
Check-N-Run: a Checkpointing System for Training Deep Learning
Recommendation Models

Assaf Eisenman1, Kiran Kumar Matam1, Steven Ingram1, Dheevatsa Mudigere1, Raghuraman
Krishnamoorthi1, Krishnakumar Nair1, Misha Smelyanskiy1, and Murali Annavaram1,2

1Facebook, Inc, 2USC

Abstract
Checkpoints play an important role in training long running
machine learning (ML) models. Checkpoints take a snapshot
of an ML model and store it in a non-volatile memory so that
they can be used to recover from failures to ensure rapid train-
ing progress. In addition, they are used for online training to
improve inference prediction accuracy with continuous learn-
ing. Given the large and ever-increasing model sizes, check-
point frequency is often bottlenecked by the storage write
bandwidth and capacity. When checkpoints are maintained
on remote storage, as is the case with many industrial settings,
they are also bottlenecked by network bandwidth. We present
Check-N-Run, a scalable checkpointing system for training
large ML models at Facebook. While Check-N-Run is appli-
cable to long running ML jobs, we focus on checkpointing
recommendation models which are currently the largest ML
models with Terabytes of model size. Check-N-Run uses
two primary techniques to address the size and bandwidth
challenges. First, it applies differential checkpointing, which
tracks and checkpoints the modified part of the model. Differ-
ential checkpointing is particularly valuable in the context of
recommendation models where only a fraction of the model
(stored as embedding tables) is updated on each iteration.
Second, Check-N-Run leverages quantization techniques to
significantly reduce the checkpoint size, without degrading
training accuracy. These techniques allow Check-N-Run to re-
duce the required write bandwidth by 6-17× and the required
capacity by 2.5-8× on real-world models at Facebook, and
thereby significantly improve checkpoint capabilities while
reducing the total cost of ownership.

1 Introduction
Deep learning has become extensively adopted in many pro-
duction scale data center services. In particular, deep learn-
ing enabled recommendation systems power a wide variety
of products and services. These include e-commerce mar-
ketplaces (e.g. Amazon, Alibaba) for recommending items
to purchase [30, 33], social media platforms (e.g. Facebook,
Twitter) for providing the most relevant content [14], enter-
tainment services (e.g. Netflix, Youtube) for promoting new
playlists [7, 12], and storage services (e.g. Google Drive) for
enabling quick access to stored objects [4].

At Facebook’s datacenter fleet, for example, deep recom-
mendation models consume more than 80% of the machine

learning inference cycles and more than 50% of the training
cycles. Similar demands can be found at other companies [16].

Typically, the accuracy of deep learning algorithms in-
creases as a function of the model size and number of features.
For instance, the recommendation model size at Facebook
grew more than 3× in under two years (see Figure 4). Recom-
mendation models are particularly in need of massive model
size to store sparse model features. Hence, they are orders of
magnitude larger than even the largest DNNs, such as Trans-
former based models [32], and often occupy many terabytes
of memory per model [38]. Because of their large size, these
models also must be trained with massive datasets and run
in a distributed fashion. Therefore, training recommendation
models at production scale may take several days, even when
training on highly optimized GPU clusters.

Given that the training runs span multiple GPU clusters
over multiple days and weeks, there is an abundance of fail-
ures that a training run may encounter. These include network
issues, hardware failures, system failures (e.g. out of mem-
ory), power outages, and code issues. Checkpointing is an
important functionality to quickly recover from such failures
for reducing the overall training time and ensure progress.
Checkpoints are essentially snapshots of the running job state
taken at regular intervals and stored in persistent storage. To
recover from failure and resume training, the most recent
checkpoint is loaded.

In addition to failure recovery, checkpoints are needed
for moving training processes across different nodes or clus-
ters. This shift may be required in cases such as server
maintenance (e.g. critical security patches that could not be
postponed), hardware failures, network issues, and resource
optimization/re-allocation. Another important use-case of
checkpoints is publishing snapshots of trained models in real
time to improve inference accuracy (online training). For in-
stance, an interim model can be used for prediction serving
(obtained by checkpointing), while the model is still being
trained over more recent dataset for keeping the inference
model freshness. Checkpoints are also used for performing
transfer learning, where an intermediate model state is used
as a seed, which is then trained for a different goal [26].

Checkpoints must meet several key criteria:
(1) Accuracy: They must be accurate to avoid training ac-

curacy degradation. In other words, when a training run is
restarted from a checkpoint, there should be no perceivable

difference in the training accuracy or any other related metric.
As has been stated in prior works on production scale recom-
mendation models [38], even a tiny decrease of prediction
accuracy would result in an unacceptable loss in user engage-
ment and revenues. Hence, preserving accuracy is a constraint
for checkpoint management in recommendation models.

(2) Frequency: Checkpoints need to be frequent for min-
imizing the re-training time (the gap between failure time
and the most recent checkpoint timestamp) after resuming
from a checkpoint. For instance, taking a checkpoint every
1000 batches of training data may lead to wasting time re-
training those 1000 batches. Taking a checkpoint after 5000
batches leads to 5× more wasted work in the worst case. In
the case of online training, the checkpoint frequency directly
impacts how quickly the inference adapts in real time and its
prediction accuracy.

(3) Write Bandwidth: Checkpoints at Facebook, as well
as in other industrial settings, are written to remote storage to
provide high availability (including replications) and scalable
infrastructure. Writing multiple large checkpoints concur-
rently from different models that are being trained in parallel
(e.g., thousands of checkpoints, each in the order of terabytes)
to remote storage requires substantial network and storage
bandwidths, which constitute a bottleneck and limit the check-
point frequency. Hence, it is necessary to minimize the re-
quired bandwidth to enable frequent checkpoints.

(4) Storage capacity: Storing checkpoints at-scale re-
quires hundreds of petabytes of storage capacity, with high-
availability and short access times. Checkpoints at Facebook
are typically stored for many days, thus the number of stored
checkpoints at a given time is reflected by the number of
training jobs in that time period. While the last checkpoint
per run is saved by default, it is often useful to keep several
recent checkpoints (e.g. for debugging and transfer learning).
As models keep getting larger and more complex, resulting
in an ever increasing storage capacity demand, it is necessary
to reduce the corresponding checkpoint size to minimize the
required storage capacity for accommodating all checkpoints.

Unfortunately, standard compression algorithms such as
Zstandard [6] are not useful enough for deep recommenda-
tion workloads. In our experience, we were able to reduce
the checkpoint size and the associated write-bandwidth and
storage capacity by at most 7% using Zstandard compression.

Based on the above challenges, we present Check-N-Run, a
high-performance scalable checkpointing system, particularly
tailored for recommendation systems. Check-N-Run’s main
goal is to significantly reduce the required write-bandwidth
and storage capacity, without degrading accuracy. Our goal
is to work within the accuracy degradation constraint set by
business needs (< 0.01%).

Recently, CheckFreq has demonstrated the benefits of
checkpointing for deep neural networks(DNNs) [19]. Check-
Freq proposed adaptive rate tuning to dynamically determine
when to initiate a checkpoint, and a two-phase strategy to

enable checkpoint storage and training to move concurrently.
However, recommendation models provide unique opportuni-
ties to tackle checkpointing challenges that are not afforded
in traditional DNNs. First, recommendation models update
only part of the state after every batch. Hence,it is possible to
explore checkpointing strategies that can incrementally store
the checkpoint. Second, recommendation model sizes can
exceed Terabytes, which stress even planetary scale storage
systems. Check-N-Run builds on several techniques:

(1) Differential checkpointing: Check-N-Run utilizes dif-
ferential checkpointing for reducing the checkpoint write
bandwidth. This is a technique that is particularly well suited
for recommendation models where only a small fraction of
the model parameters are updated after each iteration. This is
a unique property of recommendation models. In traditional
DNNs the entire model is updated after each iteration since
gradients are computed for all the model parameters. Recom-
mendation models, on the other hand, access and update only
a small fraction of the model during each iteration. Differ-
ential checkpoints leverage this observation by tracking and
storing the modified parts of the models.

(2) Quantization: Check-N-Run leverages quantization
techniques to significantly reduce the size of checkpoints.
This optimization reduces the required write bandwidth to re-
mote storage, and the storage capacity. While quantization of
model parameters during training may have a negative impact
on accuracy, checkpointing has the advantage that quantiza-
tion is only used to store the checkpoint, while full precision is
used for training. The only time checkpoint quantization may
impact training accuracy is when the quantized checkpoint is
restored and de-quantized to resume training. Check-N-Run
leverages this insight to maintain training accuracy within our
strict bounds.

(3) Decoupling: To minimize the run time overhead and
training stalls, Check-N-Run creates distributed snapshots of
the model in multiple CPU host memories. That way, training
on the GPUs can continue while Check-N-Run is optimizing
and storing the checkpoints in separate processes running
on the CPU in the background. Check-N-Run enables the
frequent checkpointing of hundreds of complex production
training jobs running in parallel over thousands of GPUs, each
job training a very large model (in the order of terabytes).
This decoupling approach is also proposed in CheckFreq
which separates snapshot process from the persist storage
process [19]. Our implementation of decoupled checkpointing
leads to less than 0.4% of time when the trainer processes
must pause to take a snapshot. Hence, the impact of taking a
checkpoint on the training speed is negligible.

The contributions in this paper include:
(1) To our knowledge, Check-N-Run is the first published
checkpointing system that uses quantization and differential
views for recommendation systems at-scale, demonstrated on
real-world workloads.
(2) We design and evaluate a wide range of checkpoint quanti-

Figure 1: A typical recommendation model. It consists of
large embedding tables for mapping the sparse features to
vectors, and MLPs for processing the dense features (bot-
tom MLP). These feature interactions are combined in the
top MLP. The interaction op combines the dense and sparse
features, in order to train with them together.

zation approaches to significantly reduce the checkpoint size
by 4-13×, without degrading the training accuracy.
(3) We introduce differential checkpoints, which store the
modified part of the model, rather than storing the entire
model. Differential checkpoints reduce the average write
bandwidth by more than 50%, with no impact on accuracy.
(4) Finally, we demonstrate a heterogeneous checkpointing
mechanism that combines differential checkpointing with
quantization. Check-N-Run provides 6−17× improvement in
the required checkpointing write bandwidth, and 2.5×−8×
less capacity, without sacrificing accuracy and run time.

2 Background

2.1 Recommendation Models

Recommendation models are a variant of deep learning mod-
els that are used to provide recommendations to users based
on their past interactions with a digital service. Recommen-
dation systems are often used in commercial settings and
dominate the datacenter capacity for AI training and infer-
ence [22]. Broadly speaking, recommendation models use
a combination of a fully connected multi-layer perceptron
(MLP) to capture the dense features, and a set of sparse fea-
tures that capture categorical data such as a user’s past activity
and main characteristics of a post. Figure 1 depicts a typical
recommendation model used in this study.

Sparse features are captured through embedding tables
[10], which map each category to a dense representation in
an abstract space. Each embedding table may contain many
millions of vectors, with different vector dimensions (e.g. 64),
where each element is a 32-bit floating-point number dur-
ing training. Embedding tables constitute the majority of the
model footprint, and account for > 99% of its size. A training
sample includes a set of vector indices per embedding table,
which is used to extract the corresponding multi-hot encoded
vectors stored in those indices. Once the embedding vectors
are extracted, they are trained with a deep neural network.

The size of the sparse layer prevents the use of pure data

parallel training, since it would require replicating the large
embedding tables on every device. The large footprint of the
sparse layer requires the distribution of the embedding ta-
bles across multiple devices, emulating model parallelism.
MLP parameters, on the other hand, have a relatively small
memory footprint, but they consume a lot of compute. Hence,
data-parallelism is an effective way to enable concurrent pro-
cessing in the MLPs, by running separate samples on different
devices and accumulating the updates. Our training system
thus uses a combination of model parallelism for the sparse
layer, and data parallelism for the MLPs. This hybrid approach
mitigates the memory bottleneck of accessing the embedding
tables by distributing these tables across multiple GPUs, while
parallelizing the forward and backward propagation over the
MLPs.

2.2 High Performance Training at Facebook

Given the prominence of recommendation models in today’s
social media platforms, these models are trained on dedicated
clusters [23, 38]. At Facebook, over 50% of the ML train-
ing cycles are dedicated solely to recommendation models.
Figure 2 illustrates the training pipeline for deep learning
recommendation models. Broadly speaking, it consists of
3 stages, located at separate clusters: dataset reader cluster,
training cluster, and remote checkpoint storage.

To support high-performance training, our training system
relies on clusters of GPUs attached to host CPUs as shown in
Figure 2 (training cluster). The GPUs accelerate the training
tensor operations and accommodate the model parameters,
while CPUs run other tasks, such as data ingestion and check-
point handling. Each training cluster contains 16 nodes, each
with 8 GPUs attached to multi-core CPU. Hence, training
a model on an entire cluster would partition the embedding
tables and the training batches over 128 GPUs, in addition to
replicating the MLPs over these GPUs.

In cases where GPU memory is not sufficient for accommo-
dating the models, our training system leverages hierarchical
memory: the model parameters are stored in DRAM, while
GPU memory serves as a cache.

The model parameters are updated synchronously [3], en-
suring the updated parameters across the devices are con-
sistent before each training iteration. This is needed for en-
abling scalable training and avoiding accuracy degradation
when training in high throughput. Fully synchronized training
avoids regression in the model quality with increased scale
and decouples model quality from training throughput. We
employ a decentralized model synchronization approach in
which each node performs the computations on its local part
of the model. For the data-parallel MLPs, an “AllReduce”
communication is done in the backward pass to accumulate
the gradients computed on the multiple GPUs (each with a dif-
ferent sub-batch of data). For the model-parallel sparse layer,
an “AlltoAll” communication [23] occurs both in the forward

Figure 2: An Overview of Training and Checkpoint Systems

Figure 3: Training job failure CDF in our cluster. Jobs that fail
within 5 minutes are removed since they are usually simple
user setup errors.

pass (to communicate the looked-up embedding vectors), and
in the backward pass (to communicate the embedding vector
updates). Checkpoint write process is done in the background
(using dedicated CPU processes in the trainer nodes), while
the training process continues in GPU.

Since the dataset used for training (i.e., training samples) is
enormous, and training has to be done at high-throughput (e.g.
500K training queries per second called QPS), it is important
to make sure that reading training data will not become a
bottleneck. As such, the training system deploys a separate
distributed reader tier (shown as Reader Cluster in Figure 2),
which enables reading resources and training resources to
scale independently. Each training cluster uses hundreds of
reader nodes residing in a separate cluster, in charge of satu-
rating the trainer with training samples.

Checkpoints of the training job state (consisting of both
the reader and trainer states) are stored at a separate, remote
storage (shown as Checkpoint Cluster in Figure 2).

Training jobs are submitted to this infrastructure through an
internally developed job scheduling interface. Schedulers like
Bistro [11] and PBS [15] handle job and user priorities, and
manage the job queue. The scheduler assigns jobs based on
the job configuration and cluster availability. It continuously
monitors both the job progress as well as system health status.

3 Motivation

3.1 Training Failures
We analyzed the training job failures on a training system
consisting of 21 training clusters, over a one month period.
Figure 3 presents the time-to-failure statistics. The X-axis
shows the total execution time that was completed by a job
before it failed, and the Y-axis shows the percentage of failed
jobs which failed before that time. The data shows that longest

Figure 4: The normalized model size over the past 2 years

10% of the failed jobs ran for at least 13.5 hours before they
fail, and the top 1% of the failed jobs fail after executing for
not less than 53.9 hours. Note that many of these jobs re-
quire 128 GPUs spanning many nodes, that are expensive to
maintain and run. These training jobs interact with multiple
systems for training. For instance, the training process ac-
cesses training samples provided by a separate reader cluster.
As such, any one failure in these inter-connected systems will
hobble the entire training progress. This data shows the criti-
cality of efficient checkpointing to ensure training progress.
Otherwise, long running training jobs may never complete
their task. This data motivated the need for Check-N-Run.

As the model sizes are growing continuously, training is
getting distributed even more widely across the datacenters.
Hence, the failure rates are expected to continue to grow
significantly. Thus checkpointing of large model training is a
critical problem for any production model.

3.2 Model Size
Recommendation model sizes are often massive due to their
large sparse features (represented as embedding tables). Typ-
ically, the accuracy of these models increases as a function
of the model size. Figure 4 shows our model size increase
over the past 2 years (exact model size is confidential). As
can be seen, it increased by over 3×. Given the large and ever-
increasing model sizes, checkpoints are often bottlenecked by
write-bandwidth and storage capacity.

3.3 Model Updates
Another set of motivation data shows the sparsity of model
updates over time. We analyze one of the largest recommenda-
tion models at Facebook and observe that due to large model
sizes and their high sparsity, only a fraction of the embedding
vectors is modified in a given training interval. Figure 5 shows
the percentage of the model that is modified, as a function
of the number of training records used to train, starting from
three different initial states. The curve starting at the origin
shows what fraction of the model size is updated starting from
the first training record and ending at about 11 billion training
records. As can be seen, even after 11 billion training records,
the fraction of the model that is accessed grows slowly and

Samples (in billions)

%
 o

f m
od

el
 s

iz
e

0

20

40

60

2 4 6 8 10

Figure 5: The fraction of model size modified w.r.t. the num-
ber of training samples, measured from 3 different starting
points

Time (mintues)

%
 o

f m
od

el
 s

iz
e

0

10

20

30

40

50 100 150 200 250 300 350

10 min 20 min 30 min 60 min

Figure 6: The fraction of model size that is modified during
different time intervals

reaches only 52%. Furthermore, the fraction of the model
updated during a training interval is expected to continue to
shrink as model sizes keep increasing, which is the general
industry trend.

The second curve in Figure 5 shows how the fraction of
the updated model grows if we only observe updates starting
at the 4 billionth training record. The third curve shows the
same data starting at about the 8 billionth training record. It
is interesting to note that no matter when we start observing
the model size growth, the fraction of the modified model
size follows a similar slope. This fact is made more clear in
Figure 6, which plots the fraction of model size that is modi-
fied during a given time interval. For a given interval length,
the fraction of model size that is modified remains almost the
same in all intervals (e.g., in each 30 minute intervals, about
26% of the model is modified). The above data indicates that
at each iteration only a tiny fraction of the model is updated.

4 Check-N-Run Design Overview
Check-N-Run is a distributed checkpointing system for train-
ing systems at scale, implemented in our PyTorch training
framework. Check-N-Run generates accurate checkpoints of
the training system state and ensures there is no accuracy
degradation due to creating or loading from a checkpoint.
Since training accuracy is a main concern, we are not inter-
ested in exploring choices that come at the expense of an
unacceptable training accuracy loss, even as small as 0.01%.
In this section, we provide an overall overview, while in sec-
tion 5 we discuss the checkpoint optimization details. Figure 7
illustrates Check-N-Run’s overall design, showing what func-
tionality is implemented in each of the reader, trainer and
checkpoint storage tiers. Check-N-Run is implemented pri-

Collect global
reader state

Create model state snapshots

Track modified embedding
vectors

Create incremental
checkpoints

Store checkpoints in remote
storage

Trainer Host

CPU

GPU

Reader Master Check-n-Run Controller

Synchronize
checkpoints between
trainer and readerQuantize checkpoints

Delete old
checkpoints

Stop/resume
reading for state
collection

Monitor and maintain
checkpoints

Figure 7: Check-N-Run design components

marily on the host CPU of the training cluster, while its track-
ing mechanism (described in 5.1.1) is implemented in GPU.
It has additional coordination threads running on the reader
master (in the reader cluster) and a lightweight Check-N-Run
controller that may reside in a dedicated host. Checkpoints are
written to remote object storage to provide high availability
(including replications) and storage scalability.

4.1 What to Checkpoint?

The trainer state consists of all the model layers (including the
sparse and dense features), the optimizer state, and the relevant
metrics. Since the MLPs are replicated and maintained with
a consistent view during training, it is enough to read them
from a single GPU for checkpointing. The embedding tables,
however, are distributed across GPUs and hence each GPU
must provide a snapshot of the embedding tables that are
stored in its local memory.

When a training job resumes from a checkpoint, the run
should still train the same training dataset as the original run.
Hence, the checkpoint must also include the reader state. This
is important, for example, to avoid training the same sample
twice. The reader reads the dataset in the granularity of splits
(each split represents successive rows of the dataset). Its state
includes the set of splits that are pending, and the set of splits
that have been partially read (including their cursor position).
Note that checkpoints that are intended solely for alternate use-
cases such as online training (frequently updating an already
trained model running in inference) and transfer learning, do
not require the reader state.
Avoiding the trainer-reader state gap: In a production scale
training system, checkpointing has unique challenges. As de-
scribed earlier, a separate set of distributed readers is in charge
of feeding the trainers with batches in sufficient throughput.
Since readers and trainers work in a distributed fashion in
our training system (and reside in separate clusters), many
training records are in-flight and reside in different queues.
These are batches that have been read by the reader, but have
not been consumed by the trainer yet. They constitute a gap
between the reader state and the trainer state, which may
affect accuracy when loading from a checkpoint. After resum-
ing from a checkpoint, the reader may not know which of

the training samples have been processed. To avoid this gap,
Check-N-Run’s controller communicates to a coordination
thread running on the reader master how many batches to read
until the next checkpoint. The reader makes sure to read this
exact number of batches. For example, if the checkpointing
interval is 1000 batches, the reader will provide exactly 1000
batches to the trainer and then stop reading. When trainer
finishes processing the 1000th batch and a checkpoint is trig-
gered, there will be no in-flight batches. That way, there is
essentially no gap between the reader state and the trainer
state. After reader state has been collected, Check-N-Run sig-
nals the reader to resume reading the number of batches until
the next checkpoint.

4.2 Decoupled Checkpointing
Checkpointing requires the model parameters to be atomi-
cally copied for further processing and storage. Note that this
atomicity is important for consistency. Otherwise, training
processes may update the model during the copying time win-
dow, causing substantial consistency challenges and potential
accuracy degradation when loading checkpoints. Check-N-
Run achieves atomicity by stalling training at the start of a
checkpoint and transferring the model state from GPU mem-
ory to host CPU memory. Training is stalled only when creat-
ing a copy of the model parameters in-memory. As soon as
the model snapshot is ready, dedicated CPU processes are in
charge of creating, optimizing, and storing checkpoints in the
background, while training continues on the GPUs. All train-
ing nodes concurrently create a unique snapshot of their own
local part of the model. For instance, if the embedding tables
are distributed across multiple nodes, each node snapshots its
own embedding tables and transfers that information to the
host CPU.

Using this approach to create a snapshot scales well with
larger models and more nodes, as utilizing additional nodes
does not increase the checkpoint performance overhead. For
instance, creating a snapshot (in CPU DRAM) of a typical
model residing in the GPU memory and partitioned across
16 nodes, each with 8 GPUs (total of 128 GPUs), would stall
training in our system for less than 7 seconds. When check-
pointing every 30 minutes (our default), stall time would be a
negligible fraction (< 0.4%).

4.3 Checkpointing Frequency
The checkpointing frequency is bounded by the available
write bandwidth to remote storage. Since Check-N-Run lever-
ages remote storage, it is also limited by available network
bandwidth. With larger and ever increasing model sizes, as
well as the growing number (e.g. hundreds) of training clus-
ters that concurrently train and checkpoint separate training
jobs, these resources constitute a bottleneck. In Check-N-Run,
two consecutive checkpoints cannot overlap, and writing of

Figure 8: High-level data flow during training

the current checkpoint must be completed or cancelled be-
fore a new checkpoint can be created. That way, the current
checkpoint can utilize all available resources to minimize the
write latency (i.e., the time it takes a checkpoint to become
valid and ready to use). Based on our model size and system
resource considerations, we initiate a new checkpoint every
30 minutes by default. In section 5 we describe the optimiza-
tions leveraged by Check-N-Run to significantly reduce the
required resources, providing a scalable solution to enable
high frequency checkpointing and reduce the associated total
cost of ownership (TCO).

4.4 Check-N-Run Workflow
We define the checkpoint interval as the number of trained
batches between two consecutive checkpoint. The checkpoint
operation is triggered at the end of each checkpoint interval
(a configurable number of batches), after the backpropagation
stage of the last batch in that interval. Since our training
system is fully synchronous, all GPUs will reach their last
batch in the checkpoint interval and wait until the next batch is
started. The checkpointing process consists of 3 main stages:
(1) Create an in-memory snapshot of the training state (2)
Build an optimized checkpoint (3) Write the checkpoint to
storage.

Figure 8 depicts the high-level data flow between the reader,
trainer, and remote checkpoint storage during training.

At the beginning of the training run, Check-N-Run’s con-
troller communicates to the coordination thread on the reader
master node in the reader tier, to inform what is the checkpoint
interval, i.e. how many batches to read until the next check-
point. The reader master then initiates several reader worker
threads which start reading data from the training dataset to
provide the trainer nodes. When a checkpoint is triggered,
Check-N-Run collects the reader state at this point, which
specifies what parts of the training dataset have been read so
far. At the same time, all trainer nodes are stalled to concur-
rently create a snapshot of their local state, by copying the
model state from each of their GPUs into host CPU DRAM.
As soon as all snapshots are ready, training continues. This de-
coupling mechanism essentially minimizes the checkpointing
process from bottlenecking the trainer.

In step 2, Check-N-Run leverages several techniques to
reduce the required checkpoint capacity and write bandwidth,
as described in section 5. These techniques are concurrently

applied by each trainer node and run in dedicated CPU pro-
cesses that are resident on the host CPUs in the trainer tier,
outside of the GPU critical path. Only the tracking mechanism
described in 5.1.1 is implemented in GPU.

In step 3, the checkpoint is moved to remote checkpointing
storage. Note that the optimization process in step 2 works on
chunks of embedding vectors at a time. Hence these chunks
of quantized and differential checkpoints can be stored in a
pipelined manner, enabling concurrent optimization and the
checkpoint storing process. When all nodes finish storing their
part of the checkpoint successfully, Check-N-Run’s controller
will declare a new valid checkpoint. At that stage, an older
checkpoint may be deleted by the controller (based on the
system configuration). Multiple checkpoints can be stored
depending on the needs and use cases.

5 Checkpoint Optimizations

5.1 Differential Checkpointing

One-Shot Differential Checkpoint: Motivated by the in-
sight presented in Section 3 regarding the fraction of the
model size that is modified after each iteration, we introduce
differential checkpoints. Differential checkpointing starts
with a single checkpoint taken as a full baseline checkpoint,
including all the embedding vectors. From this point, the
system starts tracking all modified vectors to create a differ-
ential view of the embedding vectors that would have to be
included in the next checkpoint. Each differential checkpoint
would then store only the vectors that were modified since the
baseline checkpoint. To resume from a checkpoint, both the
baseline checkpoint and the most recent differential check-
point have to be read. We refer to this method as One-shot
baseline.
Consecutive Incremental Checkpoint: We also explored an
alternative way, which we denote as consecutive incremen-
tal checkpoint. This approach stores the vectors that were
modified only during the last checkpoint interval, rather than
storing the vectors from a baseline checkpoint. This method
reduces the current checkpoint size, since only those modified
vectors since the last interval are stored. But this approach
would require keeping all previous incremental checkpoints
for reconstructing the model when resuming from a check-
point. Note that in our remote object storage, merging consec-
utive incremental checkpoints would require moving all the
data back to the CPU host, which costs substantial bandwidth.
Keeping all the incremental checkpoints leads to higher stor-
age capacity since a vector that is modified during multiple
intervals will have multiple copies stored. However, incremen-
tal checkpoints are useful for use cases such as online training,
where checkpoints are directly applied to an already-trained
model in inference to improve its freshness and accuracy.
Intermittent Differential Checkpoint: One challenge with
the above methods is that the checkpoint size gradually in-
creases. As training progresses, the number of modified model

parameters over a baseline will increase. One way to reduce
this growth is to checkpoint a full model intermittently, so
that the differential view size can be reduced. We exploit the
observation from Figure 5 that the modified model size grows
similarly from three different starting points.

We use a simple history based predictor to decide when to
take a full checkpoint. At the end of each checkpoint interval,
it estimates the expected cumulative size of future checkpoints
if another differential checkpoint is taken, compared with the
total expected size if a full checkpoint is taken (which will
then reduce the future checkpoint sizes). Based on this com-
parison, the system decides whether to take a full checkpoint
or stay with a differential checkpoint. The algorithm for this
selection is as follows:

Let S1,S2, ...,Si be the sizes of the past i differential check-
points, which follow a full baseline checkpoint with a size S0.
S is expressed as a fraction of the full baseline checkpoint,
such that S0 = 1. Then, at the (i+1)th interval, Check-N-Run
faces two options: (1) create a full baseline checkpoint, or (2)
create another differential checkpoint. If a full baseline check-
point is created, we estimate the future cumulative checkpoint
size Fc of the next i+1 intervals to be similar to the past i+1
intervals. That is, Fc = 1+S1 +S2, ...,+Si. Alternatively, if
a differential checkpoint is created, the total checkpoint size
of the next i+ 1 intervals is larger than, or at best equal to
Ic = (i+1)∗Si. This relation holds, because starting at inter-
val i+1 differential checkpoint size will be at least Si. Thus,
at the (i+ 1)th interval, we do a full checkpoint if Fc ≤ Ic,
else we do a differential checkpoint. We term this approach
as intermittent differential checkpoint. This approach can be
improved with more accurate prediction models, which are
part of future work.

5.1.1 Efficient Tracking

Check-N-Run is intended for high-performance training,
hence it aims to minimize the overhead of tracking which
embedding vectors are modified. Since the embedding tables
are partitioned across the GPUs, each GPU separately tracks
the accesses to its local embedding tables. For the sake of
simplicity, the training records are tracked during the forward
pass, as most of the embedding vectors accessed in the for-
ward pass are also modified during the backward pass. During
tracking, each GPU updates a bit-vector associated with its
local embedding vectors. This bit-vector is used as a mask
to determine which embedding vectors are modified during
the training process, and should eventually be included in the
next differential checkpoint. Note that the bit-vector memory
footprint is low (typically less than 0.05%, on the order of
several MBs per GPU).

We utilize idle GPU cycles to reduce tracking overhead,
by scheduling the tracking functionality during the “AlltoAll”
communication phase (described in section 2.2). Using this
implementation, the tracking overhead is reduced to ≈ 1% of

the iteration training time.

5.2 Checkpoint Quantization
The second technique that Check-N-Run uses is quantization
of checkpoints. While quantization has been adopted in some
cases for reducing model size during inference [18,37,40], or
to reduce communication costs of parameter aggregation [36],
training is typically done in single-precision floating-point
format (FP32) to maximize training outcomes and model
accuracy. Check-N-Run leverages quantization techniques
to significantly reduce the checkpoint size during training,
without sacrificing training accuracy.

Quantization in Check-N-Run is decoupled from the train-
ing process and is done in background CPU processes after
a model snapshot has been created. Hence, it does not affect
training throughput. Since quantization is applied to a chunk
of rows, the quantized checkpoint store operation does not
have to wait until the entire checkpoint is quantized and can
store the quantized rows eagerly as needed.

The quantization of embedding tables is usually applied
in the granularity of an entire embedding vector. We aim to
minimize the error between the original vector X ∈ Rn and
the quantized vector Q ∈ Zn, by minimizing ‖X−Q‖2. We
define the mean `2 error of an entire quantized checkpoint as:
1
m ∑

m
i=0 ‖Xi−Qi‖2, where m is the total number of embedding

vectors in the checkpoint. The mean `2 error metric is a
good proxy for accuracy loss because the model accuracy
is dependent on the values of the embedding tables. This
metric captures the distance between the original value of
an embedding entry without quantization and the new value
produced due to quantization. We observed that this difference
provides the first order impact on the accuracy loss and use it
to compare different quantization methods. In section 6, we
demonstrate how training accuracy is impacted by Check-N-
Run’s quantization schemes.

In this work we explored 3 quantization methods, Uni-
form Quantization, Non-Uniform Quantization and Adaptive
Quantization, to empirically evaluate which approach pro-
vides the lowest mean `2 error. Let x be the value of an
element in an embedding vector X ∈ Rn, clipped to the range
[xmin,xmax]. N-bits quantization maps x to an integer in the
range [0,2N −1], where each integer corresponds to a quan-
tized value. If the quantized values are a set of discrete, evenly-
spaced grid points, the method is called uniform quantization.
Otherwise, it is called non-uniform quantization. We describe
these approaches in detail next.
Approach 1: Symmetric-vs-Asymmetric Uniform Quan-
tization: Uniform quantization maps the embedding table
values into integers in the range [0,2n− 1]. It relies on two
parameters: scale and zero_point. Scale specifies the quan-
tization step size, and is defined as scale = xmax−xmin

2n−1 , while
zero_point is defined as xmin. The quantization proceeds as
follows: xq = round

(
x−zero_point

scale

)
. The de-quantization op-

eration is: x = scale ∗ xq + zero_point. We denote uniform
quantization as FQ(x,xmin,xmax).

In symmetric quantization, xmax is set by the maximum
absolute value in X , and xmin =−xmax. This is a very simple
approach to quantize. An improved approach is to pick xmin
and xmax to use the minimum and maximum element values
that are actually present in an embedding vector. We refer to
this method as asymmetric quantization. Asymmetric quanti-
zation, however, has the small additional overhead of storing
of both xmin,xmax values for de-quantization process.

Figure 9 shows the mean `2 error of symmetric (first bar)
and asymmetric quantization (second bar) for different bit-
widths used in quantization. Since the elements of the embed-
ding vectors are not symmetrically distributed, asymmetric
quantization consistently outperforms symmetric quantiza-
tion. Note that we generated this result from one representa-
tive checkpoint created after training a production dataset for
about 18 hours.
Approach 2: Non-uniform Quantization using K-means
We explored non-uniform quantization where embedding vec-
tors are not all mapped into equally spaced buckets. This
approach is useful when the elements in a typical embedding
vector are not necessarily uniformly distributed.

We leverage the unsupervised K-means clustering algo-
rithm for clustering elements in the embedding vector X ∈Rn

into groups. For N-bits k-means quantization, the n elements
in X are partitioned into 2N clusters. Let Ci be the cluster
i with a corresponding centroid ci. K-means quantization
maps the element x ∈ Ci to the integer xq = i. In addition,
it keeps a codebook entry, such that codebook[i] = ci. The
de-quantization operation in that case is: x = codebook[xq]

Figure 9 shows that the third bar in each group, labeled
k-means per vector, provides lower mean `2 error compared
with asymmetric quantization, when running k-means with
15 iterations. Note that K-means performs slightly worse than
asymmetric for a bit-width of 4, due to cluster initialization
randomness. While mean `2 error metric is marginally better,
the run time of K-means clustering algorithm was orders of
magnitude slower than uniform quantization. For instance,
performing K-means clustering using off-the-shelf clustering
packages on just one checkpoint of our production training
model took more than 48 hours. This is not surprising since
prior works have acknowledged the challenge of K-means
clustering on large datasets and advocated for sampling a
small fraction of the dataset to reduce their overheads [21].
We have explored different approximate clustering strategies
but approximations yielded substantial mean `2 error. Hence,
when taking into account any incremental benefits of cluster-
ing against the cost of running the clustering algorithm for
checkpointing, we conclude that k-means is not feasible in
Check-N-Run.
Approach 3: Adaptive Asymmetric Quantization: We ob-
serve that the naive way of setting xmin and xmax in asymmetric
quantization may not be optimal in some cases. For example,

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 8

M
e
an

 L
2
E
rr
or

Quantization Bit-width

Symmetric
Asymmetric

K-means per vector
Adaptive Asymmetric

Figure 9: Mean `2 error of a quantized
checkpoint for different quantization ap-
proaches

 0%

 5%

10%

15%

20%

25%

30%

0 5 10 15 20 25 30 35 40 45 50

L2
 E
rr
or

 Im
pr
ov
em
en
t

Number of Bins

2 Bits
3 Bits
4 Bits

Figure 10: Mean `2 error improvement
of adaptive asymmetric quantization
over naive asymmetric quantization for
different bit-widths, as a function of bins

 0%

 5%

10%

15%

20%

25%

30%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L2
 E
rr
or

 Im
pr
ov
em
en
t

Ratio

2 Bits
3 Bits
4 Bits

Figure 11: Mean `2 error improvement
for different bit-widths, as a function of
the number range ratio (after selecting
optimal number of bins)

if a vector contains an element with a relatively high absolute
value compared with the other elements, scale may be too
high.

A brute force approach for selecting more optimal xmin
and xmax values for each embedding vector would iterate over
many possible values, and in each iteration perform a quanti-
zation for the sole purpose of measuring `2 error. Based on
that, it would choose the xmin and xmax values that provided
the lowest `2 error. Unfortunately, since this has to be done
per embedding vector, it is not feasible in terms of run time
when quantizing large models.

To address this issue, Check-N-Run leverages a greedy
search algorithm [13] to select the xmin and xmax values per
embedding vector. We define step_size as the the original
range of the vector divided by a configurable number of bins:
step_size= Xmax−Xmin

num_bins . At each iteration, two quantizations are
performed for the sole purpose of comparing their `2 error:
FQ(x,xmin+step_size,xmax) and FQ(x,xmin,xmax−step_size).
Based on the update that provided a lower `2 error, either
xmin or xmax are set to xmin + step_size or xmax− step_size,
respectively. Finally, when all iterations are done, the optimal
xmin and xmax are chosen from the iteration with the lowest `2
error.

The greedy algorithm contains a configurable parameter,
num_bins, which determines its step size. In addition, we
add a ratio parameter, which determines the fraction of the
original range = Xmax−Xmin to iterate over. In other words,
the greedy algorithm would iterate as long as xmax− xmin <
ratio ∗ range. For example, when ratio is set to 1, the algo-
rithm would iterate over the entire range. If ratio is 0.6, the al-
gorithm would stop once it covered 60% of the original range.
While decreasing the number of bins and ratio both reduce
run time, it may also result higher `2 error. Figure 10 demon-
strates the mean `2 error improvement of adaptive asymmetric
quantization over naive asymmetric quantization for different
bit-widths, as a function of the number of bins.

Figure 11 depicts the mean `2 error improvement for vari-
ous range ratios, based on the optimal number of bins from
figure 10 (25 bins for bit-widths of 2 bits and 3 bits, and 45
bins for 4 bits). As can be seen, lower bit-width quantizations

are more sensitive to the ratio parameter (and also gain higher
improvement by the adaptive asymmetric).
Parameter selection: Check-N-Run automatically sets the
greedy algorithm parameters by performing a light-weight
checkpoint profiling. It uses the insight that mean `2 error
can be estimated efficiently without having to quantize the
entire checkpoint. It uniformly samples a small fraction of the
checkpoint (0.001% by default), then quantizes the sampled
checkpoint with different parameter values and calculates the
mean `2 errors. With this method, Check-N-Run is able to
identify the optimal parameter by automatically choosing the
parameter in which the mean `2 error improvement tapers off.
In our experiments, the sampled checkpoint provided identical
parameter selection compared with the full checkpoint.

In section 6.1, we evaluate the quantization latency as a
function of num_bins and ratio.
Summary of various approaches: Based on these empirical
data, Check-N-Run utilizes adaptive asymmetric quantization
for bit-width of 4 bits or less. As shown in figure 9, adaptive
asymmetric quantization perform similarly to k-means quanti-
zation. For 8-bit quantization, naive asymmetric quantization
is sufficient. The quantization bit-width itself is determined
dynamically by the expected number of times a training job
would resume from a checkpoint, as we elaborate in section 6.

6 Experimental Evaluation

In this section, we evaluate the performance implications
of Check-N-Run, its training accuracy implications, and the
achieved write bandwidth and storage capacity reduction. We
implemented Check-N-Run in our PyTorch training frame-
work and evaluate it in our high-performance training clusters,
under production scale models and training datasets.

We use clusters of NVidia HGX-like nodes [25] for train-
ing, with some customization such as increased host memory
of up to 1.5 TB of DRAM per node, up to 56 cores per node,
and alternate scale-out fabric such as NVSwitch and NVLinks
(connecting up to 16 nodes). Each GPU is able to communi-
cate directly with GPUs on a different node through a dedi-
cated RoCE NIC, without involving a host CPU. In addition,
there is a front-end NIC connected to each CPU. Checkpoints

 0

 100

 200

 300

 400

 500

 600

0 5 10 15 20 25 30 35 40 45 50

La
te
nc
y
(s
ec
on
ds
)

Bins

Figure 12: Total checkpoint quantization latency when using
adaptive asymmetric quantization, as a function of the number
of bins used by the greedy algorithm (ratio=1.0)

 0

 100

 200

 300

 400

 500

 600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te
nc
y
(s
ec
on
ds
)

Ratio

25 bins
45 bins

Figure 13: Total checkpoint quantization latency when using
adaptive asymmetric quantization, as a function of the ratio
used by the greedy algorithm with 25 and 45 bins

are written to remote storage through the regular front-end
network, without interfering with inter-GPU communication.

6.1 Performance
Checkpoint overhead on training: Check-N-Run decou-
ples checkpointing from training by creating an in-memory
snapshot of the model state before checkpointing. This en-
ables training to continue while checkpoints are created, opti-
mized, and stored in the background. Check-N-Run creates
snapshots by copying the model state from GPU’s HBM to
pinned CPU memory. We measured this operation to take up
to 7 seconds in our setting, during which training is stalled.
When checkpoint intervals are 30 minutes, the default setting,
that overhead translates to less than 0.4% reduction in training
throughput.

Tracking the modified embedding vectors in each train-
ing iteration requires updating a local bit vector, which is
used to mark the modified embedding vectors in the current
checkpoint interval. As described in 5.1.1, our efficient imple-
mentation uses idle GPU cycles to hide most of this overhead,
and reduces the training throughput by less than 1%. Note that
these overheads are not dependent on the number of nodes,
since nodes typically accommodate roughly the same amount
of data, bounded by the GPU’s HBM storage capacity (i.e.,
the number of nodes scales with model size). Hence, larger
models do not imply higher snapshot creation or tracking
latencies.
Checkpoint quantization latency: Quantization is another
source of delay. Since checkpoint quantization is done in

dedicated CPU processes (while training continues in GPUs),
it does not affect training throughput. However, it introduces
a new latency before the checkpoint can be written to storage.
For adaptive asymmetric quantization (used by default for 4
bit and lower quantizations), the overhead is determined by the
greedy search parameters. Figure 12 depicts the checkpoint
quantization latency of adaptive asymmetric quantization as a
function of the number of bins used by the greedy algorithm.
The latency to quantize is at most 600 seconds even with 50
bins (the bins are described in section 5.2).

Figure 13 shows the checkpoint quantization latency as a
function of the ratio used by the greedy algorithm, using 45
and 25 bins. Increasing the ratio requires searching a wider
range of the embedding vector values. As such, the latency
grows with ratio.

As a comparison, if we only use asymmetric quantization
without the adaptation based on bins and ratio, the latency
to quantize is at most 126 seconds. Hence, the "adaptive"
approach at least doubles the quantization latency.

Note that the above latency values represent the most pes-
simistic data. But as explained earlier, quantization in Check-
N-Run is performed chunk by chunk (as part of the data
serialization, where each chunk contains a small subset of the
model state). It is pipelined such that each quantized chunk
is written independently to the remote storage, while a new
chunk is being quantized. Hence, write bandwidth to remote
storage is our main bottleneck, and the observed storage write
latency is typically higher than the checkpoint quantization
latency. Therefore, the latency of our pipelined quantization
approach is virtually zero.

6.2 Accuracy

In this section, we evaluate the training accuracy implications
of resuming from a quantized checkpoint using the asymmet-
ric and adaptive asymmetric quantizations described earlier.
Since differential checkpointing does not alter training accu-
racy (all data is preserved on every recovery), we focus this
section on quantization approaches only. We use a baseline
that does not use quantization to determine accuracy loss of
quantization.

Note that the number of stored checkpoints and their fre-
quency do not affect the training accuracy, since training is
always done in single-precision floating-point. Quantization
is only applied to checkpoints, and would only impact the
training job if it resumes from a checkpoint. In that case,
Check-N-Run would load a checkpoint and de-quantize it
before resuming model training in single precision.

When training jobs have to resume from multiple quan-
tized checkpoints during their lifetime, the quantization error
may accumulate. Therefore, the number of times a training
job resumes from checkpoints determines the suitable quan-
tization bit-width. Figure 14(a) shows the training lifetime
accuracy degradation when loading from a 2-bit quantized

 0

 0.005

 0.01

 0.015

 0.02

 0 1x106 2x106 3x106

A
cc
ur
ac
y
D
eg
ra
da
tio
n

Number of Trained Records

1
2
3

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0 1x106 2x106 3x106

A
cc
ur
ac
y
D
eg
ra
da
tio
n

Number of Trained Records

2
3
4

(b)

 0

 0.005

 0.01

 0.015

 0.02

 0 1x106 2x106 3x106

A
cc
ur
ac
y
D
eg
ra
da
tio
n

Number of Trained Records

10
20
30

(c)

Figure 14: Lifetime accuracy degradation in a training job of 4 billion training samples, when using: (a) 2-bit, (b) 3-bit, and (c)
4bit quantized checkpoints. The lines represent the number of times the job had to resume from a quantized checkpoint

Interval number

%
 o

f m
od

el
 s

iz
e

0

25

50

75

100

125

0 1 2 3 4 5 6 7 8 9 10 11

One-shot baseline Intermittent baseline Consecutive increment

Figure 15: Bandwidth measure: checkpoint size per interval
of 30 minutes, for different checkpoint policies

Interval number

%
 o

f m
od

el
 s

iz
e

0

100

200

300

400

0 1 2 3 4 5 6 7 8 9 10 11

One-shot baseline Intermittent baseline Consecutive increment

Figure 16: Storage measure: the required storage capacity at
each interval of 30 minutes, for different checkpoint policies

checkpoint. We start with 2-bit quantization since it is the
most aggressive storage and bandwidth reduction technique
of all the approaches. The three lines represent the number of
training job failures (failures are uniformly distributed during
training), in which the model needs to be reconstructed from
a quantized checkpoint. With a single failure, the training
accuracy impact is well below the 0.01% threshold even after
training with 3 Billion records. However, when two or more
failures are encountered during a training run then the 2-bit
quantization exceeds the loss threshold of 0.01%.

6.2.1 Dynamic Bit-width Selection:

Figures 14(b) and 14(c) show the accuracy degradation when
resuming from 3-bit and 4-bit quantized checkpoints, respec-
tively. As expected, higher bit-widths allow resuming from
a checkpoint more times. For 3-bit quantization, a training
job may resume from a checkpoint up to 3 times, while for
4-bit quantization one may load the checkpoint up to 20 times.
While not shown in the figure, we also measured that with an

8-bit asymmetric quantization, a training job can resume from
a checkpoint over 100 times without exceeding the accuracy
loss threshold.

Based on the above set of results, Check-N-Run uses a
dynamically configurable bit-width selection. Check-N-Run
estimates the expected time of training based on the model
and the number of nodes. The probability of a node failure in
our training cluster (p) is provided as input to Check-N-Run.
This probability is computed from failure logs. Check-N-
Run then estimates the expected number of failures. Based
on this estimate, it picks the bit-width that will not exceed
the accuracy threshold. If the number of failures exceeds the
estimates during training, Check-N-Run automatically falls
back to 8-bit quantization.

6.3 Write Bandwidth and Storage Capacity
In this section, we evaluate the write bandwidth and storage
capacity reduction achieved by Check-N-Run, compared with
a baseline checkpointing system that uses neither quantization
nor differential views.

6.3.1 Differential Checkpointing Policy Comparison

Figure 15 shows the fraction of the model size that is stored
in each differential checkpoint, over checkpoint intervals of
30 minutes. This data is a proxy for the bandwidth needed
to store the checkpoint. It shows the checkpoint sizes at each
interval for different checkpoint policies. In the One-shot dif-
ferential method, the differential checkpoint includes all the
embedding vectors that were modified since the first check-
point, which is created at the first checkpoint interval. As can
be seen in the figure, the initial differential checkpoint is only
25% of the total model size, but as the checkpoint size keeps
increasing, it exceeds 50% of the model size after 10 intervals.
For Intermittent differential method, the figure shows how
the checkpoint size increases until Check-N-Run dynamically
switches to taking a full baseline checkpoint at interval 8, just
before the checkpoint size reaches 50% of the model size.
The new baseline checkpoint includes the entire model, but
the next checkpoint size is only about 25% of the full model
size

 0X

 2X

 4X

 6X

 8X

10X

12X

14X

16X

18X

L ≤ 1 1<L≤3 3<L<20 20 ≤ L

R
ed
uc
tio
n

Average Bandwidth Storage Capacity

Figure 17: Overall reduction of the checkpoint average write
bandwidth and storage capacity. L represents the number of
times the training job had to resume from a checkpoint.

Figure 16 shows the total required storage capacity (rela-
tive to the model size), over several checkpoint intervals of 30
minutes. The One-shot differential approach includes the first
checkpoint taken and the latest differential checkpoint at each
interval. As expected, the consumed capacity increases over
time. The reason is that every differential checkpoint stores
all the modified entries since the first checkpoint, along side
the first checkpoint itself. In the case of Intermittent differen-
tial, the required capacity increases until the full checkpoint
is triggered at interval 8. At that point, the consumed stor-
age capacity resets and includes only the newly taken full
checkpoint.

Figures 15 and 16 also show the impact of the Consecutive
incremental policy, which only stores the vectors that were
modified in the current checkpoint interval. The recovery
process is more complex, since all previous checkpoints must
be read for recovery. As can be seen, this approach reduces
the size of checkpoints over time and the corresponding write
bandwidth (e.g., the average write bandwidth in a duration of
12 intervals is 33% less than the other policies). Moreover, the
checkpoint size is stable, since the number of vectors that are
updated during an interval stays roughly the same. However,
since all the checkpoints have to be kept, the required storage
capacity increases rapidly, reaching almost ×4 the model
size after only 11 intervals. As such, Check-N-Run uses the
intermittent differential policy by default.

6.3.2 Overall Reduction

Figure 17 presents the overall reduction in write bandwidth
and storage capacity, when combining both quantization and
differential checkpointing (intermittent baseline policy), and
using the thresholds from section 6.2.1 for selecting the quan-
tization bit-width. When a training job is expected to resume
from checkpoint no more than one time, Check-N-Run re-
duces the average consumed write bandwidth and maximum
storage capacity by 17× and 8×, respectively. Even in the
not so common case of more than 20 failures, Check-N-Run
reduces the average bandwidth by 6× and the maximum stor-
age capacity by 2.5×. Note that these savings are not lin-
early proportional to the chosen quantization bit-width due to

the metadata structure. That structure includes the differen-
tial checkpoint index and quantization parameters. Metadata
structure can be further optimized in future work.

7 Related Work

Checkpointing has been explored in many distributed sys-
tems [2, 17, 27, 28, 35]. Checkpoint optimization schemes
include techniques to reduce latency [31], coordinating across
multiple snapshots for efficient reconstruction [27, 35], using
different checkpoint resolutions for providing varying levels
of recovery [8, 20]. The goal of Check-N-Run is to deal with
checkpoints that are terabytes in size. As such, reducing stor-
age and network bandwidth is important. Unlike traditional
distributed systems, where getting a consistent view across
different machines is a challenge [2, 28], Check-N-Run ex-
ploits the repetitive nature of synchronous training to initiate
checkpoints at the end of a training batch.

In terms of ML-specific checkpointing, Deepfreeze [24]
checkpoints DNN models using variable resolution, while
handling storage-specific API and sharding needs. Microsoft’s
ADAM uses zip compression to reduce checkpoint size of
DNN models [5]. CheckFreq uses dynamic rate tuning to
automatically decide when to initiate a checkpoint and a de-
coupled store-train pipleine [19]. Check-N-Run tackles re-
ducing storage and bandwidth needs through quantization
combined with incremental view. Similar to CheckFreq, it
also decouples checkpoint processing from training.

Quantization has been applied to ML models, particularly
in the context of inference. Prior works used floating to fixed
point quantization to improve compute efficiency [18], ternary
quantization for inference on mobile devices [37, 40], per-
layer heterogeneous quantization of DNNs [39], mixed pre-
cision quantization that adapts to underlying hardware capa-
bilities [34], quantization of gradient vectors for bandwidth
efficient aggregation [1,9,36], lossy training using 1-bit quan-
tization [29] and more. To the best of our knowledge, using
quantization to reduce checkpoint size of recommendation
models has not been made public.

8 Conclusion

This paper presents Check-N-Run, a high-performance check-
pointing system for training recommendation systems at scale.
The primary goal of Check-N-Run is to reduce the bandwidth
and storage costs without compromising accuracy. Hence,
Check-N-Run leverages differential checkpointing and dy-
namically selected quantization techniques to significantly
reduce the required write bandwidth and storage capacity for
checkpointing real-world models. Our evaluations show that
depending on the number of recovery events one may need to
adapt quantization of different bit widths. By combining such
adaptive quantization with differential checkpointing, Check-
N-Run provides 6-17x reduction in required bandwidth, while
simultaneously reducing the storage capacity by 2.5-8X.

References
[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,

and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. In Advances
in Neural Information Processing Systems, pages 1709–
1720, 2017.

[2] K Mani Chandy and Leslie Lamport. Distributed
snapshots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems (TOCS),
3(1):63–75, 1985.

[3] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal
Józefowicz. Revisiting distributed synchronous SGD.
CoRR, abs/1604.00981, 2016.

[4] Suming J. Chen, Zhen Qin, Zac Wilson, Brian Calaci,
Michael Rose, Ryan Evans, Sean Abraham, Donald Met-
zler, Sandeep Tata, and Mike Colagrosso. Improving
recommendation quality in google drive. In KDD ’20:
The 26th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, Virtual Event, CA, USA, August
23-27, 2020, pages 2900–2908. ACM, 2020.

[5] Trishul M. Chilimbi, Yutaka Suzue, Johnson Apacible,
and Karthik Kalyanaraman. Project adam: Building an
efficient and scalable deep learning training system. In
11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, Broomfield, CO, USA,
October 6-8, 2014, pages 571–582. USENIX Associa-
tion, 2014.

[6] Yann Collet and Chip Turner. Smaller and faster data
compression with zstandard. http://www. rgoarchitects.
com/Files/fallacies. pdf, 2016.

[7] Paul Covington, Jay Adams, and Emre Sargin. Deep neu-
ral networks for youtube recommendations. In Proceed-
ings of the 10th ACM Conference on Recommender Sys-
tems, Boston, MA, USA, September 15-19, 2016, pages
191–198. ACM, 2016.

[8] Sheng Di, Mohamed-Slim Bouguerra, Leonardo Arturo
Bautista-Gomez, and Franck Cappello. Optimization of
multi-level checkpoint model for large scale HPC appli-
cations. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA,
May 19-23, 2014, pages 1181–1190. IEEE Computer
Society, 2014.

[9] Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian
Van Essen. Communication quantization for data-
parallel training of deep neural networks. In 2016 2nd
Workshop on Machine Learning in HPC Environments
(MLHPC), pages 1–8. IEEE, 2016.

[10] Assaf Eisenman, Maxim Naumov, Darryl Gardner,
Misha Smelyanskiy, Sergey Pupyrev, Kim M. Hazel-
wood, Asaf Cidon, and Sachin Katti. Bandana: Using
non-volatile memory for storing deep learning models.
In Proceedings of Machine Learning and Systems 2019,
MLSys 2019, Stanford, CA, USA, March 31 - April 2,
2019. mlsys.org, 2019.

[11] Andrey Goder, Alexey Spiridonov, and Yin Wang.
Bistro: Scheduling data-parallel jobs against live pro-
duction systems. In 2015 USENIX Annual Technical
Conference, USENIX ATC ’15, July 8-10, Santa Clara,
CA, USA, pages 459–471. USENIX Association, 2015.

[12] Carlos Alberto Gomez-Uribe and Neil Hunt. The netflix
recommender system: Algorithms, business value, and
innovation. ACM Trans. Manag. Inf. Syst., 6(4):13:1–
13:19, 2016.

[13] Hui Guan, Andrey Malevich, Jiyan Yang, Jongsoo Park,
and Hector Yuen. Post-training 4-bit quantization on
embedding tables. In MLSys Workshop on Systems for
ML @ NeurIPS, 2019.

[14] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford Cot-
tel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
The architectural implications of facebook’s dnn-based
personalized recommendation. In 2020 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 488–501. IEEE, 2020.

[15] Robert L Henderson. Job scheduling under the portable
batch system. In Workshop on Job Scheduling Strategies
for Parallel Processing, pages 279–294. Springer, 1995.

[16] Samuel Hsia, Udit Gupta, Mark Wilkening, Carole-Jean
Wu, Gu-Yeon Wei, and David Brooks. Cross-stack work-
load characterization of deep recommendation systems.
In 2020 IEEE International Symposium on Workload
Characterization (IISWC), pages 157–168. IEEE, 2020.

[17] R Koo and S Toueg. Checkpointing and recovery roll-
back for distributed systems. IEEE Transactions on
Software Engineering, 13(1):23–31, 1987.

[18] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.
Fixed point quantization of deep convolutional networks.
In International conference on machine learning, pages
2849–2858. PMLR, 2016.

[19] Jayashree Mohan, Amar Phanishayee, and Vijay Chi-
dambaram. Checkfreq: Frequent, fine-grained DNN
checkpointing. In Marcos K. Aguilera and Gala Yadgar,
editors, 19th USENIX Conference on File and Storage
Technologies, FAST 2021, February 23-25, 2021, pages
203–216. USENIX Association, 2021.

[20] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and
Bronis R De Supinski. Design, modeling, and evalu-
ation of a scalable multi-level checkpointing system.
In SC’10: Proceedings of the 2010 ACM/IEEE Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11. IEEE,
2010.

[21] Laurence Morissette and Sylvain Chartier. The k-means
clustering technique: General considerations and imple-
mentation in mathematica. Tutorials in Quantitative
Methods for Psychology, 9(1):15–24, 2013.

[22] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srini-
vas Sridharan, Xiaodong Wang, Whitney Zhao, Serhat
Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal,
et al. Deep learning training in facebook data centers:
Design of scale-up and scale-out systems. arXiv preprint
arXiv:2003.09518, 2020.

[23] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, et al. Deep learning recommen-
dation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

[24] Bogdan Nicolae, Jiali Li, Justin Wozniak, George
Bosilca, Matthieu Dorier, and Franck Cappello. Deep-
freeze: Towards scalable asynchronous checkpointing of
deep learning models. In CCGrid’20: 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet
Computing, 2020.

[25] Nvidia. Nvidia hgx2 datasheet.
https://images.nvidia.com/content/pdf/hgx2-
datasheet.pdf.

[26] Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2009.

[27] Fabrizio Petrini, Kei Davis, and José Carlos Sancho.
System-level fault-tolerance in large-scale parallel ma-
chines with buffered coscheduling. In 18th International
Parallel and Distributed Processing Symposium (IPDPS
2004), CD-ROM / Abstracts Proceedings, 26-30 April
2004, Santa Fe, New Mexico, USA. IEEE Computer So-
ciety, 2004.

[28] James S Plank. An overview of checkpointing in unipro-
cessor and distributed systems, focusing on implementa-
tion and performance. Technical report, UT-CS-97-372,
1997.

[29] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong
Yu. 1-bit stochastic gradient descent and its applica-
tion to data-parallel distributed training of speech dnns.

In INTERSPEECH 2014, 15th Annual Conference of
the International Speech Communication Association,
Singapore, September 14-18, 2014, pages 1058–1062.
ISCA, 2014.

[30] Brent Smith and Greg Linden. Two decades of recom-
mender systems at amazon.com. IEEE Internet Comput.,
21(3):12–18, 2017.

[31] Nitin H Vaidya. On checkpoint latency. Citeseer, 1995.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. arXiv
preprint arXiv:1706.03762, 2017.

[33] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang,
Binqiang Zhao, and Dik Lun Lee. Billion-scale com-
modity embedding for e-commerce recommendation in
alibaba. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018,
pages 839–848. ACM, 2018.

[34] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song
Han. Haq: Hardware-aware automated quantization
with mixed precision. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
8612–8620, 2019.

[35] Long Wang, Karthik Pattabiraman, Zbigniew Kalbar-
czyk, Ravishankar K Iyer, Lawrence Votta, Christopher
Vick, and Alan Wood. Modeling coordinated check-
pointing for large-scale supercomputers. In 2005 Inter-
national Conference on Dependable Systems and Net-
works (DSN’05), pages 812–821. IEEE, 2005.

[36] Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li,
Youjie Li, Nam Sung Kim, Alexander G. Schwing, Mu-
rali Annavaram, and Salman Avestimehr. Gradiveq:
Vector quantization for bandwidth-efficient gradient ag-
gregation in distributed CNN training. In Advances
in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 5129–5139, 2018.

[37] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and
Gang Hua. Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 365–382, 2018.

[38] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian,
Ronglai Jia, and Ping Li. Aibox: Ctr prediction model
training on a single node. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, pages 319–328, 2019.

[39] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-
Man Cheung, and Pascal Frossard. Adaptive quan-
tization for deep neural network. arXiv preprint
arXiv:1712.01048, 2017.

[40] Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

	Introduction
	Background
	Recommendation Models
	High Performance Training at Facebook

	Motivation
	Training Failures
	Model Size
	Model Updates

	Check-N-Run Design Overview
	What to Checkpoint?
	Decoupled Checkpointing
	Checkpointing Frequency
	Check-N-Run Workflow

	Checkpoint Optimizations
	Differential Checkpointing
	Efficient Tracking

	Checkpoint Quantization

	Experimental Evaluation
	Performance
	Accuracy
	Dynamic Bit-width Selection:

	Write Bandwidth and Storage Capacity
	Differential Checkpointing Policy Comparison
	Overall Reduction

	Related Work
	Conclusion

