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Benefits of RDMA networking

• Bypasses the kernel and allows 
zero-copy data transfers

• Offers one-sided operations
• e.g. RDMA READ or RDMA WRITE

• Requires no CPU involvement
• But can only perform simple 

memory transfers!
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Massive growth in RDMA processing power
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Almost 2x increase / year!



Existing designs for RDMA-based systems

CPU

Limited by RDMA API.
Incurs extra roundtrips
to serve requests

Requires remote CPU 
involvement.

Expensive and difficult to 
program

Expensive and uses slow
“wimpy” cores.

Commodity RNIC offloads Smart NIC offloads
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Alternative Design: Exploit RNIC Processing Power

RDMA 
RECV

Insight #1: Perform complex 
operations using RDMA chains

Work Queue 1

RDMA 
READ

Work Queue 2

Work Queue 3 RDMA 
WRITE

1

2

3
5

Client CPUNIC

Mem

Server



Alternative Design: Exploit RNIC Processing Power

RDMA 
RECV

Insight #1: Perform complex 
operations using RDMA chains

Work Queue 1

RDMA 
WAIT

RDMA 
READ

Work Queue 2

RDMA 
WAIT

Work Queue 3 RDMA 
WRITE

Use RDMA WAIT feature

 Adds execution dependency between 
operations

1

2

3
5

Client CPUNIC

Mem

Server



Alternative Design: Exploit RNIC Processing Power

RDMA 
RECV

Insight #1: Perform complex 
operations using RDMA chains

Work Queue 1

RDMA 
WAIT

RDMA 
READ

Work Queue 2

RDMA 
WAIT

Work Queue 3 RDMA 
WRITE

Use RDMA WAIT feature

 Adds execution dependency between 
operations

 Allows clients to trigger server RDMA code

1

2

3
5

Client CPUNIC

Mem

Server
RDMA 
SEND



Alternative Design: Exploit RNIC Processing Power

RDMA 
RECV

Insight #1: Perform complex 
operations using RDMA chains

Work Queue 1

RDMA 
WAIT

RDMA 
READ

Work Queue 2

RDMA 
WAIT

Work Queue 3 RDMA 
WRITE

Use RDMA WAIT feature

 Adds execution dependency between 
operations

 Allows clients to trigger server RDMA code

1

2

3
5

Client CPUNIC

Mem

Server
RDMA 
SEND

Rich API for 
offloads

Uses commodity 
RNICs



But is this Turing complete?

• So far, we only managed to construct an imperative language for 
RDMA NICs

• To be Turing complete, two requirements must be met:
R1 The ability to read/write to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)
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But is this Turing complete?

• So far, we only managed to construct an imperative language for 
RDMA NICs

• To be Turing complete, two requirements must be met:
R1 The ability to read/write to an arbitrary amount of memory
R2 Conditional branching (e.g. support for if/else statements)
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Conditional Branching – is it possible?
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Conditional Branching – is it possible?

RDMA 
RECV

Insight #2: Use-self-modifying 
RDMA code to control execution

Work Queue 1

RDMA 
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RDMA 
WRITE

Work Queue 2

RDMA 
WAIT

Work Queue 3 RDMA 
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RDMA Compare-and-Swap (CAS)
to check conditions

 Typically used for simple transactions
 Supported by commodity RDMA NICs
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Branching with Self-Modifying Code

Input 𝑥𝑥, 𝑦𝑦
If (𝑥𝑥 == 𝑦𝑦)

return foo;
else

return bar;

RDMA code (server-side):Simple Example
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Evaluation

• Our experimental testbed consists of 3× dual-socket Haswell servers:
• 3.2 GHz, with a total of 16 cores
• 128 GB of DRAM
• 100 Gbps dual-port Nvidia ConnectX-5 Infiniband RNICs.
• Nodes are connected via back-to-back Infiniband links

• We evaluate RedN using microbenchmarks and real applications
(e.g. Memcached)
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Results: Memcached get (contention) 
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RedN improves latency by up to 35x under contended settings

Level of Contention



Conclusion

• RedN shows that RDMA is Turing complete

• Source code: redn.io
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http://www.redn.io/
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