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Industry moving to the cloud

• more powerful computing resources (e.g. for
solving Machine Learning (ML) tasks)

• lower cost per robot as functionalities are
moved to a central cloud

• easy integration of external sensor data

• easier collaboration or interaction with other
robots and machinery

• reliability of functions can be improved by
running multiple instances as a hot standby in 
the cloud



Setup #1



Setup #2
Low level control in the cloud?



Setup #2
Low level control in the cloud?

Large delay caused by signal propoagation



Setup #3 – What about edge cloud?



Setup #3 – What about edge cloud?

Small delay



Setup #3 – What about edge cloud?

Small delay

Jitter and latency
caused by

virtualization



Setup #4
High level control to the cloud



Ensuring Real-Time requirements is hard

• Requirements for low-level control
• Accurate timing of sending low-level control messages

(e.g., velocity vectors in velocity control)

• Update time of each robot is about 2ms or less

Low jitter

Low latency

Remote cloud Edge cloud Our approach

Low jitter

Low latency



About P4



In-network velocity control
• Assumptions

• Robot arm as a set of actuators

• Each actuator reports its state (joint
velocity and position) periodically

• Each servo requires control
commands (joint velocity) at a 
predefined frequency

• UDP-based communication

• Concept
• High-level control in remote cloud

• Trajectory calculation

• Non-latency sensitive

• Moving real-time control to a P4 
programmable device
• PLC-like role

• Velocity value calculation



Design – Main Components

• Robot arms
• Actuators (joints) work independently, stream their internal state (position and 

velocity).
• They require velocity control messages at a predefined rate.
• In our system model, each robot arm is handled as a set of actuators controlled in 

sync
• UDP communication, decimal values in binary representation

• P4-switch
• Control Plane + Data Plane
• Buffering trajectories
• PID-like velocity control

• Industrial controller
• Only high level planning



More on the protocol

• P4 capable devices are not suited for deep packet inspection.
• Every important field used for robot control has to be close enough to the beginning

of the packet.

• P4 language does not support floating-point arithmetic.
• it is possible to implement this conversion in P4, it is much simpler and comfortable

if the value is already in a decimal format in the used protocol.

• We use the same header structure for status and command messages
encapsulated into simple IP/UDP packets.
• robot ID: used as a unique identifier of the robot arm
• joint ID: determines the joint of the given robot
• joint velocity: the current speed (in rad/s) of the given joint in the status messages

or the new joint-speed value to be set in the commands
• joint position: the current position (in rad) of the given joint in the status messages, 

and unset in the commands



Trajectory representation
(ingress)
• Trajectories are encoded in tables and registers.

• Each TP (trajectory point) is identified by a unique ID.

• We use durations instead of relative timestamps.

• We also store the next TP's ID, thus creating a linked list-like structure.

• The next TP can be modified, thus changing the original path.



Benefits of the representation
(ingress)
• Sitching between trajectories, repeating parts, stoping the

movement, ...



PID-lik control using approximations
(egress)
• Weighted sum of 3 values.

• Approximating function values usung the
most significant non-zero n bits.

• Having a higher absolute error for higher
values is acceptable.



Proof of concept implementation

• Robot:
• UR industrial robot arm

• P4-switch
• Barefoot/Intel Tofino-based switch

• Barefoot Runtime (Python/C++)

• Industrial controller
(traj. planning)
• ROS



Evaluation

• Precision

• Effect of background activities

• Scalability



Precision



Effect of background activities



Scalability



Summary

• P4-based in-network robot control
• buffering following trajectories

• Trajectory switching, repeating, stoppong

• synchronisation

• PID-like control

• Proof-of-concept implementation
• UR robot arm

• ROS

• Barefoot/Intel Tofino ASIC
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