Unlocking the Power of Inline Floating-Point
Operations on Programmable Switches

Yifan Yuan', Omar Alama?, Jiawei Fei? 3,
Jacob Nelson#, Dan R. K. Ports*, Amedeo Sapio®,
Marco Canini2, Nam Sung Kim’

TUIUC, 2KAUST, SNUDT, “Microsoft Research, °Intel
04/05/2022

alllauc &llall aeala

'g King Abdullah University of

Science and Technology

m= Microsoft (intel®)

J

Background & Motivation

* We are living in the era of programmable network.

* Networking switches with programmable pipeline, a.k.a.
programmable switches, have been prevailing.

Spectrum’s

Programmable switches provide basic compute capability, great
programmability and flexibility, while keeping line-rate forwarding.

Background & Motivation

 Programmable switches have been applied to accelerate/offload
a wide range of networking and distributed applications.

(] (]
NetChain (NSDI'18), DistCache (FAST’19) @ NOPaxos (OSDI'16), Eris (SOSP’17)

@ NetCache (SOSP’17), HULA (SOSR’16) DDo5 p2 [jagen (Security’21), Poseidon (NDSS’20)

o

Cheetah (SIGMOD’20), NETACCEL (CIDR’19) g%'?\. SwitchML (NSDI’21), ATP (NSDI’21)

| Are we still missing anything?

Background & Motivation

* Protocol-independent switch architecture (PISA), the de-facto
programmable switch paradigm, has no support for floating
point (FP) data formats, which are common in many use cases.

%4 Snapshot Ensemble
04+ Cyclic LR Schedule ‘/C\‘\\\

Calculating
Congestion eStimation
B __ heeds FP!

Training
 gradient

Datatype

can be FP!

> 212 TR0

3 2,12299990653992
4 21234 2,12339997291565
5 212345 2,12345004081726

6 2,123456 2,12345600128174

Vo <Y _I5
() PyTOFCh SPCM’ K" saL il
|1t will be great if we can enable FP operations on PISA switch! »

Challenges

L O T o et o s S hfCr

s under the

support FP oPeratlons eff|C|entIy
* Integer (fixed point)?

« C =A+/-B, done. Easy and simple.

Ao~ = 1514 Dib numb
MSB Bo- Ba = 2nd 4-bit numb: LSB
Az Ba A; B: B Ay B ._
(R
| | | | | | |
. [AE A B A B A B
aut C: Cs Co ‘0"
<+ Cau Aiiléltlar Cin[+—1 Cou AZZL Cin[*—Cou AZZ'; Cinf+—Con AFddlé Canle—
SUM SUM SUM SUM

Challenges

« Why does the current PISA switch not support FP operation?
Let’s see how arithmetic operation works under the hood at first!

3 ?
FP* Sign Biased Exponent

1 bit 5 bits (k = 5)

/\/ = N
Ellllqj11ooooooo

.Implied “1” for mantissa
Sign =0 Exponent=2%+20=17

Bias =2k1-1=251-1 =1
Biased_exp=17-15=2

-19x 22 x (2° +)

7.9

Challenges

 Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!

. FP?
- C=A+-B

A (7.5) + B (2.5)
MNP0 00 1110000000 7000 0o100000000

Challenges

 Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!

e FP?
-« C=A+/-B
EXpa Man,
10001 0000011110000000

10000 0000010100000000

Challenges

 Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!

e FP?
- C=A+/-B
EXpa Man,
10001 0O000011110000000
; . Ej_(tract EXDg Mang
- Allgn 10000 00000101 00000000
>> 1

Exp,— Expg =1 0l0ooooi1o010000000

Challenges

 Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!

e FP?
- C=A+/-B
EXpa Many
10001 0O0O0O0O0O11110000000
1. E>_<tract EXDg + Mang
2. Align 10000 000000101 0000000
3. Add/sub — Mang

0000101000O00O0O00O00O

10

Challenges

« Why does the current PISA switch not support FP operation?
Let’s see how arithmetic operation works under the hood at first!

FP?
C=A+/-B

1. Extract

2. Align

3. Add/sub

4. Renormalize

EXpa The first “1” should always be at
10001 the 5t bit, as the implied “1”
Expg anc
10000 0000101000000000
Expc
= Max(Expa, Expg) + (5 - 4) >> (5 - 4)

10010 0O00OO0OO0O10100000000

11

Challenges

 Why does the current PISA switch not support FP operation?
Let’s see how arithmetic operation works under the hood at first!

- FP?
C=A+/-B

1. Extract

2. Align

3. Add/sub

4. Renormalize
5. Assemble

EXpC ManC
10010 0O00OO0OO0O10100000000D0

Implied “1” for mantissa

1
00T 0o0100000000
C=10

12

Challenges

« Why does the current PISA switch not support FP operation?
« Let’s see how arithmetic operation works under the hood at first!

Operation l Opl i Op2 Round_mode|
| Decompose] E -
. EP? : R TR very single
F P ' % Effec‘ttive Exp ;Lnd exp > Swap
° C] A +/- B S| s diff calculator ' bI k -
s Exp_diff M_small M. barge ’ O C I S

v
IE—OPM | Significant shifter ‘ - '
Resultant m I t d

Sign calc h I CO p I C a e H

Shift calculation

1. Extract
2. Align

| Exponent adjust)(—{ Normalization |

3 . Ad d/ S u b | Exponent adjustk—’ }{ounding |<—

¢ Exp_final \L M_final

4. Renormalize |
5_ Assemble Out_data l, All exception signals i

E

FP operations are not single-clock-cycle.

Challenges

« Going back to PISA architecture...

* Fully-pipelined streaming design (cannot go backward, cannot stall)
* ONE single action per stage
 ONE access per memory location per packet

Match + Action

EHr [— 1
BN TIN RN R

\
Y

HHHE

J

Programmable
Parser Programmable Match-Action Pipeline

FP cannot be done in single pipeline stage anyway!

Block diagram credit: Xin jin, et al., NetCache: Balancing Key-Value Stores with Fast In-network Caching (SOSP’17)

14

Challenges

« Other programmable switch paradigms instead of PISA?

« Switch with specific arithmetic support (e.g., Mellanox SHARP)?
High-performance (throughput, latency, and scalability)

* Fixed functionalities, inflexible for emerging numerical formats (FP16, bfloat,
MSFP, etc.)

« FPGA-based “switch”?

Flexible enough
* Not as high-performance (overall-throughput) as ASIC

PISA has the potential of balancing performance and flexibility.

15

FPISA: Native FP representation

and operations in PISA

16

PISA: High-level idea

Decompose an FP’s representation (storage) and operation to mutual-
independent, PISA-friendly steps.

Keep the intermediate FP representation in PISA, until we need to get back
to the end-host(s).

Leverage networking-specific hardware units for FP sub-operations.

Extract Align Add/sub Renormalize & Assemble
MAUO MAU2 MAU3 MAU4 MAUG MAU7 MAUS8
: 32-bit m m m
8-bit Exact : TCAM
Exponent Match Signes LPM

Table

Array

\ 4

\
\
\

Table m m
ooy |0 | | G

\ 4
L B B] >
=
L B B >
C
(&)

A /

\

Memory m

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
: Mantissa :
] Array =
| . |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Memory Memory
o Add Get exponent difference / Shift in-metadata Signed add/sub/ Convert to Count leading “0”s, Adjust .
Split bits . C Lk) ; Merge bits
implied “1 overwirte mantissa overwrite mantissa unsigned shift mantissa exponent

17

PISA: FP representation and storage in PISA

 We decouple the three components of a FP number and store them
separately in PISA pipeline.

Si?n 8-bit Ex?onent 23-bit Mantissa

MAU MAU

PISA: FP representation and storage in PISA

 We decouple the three components of a FP number and store them
separately in PISA pipeline.

Si?n 8-bit Ex?onent 23-bit Mantissa

MAU MAU
8-bit Exponent

Array

PISA: FP representation and storage in PISA

 We decouple the three components of a FP number and store them
separately in PISA pipeline.

Si?n 8-bit Ex?onent 23-bit Mantissa

MAU MAU
8-bit Exponent

Array

PISA: FP representation and storage in PISA

 We decouple the three components of a FP number and store them

separately in PISA pipeline.

Si?n 8-bit Ex?onent 23-bit Mantissa

encoded in 2’s

MAU MAU
8-bit Exponent 32-bit Signed

Array Mantissa Array

complement

21

PISA: Delayed normalization

« Suppose we want to calculate V, + V, + V3=V,

Exp;

Man,

ﬁ

Exp,

Man,

MAU

8-bit Exponent
Array

MAU

32-bit Signg
Mantissa A@

Cannot go
back to adjust
exponent!

22

PISA: Delayed normalization

« Suppose we want to calculate V, + V, + V3=V,

 We delay the step “renormalization” until we need to get the result
back to the end-host(s).

ﬁ
Exp; | Man;
MAU MAU
Expe | Man, 8-bit Exponent 32-bit Signed
Expy | Man, Array Mantissa Array

Exp - + 4 Man

PISA: Delayed normalization

« Suppose we want to calculate V, + V, + V3=V,

 We delay the step “renormalization” until we need to get the result

back to the end-host(s).
ﬁ

Exp, Man,
Exp Renormalize & Assemble
MAU MAU Man MAU5 MAUG MAU? MAUS8
8-bit Exponent 32-bit Signed
Array Mantissa Array | m T&Ahzﬂ m m
— 4:_, m o | Table m q m q

: : : :

| L] L n

: m Memory m m

|

|

| Convert to Count leading “0”s, Adjust Merge bits

unsigned shift mantissa exponent 9

24

PISA: Leverage networking hardware

* For renormalization, we need to find how many leading “0” we have in the
operated mantissa, so that we can shift it and adjust the exponent.

 How can we do this efficiently and quickly?

Renormalize & Assemble

|
|
|
|
|
! MAU5 MAUG MAU7 MAUS8
|
| o || | [EI
: LPM
— vl B0 | [Teble (EVRL .| T
: : : :
| - u n
- | vemoy | [0 | | [FI
|
|
| Convert to Count leading “0”s, Adjust

unsigned shift mantissa exponent Merge bits

PISA: Leverage networking hardware

* For renormalization, we need to find how many leading “0” we have in the
operated mantissa, so that we can shift it and adjust the exponent.

 How can we do this efficiently and quickly?

| waen | scuon [| Matoh Manosa) | Acton Mo |

IP address/mask Action 64.0.0.0/2 Right-shift 7 bits wng
) “*”S
1.0.0.0/8 Right-shift 1 bit
TCAM 0.128.0.0/9 Do nothing ; S
LPM 0.64.0.0/10 Left-shift 1 bit
Table 0.0.0.1/32 Left-shift 23 bits

Default Do nothing o6

Are we done”?

« We implement FPISA with P4 in Intel’s Tofino-1 and find it not efficient enough.

« Example-1: saturated VLIW instruction slots —> limited data parallelism

Renormalize & Assemble

MAU5 MAU7 MAUS8

64.0.0.0/2 Right-shift 7 bits I m
1.0.0.0/8 Right-shift 1 bit
0.128.0.0/9 Do nothing
0.64.0.0/10 Left-shift 1 bit I > .
0.0.0.1/32 Left-shift 23 bits "
Default Do nothing []
L] []

Convert to Count leading “0”s, Adjust
unsigned shift mantissa exponent

E--?E

Merge bits

Are we done?

« We implement FPISA with P4 in Intel’s Tofino-1 and find it not efficient enough.

« Example-1: saturated VLIW instruction slots —> limited data parallelism
« Enhancement: 2-operand shift instruction —> “shift [operand0] [operand1]”

Renormalize & Assemble : Each action is a
single instruction

|
|
|
|
|
I . . .
MAU5 MAU6 MAU7 MAUS8 64.0.0.0/2 Right-shift 7 bits .
: stored in the small
| roav | [EE0 AL |
! LPM 1.0.0.0/8 Right-shift 1 bit buffer!
— = m —| | Table m > m — 0.128.0.0/9 Do nothing
: . . . 0.64.0.0/10 Left-shift 1 bit
[} L] L) [
|fm| |[fe/Pm| | Em
! 0.0.0.1/32 Left-shift 23 bits
: Convert to Count leading “0”s, Adjust Merge bits Default Do nothing
unsigned shift mantissa exponent

28

Are we done?

« We implement FPISA with P4 in Intel’s Tofino-1 and find it not efficient enough.

« Example-1: saturated VLIW instruction slots —> limited data parallelism
« Enhancement: 2-operand shift instruction —> “shift [operand0] [operand1]”

« Example-2: CPU-network endianness difference -> conversion overhead on end-host
 Enhancement: byte-wise shuffling in switch pipeline/parser

32-bit integer 32-bit integer g 6 B Singio-cors DPDKCbased rate
0OAOBOCOD Memory Memory OAOBOCOD 0’2 I Desired rate to achieve 100Gbps line-rate
: : x4
— a:|0D a:|0A| <«— %
— > a+1:|0C a+l:|0B | €«—— DCC 5.

—» 0+2-10R Cl= %

|

E Little-endian Sh @L\{VS t Fl‘—) Big- enjlanE nce r@ ? d

to the current PISA hardware, while :an:E. lea’st 8x ch@’éiger thaii FPU.

and that is desired to achieve 100Gbps line-rate.

Usecase: In-network aggregation for distributed ML training

 What's the procedure of data communication in state-of-the-art frameworks?

 Note: we focus on the most popular “data parallel” mode.

Aggregated
Gradient

In-switch Aggregation Vector

Update local model,

Need quantization (to run next iteration....

fixe Need to recover

BN

to FP on the

end-hosts! Gradient

Local computing
on each worker

J
I
I

(=)
O AN
KA LN
B
¢ 7753
Y

Worker
Worker
Worker
Worker

30

Evaluation

« @Given the aforementioned hardware limitation, we develop a C
program exactly simulating FPISA addition behavior (both FP32 and
FP16) for model convergence evaluation.

« We also leverage the SwitchML (NSDI’21) framework to evaluate the
(emulated) end-to-end training time speedup in a real cluster.

31

Evaluation — Training accuracy and convergence

 We apply FPISA’s addition (both FP132 and FP16) to models training,
and compare the accuracy curves against the ones generated with
default standard FP addition.

100 100 100 100
| Default-FP32
80 __ 80 __ 80 _. 801 — FPISA-A-FP32
9 S S | 2 Default-FP16
z 60 z 60 z 60 Z 801 — Fpisa-AFP16
o Default-FP32 o Default-FP32 e Default-FP32 o
g 40 _— 3 40 3 40 3 40 i
3 FPISA-A-FP32 3 —— FPISA-A-FP32 3 —— FPISA-A-FP32 38 | |
< 5 Default-FP16 < 5 Default-FP16 < 2 Default-FP16 < 2 1
—— FPISA-A-FP16 —— FPISA-A-FP16 —— FPISA-A-FP16
0 0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Epoch Epoch Epoch Epoch
(a) GoogleNet. (b) ResNet-50. (¢) VGGI109. (d) MobileNetV2.

FPISA has negligible impact on trained model’s convergence.

32

Evaluation — Training time speedup

« We compare FPISA’s training time with fixed point based SwitchML,
which conducts qqc%ntization with 2 or 8 CPU cores.

Bl 2-core
[8-core

(o]
o

»
o

End-to-end Training
Time Speedup (%)
I
o

N
o o

End-to-end training time speedup of FPISA compared
to the default SwitchML with 8 cores.

Evaluation — Training time speedup

« We compare FPISA’s training time with fixed point based SwitchML,

which conducts qqo%ntization with 2 or 8 CPU cores.
B 2-core

> 40% drop with limited hardware
in SwitchML for quantization!

End-to-end Training
Time Speedup (%)

End-to-end training time speedup of FPISA compared
to the default SwitchML with 2 cores.

FPISA can bring training speedup as well as efficient end-host resource usage
compared to the state-of-the-art solutions.

34

More details in the paper

« FPISA’s error and precision analysis.

« Error-tolerance and numerical characteristics of gradient
aggregation in distributed training.

 GPU'’s potential for gradient quantization.

« Additional FP features and advanced FP operations in PISA.

35

Conclusion

* Floating point is an important format that is desirable to be
supported on modern programmable dataplane with low
cost and high flexibility.

« We Propose FPISA approach and a couple of cheap
hardware enhancements, which, together, store and
operate floating-point numbers in common PISA pipeline.

* Our evaluation on distributed ML training shows that FPISA
can significantly facilitate the application execution and
reduce end-host resource usage.

36

n1nn
Dankie Gracias

..Cn..a'(.:fl60 Merci Takk
KOszOnjuk Terima kasih

vGrazie Dzickujemy Dékojame
Dakujeme Vielen Dank Paldies
Kiitos g Tdname teid 1554

Thank You:-

®#%E Obrigado T“'ﬁfﬁiﬂﬁgz
’ =] =]
2.0G EUXAPLOTOUME YaURA

edankt pgkujeme vam
HOMESTENET
Tack
Questions? Contact me!

yifany3@lllinois.edu

