in NS2 and in VHDL, targeted
to a Xilinx Alveo U250 card with an XCVU13P FPGA.
The NS2 evaluation results show that Gearbox closely ap-
proximates WFQ and achieves weighted max-min fairness
in bandwidth allocation as well as flow isolation. Gearbox
provides FCT performance comparable to ideal WFQ. The
Gearbox FPGA prototype runs at 350MHz and achieves full
line rate for 100GbE with packets larger than 123 bytes.
Gearbox consumes less than 1% of the FPGA’s logic re-
sources and less than 4% of its internal block memory.

1 Introduction

Bandwidth allocation and isolation are key to network vir-
tualization in data centers and the performance of network
systems (e.g., FCT, packet tail latency, and QoS guarantee).
WFQ is an ideal packet scheduling scheme that can achieve
bandwidth guaranties and performance isolation, as well as
other objectives, such as minimizing average FCT and re-
ducing tail packet latency.

*Corresponding author

However, it is very challenging to implement a WFQ
packet scheduler in large-scale high-speed network systems
(e.g., systems with millions of active flows and link capaci-
ties of hundreds of Gbps). Although several hardware sched-
ulers have been proposed in the past to sort or sequence pack-
ets based on their departure times, most of them do not scale
well with system size [8] [9] [10] [4] [17], except for a few
cutting-edge SoC chips [11] [5]. Push-in First-out (PIFO)
[27] [28] is a viable solution but it does not scale easily due
to the large number of parallel rank comparisons. More re-
cent works such as AFQ [24] and PCQ [25] are based on the
idea of calendar queues [7] [31] and have been implemented
on emerging programmable switches. However, to provide
the packet serving order of an ideal scheduler, AFQ requires
a large number of queues while PCQ suffers from additional
memory accesses due to frequent packet re-circulation and
packet migration between queues.

We observe that by allowing a slight packet departure or-
der skew in the WFQ, we have the opportunity to greatly sim-
plify its implementation. We define departure time discrep-
ancy (DTD) as the difference between the system time when
a packet is served and its departure time assigned by WFQ
and normalized DTD as DTD normalized to the expected de-
lay 1. In fact, packets with different expected delays in ideal
WFQ scheduling have different tolerances to such DTD.
Packets with longer expected delays can tolerate larger DTD
than those with shorter expected delays. By taking advan-
tage of this observation, we propose a new packet scheduler,
called Gearbox, that approximates WFQ with a bounded nor-
malized packet DTD. Gearbox adopts the idea of calendar
queues [7] [31] and places packets with different expected
delays in different logical levels of the calendar queues upon
their arrival. When implemented physically, the queues are
in fact individual FIFOs arranged into independent group-
ings. Gearbox can accommodate a very large range of depar-
ture times while using a relatively small number of FIFOs.
The simplicity of Gearbox’s approach makes it suitable for
implementation on next-gen programmable switches as well
as smart NICs which typically include FPGAs [15]. Note
that by changing the ‘departure time’ in WFQ to other pri-
ority ranks calculated by other scheduling schemes (e.g., re-

1The departure time refers to the virtual departure time in WFQ [14] [22]
[23]. The system time refers to the virtual system time in WFQ. When all
the admitted flows are active, the virtual system time runs as fast as the real
time.

maining flow size in pFabric [2]), Gearbox can approximate
other scheduling schemes as a programmable scheduler. We
summarize the contributions of this paper as follows:

• Provide a close approximation of WFQ with bounded
normalized DTD for packets. Gearbox schedules pack-
ets with different expected delays using calendar queues
with different granularities. Such tiered granularity al-
lows Gearbox to closely approximate ideal WFQ with a
relatively small number of FIFOs while guaranteeing a
bounded normalized DTD.

• Offer scalability with simple implementation. Gearbox
is implemented using queues (FIFOs) from a flat array
that are arranged into logical levels. This non-hierarchical
FIFO-based physical implementation allows Gearbox to
admit a large number of packets and does not presume the
existence of queue hierarchy in next-gen programmable
switches [24] [25].

• Implement Gearbox in NS2 with extensive packet-
based evaluations. We implement Gearbox in NS2 [21]
and perform extensive packet-based evaluations. The re-
sults show that Gearbox closely approximates ideal WFQ
and achieves a good weighted max-min fairness with per-
flow isolation even in a short time scale. Our simulations
based on a fat-tree topology show that Gearbox has an
FCT performance closely matching the ideal WFQ using a
PIFO.

• Implement Gearbox in VHDL targeting an FPGA.
We implement a Gearbox VHDL prototype and target
a Xilinx Alveo U250 FPGA card with a mid-speed
grade XCVU13P FPGA. The Gearbox prototype runs at
350MHz and reaches full 100GbE line rate with packets
larger than 123 bytes2. Based on the implementation re-
port, Gearbox uses less than 1% of the target FPGA logic
resources and less than 4% of its block random access
memories (BRAM) as detailed further in Section 4.

The rest of the paper is organized as follows. Section
2 introduces the background and motivation of our work.
Section 3 presents the detailed mechanism of the Gearbox
scheduler and its extensions. Section 4 presents NS2 evalua-
tion and the Gearbox hardware prototype. We discuss related
works in Section 5 and conclude the paper in Section 6.

2 Background and Motivation

2.1 Weighted Fair Queuing
Bandwidth allocation and isolation are critical in data cen-
ters as well as other network systems [13] [18] [30] [3] [19].

2The VHDL design runs at 350 MHz in the target FPGA and performs
enqueues and dequeues every 4 clock cycles, sustaining a packet rate of 87.5
Mpkts/sec. For Ethernet with a Preamble of 8 bytes and IFG of 12 bytes, the
line bit rate for 123-byte packets is: 87.5M×(8+123+12)×8≈ 100Gb/s.

These attributes are also essential to network performance
such as max-min fairness, FCT, and tail latency [20].

WFQ [14] [22] [23] is the most effective algorithm to allo-
cate bandwidth among flows and provide per-flow isolation.
WFQ assigns a departure time to each packet and guarantees
bandwidth allocation by scheduling packets in ascending or-
der of their departure time3. For each packet scheduled by
WFQ, its expected delay is its packet size divided by its as-
signed rate provided that the flow’s traffic has been shaped.
The expected delay is equal to the difference between the as-
signed departure time and the system time when the packet
arrives.

2.2 Challenges of a WFQ Packet Scheduler

The major challenge of implementing WFQ on high-speed
switches is the limited time to process each packet. For 64-
byte packets, a scheduler for a 100GbE link has a processing
time of only 6.72 ns4. In addition, sorting packets accord-
ing to their departure time usually has a time complexity
of O(logN) [12], where N is the number of total packets or
flows and could be on the order of several thousands. Main-
taining a sorted list of packets in the limited packet process-
ing time on high-speed links is very challenging.

An ASIC-based hardware sorter called Sequencer [8] [9]
[10] inserts each arriving packet into a proper position in
a queue according to its departure time. However, the Se-
quencer is not very scalable due to its high power consump-
tion and chip area cost to support the parallel comparison
of every arriving packet’s departure time to all others’ in
the queue. The limited scalability of Sequencer precludes
it from being used in a typical shared-memory switch in a
data center [6] (e.g., with buffer size of ∼60K packets). The
pipeline heap (P-heap) [4] [17] implements a WFQ scheduler
with better scalability, but it is required for each output port,
which results in significant chip area consumption [27], mak-
ing a P-heap based WFQ scheduler on commodity switches
less practical. Recent work on Pushed-in First-out (PIFO)
[27] [28] performs parallel packet rank comparisons (similar
to above-mentioned Scheduler), which limits its applicabil-
ity in large high-speed switches.

A calendar queue, introduced by Randy Brown [7] and
used in Timer Wheels [31] and used in Approximate Fair
Queuing (AFQ) [24] and Programmable Calendar Queues
(PCQ) [25], is scalable due to its implementation simplicity
(only uses FIFOs). As a trade-off, calendar queues relax the
packet sorting order compared to an ideal WFQ scheduler.
Unlike in ideal WFQ, a calendar queue only sorts packets ap-
proximately in the ascending order of their departure times

3In a WFQ scheduler, the packet with the smallest departure time leaves
the scheduler first.

4It is possible to reduce the scheduling rate by using input queuing to
combine small packets into a single larger packet. E.g., two 64-byte packets
belonging to the same flow can be scheduled as a single 128-byte packet.

since its accuracy is limited by the granularity of the sorting
buckets. Moreover, calendar queues also suffer from calen-
dar range overflow when the available number of queues can-
not accommodate the wide range of departure times. To ad-
dress the range overflow problem, modifications to calendar
queues have been proposed to accept packets with larger de-
parture times instead of dropping them [7][25]. These mod-
ifications consist of recirculating out-of-range packets to the
end of the queues to delay them until they reach their de-
parture times. When implemented on high-speed switches,
calendar queue packet schedulers with packet recirculation
impose additional demands on memory bandwidth due to the
accesses for both incoming and recirculated packets. We dis-
cuss this further in Section 2.4.

2.3 Granularity of the Scheduler and Depar-
ture Time Discrepancy

The calendar queue scheduler trades some packet serving or-
der accuracy for simplicity and scalability. Rather than sort-
ing packets perfectly in the ascending order of their depar-
ture times, the calendar queue scheduler only sorts packets
approximately compared to ideal WFQ. This approximation
is due to the FIFO-based structure of the calendar queue [7]:
a calendar queue only sorts packets by placing them into dif-
ferent FIFOs or buckets. Each FIFO in a calendar queue can-
not differentiate the departure times of the packets in it. Here
we quantify the scheduling precision of a calendar queue
scheduler as the ‘granularity of the scheduler’.

Granularity of the scheduler: the minimal departure
time difference that a scheduler can discriminate, noted as
g.

Consider the example in Figure 1. For the scheduler in
Figure 1(a), each queue represents one virtual time unit and
the scheduler can discriminate between the departure times
with a difference of 1, which means it has a granularity g= 1.
The scheduler in Figure 1(b) applies a coarser granularity
g= 10. This scheduler can only discriminate between packet
departure times based on the tens digit of their departure
time.

With tiered granularities, calendar queue schedulers sort
packets into different approximate orders when compared
with ideal WFQ. We formally define the concept of ‘depar-
ture time discrepancy (DTD)’ to quantify the difference be-
tween the approximate serving order and that of ideal WFQ.

Departure time discrepancy (DTD): the difference be-
tween the system time when a packet leaves the scheduler
and its departure time as scheduled by WFQ. We denote the
kth packet in flow i as P(i,k) and its DTD as d(i,k).

d(i,k) =

{
D(i,k)−F(i,k) ,D(i,k) > F(i,k)
0 , otherwise

(1)

Here F(i,k) is the ideal departure time as calculated by the

Figure 1: Different granularities

WFQ scheduler for P(i,k) and D(i,k) is the actual departure
time of packet P(i,k).

DTD shows the difference of the packet serving order be-
tween a calendar queue scheduler and an ideal WFQ. It indi-
cates how well a calendar queue scheduler approximates an
ideal WFQ from a packet’s perspective. A small DTD indi-
cates that the scheduler approximates an ideal WFQ closely
and a large DTD, that a packet may experience a delay larger
than its expected delay, which further leads to increased FCT
or other consequences.

For a calendar-queue-based scheduler with a limited num-
ber of queues and fixed granularity [24] [25], different lev-
els of granularity have pros and cons. Schedulers with finer
granularity provide smaller DTDs. However, they only ac-
commodate a narrow range of departure times and are there-
fore more prone to calendar range overflow. A rotating cal-
endar scheduler consisting of M queues covers only M ∗ g
future virtual time units. Packets with departure times be-
yond this bound will be dropped due to calendar range over-
flow, as shown in Figure 1(a). With a small number of
available queues, we can consider the scheduler as having
a shallow buffer, which is easy to overflow. For services re-
quiring a certain amount of burstiness tolerance, this shal-
low buffer could lead to frequent packet drops. Further-
more, flows assigned relatively low bandwidths, which lead
to large departure times, could experience excessive packet
drops. This makes such fine-grained schedulers unsuitable
to handle large variations in weighted bandwidth allocation.
Schedulers with a coarser granularity alleviate the calendar
range overflow issue by covering a wider range of departure
times in the future. However, one obvious downside of using
a coarse granularity is larger DTDs. Consequently, packets
in the same queue may not be scheduled according to the
order of their departure times. For example, in Figure 1(b)
the green packet departs after packets with larger departure
times in the coarse-grained scheduler.

As shown in the examples in Figure 1, scheduler granular-
ity leads to a trade-off between fewer calendar range over-
flows and smaller DTDs.

2.4 Normalized DTD

How do we determine an appropriate granularity for the
scheduler? One could argue that it is always better to have
a scheduler with finer granularity. But is it necessary to
achieve such a small DTD for all packets?

If we need to maintain a fine granularity while covering
a wide departure time range, the total number of queues re-
quired would become very large. This design approach con-
flicts with the goal of a simple implementation. The time
complexity of managing thousands of queues is very high
and most switches may not have the required number of
queues.

Another approach for providing fine scheduler granular-
ity while preventing calendar range overflow is packet re-
circulation. The classic calendar queue [7] and Timer Wheel
[31] place all packets into their queues. Packets scheduled
too far in the future are simply enqueued in a queue roughly
determined by the departure time modulo the total number
of queues, and recirculated before their departure times be-
come due. This will lead to additional memory bandwidth
consumption, where memory bandwidth is very often the
limiting factor in a networking equipment [32] [16]. Exces-
sive packet recirculation can use up valuable shared memory
bandwidth and lead to a significant drop in switch through-
put. A recent work, PCQ [25], implements an alternative
packet recirculation scheme. PCQ arranges calendar queues
in multiple levels with different granularities. When PCQ
finishes serving all the packets in the lower level, it recircu-
lates and deposits all packets from a head queue in the higher
level to appropriate queues in the lower level. Such a packet
recirculation scheme can still lead to throughput reduction
on high-speed switches.

Based on the above analysis, providing fine granularity
with a wide range of packet departure times is resource inten-
sive. But is it really necessary? We observe that packets have
different tolerances to DTDs depending on their expected de-
lays upon arrival as mentioned in Section 2.1. Packets with
a smaller expected delay usually expect to be served shortly
and are sensitive to small differences in the scheduling order.
For these packets, a fine-grained scheduler is necessary to
guarantee a small DTD. However, packets with larger depar-
ture times upon arrival can tolerate larger DTDs. These pack-
ets usually belong to flows with low assigned bandwidths:
WFQ assigns these packets with large departure times to
achieve bandwidth weighted max-min fairness in the long
run. For these packets, their large expected delay makes it
unnecessary to schedule them with fine granularity.

According to the above analysis, it is more appropriate to
consider a packet’s DTD based on its tolerance to it. We
therefore normalize a packet’s DTD to its expected delay.

Normalized DTD: the DTD normalized to the packet’s
expected delay, noted as dn(i,k).

Figure 2: Gearbox System-level Application

dn(i,k) =

{D(i,k)−F(i,k)
F(i,k)−A(i,k)

,D(i,k) > F(i,k)
0 , otherwise

(2)

Here A(i,k) is the system time ts when packet P(i,k) arrives at
the scheduler, F(i,k) is the ideal departure time for packet P(i,k)
determined by the WFQ scheduler, and D(i,k) is the actual
departure time of packet P(i,k).

For example, say that packet P(A,1) and packet P(B,1) ar-
rive at the scheduler when system time ts = 10. Packet P(A,1)
has an ideal departure time F(A,1) = 11 and packet P(B,1) has
an ideal departure time F(B,1) = 91. Assume the scheduler
applies a coarse granularity g = 10. Due to the coarse granu-
larity, packet P(A,1) leaves the scheduler at ts = 19 and packet
P(B,1) leaves the scheduler at ts = 99. Both of the packets
have a DTD of 8. Although the two packets have the same
DTD, they have different tolerances to it. The expected delay
of packet P(A,1) and P(B,1) is 11− 10 = 1 and 91− 10 = 81
respectively. When we evaluate their normalized DTD, we
have dn(A,1) = 8/1 = 8 and dn(B,1) = 8/81≈ 0.1. This means
packet P(A,1) is experiencing a delay that is 8 times its ex-
pected delay while packet P(B,1) has a delay only 1.1 times
its expected delay. This indicates such granularity is appro-
priate for packet P(B,1) but is too coarse for packet P(A,1). This
example shows that it is difficult to find an appropriate fixed
granularity to schedule packets with different expected de-
lays while satisfying DTD bounds.

3 Gearbox: Hierarchical Packet Scheduler

3.1 Basic Idea of Gearbox
Based on our analysis in Section 2.4, it is more appropriate
to guarantee different DTD bounds for packets with different
expected delays. In this case, we need a scheduler with flex-
ible granularity to serve different packets. Thus, the sched-
uler must guarantee a low normalized DTD while keeping
the implementation simple. We introduce Gearbox, a hierar-
chical packet scheduler that closely approximates WFQ and
is simple to implement.

Figure 2 shows a simplified system-level application of
Gearbox. Incoming packets are stored in the Packet Buffer.
The packet header is sent to the packet Parser & Classifier to
identify the flow (e.g., using 5-tuple classification) and deter-
mine the packet length. The Departure Time Calculator com-

Figure 3: Gearbox: Hierarchical FIFO-based scheduler

putes the packet’s departure time and forwards it along with
the packet descriptor (length, departure time, and enqueue
Packet Pointer from Packet Buffer) to Gearbox to enqueue
the packet. Upon request from a controller (not shown) Gear-
box dequeues stored packet descriptors according to a calen-
dar order described in detail below and forwards the descrip-
tors to the Packet Buffer that outputs the packets. We further
present the smart NIC use case and multi-pipeline use case
of Gearbox in Appendix B.

Gearbox arranges FIFO-based calendar queues into ‘log-
ical levels’ with different granularities, achieving the bene-
fits of calendar queue schedulers with different granularities
to serve packets with different expected delays. Lower log-
ical levels with finer granularity provide smaller DTD for
packets with departure times that are close to current system
time upon arrival. Higher logical levels with coarser gran-
ularity serve packets with large departure times and cover a
wider departure time range, reducing packet loss due to cal-
endar range overflow. By providing tiered scheduling gran-
ularity, Gearbox guarantees a low normalized DTD for all
packets with a relatively small number of queues. Moreover,
Gearbox eliminates packet recirculation by directly serving
packets at all levels based on our ‘Compound FIFO’ con-
cept introduced in Section 3.2. This eliminates the additional
memory accesses due to recirculation and allows Gearbox to
achieve a high packet processing rate efficiently.

Figure 3 shows an example of the Gearbox hierarchical
scheduler. Consider a scheduler with 30 available queues.
Gearbox arranges them into 3 logical levels with different
granularities, each logical level containing 10 queues. Level
1 has the finest granularity g1 = 1 , level 2 has a coarser
granularity, g2 = 10 and level 3 has the coarsest granularity,
g3 = 100. In this example, packets with a departure time
within 10 virtual time units in the future upon arrival are
enqueued in level 1 and are scheduled with the granularity
of g = 1. Packets with a departure time larger than 10 but
smaller than 100 virtual time units in the future upon arrival
are enqueued in level 2. Other packets with departure time
between 100 and 1000 virtual time units in the future upon

Table 1: TERMS AND NOTATIONS

Notation Description
P(i,k) kth packet in flow i
F(i,k) Departure time of packet P(i,k) assigned by WFQ
A(i,k) System time when packet P(i,k) arrives at the scheduler
D(i,k) System time when packet P(i,k) leaves the scheduler
d(i,k) Departure time discrepancy (DTD) of packet P(i,k)
dn(i,k) Normalized DTD of packet P(i,k)
ts Current system virtual time
L Total levels of the scheduler
Ml Total number of FIFOs at level l
gl Granularity of level l
Q(l, f) FIFO f at level l

arrival are enqueued in level 3.
Note that the ‘levels’ in Gearbox are logical concepts.

When implemented physically, they are in fact individual
queues (FIFOs) arranged into independent groupings, which
means Gearbox only requires a single level of queues in the
hardware. We’ll further discuss this in Sections 3.2 and 3.3.
As a result, Gearbox can be implemented on devices that do
not support hierarchy.

In section 3.4, we prove that Gearbox guarantees a low
normalized DTD for all packets. Our evaluation shows
that Gearbox closely approximates ideal WFQ from a user’s
point of view. Gearbox can be thought of as a clock. The
lower logical level with finer granularity is like the second
hand, serving packets in units of seconds. The higher logical
levels are like the minute hand or the hour hand, admitting
more packets with a larger departure time and serving them
with a coarser granularity. Each logical level of the sched-
uler cooperates to schedule packets with different granulari-
ties, which makes the scheduler just like a gearbox shifting
between different gears.

To better illustrate the detailed schemes in Gearbox, we
summarize the related concepts and notations in Table 1. We
further generalize the multi-level architecture of the Gearbox
scheduler. The scheduler contains L logical levels of calen-
dar queues, each one with a different granularity gl . Each
logical level of the scheduler contains Ml FIFOs and covers
a departure time range of [ts, ts +(Ml ∗gl)).

3.2 Compound FIFO

Researchers have tried to arrange the calendar queues in hi-
erarchical structures, however, their implementations are not
suitable for the ultra-high-speed switches due to packet re-
circulation and the short packet processing time.

To eliminate packet re-circulation, Gearbox applies the
concept of a ‘Compound FIFO’ to directly schedule pack-
ets in different levels efficiently. As Figure 3 shows, the
compound FIFO consists of the current serving FIFO in
each level. In the example, the compound FIFO consists of
FIFO1 at level 3, FIFO2 at level 2 and FIFO3 at level 1,

representing the current system time ts = 123. Note that all
the FIFOs in the compound FIFO cover the current system
time ts, which means that the individual FIFOs that make up
the compound FIFO possibly contain packets that need to be
served at the current system time.

Gearbox serves packets in the compound FIFO using a
factor that is inversely proportional to the granularity of the
level that each queue belongs to. Gearbox serves packets
from the lowest-level queue to the highest-level queue in the
compound FIFO. Since the lowest-level has the finest gran-
ularity, the departure time of all the packets in this queue
equals the current system time ts. Gearbox serves all the
packets in the queue in the lowest level. After draining the
packets in the lowest-level queue, Gearbox starts to serve the
queue at the next higher level. At each of the higher levels,
we serve a number of bytes (rounded up to a whole number
of packets) that is inversely proportional to the level’s gran-
ularity gl

5. Gearbox finishes serving the compound FIFO
when it finishes serving all the queues within it according to
their levels. After serving the compound FIFO, Gearbox up-
dates current system time ts to the next non-empty compound
FIFO.

As an illustration of serving packets from the different lev-
els, the FIFOs in the pink box in Figure 3 are dequeued as
follows. Gearbox first drains all the packets in FIFO3 at
level 1. After that, since level 2 has the granularity of g2 = 10
and FIFO2 at level 2 covers the time range from 120 to 129,
Gearbox serves 1/10 packets in this queue. Likewise, Gear-
box serves 1/100 of the packets in FIFO1 at level 3. After
serving the correct proportion of packets in the queue at each
level, Gearbox increases its current system time ts by 1 and
updates the compound FIFO based on the new system time
ts = 124.

The key contribution of the ‘Compound FIFO’ is freeing
the scheduler from packet recirculation. By directly serving
queues in different levels using a factor that inversely pro-
portional to their granularity, Gearbox eliminates the need
to recirculate packets. This means Gearbox’s dequeue pro-
cess is as simple as popping from a FIFO. This allows Gear-
box to easily achieve a high packet processing rates on core
switches. The trade-off is increased DTD in the higher lev-
els.

3.3 Enqueue and Dequeue Processes

Enqueue Process The Gearbox packet enqueue process is
straightforward. To enqueue a packet, Gearbox needs to de-
termine the correct level and the destination FIFO for the
arriving packet. Gearbox first finds the level to enqueue us-
ing the difference between the current system time ts and the
departure time of the packet F(i,k). The packet will enqueue

5In the VHDL implementation the granularity gl of each level is a power
of 2, to implement the inverse proportional calculation using bit shifting.

the lowest possible level that covers this interval. After find-
ing the enqueue level, Gearbox simply divides the interval
mentioned above by granularity gl at this level to find the
corresponding FIFO to enqueue.

Figure 3 shows an example of Gearbox’s enqueue process.
In the example, Gearbox has 3 levels covering the depar-
ture time range [ts, ts + 9], [ts, ts + 99], [ts, ts + 999], respec-
tively. The pink packet with a departure time of 135, arrives
at the scheduler when ts = 123. Upon the packet’s arrival,
the scheduler calculates the interval F(i,k)− ts = 12. This in-
terval falls into the virtual time range covered by level 2.
When we divide the interval 12 by the granularity g2, we
have b12/10c = 1, which indicates that this packet is en-
queued in the FIFO next to the current serving FIFO in this
level. The enqueue process is summarized in Algorithm 1.

Algorithm 1 Enqueue Process

1: function ENQUEUE PACKET(P(i,k))
2: for level l from 1 to L do
3: if d(F(i,k)− ts)/gle ≤Ml then
4: f = b(F(i,k)− ts)/glc
5: P(i,k) enqueue f th FIFO following the

current serving FIFO
6: return
7: Drop packet P(i,k)

Dequeue Process As we have introduced the compound
FIFO in Section 3.2, the dequeue process of Gearbox was
described above as serving the compound FIFO. We gen-
eralize Gearbox’s dequeue process with the pseudo-code in
Algorithm 2, where fl is the FIFO of level l in the compound
FIFO

Algorithm 2 Dequeue Process

1: function DEQUEUE PROCESS
2: for level l from 1 to L do
3: if Q(l, fl) is not empty then
4: dequeue Q(l, fl) up to Size(Q(l, fl))/gl

3.4 Normalized DTD Analysis
We previously defined the normalized DTD dn(i,k) as the
DTD normalized to the packet’s expected delay in equation
(2). Now we need to determine its bound in Gearbox. Based
on the above expression, the maximum value of dn(i,k) oc-
curs when DTD is at the maximum value and the expected
delay is at the minimum value. For a packet at level l, the
maximum DTD equals the level’s granularity gl . Then we
have:

max{D(i,k)−F(i,k)}= gl (3)

We need to find the minimal expected packet delay pos-
sible at level l. Based on the enqueue process described in
section 3.3, packets enqueue at different levels based on their
expected delay. Only packets with an expected delay be-
tween gl and gl ∗Ml will enqueue at level l. Therefore, we
have minimal expected delay:

min{F(i,k)−A(i,k)}= gl (4)

From equation (3) and (4), we have maximum delay:

max{D(i,k)−A(i,k)}= 2gl (5)

Then from (4) and (5) we have maximum normalized
DTD:

max{dn(i,k)}= max{
D(i,k)−F(i,k)
F(i,k)−A(i,k)

}= 2gl−gl

gl
= 1 (6)

The maximum normalized DTD has an upper bound of
1, which means, in the worst case, that a packet scheduled
by Gearbox will have a maximum delay that is twice its ex-
pected delay in WFQ. In other words, a packet that expects
t microseconds delay in a WFQ scheduler will experience at
most 2t microseconds delay in Gearbox in the worst case6.
We evaluate the normalized DTD in actual time using simu-
lations and provide our evaluation results in Section 4.

3.5 The Packet Out-of-order Issue
Packets in the hierarchical calendar queue scheduler may ex-
perience a packet out-of-order issue. According to the archi-
tecture of Gearbox, FIFOs at different levels might cover an
overlapping virtual time range. As a result, a packet P(i,k)
with a departure time F(i,k) may enqueue at any level of the
scheduler, depending on its arrival time A(i,k). Similarly, a
subsequent packet P(i,k+1) from the same flow may enqueue
at a different level. When two packets from the same flow
enqueue in different levels in the scheduler, the relative or-
der of the packets is not deterministic. It is possible that
packet P(i,k) leave later than the subsequent packet P(i,k+1) if
it is enqueued at a different level in the scheduler, causing
the packets to be dequeued out of order.

Figure 4 shows an example of the packet out-of-order is-
sue. In the figure, packets A1 and A2 arrive at the scheduler
when ts = 0. Since both packets have a departure time ex-
ceeding ts + 9, they cannot be enqueued at level 1 and are
thus enqueued in FIFO1 at level 2. Later, the system time
ts updates to ts = 10. A new packet A3 from the same flow
arrives at the scheduler with a departure time of F(A,3) = 12.
At this moment, F(A,3)− ts = 2 < 10 and the scheduler places
A3 in FIFO2 at level 1. At this point, packets from flow A

6The delay discrepancy may be smaller than 2x if all the flows are not
active and the packet has an earlier opportunity to be dequeued

Figure 4: The packet out-of-order issue

are placed at different levels. As the scheduler starts to serve
packet A3 when ts = 12, packets A1 and A2 are still queued
up at the tail of FIFO1 at level 2. In this case, packet A3
leaves before packets A1 and A2.

3.6 Solution to the Packet Out-of-order Issue
We introduce two modifications to eliminate the uncertainty
in the packet serving order. First, we do not ‘wrap around’
FIFOs in the same level. This means that after the scheduler
drains a FIFO and starts to serve the next one, the drained
FIFO does not enqueue any packets until the scheduler fin-
ishes serving all the packets in the entire level. Second, we
track the ‘last packet enqueued level’ for each flow, noted as
Li, where i is the flow id. When a new packet P(i,k) arrives
at the scheduler, it is enqueued in a level equal to or higher
than level Li.

Let’s consider the same example in Figure 4 after applying
the solution. When packet A1 and A2 enqueue level 2 of the
scheduler, Gearbox marks flow A’s last packet enqueue level
as LA = 2. When packet A3 arrives at the scheduler, although
F(A,3)− ts = 2 < 10, the scheduler will only place packet A3
into a level equal or larger than LA = 2. In this case, Gearbox
places packet A3 in FIFO1 at level 2 right after packet A1
and A2. As a result, it is scheduled after its preceding packets
A1 and A2. Consequently, these modifications eliminate the
packet out-of-order issue.

The modifications mentioned above may lead to side ef-
fects that could potentially increase the DTD of packets. The
flows with input rates higher than their allocated rates will
enqueue and stay in a higher level, where they will suffer
from a coarser granularity and higher DTD. We further in-
troduce the ‘Step-down FIFO’, an extension of Gearbox to
solve these side effects. We present the details of this exten-
sion in Appendix A.

Figure 5: Single-node topology

4 Implementation and Evaluation

In this section, we describe the design and implementation
of Gearbox in NS2, a packet-based simulator [21], and in
VHDL as a hardware prototype (targeted to Xilinx’s Alveo
U250 card[34]), along with the extensive simulations to eval-
uate the performance of Gearbox. The two implementations
and their associated verification environments enabled us to
explore different aspects of Gearbox including its perfor-
mance in networks, the performance of the hardware pro-
totype, and the hardware resource utilization.

4.1 Packet-based Evaluation
To evaluate Gearbox’s performance in a large-scale network
topology with real-world data traffic, we implemented Gear-
box in NS2 [21] and conducted extensive packet-based sim-
ulations.

4.1.1 Evaluation Setup

Network topology We set up two different network
topologies in NS2: (1) a single-node star topology for band-
width allocation and fairness evaluation, and (2) a fat-tree
topology to evaluate FCT and normalized DTD.

For the single-node topology, we connect five servers to a
switch as shown in Figure 5. All the links have equal band-
width of 10 Gbps and a delay of 3µs. We later use this simple
star topology to form a classic incast traffic pattern to ob-
serve the bandwidth share of individual flows and evaluate
the fairness of the scheduler.

We built a three-level fat-tree topology for large-scale sim-
ulation. As shown in Figure 6, there are 4 Core switches,
8 Aggregation switches, 8 Top-of-Rack (ToR) switches and
256 servers. The links between servers and ToR switches are
10Gbps with 10 ns delay. Other links have a bandwidth of
40Gbps and a 1µs propagation delay. We apply Gearbox and
other scheduler schemes on every ToR/Aggregation/Core
switch to evaluate the FCT performance.

Traffic loads We generate empirical traffic workloads
based on the datacenter flow size distribution from an oper-
ational datacenter that supports web-search service [2]. The
traffic follows a heavy tail distribution as Figure 7 shows.
The flows arriving in a Poisson process with different arrival

Figure 6: Three-level fat-tree topology

Figure 7: Web-search flow size distribution

intervals result in different traffic loads. Each flow randomly
selects the source and the destination hosts in the topology
in a uniform distribution.

Alternative approaches We compare Gearbox with
single-level calendar queues [24]. All the schedulers in our
evaluation have 56 FIFOs and are evaluated with different
granularities as discussed in section 2.3. Table 2 provides de-
tails of the Gearbox and calendar queue schedulers. We also
compared Gearbox with an ideal PIFO-based WFQ sched-
uler as well as a simple drop tail queue. In our packet-based
simulation, all packets have the same size of 1,500 bytes 7

and the number of bytes per virtual time unit is set to 750
bytes (the finest supported granularity).

4.1.2 Single-node Microbenchmark

Gearbox can reach good max-min fairness We observe
that Gearbox can reach satisfactory max-min fairness in
bandwidth allocation, close to that of PIFO-based WFQ. In

7In NS2 packet based simulations, packet size is not a factor that affects
switch performance.

Table 2: PACKET SCHEDULER SET UP

Packet Scheduler Granularity
Gearbox g1 = 1, g2 = 8, g3 = 64
CQ-1 g = 1
CQ-10 g = 10
CQ-100 g = 100

Figure 8: Real-time throughput of Gearbox

our single-node microbenchmark evaluation, we used four
TCP flows, each sending traffic to one destination node with
different starting times and ending times. Based on the re-
sults shown in Figure 8, Gearbox allows the TCP flows to
reach a bandwidth max-min fairness with good flow isola-
tion. When a new flow joins, Gearbox quickly adjusts the
bandwidth allocated to all the active flows and reaches the
max-min fairness. After a flow ends, Gearbox also allows
the remaining flows to ramp up quickly.

Normalized Fairness Metric To better evaluate fairness in
bandwidth allocation, we use the Normalized Fairness Met-
ric (NFM). Shreedhar and Varghese first measured fairness
in bandwidth allocation using the Fairness Metric (FM) [26].
FM reflects the maximum difference in the number of served
bytes between two flows during a time period. By defini-
tion, FM’s values vary significantly based on the bandwidth
assigned to each flow and the total shared bandwidth.

To normalize the influence of this factor, Brent Stephens
introduced a better metric: the Normalized Fairness Met-
ric (NFM) [29]. NFM normalizes the Fairness Metric ac-
cording to the number of bytes that each flow should serve.
In a scenario where 4 flows are sharing a link of 4 Mbps
with equal weights, each flow is assigned a bandwidth of
1 Mbps. During 1 second, each flow should have 128
kbytes of data served. If the measured Fairness Metric
FM(1sec) = 32kbytes, then the Normalized Fairness Metric
NFM(1sec) = 32kbytes/128kbytes = 0.25.

Gearbox has a good NFM even for short time scales. By
definition, a lower NFM indicates better fairness in band-
width allocation. In our evaluation, we observed the NFM
of flows with 4 different weight sets (shown in Table 3) in
different time scales. From the results shown in Figure 9,
Gearbox outperforms coarse-grained calendar queues with
different bandwidth allocations. When flows are assigned
with weights that differ significantly, the fine-grained calen-
dar queues suffer from packet loss while Gearbox maintains
good fairness performance. From the perspective of max-
min fairness, Gearbox’s performance matches closely that of
PIFO-based WFQ.

Table 3: Flow Weight Sets

Weight Set 1 1 : 1 : 1 : 1
Weight Set 2 2 : 2 : 1 : 1
Weight Set 3 50 : 50 : 1 : 1
Weight Set 4 100 : 100 : 1 : 1

4.1.3 Large-scale Simulation

We extend our simulation to a three-level fat-tree topology
with more servers and higher link rates as described in sec-
tion 4.1.1. We focus on the normalized FCT performance of
different size flows. 8

Figure 10(a) shows the average normalized FCT across
different traffic loads and Figures 10(b) and 10(c) show the
average normalized FCT of different size flow groups under
70% and 90% load, respectively. The 95th percentile nor-
malized FCT under various traffic loads is shown in Figure
10(d). Figures 10(e) and 10(f) show the 95th percentile nor-
malized FCT broken down per flow size under 70% and 90%
traffic load, respectively.

Short flows benefit from low DTD Gearbox closely ap-
proximates WFQ and provides per-flow isolation, which re-
sults in low DTD, a key factor for short flow FCT perfor-
mance. With WFQ, different flows are isolated from each
other and packets from large flows will not block packets
from small flows. As we discussed in section 2.3, the lower
level of Gearbox provides a fine scheduling granularity, guar-
anteeing that packets from short flows depart according to
their departure times without a large discrepancy. Figures
10(b), 10(c), 10(e) and 10(f) show that short flows that are
less than 80 kbytes have a small normalized FCT. According
to Figure 10, Gearbox can achieve a low normalized FCT
close to ideal PIFO-based WFQ and the calendar queue with
the finest granularity. On the other hand, packets from short
flows would suffer a large DTD in the coarse-grained calen-
dar queues and the drop tail queues.

Short flows consist only of a few packets. Therefore, DTD
can cause delays that has a negative effect on their FCT.
To further observe the delay of short flows under different
scheduler schemes, we measure the average end-to-end de-
lay. As shown in Figure 11, the extra delay in the coarse-
grained calendar queues leads to a large normalized FCT for
short flows. In contrast, Gearbox has a low delay that is close
to that of PIFO-based WFQ.

As stated in section 3.4, Gearbox guarantees a low nor-
malized DTD for all packets. We evaluated the normalized
DTD of Gearbox 9 as shown in Figure 12. The normalized
delay shown in the figure is the actual delay normalized to

8“Normalized FCT” means a flow’s actual FCT normalized to its ideal
FCT when no other flows are active in the network.

9Normalized delay was measured in actual (not virtual) time

(a) NFM, 48 µs, weight set 1 (b) NFM, 48 µs, weight set 2 (c) NFM, 120 µs, weight set 3 (d) NFM, 120 µs, weight set 4

Figure 9: Normalized Fairness Metric

(a) Average normalized FCT (b) Breakdown normalized FCT, 70% load (c) Breakdown normalized FCT, 90% load

(d) 95th percentile normalized FCT (e) 95th percentile normalized FCT - per flow
size, 70% load

(f) 95th percentile normalized FCT - per flow
size, 90% load

Figure 10: Normalized FCT in fat-tree topology

the delay of the ideal WFQ using a PIFO. In Figure 12, the
red dashed line represents the normalized delay with a value
of 1, which indicates that the delay is equal to that of ideal
WFQ. The simulation results show that Gearbox has a sat-
isfactory normalized delay that is close to 1 for flows with
different sizes, indicating that Gearbox has a delay perfor-
mance closely matching that of ideal WFQ.

Large flows benefit from low packet loss rate Gearbox
not only provides a small normalized FCT for short flows,
but it also reduces packet loss and re-transmission for large
flows. Thanks to its higher levels, Gearbox can schedule
packets with large departure times with a very low drop rate.

Figure 10 shows Gearbox can achieve good normalized
FCT performance for mid-sized flows around 200 kbytes or
larger. We further measured the average packet loss of dif-
ferent flow groups. As shown in Figure 13, the single-level
calendar queues with fine granularity drop packets frequently
for the mid-sized and large flows, triggering a large number

of re-transmissions and leading to a high normalized FCT.
However, Gearbox and other coarse-grained calendar queues
have low packet loss rates that are close to zero. Gearbox
reduces packet loss related to calendar range overflows and
guarantees a low normalized FCT for mid-sized and large
flows.

As shown in the above simulation results, Gearbox com-
bines the benefits of both fine and coarse calendar queue
granularities. Consequently, Gearbox provides satisfactory
normalized FCT performance for flows with different sizes
as discussed in Section 3. The evaluation results show that
Gearbox provides performance comparable to PIFO-based
WFQ.

4.2 Hardware Prototype Design

Overview We implemented Gearbox in VHDL with mul-
tiple parameters (generics) for easy scalability including:

Figure 11: Average end-to-end delay of
short flows

Figure 12: 99th percentile normalized de-
lay

Figure 13: Average packet loss percentage

• Number of levels

• Number of FIFOs per level

• Number of flows

• Other sizing parameters for memories and logic

The VHDL code, test bench, and FPGA imple-
mentation files are available at https://github.com/

Gearbox-NSDI/Gearbox_NSDI

Hardware prototype architecture A high-level block di-
agram of the VHDL implementation of Gearbox is shown in
Figure 14.

Figure 14: Gearbox Block Diagram - VHDL Implementation

At the top level, Gearbox consists of a parameterized num-
ber of instances of the Gearbox Level sub-block along with
the Enqueue and Dequeue Controller blocks. Each level ex-
cept the highest consists of two Gearbox Level sub-blocks
denoted (A) and (B). The A and B sub-blocks form a ping-
pong scheme to guarantee access to a full set of FIFOs (cor-
responding to virtual time units) while maintaining packet
order. The highest level consists only of a single Gearbox
Level sub-block because a wraparound of the FIFO index
does not cause out-of-order packets.

The Gearbox Level sub-block shown in Figure 15 consists
of a parameterized number of FIFOs along with Enqueue and
Dequeue logic blocks.

The enqueue and dequeue operations are described below.
The packet descriptor is formatted as follows:

Packet Pointer (15) Address of packet in packet buffer

Packet Length (11) Packet length in bytes

Packet Time (20) Packet transmission time, i.e., the time it
takes to transmit the packet at the given
flow rate

Flow ID (10) Flow identification number

Packet ID (16) Packet identification number (used only
to detect out of order events)

Figure 15: Gearbox Level - VHDL Implementation

The width of each descriptor subfield is parameterized.
The numbers in parentheses denote example widths for a
given configuration.

Enqueue Operation Upon receipt of an enqueue com-
mand, Gearbox performs the following steps:

1. Calculate the packet’s departure time based on the
packet transmission time and the system time ts

2. Determine the enqueue level and enqueue FIFO within
that level

3. Store the packet descriptor in the calculated level and
FIFO

Gearbox completes an enqueue operation in three clock cy-
cles.

Dequeue Operation Upon receipt of a dequeue com-
mand, Gearbox performs the following steps:

1. Find first non-empty level and FIFO and update the sys-
tem time ts

2. Calculate number of bytes to serve from each level

3. Dequeue from each level a number of descriptors to
reach or exceed the number of bytes to serve

Gearbox completes a dequeue operation in four clocks when
performing steps 1 through 3 and in two clock cycles if per-
forming only step 3 (i.e., dequeuing from each non-empty
level once steps 1 and 2 are completed).

Math Operations The VHDL implementation of Gear-
box is scalable using generics that are powers of 2, notably
for the number of levels, granularity of each level, and the
number of FIFOs within each level. This enables calcu-
lations that require division operations to be implemented
using bit shifting or truncation, which are much more effi-
ciently implemented in logic gates.

Targeting to an FPGA We targeted the Gearbox VHDL
design configured with 4 levels and 16 FIFOs per level, 256
locations (packet descriptors) per FIFO, and 1K flows to a
Xilinx Alveo U250 board [34], which uses an UltraScale+
VU13P FPGA with mid-speed grade. Using Vivado 2020.2
[33], we obtained the utilization and performance shown in
Table 4.

Table 4: FPGA prototype utilization and performance

Frequency LUTs FFs BRAM

Units 350 MHz 12331 9953 96

Device Util Pct 0.71% 0.29% 3.6%

With an enqueue and a dequeue every four clocks, the
design sustains a packet rate of 350÷ 4 = 87.5 Mpkts/sec,
which is equivalent to a line rate of 100 Gigabit Ethernet for
123-byte packets or larger, taking into account a Preamble of
8 bytes and an IFG of 12 bytes.

5 Related Work

After the proposal of numerous bandwidth allocation algo-
rithms such as WFQ, PGPS, and SCFQ, academia and in-
dustry have worked to implement packet schedulers sup-
porting these algorithms. This trend first begins with the
ASIC design. In the 1990s, the Sequencer [8] [9] [10] was
an ASIC-based hardware packet scheduler that sorts pack-
ets into ascending order based on their departure time with
limited scalability. In the 2000s, a specialized data structure:

pipeline heap (P-heap) [4] [17] provided fine-grained prior-
ity queues in hardware, which improves the scalability but is
required for each egress port [27] [28] and therefore uses sig-
nificant chip area on high-speed switches. The recent work
PIFO [27] [28] provides a programmable packet scheduler,
which has a very small chip area overhead and is relatively
easy to implement. However, it requires special hardware
support (such as TCAM) and has limited scalability.

The limitations of the ASIC-based hardware packet sched-
ulers we mentioned in section 2 motivated research in
approximate schedulers based on strict-priority queues.
Among them are the Approximate Fair Queuing (AFQ) [24]
and Programmable Calendar Queues (PCQ) [25]. AFQ
and PCQ perform well in bandwidth allocation with the
same weights. However, when flow weights vary over a
wide range, AFQ and PCQ’s fixed granularity leads to low
scheduling precision or packet drops. The authors of PCQ
discuss a hierarchical architecture in their paper, but its de-
queuing scheme might lead to starvation of flows in the lower
level. SP-PIFO [1] is another recent work that uses a unique
algorithm to adjust the priority between FIFOs to minimize
scheduling errors. However, SP-PIFO may cause misorder-
ing of packets within a single flow, which would lead to prob-
lems for TCP-based flows.

6 Conclusion

In this paper, we propose Gearbox, a hierarchical packet
scheduler that practically approximates WFQ. Gearbox is
a FIFO-based packet scheduler targeted to next-gen pro-
grammable switches and smart NICs. Its tiered granularity
allows Gearbox to achieve an adequate normalized DTD and
FCT performance with a relatively small number of queues.
Gearbox eliminates packet recirculation and has a stream-
lined operation that allows it to achieve high packet process-
ing speed. From our evaluation, Gearbox achieves weighted
max-min fairness in bandwidth allocation and FCT perfor-
mance comparable to that of ideal WFQ. We implement
Gearbox in an NS2 simulator and a VHDL-based hardware
prototype, targeting a Xilinx ALVEO U250 FPGA card. Our
Gearbox hardware prototype runs at 350 MHz, which is
equivalent to a maximum throughput of 58.8 Gbps with 64-
byte packets over 100GbE and full line rate 100GbE with
packets larger than 123 bytes.

Acknowledgements

We thank the anonymous reviewers for their valuable com-
ments and advice. We also acknowledge Xilinx for support-
ing our hardware prototype implementation.

References
[1] ALCOZ, A. G., DIETMÜLLER, A., AND VANBEVER, L. Sp-pifo:

Approximating push-in first-out behaviors using strict-priority queues.
In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20) (2020), pp. 59–76.

[2] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,
N., PRABHAKAR, B., AND SHENKER, S. pfabric: Minimal near-
optimal datacenter transport. In ACM SIGCOMM Computer Commu-
nication Review (2013), vol. 43, ACM, pp. 435–446.

[3] ALJAEDI, A., CHOW, C. E., ELGZIL, A., ALAMRI, N., AND
BAHKALI, I. Network virtualization with openflow for large-scale
datacenter networks. IJCSNS 17, 9 (2017), 10.

[4] BHAGWAN, R., AND LIN, B. Fast and scalable priority queue archi-
tecture for high-speed network switches. In Proceedings IEEE INFO-
COM 2000. Conference on Computer Communications. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No. 00CH37064) (2000), vol. 2, IEEE, pp. 538–547.

[5] BROADCOM. Broadcom StrataDNX™ BCM88480 Traffic Man-
agement Architecture. https://docs.broadcom.com/doc/

88480-DG1-PUB, 2021.

[6] BROADCOM. High Capacity StrataXGS®Trident II Ethernet Switch
Series. http://www:broadcom:com/products/Switching/

Data-Center/BCM56850-Series., 2021.

[7] BROWN, R. Calendar queues: a fast 0 (1) priority queue implemen-
tation for the simulation event set problem. Communications of the
ACM 31, 10 (1988), 1220–1227.

[8] CHAO, H. J. Architecture design for regulating and scheduling user’s
traffic in atm networks. In ACM SIGCOMM Computer Communica-
tion Review (1992), vol. 22, ACM, pp. 77–87.

[9] CHAO, H. J., CHENG, H., JENQ, Y.-R., AND JEONG, D. Design of
a generalized priority queue manager for atm switches. IEEE Journal
on Selected Areas in Communications 15, 5 (1997), 867–880.

[10] CHAO, H. J., JENQ, Y.-R., GUO, X., AND LAM, C.-H. Design of
packet-fair queuing schedulers using a ram-based searching engine.
IEEE Journal on Selected Areas in Communications 17, 6 (1999),
1105–1126.

[11] CISCO. Cisco Silicon One Product Family White Paper. https:

//www.cisco.com/c/en/us/solutions/silicon-one.html,
2021.

[12] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN,
C. Introduction to algorithms. MIT press, 2009.

[13] DALTON, M., SCHULTZ, D., ADRIAENS, J., AREFIN, A., GUPTA,
A., FAHS, B., RUBINSTEIN, D., ZERMENO, E. C., RUBOW, E.,
DOCAUER, J. A., ET AL. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18) (2018), pp. 373–387.

[14] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and sim-
ulation of a fair queueing algorithm. In ACM SIGCOMM Computer
Communication Review (1989), vol. 19, ACM, pp. 1–12.

[15] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D.,
DABAGH, A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V.,
CAULFIELD, A., CHUNG, E., ET AL. Azure accelerated network-
ing: Smartnics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18) (2018),
pp. 51–66.

[16] HASAN, J., CHANDRA, S., AND VIJAYKUMAR, T. Efficient use of
memory bandwidth to improve network processor throughput. ACM
SIGARCH Computer Architecture News 31, 2 (2003), 300–313.

[17] IOANNOU, A., AND KATEVENIS, M. G. Pipelined heap (priority
queue) management for advanced scheduling in high-speed networks.
IEEE/ACM Transactions on Networking (ToN) 15, 2 (2007), 450–461.

[18] KIM, D., YU, T., LIU, H. H., ZHU, Y., PADHYE, J., RAINDEL, S.,
GUO, C., SEKAR, V., AND SESHAN, S. Freeflow: Software-based
virtual rdma networking for containerized clouds. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19) (2019), pp. 113–126.

[19] MEDEIROS, B., SIMPLICIO, M. A., AND ANDRADE, E. R. Design-
ing and assessing multi-tenant isolation strategies for cloud networks.
In 2019 22nd Conference on Innovation in Clouds, Internet and Net-
works and Workshops (ICIN) (2019), IEEE, pp. 214–221.

[20] NAGARAJ, K., BHARADIA, D., MAO, H., CHINCHALI, S., AL-
IZADEH, M., AND KATTI, S. Numfabric: Fast and flexible bandwidth
allocation in datacenters. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), ACM, pp. 188–201.

[21] NETWORK SIMULATOR DEVELOPMENT GROUP, T. The network sim-
ulator 2. In https://www.isi.edu/nsnam/ns/. 2000, 2000, p. 1.

[22] PAREKH, A. K., AND GALLAGER, R. G. A generalized processor
sharing approach to flow control in integrated services networks: the
single-node case. IEEE/ACM transactions on networking, 3 (1993),
344–357.

[23] PAREKH, A. K., AND GALLAGER, R. G. A generalized proces-
sor sharing approach to flow control in integrated services networks:
the multiple node case. IEEE/ACM transactions on networking 2, 2
(1994), 137–150.

[24] SHARMA, N. K., LIU, M., ATREYA, K., AND KRISHNAMURTHY,
A. Approximating fair queueing on reconfigurable switches. In 15th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 18) (2018), pp. 1–16.

[25] SHARMA, N. K., ZHAO, C., LIU, M., KANNAN, P. G., KIM, C.,
KRISHNAMURTHY, A., AND SIVARAMAN, A. Programmable calen-
dar queues for high-speed packet scheduling. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20)
(2020), pp. 685–699.

[26] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queuing using
deficit round-robin. IEEE/ACM Transactions on networking, 3 (1996),
375–385.

[27] SIVARAMAN, A., SUBRAMANIAN, S., AGRAWAL, A., CHOLE, S.,
CHUANG, S.-T., EDSALL, T., ALIZADEH, M., KATTI, S., MCKE-
OWN, N., AND BALAKRISHNAN, H. Towards programmable packet
scheduling. In Proceedings of the 14th ACM workshop on hot topics
in networks (2015), ACM, p. 23.

[28] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable packet scheduling at
line rate. In Proceedings of the 2016 ACM SIGCOMM Conference
(2016), ACM, pp. 44–57.

[29] STEPHENS, B., SINGHVI, A., AKELLA, A., AND SWIFT, M. Ti-
tan: Fair packet scheduling for commodity multiqueue nics. In 2017
USENIX Annual Technical Conference (USENIX ATC 17) (2017),
pp. 431–444.

[30] THIMMARAJU, K., RÉTVÁRI, G., AND SCHMID, S. Virtual network
isolation: Are we there yet? In Proceedings of the 2018 Workshop on
Security in Softwarized Networks: Prospects and Challenges (2018),
pp. 1–7.

[31] VARGHESE, G., AND LAUCK, A. Hashed and hierarchical timing
wheels: efficient data structures for implementing a timer facility.
IEEE/ACM transactions on networking 5, 6 (1997), 824–834.

[32] WANG, Z., HUANG, H., ZHANG, J., AND ALONSO, G. Shuhai:
Benchmarking high bandwidth memory on fpgas. In 2020 IEEE
28th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM) (2020), IEEE, pp. 111–119.

[33] XILINX. Vivado Design Suite, Integrated Design Environ-
ment. https://www.xilinx.com/products/design-tools/

vivado.html, 2021.

[34] XILINX. Xilinx Alveo U250 Data Center Accelerator Card.
https://www.xilinx.com/products/boards-and-kits/

alveo/u250.html, 2021.

Appendix

A Step-down FIFO

The solution to the packet out-of-order issue in Section 3.6
may increase the DTD of specific flows. Normally, packets
will enqueue at the appropriate level with a granularity that is
appropriate for their expected delays. As long as the packets
from a flow arrive at the allocated rate, its packets will always
enqueue at the appropriate level with a guaranteed low DTD.
However, when a flow’s input data rate exceeds its allocated
bandwidth, its packets may queue up at higher levels. As the
scheme in Section 3.6 maintains the ‘Last packet enqueued
level’ Li, such flows would only enqueue their subsequent
packets in the higher levels from that point on. As previously
discussed, when packets that belong to a lower level enqueue
at a higher level, they suffer from a coarser granularity and
higher DTD. This leads to larger packet delays and increases
FCT. In this case, flows need to step back to the lower level
in which they are supposed to enqueue so they can restore
the lower DTD. Is it possible for a flow that queues up to a
higher level to step down to a lower level when its arrival rate
decreases to its admitted bandwidth?

The answer is yes: we introduce the ‘Step-down FIFO’,
which allows flows at a higher level to go to a lower level. To
understand the design of the Step-down FIFO, we must first
understand why we need to enqueue packets into a higher
level. According to Section 3.4, we can secure the serving
order of packets as long as we serve them with the same gran-
ularity. In other words, if we can serve packets at the higher
level with the same granularity at the lower level, it would be
safe to enqueue the subsequent packets into the lower level
without causing packet misordering. At this point, ‘Step-
down FIFO’ serves as a special FIFO at a higher level that
provides the same granularity of a lower level. A ‘Step-
down FIFO’ expands a FIFO at the higher level into mul-
tiple queues with finer granularity, preserving the departure

Figure 16: Step-down FIFO

time difference between the packets. When a flow’s latest
packet enqueues into a ‘Step-down FIFO’ at level l, Gearbox
schedules it with the granularity of level (l− 1). Thus, we
can mark the ‘Last packet enqueued level’ Li = (l−1). As a
result, we can enqueue the subsequent packets from the same
flow into level (l−1).

Figure 16 illustrates how a ‘Step-down FIFO’ works. FI-
FOs marked in yellow at level 2 and 3 are ‘Step-down FI-
FOs’, which maintain the same granularity as the next lower
level. In this example, Gearbox uses 10 FIFOs to achieve a
Step-down FIFO with the finer granularity. Packets A1 and
A2 enqueue the ‘Step-down FIFO’ and preserve their depar-
ture times F(A,1) = 10 and F(A,2) = 11 with the granularity of
g1 = 1. By doing so, Gearbox will schedule packets A1 and
A2 with the same granularity at level 1 and the packets will
leave the scheduler at ts = 10 and 11. In this case, it is safe
to place packet A3 at level 1 without causing packet out-of-
order issues. In this example, ‘Step-down FIFO’ makes it
possible for flow A to step down from level 2 to level 1.

With a ‘Step-down-FIFO’, the flows that follow their al-
located rate will eventually get back to the level they belong
to and restore their DTD. Assume flow i belongs to level l,
where the departure time of its packets increases by gl . Due
to prior burstiness, packets from flow i queue up at a higher
level l′ and need to step back down to level l. Since flow
i now follows its admitted rate ri, its packets arrive with a
departure time interval of gl without accumulation. Based
on the basic idea of Gearbox in Section 3.1, each FIFO at
level l′ (including the ‘Step-down FIFO’) covers a departure
time range of gl′ and gl′ >> gl . Since F(i,k) increases by gl ,
eventually there will always be a packet that enqueues in the
‘Step-down FIFO’ at level l′. As the ‘Step-down FIFO’ at
level l′ schedules packets with the granularity of gl , Gearbox
will mark the last enqueue level of flow i as Li = l and the
subsequent packets from flow i will get back to level l. In
this way, the Step-down-FIFO enables the flows that follow
their allocated rates to eventually get back to the lower level
to which they belong.

Figure 17: Gearbox’s Application in a NIC (egress only shown)

Figure 18: Gearbox’s Application in Multi-pipeline Systems

B Gearbox’s Application in NIC and Multi-
pipeline Systems

Figure 17 shows a Gearbox application in a NIC with only
the egress path shown. Packets from the server arrive over
PCIe and are stored in the Packet Buffer. The packet head-
ers are parsed and classified in the Parser & Classifier block
to extract the flow id and the packet length. The Depar-
ture Time Calculator computes the departure time using the
packet length and forwards it to Gearbox for enqueue. Gear-
box dequeues descriptors and forwards the packet pointers to
the Packet Buffer to output the packets.

Figure 18 shows a Gearbox application in a multi-pipeline
switch. After the parsing stage, the classification (flow iden-
tification) is done in the first stage. The second stage com-
putes the departure times, which are fed to multiple Gear-
boxes for enqueue. Dequeued packets are output by the de-
parser.

