
FlexTOE: Flexible TCP Offload 
with Fine-Grained Parallelism

Rajath Shashidhara 1, Tim Stamler 2, Antoine Kaufmann 3, Simon Peter 1

1 University of Washington, 2 MPI-SWS, 3 The University of Texas at Austin



High CPU Overhead of TCP

● TCP remains the default protocol in the datacenter
● But TCP stacks have high CPU overhead

○ Even with modern optimized stacks (TAS, Snap, …)

CPU profile of Memcached with 32B requests/responses

only 
26%

To go further, we need to offload…



● Flexibility: Datacenter networks evolve rapidly
○ Operators need flexibility for agile development

● Existing TOEs are hardwired: slow upgrade cycles

Need for Flexible TCP Offload

only 
16%

CPU profile of Memcached with Chelsio Terminator TOE 



TCP Offload:
Can we get flexibility and performance?



● Eliminates all host TCP stack overheads
● Supports POSIX-sockets, DCTCP/Timely congestion control
● Fully extensible (software development velocity), with eBPF support

FlexTOE: Flexible, High Performance TCP Offload

53%



TCP Offload to SmartNICs - Challenges

SmartNICs are flexible but restrictive:

● Eg: Netronome Agilio, Mellanox BlueField, Pensando DSC, Fungible DPU, …
● Parallel architectures geared towards stateless offloads
● Many wimpy cores with limited memories

TCP connections are processed sequentially:

● Stateful code paths track in-flight segments
● Stringent per-packet time budgets
● Sensitive to reordering

Traditional TCP stacks perform poorly on SmartNICs



FlexTOE: Flexible, High-Performance TCP Offload with Fine-grained Parallelism

To provide high performance and flexibility, FlexTOE leverages:

● Modularity: fine-grained modules keep private state and communicate explicitly
● Fine-grained parallelism: Modules may be replicated, sharded, execute out-of-order
● One-shot data-path offload: Payload is never buffered on the NIC



FlexTOE Flexibility: XDP

Supports eXpress Data Path (XDP) modules implemented in eBPF

● Operate on raw packets
● Shared state via BPF maps

Implemented common datacenter features

● Tracing, Statistics & Profiling
● Connection Firewalling
● VLAN encapsulation/decapsulation
● tcpdump

AccelTCP’s [NSDI20] connection splicing in 24 lines of eBPF at NIC line rate!



FlexTOE Offload Architecture



● Data-path: per-packet transport logic for established connections

FlexTOE Offload Architecture



● Control-plane: policy, management and infrequent recovery code-paths

FlexTOE Offload Architecture



● libTOE library: provides POSIX sockets to the application with kernel-bypass

FlexTOE Offload Architecture



Parallelizing the TCP Data-path for Offload



Parallelizing the TCP Data-path for Offload



Parallelizing the TCP Data-path for Offload



Parallelizing the TCP Data-path for Offload



Parallelizing the TCP Data-path for Offload



Parallel TCP Processing Example: Transmit (TX)

enters the pipeline first



Parallel TCP Processing Example: Transmit (TX)

assign sequence number



Parallel TCP Processing Example: Transmit (TX)



Parallel TCP Processing Example: Transmit (TX)

stall

stall



TCP requires processing in-order for loss detection

but …

Data-parallel modules have varying processing times and may reorder segments

Parallel TCP Processing Example: Transmit (TX)

out-of-order 
transmit



FlexTOE:
Assign sequence number on data-path ingress → reorder segments on egress

Parallel TCP Processing Example: Transmit (TX)

reorder 
before 

transmit



Evaluation



Evaluation Setup

Intel Xeon Gold 6138 CPU, 20 cores @ 2 GHz with 40GB RAM

Compare:

● FlexTOE (flexible offload) on Netronome Agilio CX40 SmartNIC @ 40 Gbps
● Linux (in-kernel stack): Intel XL710 @ 40 Gbps 
● TAS (kernel-bypass): Intel XL710 @ 40 Gbps
● Chelsio TOE (inflexible offload): Terminator 6 @ 100 Gbps

Identical application binaries across all baselines.



Benefits of Offload: Throughput Scalability

Memcached throughput, varying number of server cores

FlexTOE saves up to 81% CPU cycles versus Chelsio and 50% versus TAS

Offloaded CPU cycles may be used for application work



Benefits of Offload: Low Tail-Latency

Memcached latency distribution across different stack combinations

FlexTOE achieves the lowest median and tail latencies

Offload provides excellent performance isolation 

Client:



Is Fine-grained Parallelism Necessary?

286x

120x

Exploiting both intra- and inter-connection parallelism is necessary



Data-path Parallelism: Does it Generalize across Platforms?

Single connection speedup by 4x on Bluefield (and 2.4x on x86)



FlexTOE: High-performance and Flexible TCP Offload

● Eliminates all host TCP stack overheads to save CPU cycles for the application
● Data-path parallelism via fine-grained modules with out-of-order processing
● Easily extensible with full user-space programmability

○ tcpdump with packet filtering
○ VLAN encap/decap
○ Firewall
○ Connection splicing

FlexTOE is open-source: https://github.com/tcp-acceleration-
service/FlexTOE

https://github.com/tcp-acceleration-service/FlexTOE

