
RDMA is Turing complete,
we just did not know it yet!

Waleed Reda, Marco Canini, Dejan Kostić, Simon Peter

Benefits of RDMA networking

• Bypasses the kernel and allows
zero-copy data transfers

• Offers one-sided operations
• e.g. RDMA READ or RDMA WRITE

• Requires no CPU involvement
• But can only perform simple

memory transfers!

2

RDMA

Massive growth in RDMA processing power

3

Massive growth in RDMA processing power

3

Almost 2x increase / year!

Existing designs for RDMA-based systems

CPU

Limited by RDMA API.
Incurs extra roundtrips
to serve requests

Requires remote CPU
involvement.

Expensive and difficult to
program

Expensive and uses slow
“wimpy” cores.

Commodity RNIC offloads Smart NIC offloads

4

Alternative Design: Exploit RNIC Processing Power

RDMA
RECV

Insight #1: Perform complex
operations using RDMA chains

Work Queue 1

RDMA
READ

Work Queue 2

Work Queue 3 RDMA
WRITE

1

2

3
5

Client CPUNIC

Mem

Server

Alternative Design: Exploit RNIC Processing Power

RDMA
RECV

Insight #1: Perform complex
operations using RDMA chains

Work Queue 1

RDMA
WAIT

RDMA
READ

Work Queue 2

RDMA
WAIT

Work Queue 3 RDMA
WRITE

Use RDMA WAIT feature

 Adds execution dependency between
operations

1

2

3
5

Client CPUNIC

Mem

Server

Alternative Design: Exploit RNIC Processing Power

RDMA
RECV

Insight #1: Perform complex
operations using RDMA chains

Work Queue 1

RDMA
WAIT

RDMA
READ

Work Queue 2

RDMA
WAIT

Work Queue 3 RDMA
WRITE

Use RDMA WAIT feature

 Adds execution dependency between
operations

 Allows clients to trigger server RDMA code

1

2

3
5

Client CPUNIC

Mem

Server
RDMA
SEND

Alternative Design: Exploit RNIC Processing Power

RDMA
RECV

Insight #1: Perform complex
operations using RDMA chains

Work Queue 1

RDMA
WAIT

RDMA
READ

Work Queue 2

RDMA
WAIT

Work Queue 3 RDMA
WRITE

Use RDMA WAIT feature

 Adds execution dependency between
operations

 Allows clients to trigger server RDMA code

1

2

3
5

Client CPUNIC

Mem

Server
RDMA
SEND

Rich API for
offloads

Uses commodity
RNICs

But is this Turing complete?

• So far, we only managed to construct an imperative language for
RDMA NICs

• To be Turing complete, two requirements must be met:
R1 The ability to read/write to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)

6

But is this Turing complete?

• So far, we only managed to construct an imperative language for
RDMA NICs

• To be Turing complete, two requirements must be met:
R1 The ability to read/write to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)

6

But is this Turing complete?

• So far, we only managed to construct an imperative language for
RDMA NICs

• To be Turing complete, two requirements must be met:
R1 The ability to read/write to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)

6

But is this Turing complete?

• So far, we only managed to construct an imperative language for
RDMA NICs

• To be Turing complete, two requirements must be met:
R1 The ability to read/write to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)
R3 Support for loops or recursion

6

Conditional Branching – is it possible?

RDMA
RECV

Work Queue 1

RDMA
WAIT

RDMA
WRITE

Work Queue 2

RDMA
WAIT

Work Queue 3 RDMA
WRITE

1

2

3
7

Client CPUNIC

Mem

Server
RDMA
SEND

Conditional Branching – is it possible?

RDMA
RECV

Insight #2: Use-self-modifying
RDMA code to control execution

Work Queue 1

RDMA
WAIT

RDMA
WRITE

Work Queue 2

RDMA
WAIT

Work Queue 3 RDMA
WRITE

1

2

3
7

Client CPUNIC

Mem

Server
RDMA
SEND

Conditional Branching – is it possible?

RDMA
RECV

Insight #2: Use-self-modifying
RDMA code to control execution

Work Queue 1

RDMA
WAIT

RDMA
WRITE

Work Queue 2

RDMA
WAIT

Work Queue 3 RDMA
WRITE

1

2

3
7

Client CPUNIC

Mem

Server
RDMA
SEND

✘
RDMA
NOOP

Conditional Branching – is it possible?

RDMA
RECV

Insight #2: Use-self-modifying
RDMA code to control execution

Work Queue 1

RDMA
WAIT

RDMA
WRITE

Work Queue 2

RDMA
WAIT

Work Queue 3 RDMA
WRITE

RDMA Compare-and-Swap (CAS)
to check conditions

 Typically used for simple transactions
 Supported by commodity RDMA NICs

1

2

3
7

Client CPUNIC

Mem

Server
RDMA
SEND

✘
RDMA
NOOP

if condition is true

RDMA
CAS

Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):Simple Example

8

Work Queues (WQs)

Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):

WRITE data: bar

CAS old: NOOP new: WRITE

RECV

NOOP data: foo

Simple Example

8

opcode

Work Queues (WQs)

id

R1

R2

R3

R4

Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):

WRITE data: bar

CAS old: NOOP new: WRITE

RECV

NOOP data: foo

Simple Example

9

opcode

Work Queues (WQs)

id

R1

R2

R3

R4

Assume 𝑥𝑥 == 𝑦𝑦 is true

Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):

WRITE data: bar

CAS old: NOOP new: WRITE

RECV

NOOP data: foo

Simple Example

9

opcode

Work Queues (WQs)

id

R1

R2

R3

R4

Client

Assume 𝑥𝑥 == 𝑦𝑦 is true

SEND data: 𝑥𝑥, 𝑦𝑦

Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):

WRITE data: bar

CAS old: NOOP new: WRITE

RECV

NOOP data: foo

Simple Example

9

opcode

Work Queues (WQs)

id

R1

R2

R3

R4

𝑦𝑦

𝑥𝑥

Client

Assume 𝑥𝑥 == 𝑦𝑦 is true

SEND data: 𝑥𝑥, 𝑦𝑦

Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):

WRITE data: bar

CAS old: NOOP new: WRITE

RECV

NOOP data: foo

Simple Example

9

opcode

Work Queues (WQs)

id

R1

R2

R3

R4

𝑦𝑦

𝑥𝑥

Client

Assume 𝑥𝑥 == 𝑦𝑦 is true

SEND data: 𝑥𝑥, 𝑦𝑦

Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):

WRITE data: bar

CAS old: NOOP new: WRITE

RECV

NOOP data: foo

Simple Example

9

opcode

Work Queues (WQs)

id

R1

R2

R3

R4

𝑦𝑦

𝑥𝑥

Client

Assume 𝑥𝑥 == 𝑦𝑦 is true

SEND data: 𝑥𝑥, 𝑦𝑦

WRITE

Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):

WRITE data: bar

CAS old: NOOP new: WRITE

RECV

NOOP data: foo

Simple Example

9

opcode

Work Queues (WQs)

id

R1

R2

R3

R4

𝑦𝑦

𝑥𝑥

Client

Assume 𝑥𝑥 == 𝑦𝑦 is true

SEND data: 𝑥𝑥, 𝑦𝑦

data: foo

WRITE

Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):

WRITE data: bar

CAS old: NOOP new: WRITE

RECV

NOOP data: foo

Simple Example

9

opcode

Work Queues (WQs)

id

R1

R2

R3

R4

𝑦𝑦

𝑥𝑥

Client

Assume 𝑥𝑥 == 𝑦𝑦 is true

SEND data: 𝑥𝑥, 𝑦𝑦

data: foo

WRITE

foo

RDMA
READ

RDMA
WRITE

RDMA
READ

RDMA
WRITE

What about loops?

10

• Observation: RDMA operations are not deleted after execution

RDMA
ENABLE

RDMA
CAS

RDMA
WRITE

RDMA
WAIT

RDMA
READ

RDMA
READ

RDMA
WRITE

RDMA
WRITE

NIC

RDMA
READ

RDMA
WRITE

RDMA
READ

RDMA
WRITE

What about loops?

10

• Observation: RDMA operations are not deleted after execution

Insight #3: Recycle previously posted
RDMA operations

RDMA
ENABLE

RDMA
CAS

RDMA
WRITE

RDMA
WAIT

RDMA
READ

RDMA
READ

RDMA
WRITE

RDMA
WRITE

NIC

RDMA
READ

RDMA
WRITE

RDMA
READ

RDMA
WRITE

What about loops?

10

• Observation: RDMA operations are not deleted after execution

Insight #3: Recycle previously posted
RDMA operations

RDMA
READ

RDMA
READ

RDMA
WRITE
RDMA
WRITE

NIC

RDMA
READ

RDMA
WRITE

RDMA
READ

RDMA
WRITE

What about loops?

10

• Observation: RDMA operations are not deleted after execution

Insight #3: Recycle previously posted
RDMA operations

RDMA
READ

RDMA
READ

RDMA
WRITE
RDMA
WRITE

Use RDMA ENABLE at the end
to re-trigger chain

RDMA
ENABLE

NIC

RDMA
READ

RDMA
WRITE

RDMA
READ

RDMA
WRITE

What about loops?

10

• Observation: RDMA operations are not deleted after execution

Insight #3: Recycle previously posted
RDMA operations

RDMA
ENABLE

RDMA
CAS

RDMA
WRITE

RDMA
WAIT

RDMA
READ

RDMA
READ

RDMA
WRITE
RDMA
WRITE

Use RDMA ENABLE at the end
to re-trigger chain

RDMA
ENABLE

RDMA
READ

RDMA
READ

RDMA
WRITE

RDMA
WRITE

NIC

Client

CPU

Se
rv

er

Host Memory

User buffers

Convert to RDMA Code

RDMA NIC

11

RedN Framework - Overview

Client

CPU

Se
rv

er

Host Memory

User buffers

Convert to RDMA Code

if (x == 5)
return true;

else
return false;

Example offload

Setup Offload
(done once)

RDMA NIC

11

RedN Framework - Overview

Client

CPU

Se
rv

er

Host Memory

NOP

READ

1

WAIT

User buffers

Example: RDMA chain

?CAS

2

Convert to RDMA Code

Post RDMA
Code (chain of
work requests)

Work Queues
(WQs)

WRITE

RECV

if (x == 5)
return true;

else
return false;

Example offload

Setup Offload
(done once)

RDMA NIC

11

RedN Framework - Overview

Client

CPU

3

4

Se
rv

er

Host Memory

NOP

READ

Trigger Function (invoked as necessary)

1

WAIT

User buffers

Example: RDMA chain

5
Response Ready

Send back reply
RPC request
triggers WAIT

?CAS

2

Convert to RDMA Code

Post RDMA
Code (chain of
work requests)

Work Queues
(WQs)

WRITE

RECV

if (x == 5)
return true;

else
return false;

Example offload

Setup Offload
(done once)

RDMA NIC

11

RedN Framework - Overview

Client

CPU

3

4

Se
rv

er

Host Memory

NOP

READ

Trigger Function (invoked as necessary)

1

WAIT

User buffers

Example: RDMA chain

5
Response Ready

Send back reply
RPC request
triggers WAIT Conditional branching

+
Loops

= RDMA NIC is Turing Complete
?CAS

2

Convert to RDMA Code

Post RDMA
Code (chain of
work requests)

Work Queues
(WQs)

WRITE

RECV

if (x == 5)
return true;

else
return false;

Example offload

Setup Offload
(done once)

RDMA NIC

11

RedN Framework - Overview

Evaluation

• Our experimental testbed consists of 3× dual-socket Haswell servers:
• 3.2 GHz, with a total of 16 cores
• 128 GB of DRAM
• 100 Gbps dual-port Nvidia ConnectX-5 Infiniband RNICs.
• Nodes are connected via back-to-back Infiniband links

• We evaluate RedN using microbenchmarks and real applications
(e.g. Memcached)

12

Use case: Memcached Lookups

READ

H(𝑥𝑥)

𝑥𝑥

NOOP

set opcode to WRITE iff 𝑥𝑥 == key

CAS

RECV
1 2

4 3

Client inputs

13

Use case: Memcached Lookups

READ

H(𝑥𝑥)

𝑥𝑥

NOOP

set opcode to WRITE iff 𝑥𝑥 == key

CAS

RECV
1 2

4 3

Client inputs

𝑥𝑥

H(𝑥𝑥)

13

Use case: Memcached Lookups

READ

H(𝑥𝑥)

𝑥𝑥

NOOP

set opcode to WRITE iff 𝑥𝑥 == key

CAS

RECV
1 2

4 3

Client inputs

𝑥𝑥

H(𝑥𝑥) key valueptr

13

Use case: Memcached Lookups

READ

H(𝑥𝑥)

𝑥𝑥

NOOP

set opcode to WRITE iff 𝑥𝑥 == key

CAS

RECV
1 2

4 3

Client inputs

𝑥𝑥

H(𝑥𝑥) key valueptr

13

Use case: Memcached Lookups

READ

H(𝑥𝑥)

𝑥𝑥

NOOP

set opcode to WRITE iff 𝑥𝑥 == key

CAS

RECV
1 2

4 3

Client inputs

𝑥𝑥

H(𝑥𝑥) key valueptr

13

Use case: Memcached Lookups

READ

H(𝑥𝑥)

𝑥𝑥

NOOP

set opcode to WRITE iff 𝑥𝑥 == key

CAS

RECV
1 2

4 3

Client inputs

𝑥𝑥

H(𝑥𝑥) key valueptr

WRITE

13

Use case: Memcached Lookups

READ

H(𝑥𝑥)

𝑥𝑥

NOOP

set opcode to WRITE iff 𝑥𝑥 == key

CAS

RECV
1 2

4 3

Client inputs

𝑥𝑥

H(𝑥𝑥) key valueptr

WRITEReturn value
to client

13

Results: Memcached get latency

14

Results: Memcached get latency

14

Requires 2 RTTs

Results: Memcached get latency

14

Extra memory copiesRequires 2 RTTs

Results: Memcached get latency

14

Extra memory copiesRequires 2 RTTs

Results: Memcached get latency

14

2.6x

Extra memory copiesRequires 2 RTTs

Results: Memcached get latency

14

2.6x

RedN accelerates Memcached gets by up to 2.6x

Extra memory copiesRequires 2 RTTs

Results: Memcached get (contention)

15Level of Contention

Results: Memcached get (contention)

15Level of Contention

Results: Memcached get (contention)

15

RedN improves latency by up to 35x under contended settings

Level of Contention

Conclusion

• RedN shows that RDMA is Turing complete

• Source code: redn.io

16

Distributed
Locking Consensus Database

Transactions

Distributed
Deep

Learning

Network
Telemetry

RDMA
Security

Unlocks the door for
innovations in many areas

http://www.redn.io/

	RDMA is Turing complete,�we just did not know it yet!
	Benefits of RDMA networking
	Massive growth in RDMA processing power
	Massive growth in RDMA processing power
	Existing designs for RDMA-based systems
	Alternative Design: Exploit RNIC Processing Power
	Alternative Design: Exploit RNIC Processing Power
	Alternative Design: Exploit RNIC Processing Power
	Alternative Design: Exploit RNIC Processing Power
	But is this Turing complete?
	But is this Turing complete?
	But is this Turing complete?
	But is this Turing complete?
	Conditional Branching – is it possible?
	Conditional Branching – is it possible?
	Conditional Branching – is it possible?
	Conditional Branching – is it possible?
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	Branching with Self-Modifying Code
	What about loops?
	What about loops?
	What about loops?
	What about loops?
	What about loops?
	RedN Framework - Overview
	RedN Framework - Overview
	RedN Framework - Overview
	RedN Framework - Overview
	RedN Framework - Overview
	Evaluation
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Use case: Memcached Lookups
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get latency
	Results: Memcached get (contention)
	Results: Memcached get (contention)
	Results: Memcached get (contention)
	Conclusion

