
In-Network Velocity Control
of Industrial Robot Arms

S. Laki1, Cs. Györgyi1, J. Pető2, P. Vörös1, G. Szabó3

1) ELTE Eötvös Loránd University, Budapest, Hungary
2) Budapest University of Technology and Economics, Budapest, Hungary

3) Ericsson Research, Budapest, Hungary



Industry moving to the cloud

• more powerful computing resources (e.g. for
solving Machine Learning (ML) tasks)

• lower cost per robot as functionalities are
moved to a central cloud

• easy integration of external sensor data

• easier collaboration or interaction with other
robots and machinery

• reliability of functions can be improved by
running multiple instances as a hot standby in 
the cloud



Setup #1



Setup #2
Low level control in the cloud?



Setup #2
Low level control in the cloud?

Large delay caused by signal propoagation



Setup #3 – What about edge cloud?



Setup #3 – What about edge cloud?

Small delay



Setup #3 – What about edge cloud?

Small delay

Jitter and latency
caused by

virtualization



Setup #4
High level control to the cloud



Ensuring Real-Time requirements is hard

• Requirements for low-level control
• Accurate timing of sending low-level control messages

(e.g., velocity vectors in velocity control)

• Update time of each robot is about 2ms or less

Low jitter

Low latency

Remote cloud Edge cloud Our approach

Low jitter

Low latency



About P4



In-network velocity control
• Assumptions

• Robot arm as a set of actuators

• Each actuator reports its state (joint
velocity and position) periodically

• Each servo requires control
commands (joint velocity) at a 
predefined frequency

• UDP-based communication

• Concept
• High-level control in remote cloud

• Trajectory calculation

• Non-latency sensitive

• Moving real-time control to a P4 
programmable device
• PLC-like role

• Velocity value calculation



Design – Main Components

• Robot arms
• Actuators (joints) work independently, stream their internal state (position and 

velocity).
• They require velocity control messages at a predefined rate.
• In our system model, each robot arm is handled as a set of actuators controlled in 

sync
• UDP communication, decimal values in binary representation

• P4-switch
• Control Plane + Data Plane
• Buffering trajectories
• PID-like velocity control

• Industrial controller
• Only high level planning



More on the protocol

• P4 capable devices are not suited for deep packet inspection.
• Every important field used for robot control has to be close enough to the beginning

of the packet.

• P4 language does not support floating-point arithmetic.
• it is possible to implement this conversion in P4, it is much simpler and comfortable

if the value is already in a decimal format in the used protocol.

• We use the same header structure for status and command messages
encapsulated into simple IP/UDP packets.
• robot ID: used as a unique identifier of the robot arm
• joint ID: determines the joint of the given robot
• joint velocity: the current speed (in rad/s) of the given joint in the status messages

or the new joint-speed value to be set in the commands
• joint position: the current position (in rad) of the given joint in the status messages, 

and unset in the commands



Trajectory representation
(ingress)
• Trajectories are encoded in tables and registers.

• Each TP (trajectory point) is identified by a unique ID.

• We use durations instead of relative timestamps.

• We also store the next TP's ID, thus creating a linked list-like structure.

• The next TP can be modified, thus changing the original path.



Benefits of the representation
(ingress)
• Sitching between trajectories, repeating parts, stoping the

movement, ...



PID-lik control using approximations
(egress)
• Weighted sum of 3 values.

• Approximating function values usung the
most significant non-zero n bits.

• Having a higher absolute error for higher
values is acceptable.



Proof of concept implementation

• Robot:
• UR industrial robot arm

• P4-switch
• Barefoot/Intel Tofino-based switch

• Barefoot Runtime (Python/C++)

• Industrial controller
(traj. planning)
• ROS



Evaluation

• Precision

• Effect of background activities

• Scalability



Precision



Effect of background activities



Scalability



Summary

• P4-based in-network robot control
• buffering following trajectories

• Trajectory switching, repeating, stoppong

• synchronisation

• PID-like control

• Proof-of-concept implementation
• UR robot arm

• ROS

• Barefoot/Intel Tofino ASIC



Thank you for your attention!

• Sándor Laki - lakis@inf.elte.hu

• Csaba Györgyi - gycsaba96@inf.elte.hu

• József Pető - peto@tmit.bme.hu

• Péter Vörös - vopraai@inf.elte.hu

• Géza Szabó - geza.szabo@ericsson.com


