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MOTIVATION
HPC and DL

Over the past few years, the usage of DL within an HPC/scientific computing
context has exploded in popularity:

Science codes generate a lot of simulation data and DL can enable advanced data
analytics

HPC centers historically are home to the largest supercomputing clusters, purpose-
built for performant scaling of science programs from hundreds to thousands of
CPUs/GPUs (e.g., 27,000 V100 GPUs on the Summit supercomputer):

To take advantage of these extreme scale resources for DL, we require DL
framework communication libraries that can scale as well as any well-tuned
science code on these types of systems.
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HOROVOD

Framework for Distributed Deep Learning

Horovod is a framework for distributed deep learning:

= Originally developed by Uber but now a project within
the Linux Foundation Al.

= Simple: just a few lines of modifications to existing
single worker scripts

= Framework-agnostic: works with TensorFlow, PyTorch, o
and MXNet

CILF A
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HOROVOD

Framework for Distributed Deep Learning

Key challenge: multiple worker processes of frameworks
using graph-based operation scheduling will not submit O
gradient tensors for reduction in consistent orders

—> To avoid deadlocking, a mechanism to coordinate
scheduling of collective operations needs to be
established.

CILF A
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HOROVOD

Core Design and Operation

So how does Horovod coordinate the collectives?

Core design relies on a control/coordination layer (“control plane”) that
processes incoming requests (“metadata”) from all workers and determines what
collectives to perform and when.

Uses a “coordinator-worker” design, where one worker tasked with most
decision-making logic. Control messages transferred across the network with MPI
or Gloo.

Operates dynamically: coordination logic runs in a background thread that
checks for new tensors in a fixed tic rate (called a cycle)

The actual collective operations (allreduce, allgather, broadcast) carried out on the
“data plane” with MPI, NCCL, or Gloo.

NVIDIA



COORDINATION PROCESS

Original Design
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COORDINATION PROCESS
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COORDINATION PROCESS
Original Design
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COORDINATION PROCESS

Original Design
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COORDINATION PROCESS

Original Design
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COORDINATION PROCESS

Scalability Issues

Relying on a single coordinator rank is a major bottleneck, especially at large
scale!

These limitations were discussed in Exascale deep learning for climate analytics
by Kurth et al. at SC18:

Full-scale DL training on the Summit supercomputer, achieved a peak compute
of 1 Exaop.

Reported control-plane scaling issues in Horovod and implemented a fix <
never upstreamed due to lack of generality.

Performance scaling required 1 iteration “lag” < training wasn’t fully
synchronous

NVIDIA



COORDINATION PROCESS

Scalability Issues

This is a scaling plot for the STEMDL
model of interest in this study. At the
start of this development, none of the
data plane options were found to scale
well, indicating that control plane issues
were still unresolved in Horovod.

Our goals:

Improve scaling performance of Horovod
and contribute changes to library

Scale training of STEMDL model to full
Summit supercomputer and achieve high
performance with truly synchronous
training.
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STEMDL MODEL

Image Reconstruction in Electron Microscopy

= STEMDL model attempts to solve

inverse problem in EM, obtaining local
electron density from diffraction data

from microscope
= Implemented using an

encoder/decoder model based on FC-

DenseNet

= Model size of 220M trainable
parameters
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IMPROVEMENT 1: “RESPONSE” CACHING

Background

Observation: The set of tensors requiring communication is typically fixed during
training.

Existing design does not take advantage of this and redundantly
communicates/processes control metadata via coordinator redundantly every
step.

Solution: use caching to bypass redundant control communication

Store initial response received by the coordinator on all workers and reuse for
subsequent iterations

Construction of cache is kept globally consistent and provides enumeration of
observed tensors < enables light-weight communication using a bitvector to
intersect worker tensor lists to determine readiness

Readiness decisions now made collectively, rather than relying on a single
coordinator rank!
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COORDINATION PROCESS
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COORDINATION PROCESS

Improved Design with Caching
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COORDINATION PROCESS
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IMPACT OF CACHING

Scalability improvements

Scaling results up to ~800 GPUs on Summit le5 NCCL backend
on RN50 model: s Ideal
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IMPROVEMENT 2: ALLREDUCE GROUPING

Background

Observation: Horovod’s tensor fusion controlled dynamically via “cycle time”
setting, all tensors ready during a cycle are fused greedily

For minimum latency, want to cycle time as low as possible to run coordination
logic more often

As a side effect, this can cause many unfused, or small buffers, to be used for
collectives, which can be inefficient.

Solution: Implement grouping feature in Horovod, to explicitly control tensor
fusion

Enables running with a low cycle time for minimum latency, while ensuring buffer
sizes for collectives remain large for more efficient network utilization

NVIDIA



IMPACT OF GROUPING

Scalability improvements

Scaling results up to ~6000 GPUs on
Summit of STEMDL model.

With both caching and grouping, scaling of
Horovod is significantly improved over
baseline implementations.

Performance (PFLOPSq5)
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REACHING THE SUMMIT
Running STEMDL workload on full Summit system

With Horovod improvements, we were le3
able to run the STEMDL workload on the | ...... deal
full Summit system (27,600 GPUs): 1.50] —$— Data-sustained R
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