RDMA is Turing complete,
we just did not know it yet!

Waleed Reda, Marco Canini, Dejan Kosti¢, Simon Peter

f@% : UNIVERSITY of
£ KTH % 0
%%Vzﬂ:x:ig} B UCLouvain \% WASHINGTON

Benefits of RDMA networking

* Bypasses the kernel and allows
zero-copy data transfers

* Offers one-sided operations
* e.g. RDMA READ or RDMA WRITE

* Requires no CPU involvement

e But can only perform simple
memory transfers!

Application Application
Buffer Buffer
A
OS v OS
Buffer Buffer
A
NIC v RDMA NIC
TCP/IP

Buffer

Buffer

Massive growth in RDMA processing power

120

80

Throughput (Mops/s)
40

CX-3 CX-5 CX-6
(2014) (2016) (2017)

Massive growth in RDMA processing power

()
N —
0
23
g3
5
O
-
29
O
L
|_
O -
CX-3 CX-5 CX-6
(2014) (2016) (2017)

Almost 2x increase / year!

Existing designs for RDMA-based systems

Commodity RNIC offloads

One-sided (e.g. FARM-KV)

Mem

/

=

NIC

CPU

Network

Server

Limited by RDMA API.
Incurs extra roundtrips
to serve requests

Two-sided (e.g. HERD)

Mem

|

NIC

Client l.

E3

|

Network

Server

Requires remote CPU
involvement.

Smart NIC offloads

FPGA-offload (e.g. KV-DIRECT)

Mem

Client

CPU

|

Network Server

Expensive and difficult to
program

NIC-CPU offload (e.g. LineFS)

Mem

Client

CPU

|

Network Server

Expensive and uses slow

“wimpy” cores.

Alternative Design: Exploit RNIC Processing Power

r

~N

Mem

Insight #1: Perform complex

CPU

operations using RDMA chains

m—

A Server

Work Queue 1 RDMA (1)
RECV

Work Queue 2 RDMA 1)
READ

Work Queue 3

RDMA
WRITE 9

Alternative Design: Exploit RNIC Processing Power

Work Queue 1

Work Queue 2

Work Queue 3

r

~N

Mem

CPU

A Server

| RDMA
RECV

L

RDMA
WAIT

l RDMA I
READ 9

RDMA
WAIT

RDMA
WRITE 9

Insight #1: Perform complex

operations using RDMA chains

4

Use RDMA WAIT feature

v Adds execution dependency between
operations

Alternative Design: Exploit RNIC Processing Power

Work Queue 1

Work Queue 2

Work Queue 3

RDMA I
SEND

r

~N

Mem

CPU

Server

[RDMA
RECV

L

RDMA
WAIT

l RDMA I
READ 9

RDMA
WAIT

RDMA
WRITE 9

Insight #1: Perform complex

operations using RDMA chains

4

Use RDMA WAIT feature

v Adds execution dependency between
operations

v" Allows clients to trigger server RDMA code

5

Alternative Design: Exploit RNIC Processing Power

Work Queue 1

Work Queue 2

Work Queue 3

RDMA I
SEND

-

~

Mem

CPU

A Server

Rich API for + Uses commodity
offloads RNICs

Insight #1: Perform complex
operations using RDMA chains

2

Use RDMA WAIT feature

RDMA
RECV

o

(RDMA

1 WAIT

I

READ

RDMA]g

4.[

RDMA]_'
WAIT

RDMA
WRITE

v Adds execution dependency between
operations

v" Allows clients to trigger server RDMA code

But is this Turing complete?

* So far, we only managed to construct an imperative language for
RDMA NICs

* To be Turing complete, two requirements must be met:
R1 The ability to read/write to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)

But is this Turing complete?

* So far, we only managed to construct an imperative language for
RDMA NICs

* To be Turing complete, two requirements must be met:
R1 |The ability to read/write to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)

But is this Turing complete?

* So far, we only managed to construct an imperative language for
RDMA NICs

* To be Turing complete, two requirements must be met:
R1 |The ability to read/write|to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)

But is this Turing complete?

* So far, we only managed to construct an imperative language for
RDMA NICs

* To be Turing complete, two requirements must be met:
R1 |The ability to read/write
R2 Conditional branching (e.g. support for if/else statements)
R3 Support for loops or recursion

Conditional Branching —is it possible?

4)

Mem

CPU

[RDMA]
SEND A Server

Work Queue 1 [RDMA o
RECV
Work Queue 2 __,| RDMA RDMA (2
WAIT WRITE
Work Queue 3 RDMA RDMA 9
WAIT WRITE

Conditional Branching —is it possible?

r

~N

Insight #2: Use-self-modifying

Mem

RDMA code to control execution

'RDMA]
SEND A Server

Work Queue 1 [RDMA o
RECV
Work Queue 2 __,| RDMA RDMA (2
WAIT WRITE
Work Queue 3 RDMA
WAIT

RDMA
WRITE 9

Conditional Branching —is it possible?

r

~N

Mem

'RDMA]
SEND A Server

Insight #2: Use-self-modifying
RDMA code to control execution

Work Queue 1 [RDMA o
RECV
Work Queue 2 | RDMA RDMA]Q
- WAIT WRITE
Work Queue 3 A.I RDMA I-»l RDMA]9
WAIT NOOP

Work Queue 1

Work Queue 2

Work Queue 3

Conditional Branching —is it possible?

RDMA I
SEND

r

~N

Mem

CPU

A
\
I

Server

Insight #2: Use-self-modifying
RDMA code to control execution

4

[RDMA
RECV

if condition is true

(RDMA
_ WAIT

¥

RDMA
CAS

(2

l RDMA l |
WAIT

RDMA
NOOP

o

RDMA Compare-and-Swap (CAS)

to check conditions

» Typically used for simple transactions
» Supported by commodity RDMA NICs

Branching with Selt-Modifying Code
Simple Example RDMA code (server-side):

Input x, y
If (x == y)

return foo;
else

return bar;

Work Queues (WQs)

Branching with Selt-Modifying Code

Simple Example RDMA code (server-side):
opcode id
Input x, vy | RECV
If (x == (
(y) CAS old: NOOP new: WRITE
return foo; \
else NOOP data: foo

return bar;

WRITE data: bar

Work Queues (WQs)

Branching with Selt-Modifying Code

Simple Example RDMA code (server-side):
Assume x ==y is true opcode id
Input x, vy | RECV
If (x == (
(y) CAS old: NOOP new: WRITE
return foo; \
else NOOP data: foo

return bar;

WRITE data: bar

Work Queues (WQs)

Branching with Selt-Modifying Code

Simple Example

Assume x ==y is true

Input x, y
If (x == y)

return foo;
else

return bar;

RDMA code (server-side):

opcode id

RECV

Client

[

CAS old: NOOP new: WRITE

NOOP data: foo

WRITE data: bar

Work Queues (WQs)

SEND
L

data: x, y]

Branching with Selt-Modifying Code

Simple Example

Assume x ==y is true

Input x, y
If (x == y)

return foo;
else

return bar;

RDMA code (server-side):

opcode id

RECV

CAS old: NOOP(y] new: WRITE

NOOPdata: foo

WRITE data: bar

Work Queues (WQs)

Client

[SEND data: x, y]

Branching with Selt-Modifying Code

Simple Example

Assume x ==y is true

Input x, y
If (x == y)

return foo;
else

return bar;

RDMA code (server-side):

opcode id

RECV

CAS old:[NOOP(y]lnew: WRITE

NOOPdata: foo

WRITE data: bar

Work Queues (WQs)

Client

[SEND data: x, y]

Branching with Selt-Modifying Code

Simple Example

Assume x ==y is true

Input x, y
If (x == y)

return foo;
else

return bar;

RDMA code (server-side):

opcode id

RECV

CAS

old: NOOP(y] new: WRITE

WRITE

data: foo

WRITE

data: bar

Work Queues (WQs)

Client

[SEND data: x, y]

Branching with Selt-Modifying Code

Simple Example

Assume x ==y is true

Input x, y
If (x == y)

return foo;
else

return bar;

RDMA code (server-side):

opcode id

RECV

CAS

old: NOOP(y] new: WRITE

WRITE

data: foo

WRITE

data: foo

Work Queues (WQs)

Client

[SEND data: x, y]

Branching with Selt-Modifying Code

Simple Example

Assume x ==y is true

Input x, y
If (x == y)

return foo;
else

return bar;

RDMA code (server-side):

opcode id

RECV

CAS

old: NOOP(y] new: WRITE

WRITE

data: foo

WRITE

data: foo

Client

[SEND data: x, y]

» foo

Work Queues (WQs)

What about loops?

* Observation: RDMA operations are not deleted after execution

4 NIC A
E :
N\ e J

RDMA | | RDMA | | RDMA RDMA
READ LWRITE] | READ WRITE

* Observation: RDMA operations are not deleted after execution

What about loops?

-

\

NIC

<F

~

Insight #3: Recycle previously posted

RDMA
READ

RDMA

| WRITE

[RDMA
"\ READ

(RDMA

WRITE

RDMA operations

10

What about loops?

* Observation: RDMA operations are not deleted after execution

Insight #3: Recycle previously posted

T RDMA operations

<F

(&)

[RDMA RDMA _»[RDMA RDMA]
READ WRITE READ WRITE

10

What about loops?

* Observation: RDMA operations are not deleted after execution

Insight #3: Recycle previously posted

T RDMA operations

C s 3
Z Use RDMA ENABLE at the end

\ J . :
to re-trigger chain

[RDMA RDMA _»[RDMA RDMA I I RDMA]
READ WRITE READ WRITE ENABLE

10

What about loops?

* Observation: RDMA operations are not deleted after execution

Insight #3: Recycle previously posted

RDMA operations

J

Use RDMA ENABLE at the end
to re-trigger chain

READ

4 NIC A
C E :
N y,
RDMA]_' RDMA]_’ RDMA RDMA 1_.[RDMA]
WRITE READ WRITE ENABLE

10

Server

RedN Framework - Overview

— @I /A

Convert to RDMA Code

11

Server

RedN Framework - Overview

N RDMA NIC
Example offload
if (x == 5) Host Memory
return true;
else
return false;
Setup Offload User buffers
(done once) \ /
— CPU

/A

/A

Convert to RDMA Code

11

Server

RedN Framework - Overview

Example offload

if (x == 5) Host Memory
return true; r-
else B ~od
return false; . \
wWQ
Post RDMA e
Code (chain of .
Setup Offload work requests) User buffers
(done once) \ /

Convert to RDMA Code

./ " ~
N‘ . \
N RECY Example: RDMA chain :
N NOP i

i 1

Hl WAIT CAS ? ;

i 1

\ READ !

\\ ,'

/A

11

Server

RedN Framework - Overview

Trigger Function (invoked as necessary)

_ O/

Example offload

if (x == 5)

else

return true;

return false;

Setup Offload
(done once)

Post RDMA
Code (chain of
work requests)

Convert to RDMA Code

Host Memory

Work Queues
(WQs)

User buffers

. \N
~.
- AN
N
N,
\

Response Ready

RPC request
triggers WAIT Send back reply

\—_-_-_--‘l

/A

11

Server

v

RedN Framework - Overview

Trigger Function (invoked as necessary)

Example offload

Response Ready

RPC request

x=5) Ht Slemoty) triggers WAIT Send back reply Conditional branching
else , \:\ , +
return false; Work Queues \‘::\ Loops
Post RDMA (Was)
Code (chain of) = RDMA NIC is Turing Complete
Setup Offload work requests) User buffers
(done once) A)
— /A D

Convert to RDMA Code

11

Evaluation

* Our experimental testbed consists of 3x dual-socket Haswell servers:
e 3.2 GHz, with a total of 16 cores
* 128 GB of DRAM

* 100 Gbps dual-port Nvidia ConnectX-5 Infiniband RNICs.
* Nodes are connected via back-to-back Infiniband links

* We evaluate RedN using microbenchmarks and real applications
(e.g. Memcached)

Use case: Memcached Lookups

Client inputs buckets

H(x) 2

roor
4 3

set opcode to WRITE iff x == key

CO ~J O L1 B WM = O

Use case: Memcached Lookups

Client inputs buckets

H(x) 2

=
\5

=

roor
4 3

set opcode to WRITE iff x == key

CO ~J O L1 B WM = O

Use case: Memcached Lookups

Client inputs buckets

H(x) 2
or
4 3

set opcode to WRITE iff x == key

key | ptr —» value

=
\5

CO ~J O L1 B WM = O

=

Use case: Memcached Lookups

Client inputs buckets

H(x) 2
or
4 3

set opcode to WRITE iff x == key

key | ptr —» value

=
\5

CO ~J O L1 B WM = O

=

Use case: Memcached Lookups

Client inputs buckets

H(x) 2
rer
4 3

set opcode to WRITE iff x == key

key | ptr —» value

=
\5

CO ~J O L1 B WM = O

=

Use case: Memcached Lookups

Client inputs buckets

H(x) 2
WRITE CAS

4 3

key | ptr —» value

=
\5

CO ~J O L1 B WM = O

=

set opcode to WRITE iff x == key

13

Use case: Memcached Lookups

Client inputs buckets

H(x) 2
Return.value WRITE CAS
to client

4 3

=
\5

CO ~J O L1 B WM = O

key | ptr —» value

=

set opcode to WRITE iff x == key

13

Latency (us)

20 30 40 50

10

Results: Memcached get latency

B RedN 0 One-sided B Two-sided (VMA)

@ﬂqﬂd

Value Size (B)

14

Latency (us)

20 30 40 50

10

Results: Memcached get latency

Requires 2 RTTs

B RedN 0 One-sided B Two-sided (VMA)

@ﬂqﬂd

Value Size (B)

14

Latency (us)

Results: Memcached get latency

Requires 2 RTTs Extra memory copies

B RedN 0 One-sided B Two-sided (VMA)

@ﬂqﬂd

Value Size (B)

14

Latency (us)

20 30 40 50

10

Results: Memcached get latency

Requires 2 RTTs Extra memory copies

B RedN 0 One-sided B Two-sided (VMA)

L ﬂ[l
i;.i;.i;. 16K 64K

Value Size (B)

14

Latency (us)

Results: Memcached get latency

Requires 2 RTTs Extra memory copies

B RedN 0 One-sided B Two-sided (VMA)

2.6x
64 1K 4K 16K 64K

Value Size (B)

14

Latency (us)

20 30 40 50

10

Results: Memcached get latency

Requires 2 RTTs Extra memory copies

B RedN 0 One-sided B Two-sided (VMA)

RedN accelerates Memcached gets by up to 2.6x

2.6x

SEn il
64 1K 4K 16K 64K

Value Size (B)

14

Latency (us)

100 150 200 250

50

Results: Memcached get (contention)

—A— RedN Avg.

-4 - RedN 99"—%ile

—e— [wo-sided Avg.
- ® - Two-sided 99"—%ile

L d
-
-
-
--
-
-

Level of Contention

16

15

Latency (us)

150 200 250

100

Results: Memcached get (contention)

—A— RedN Avg.
-4 - RedN 99"—%ile

—e— [wo-sided Avg.

- ® - Two-sided 99"—%ile ,

Level of Contention

Latency (us)

Results: Memcached get (contention)

—A— RedN Avg. —e— [wo-sided Avg.
-4 - RedN 99"—%ile - ® - Two-sided 99"—%ile ,

RedN improves latency by up to 35x under contended settings

Level of Contention

15

Conclusion

* RedN shows that RDMA is Turing complete
Unlocks the door for

E innovations in many areas
I I I I I |
Distributed Database Sl Network RDMA
: Consensus . Deep .
Locking Transactions . Telemetry Security
Learning

e Source code: redn.io

16

http://www.redn.io/

	RDMA is Turing complete,�we just did not know it yet!
	Benefits of RDMA networking
	Massive growth in RDMA processing power
	Massive growth in RDMA processing power
	Existing designs for RDMA-based systems
	Alternative Design: Exploit RNIC Processing Power
	Alternative Design: Exploit RNIC Processing Power
	Alternative Design: Exploit RNIC Processing Power
	Alternative Design: Exploit RNIC Processing Power
	But is this Turing complete?
	But is this Turing complete?
	But is this Turing complete?
	But is this Turing complete?
	Conditional Branching – is it possible?
	Conditional Branching – is it possible?
	Conditional Branching – is it possible?
	Conditional Branching – is it possible?
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	What about loops?
	What about loops?
	What about loops?
	What about loops?
	What about loops?
	RedN Framework - Overview
	RedN Framework - Overview
	RedN Framework - Overview
	RedN Framework - Overview
	RedN Framework - Overview
	Evaluation
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get (contention)
	Results: Memcached get (contention)
	Results: Memcached get (contention)
	Conclusion

