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Background & Motivation

* We are living in the era of programmable network.

* Networking switches with programmable pipeline, a.k.a.
programmable switches, have been prevailing.

Spectrum’s

Programmable switches provide basic compute capability, great
programmability and flexibility, while keeping line-rate forwarding.




Background & Motivation

 Programmable switches have been applied to accelerate/offload
a wide range of networking and distributed applications.
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Background & Motivation

* Protocol-independent switch architecture (PISA), the de-facto
programmable switch paradigm, has no support for floating
point (FP) data formats, which are common in many use cases.
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Challenges
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Challenges

« Why does the current PISA switch not support FP operation?
Let’s see how arithmetic operation works under the hood at first!
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Challenges

 Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!
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Challenges

 Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!

e FP?
-« C=A+/-B
EXpa Man,
10001 0000011110000000

10000 0000010100000000




Challenges

 Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!

e FP?
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10001 0O000011110000000
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Challenges

 Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!

e FP?
- C=A+/-B
EXpa Many
10001 0O0O0O0O0O11110000000
1. E>_<tract EXDg + Mang
2. Align 10000 000000101 0000000
3. Add/sub — Mang
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Challenges

« Why does the current PISA switch not support FP operation?
Let’s see how arithmetic operation works under the hood at first!

FP?
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4. Renormalize
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Challenges

 Why does the current PISA switch not support FP operation?
Let’s see how arithmetic operation works under the hood at first!

- FP?
C=A+/-B

1. Extract

2. Align

3. Add/sub

4. Renormalize
5. Assemble
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Implied “1” for mantissa
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Challenges

« Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!
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FP operations are not single-clock-cycle.




Challenges

« Going back to PISA architecture...

* Fully-pipelined streaming design (cannot go backward, cannot stall)
* ONE single action per stage
 ONE access per memory location per packet

Match + Action
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FP cannot be done in single pipeline stage anyway!

Block diagram credit: Xin jin, et al., NetCache: Balancing Key-Value Stores with Fast In-network Caching (SOSP’17)
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Challenges

« Other programmable switch paradigms instead of PISA?

« Switch with specific arithmetic support (e.g., Mellanox SHARP)?
High-performance (throughput, latency, and scalability)

* Fixed functionalities, inflexible for emerging numerical formats (FP16, bfloat,
MSFP, etc.)

« FPGA-based “switch”?

Flexible enough
* Not as high-performance (overall-throughput) as ASIC

PISA has the potential of balancing performance and flexibility.
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FPISA: Native FP representation

and operations in PISA
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PISA: High-level idea

Decompose an FP’s representation (storage) and operation to mutual-
independent, PISA-friendly steps.

Keep the intermediate FP representation in PISA, until we need to get back
to the end-host(s).

Leverage networking-specific hardware units for FP sub-operations.
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PISA: FP representation and storage in PISA

 We decouple the three components of a FP number and store them
separately in PISA pipeline.

Si?n 8-bit Ex?onent 23-bit Mantissa

MAU MAU




PISA: FP representation and storage in PISA

 We decouple the three components of a FP number and store them
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PISA: FP representation and storage in PISA

 We decouple the three components of a FP number and store them
separately in PISA pipeline.
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PISA: FP representation and storage in PISA

 We decouple the three components of a FP number and store them

separately in PISA pipeline.

Si?n 8-bit Ex?onent 23-bit Mantissa

encoded in 2’s

MAU MAU
8-bit Exponent 32-bit Signed

Array Mantissa Array

complement
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PISA: Delayed normalization

« Suppose we want to calculate V, + V, + V3=V,

Exp;

Man,
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Man,

MAU

8-bit Exponent
Array

MAU

32-bit Signg
Mantissa A@

Cannot go
back to adjust
exponent!
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PISA: Delayed normalization

« Suppose we want to calculate V, + V, + V3=V,

 We delay the step “renormalization” until we need to get the result
back to the end-host(s).

ﬁ
Exp; | Man;
MAU MAU
Expe | Man, 8-bit Exponent 32-bit Signed
Expy | Man, Array Mantissa Array

Exp - + 4 Man




PISA: Delayed normalization

« Suppose we want to calculate V, + V, + V3=V,

 We delay the step “renormalization” until we need to get the result

back to the end-host(s).
ﬁ
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PISA: Leverage networking hardware

* For renormalization, we need to find how many leading “0” we have in the
operated mantissa, so that we can shift it and adjust the exponent.

 How can we do this efficiently and quickly?

Renormalize & Assemble
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PISA: Leverage networking hardware

* For renormalization, we need to find how many leading “0” we have in the
operated mantissa, so that we can shift it and adjust the exponent.

 How can we do this efficiently and quickly?

| waen | scuon [ | Matoh Manosa) | Acton Mo |
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Table 0.0.0.1/32 Left-shift 23 bits

Default Do nothing o6



Are we done”?

« We implement FPISA with P4 in Intel’s Tofino-1 and find it not efficient enough.

« Example-1: saturated VLIW instruction slots —> limited data parallelism

Renormalize & Assemble
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Are we done?

« We implement FPISA with P4 in Intel’s Tofino-1 and find it not efficient enough.

« Example-1: saturated VLIW instruction slots —> limited data parallelism
« Enhancement: 2-operand shift instruction —> “shift [operand0] [operand1]”
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Are we done?

« We implement FPISA with P4 in Intel’s Tofino-1 and find it not efficient enough.

« Example-1: saturated VLIW instruction slots —> limited data parallelism
« Enhancement: 2-operand shift instruction —> “shift [operand0] [operand1]”

« Example-2: CPU-network endianness difference -> conversion overhead on end-host
 Enhancement: byte-wise shuffling in switch pipeline/parser
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and that is desired to achieve 100Gbps line-rate.




Usecase: In-network aggregation for distributed ML training

 What's the procedure of data communication in state-of-the-art frameworks?

 Note: we focus on the most popular “data parallel” mode.

Aggregated
Gradient

In-switch Aggregation Vector

Update local model,

Need quantization (to run next iteration....

fixe Need to recover
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Local computing
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Worker
Worker
Worker
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Evaluation

« @Given the aforementioned hardware limitation, we develop a C
program exactly simulating FPISA addition behavior (both FP32 and
FP16) for model convergence evaluation.

« We also leverage the SwitchML (NSDI’21) framework to evaluate the
(emulated) end-to-end training time speedup in a real cluster.
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Evaluation — Training accuracy and convergence

 We apply FPISA’s addition (both FP132 and FP16) to models training,
and compare the accuracy curves against the ones generated with
default standard FP addition.
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(a) GoogleNet. (b) ResNet-50. (¢) VGGI109. (d) MobileNetV2.

FPISA has negligible impact on trained model’s convergence.
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Evaluation — Training time speedup

« We compare FPISA’s training time with fixed point based SwitchML,
which conducts qqc%ntization with 2 or 8 CPU cores.

Bl 2-core
[ 8-core

(o]
o

»
o

End-to-end Training
Time Speedup (%)
I
o

N
o o

End-to-end training time speedup of FPISA compared
to the default SwitchML with 8 cores.




Evaluation — Training time speedup

« We compare FPISA’s training time with fixed point based SwitchML,

which conducts qqo%ntization with 2 or 8 CPU cores.
B 2-core

> 40% drop with limited hardware
in SwitchML for quantization!

End-to-end Training
Time Speedup (%)

End-to-end training time speedup of FPISA compared
to the default SwitchML with 2 cores.

FPISA can bring training speedup as well as efficient end-host resource usage
compared to the state-of-the-art solutions.
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More details in the paper

« FPISA’s error and precision analysis.

« Error-tolerance and numerical characteristics of gradient
aggregation in distributed training.

 GPU'’s potential for gradient quantization.

« Additional FP features and advanced FP operations in PISA.
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Conclusion

* Floating point is an important format that is desirable to be
supported on modern programmable dataplane with low
cost and high flexibility.

« We Propose FPISA approach and a couple of cheap
hardware enhancements, which, together, store and
operate floating-point numbers in common PISA pipeline.

* Our evaluation on distributed ML training shows that FPISA
can significantly facilitate the application execution and
reduce end-host resource usage.
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