RDMA is Turing complete,
we just did not know it yet!
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Benefits of RDMA networking

* Bypasses the kernel and allows
zero-copy data transfers

* Offers one-sided operations
* e.g. RDMA READ or RDMA WRITE

* Requires no CPU involvement

e But can only perform simple
memory transfers!
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Massive growth in RDMA processing power
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Massive growth in RDMA processing power
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Almost 2x increase / year!




Existing designs for RDMA-based systems

Commodity RNIC offloads

One-sided (e.g. FARM-KV)
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Smart NIC offloads

FPGA-offload (e.g. KV-DIRECT)
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Alternative Design: Exploit RNIC Processing Power
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Alternative Design: Exploit RNIC Processing Power
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But is this Turing complete?

* So far, we only managed to construct an imperative language for
RDMA NICs

* To be Turing complete, two requirements must be met:
R1 The ability to read/write to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)
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But is this Turing complete?

* So far, we only managed to construct an imperative language for
RDMA NICs

* To be Turing complete, two requirements must be met:
R1 |The ability to read/write
R2 Conditional branching (e.g. support for if/else statements)
R3 Support for loops or recursion



Conditional Branching —is it possible?
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Conditional Branching —is it possible?
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Work Queue 1

Work Queue 2

Work Queue 3

Conditional Branching —is it possible?
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RDMA Compare-and-Swap (CAS)

to check conditions

» Typically used for simple transactions
» Supported by commodity RDMA NICs




Branching with Selt-Modifying Code
Simple Example RDMA code (server-side):

Input x, y
If (x == y)

return foo;
else

return bar;

Work Queues (WQs)
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Branching with Selt-Modifying Code

Simple Example

Assume x ==y is true

Input x, y
If (x == y)

return foo;
else

return bar;
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What about loops?

* Observation: RDMA operations are not deleted after execution
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* Observation: RDMA operations are not deleted after execution
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What about loops?

* Observation: RDMA operations are not deleted after execution
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What about loops?

* Observation: RDMA operations are not deleted after execution
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Server

RedN Framework - Overview
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RedN Framework - Overview

N RDMA NIC
Example offload
if (x == 5) Host Memory
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else
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RedN Framework - Overview
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Server

RedN Framework - Overview

Trigger Function (invoked as necessary)
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RedN Framework - Overview

Trigger Function (invoked as necessary)

Example offload
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Evaluation

* Our experimental testbed consists of 3x dual-socket Haswell servers:
e 3.2 GHz, with a total of 16 cores
* 128 GB of DRAM

* 100 Gbps dual-port Nvidia ConnectX-5 Infiniband RNICs.
* Nodes are connected via back-to-back Infiniband links

* We evaluate RedN using microbenchmarks and real applications
(e.g. Memcached)
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Use case: Memcached Lookups

Client inputs buckets
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set opcode to WRITE iff x == key
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Use case: Memcached Lookups

Client inputs buckets

H(x) 2
Return.value WRITE CAS
to client
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set opcode to WRITE iff x == key
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Conclusion

* RedN shows that RDMA is Turing complete
Unlocks the door for

E innovations in many areas
I I I I I |
Distributed Database Sl Network RDMA
: Consensus . Deep .
Locking Transactions . Telemetry Security
Learning

e Source code: redn.io
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http://www.redn.io/
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