## Cocktail: A Multidimensional **Optimization for Ensemble Learning**

### Jashwant Raj Gunasekaran, Cyan Subhra Mishra

Prashanth Thinakaran, Bikash Sharma, Mahmut T. Kandemir, Chita R. Das

Penn State, CSE, High Performance Computing Lab

19th USENIX Symposium on Networked Systems Design and Implementation

April'6-2022 | Renton, WA, USA

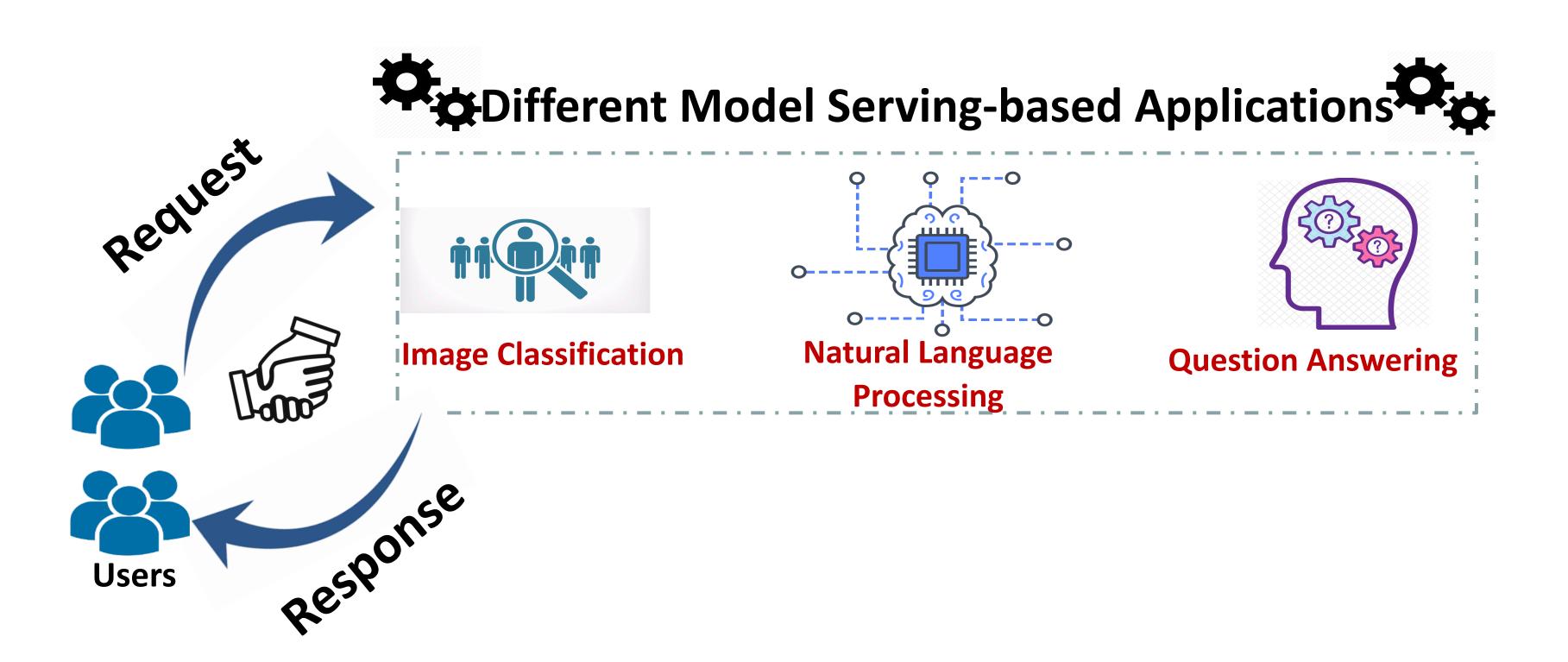






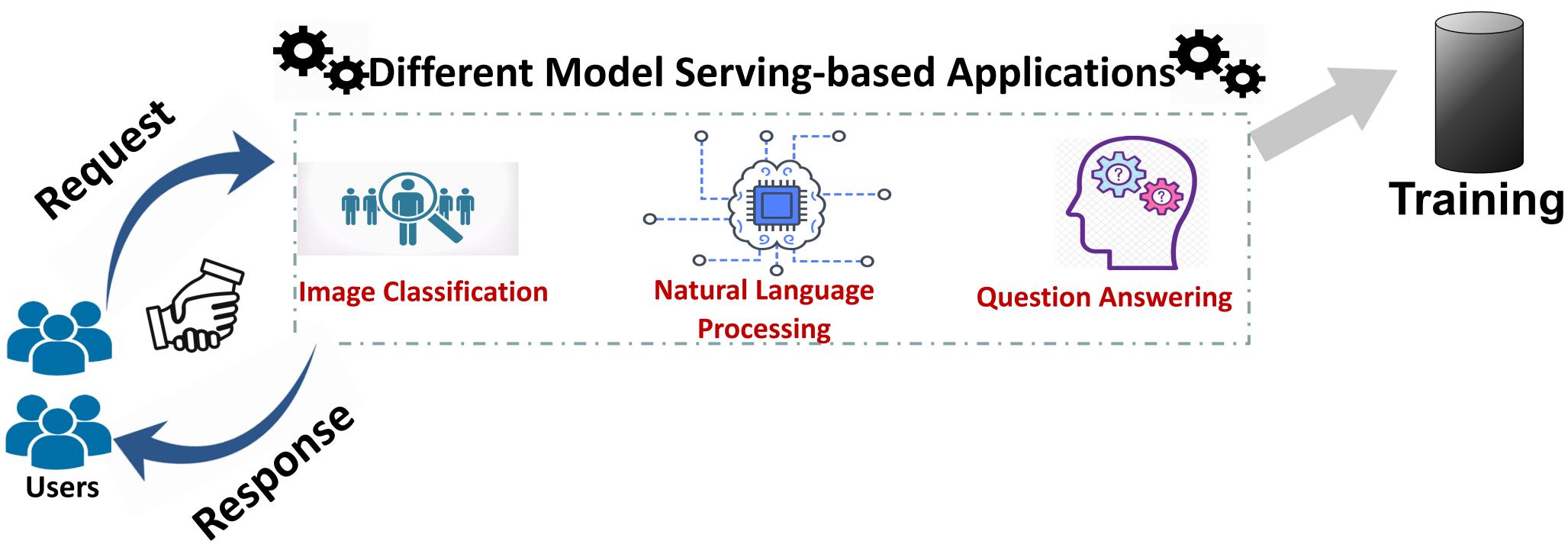


**PennState** High Performance **Computing Lab** 









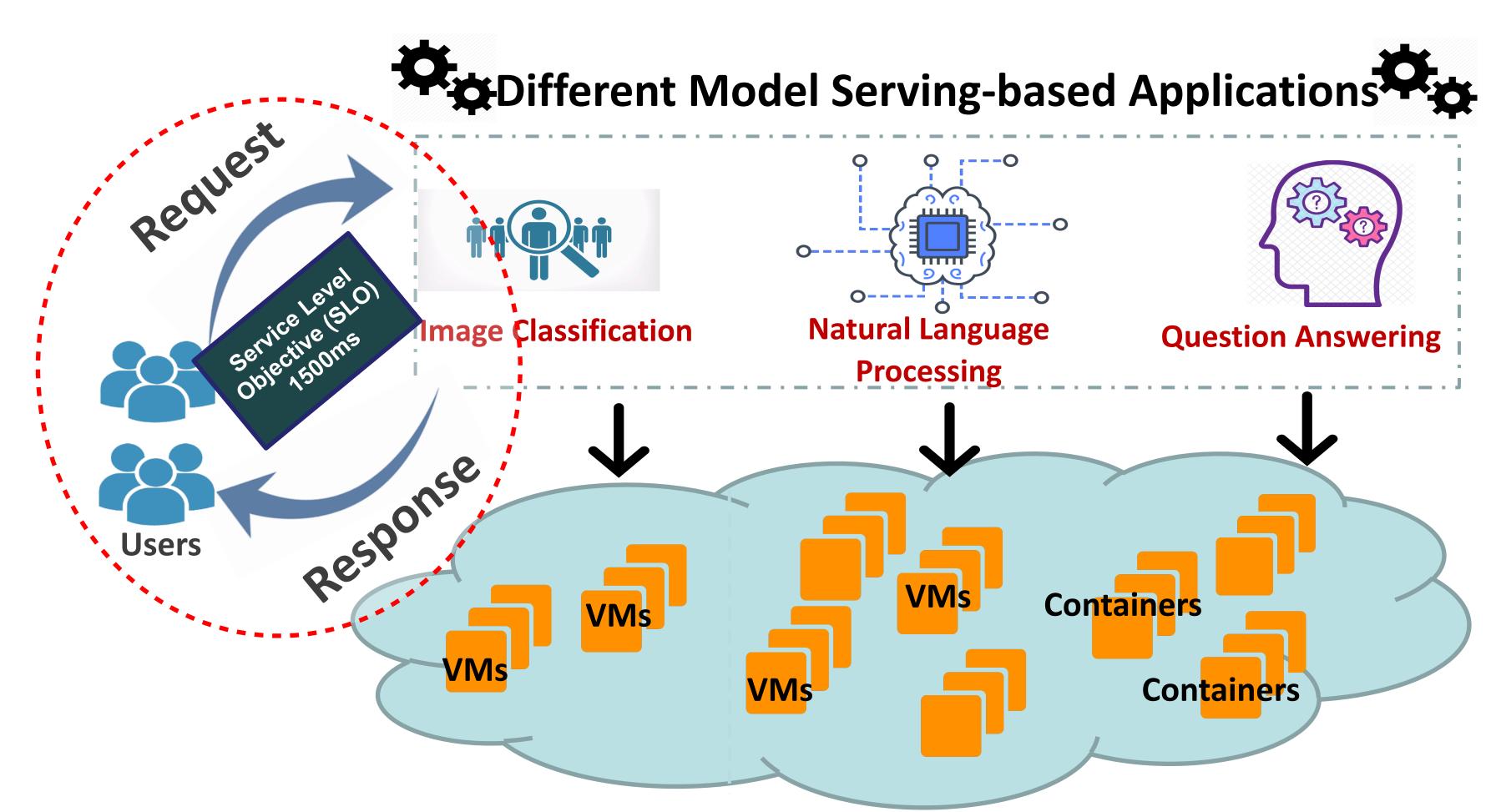








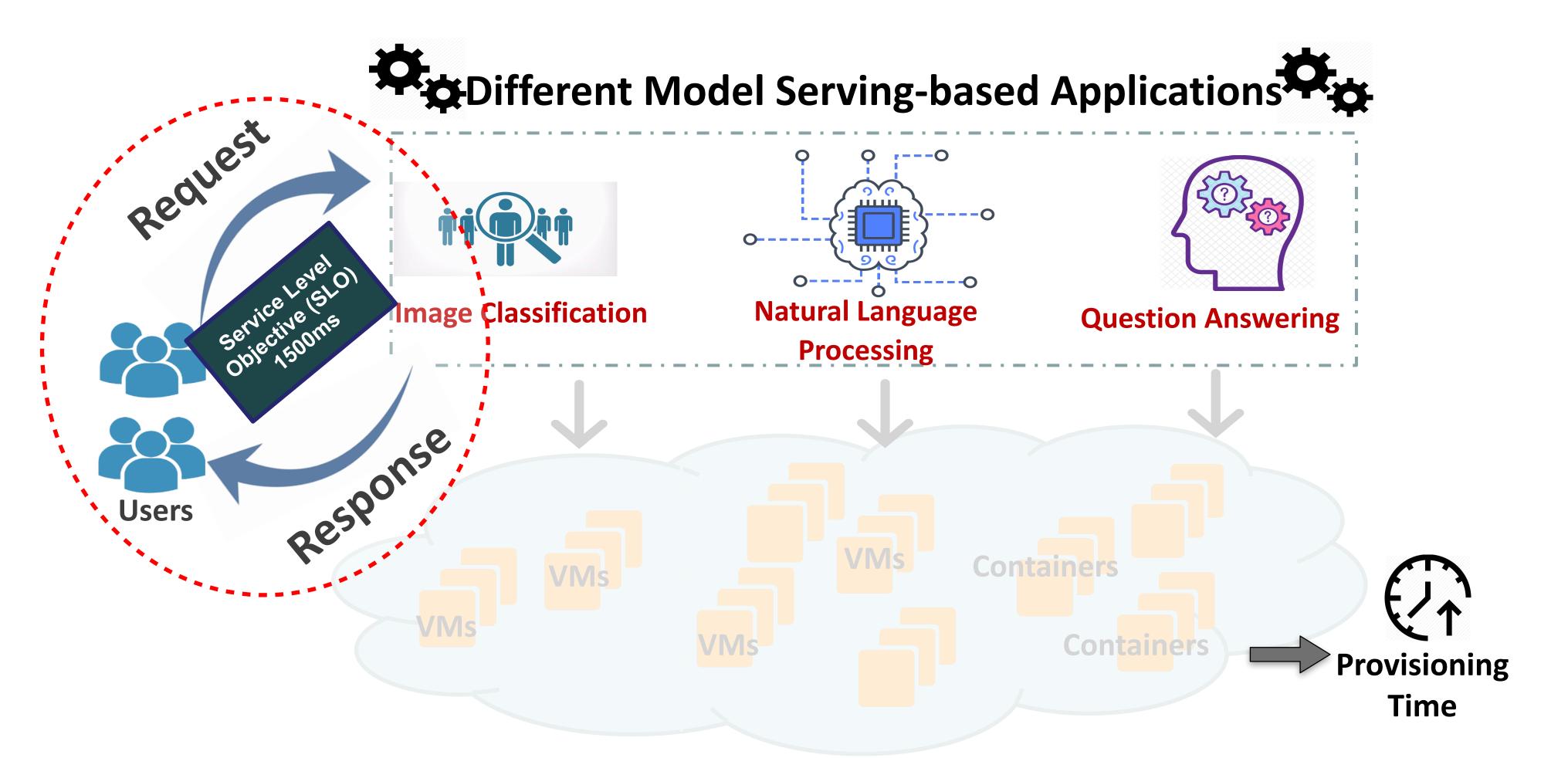






**Resources for Applications** 



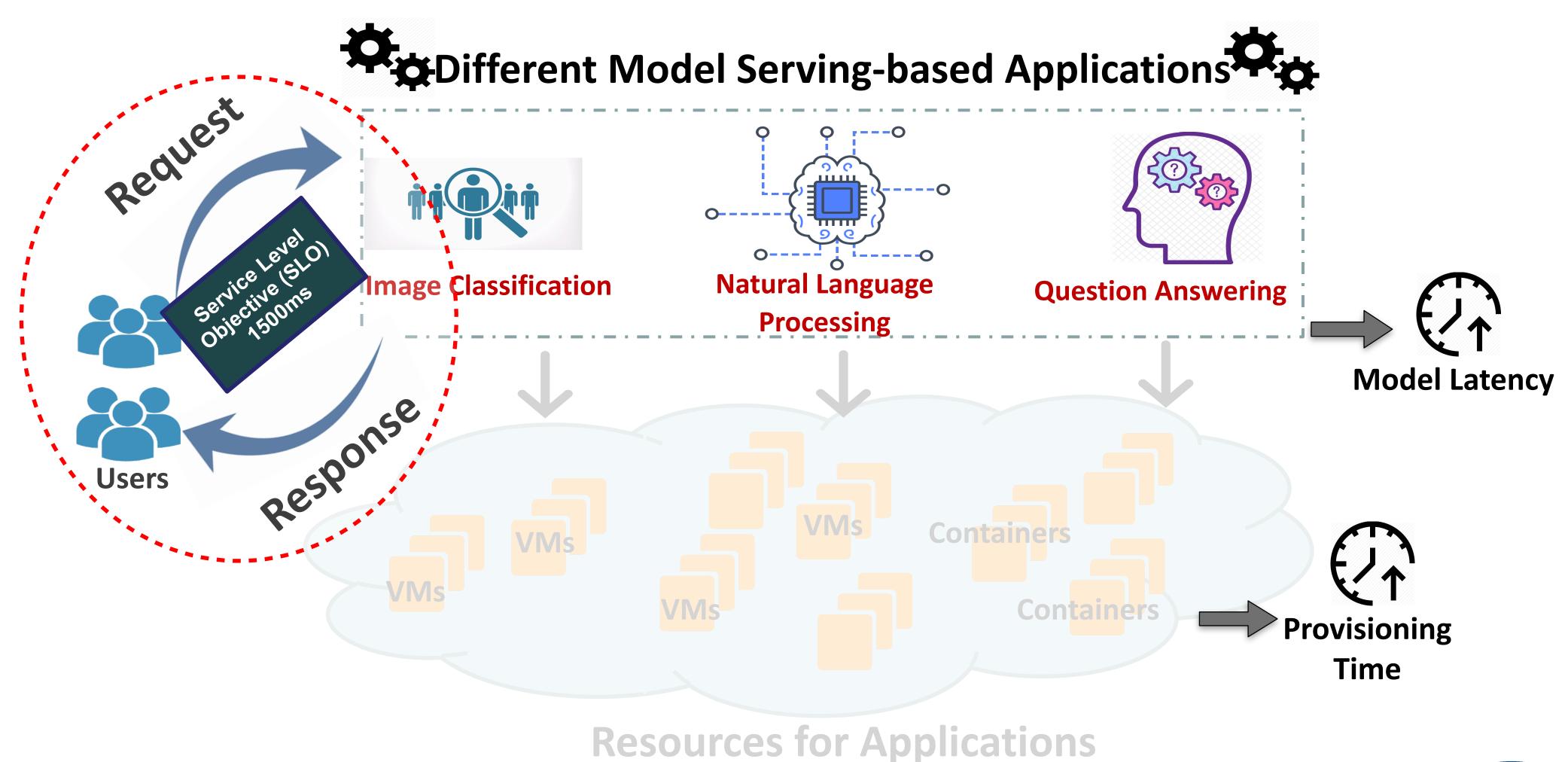




**Resources for Applications** 

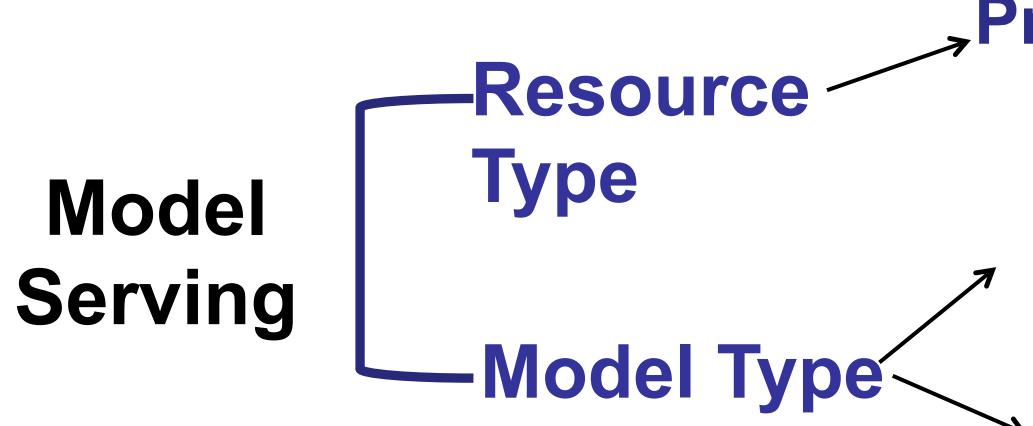


### MODEL SERVING HOSTED ON CLOUD





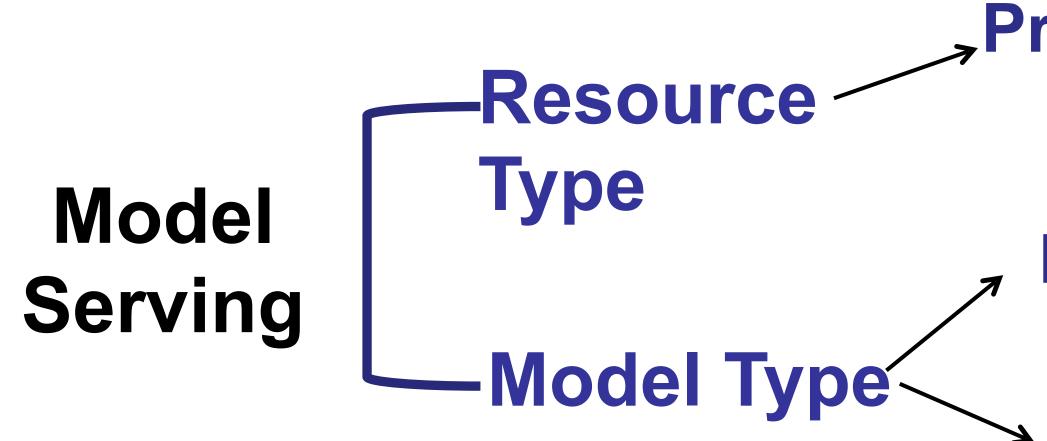






# Provisioning Latency Model Latency







Wang et al. ATC'19 Jain et al Middleware'19 Li etal, SC'21

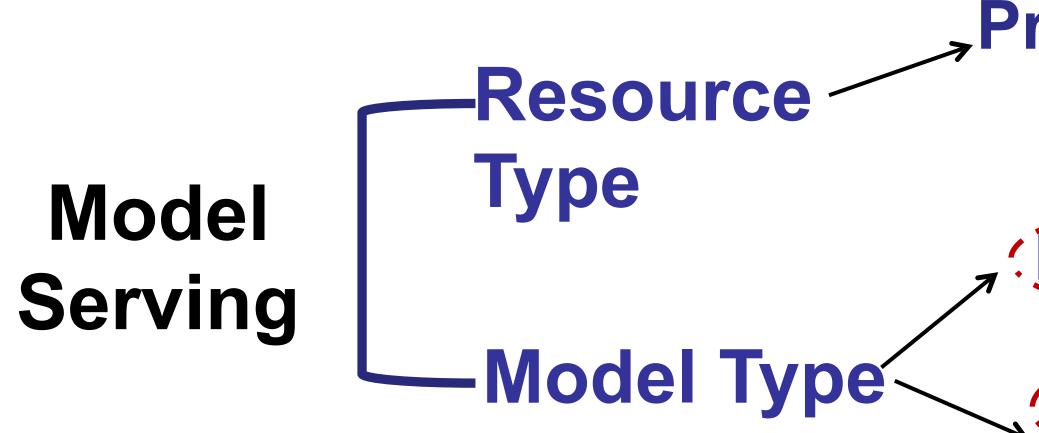
### Provisioning Latency

### **Model Latency**

### Accuracy



Cost





Wang et al. ATC'19 Jain et al Middleware'19 Li etal, SC'21

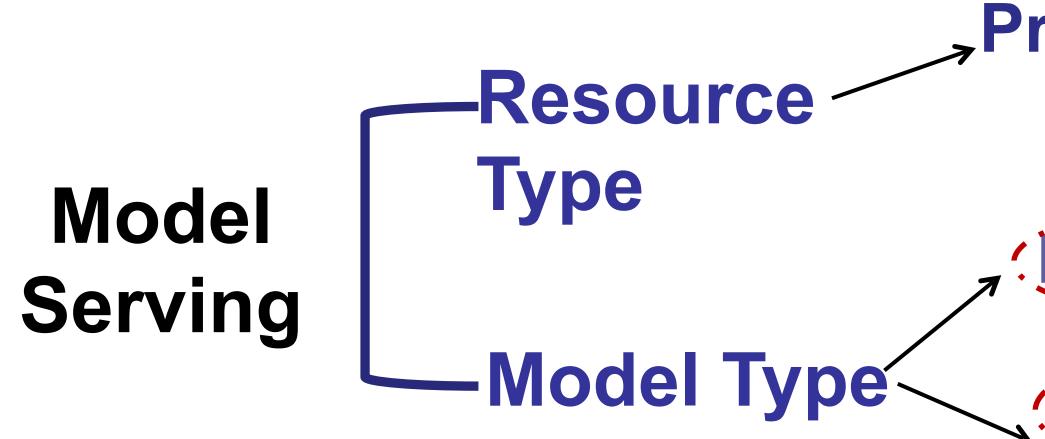
### Provisioning Latency

### Model Latency

Accuracy



Cost





Wang et al. ATC'19 Jain et al Middleware'19 Li etal, SC'21

### Provisioning Latency

Model Latency

# Accuracy In Netflix, 75% of viewer activity is based on these

accurate suggestions.

Cost





# How to improve accuracy with low latency and low cost?



Wang et al. ATC'19 Jain et al Middleware'19 Li etal, SC'21

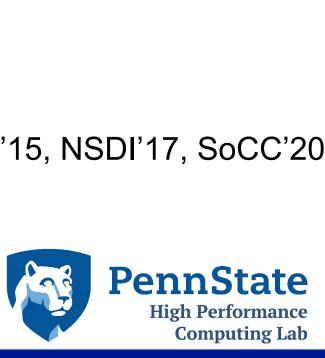
### Provisioning Latency

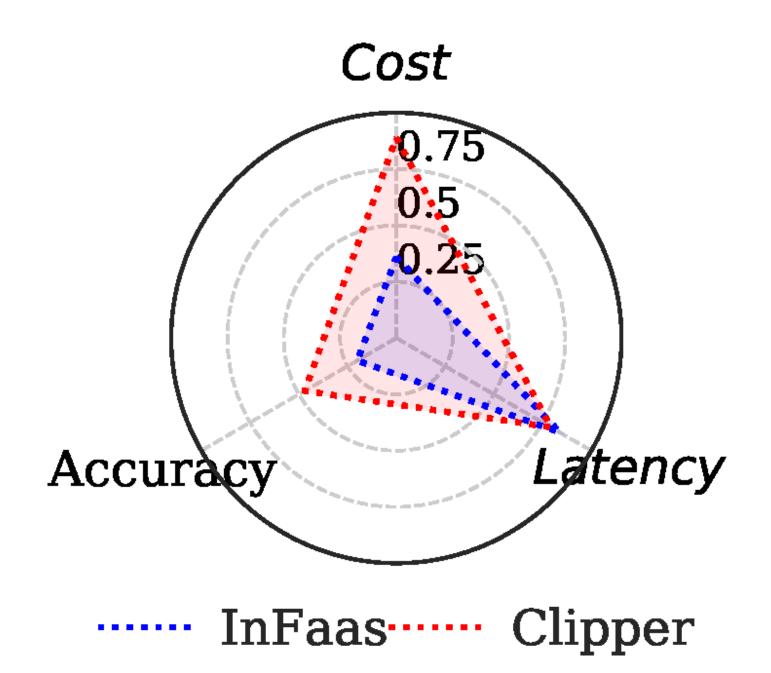


### – InFaas uses different resource types to ensure low latency at low cost. - Clipper achieves higher accuracy while compromising latency.



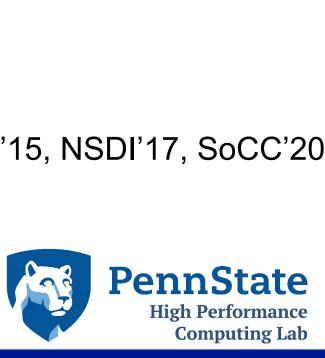
## PRIOR WORK IN MODEL SERVING

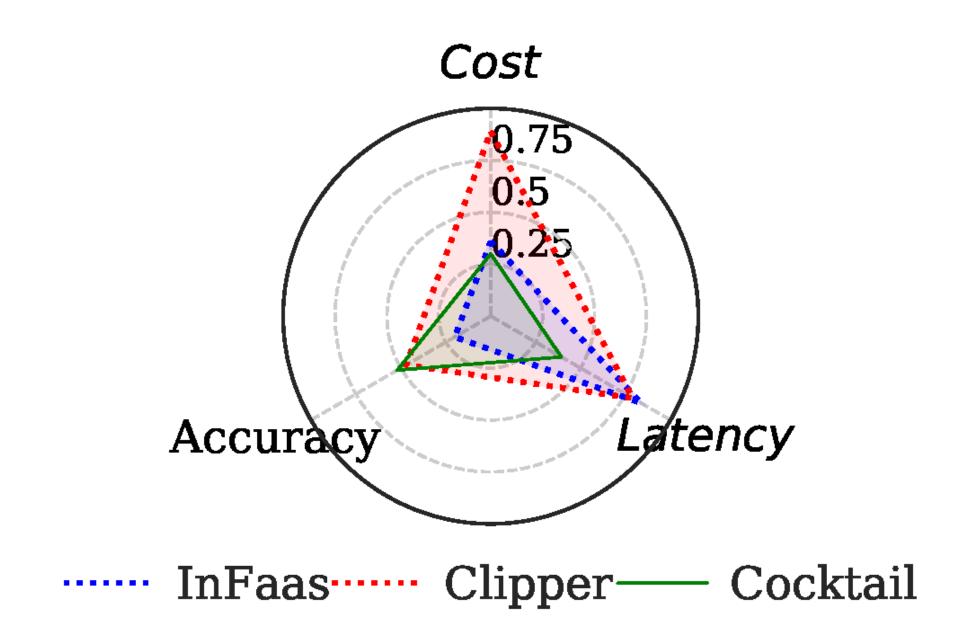






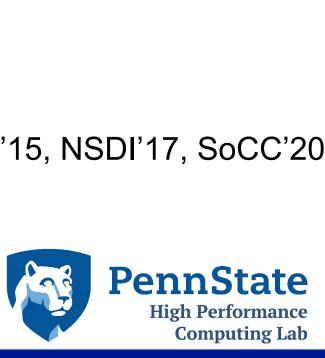
### – InFaas uses different resource types to ensure low latency at low cost. – **Clipper** achieves higher accuracy while compromising latency.

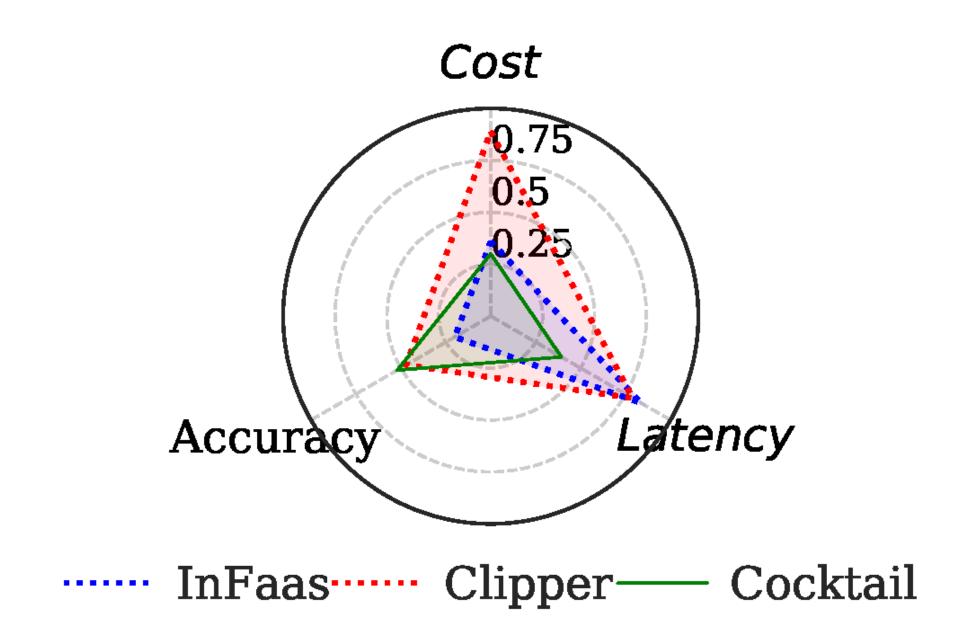




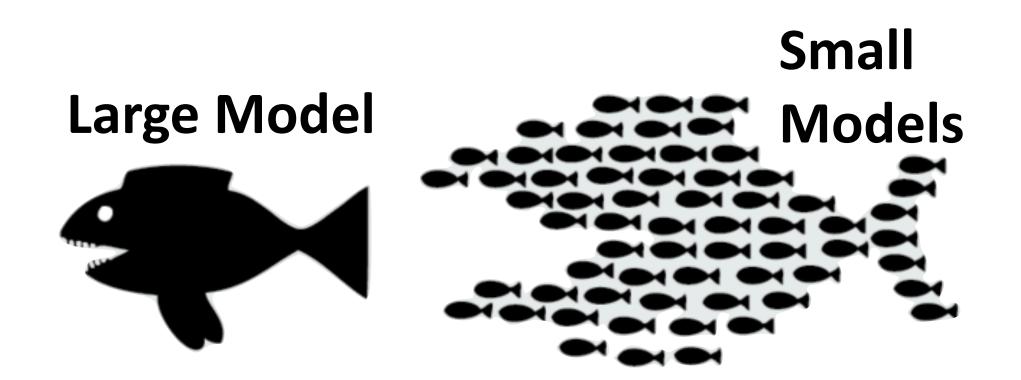


### – InFaas uses different resource types to ensure low latency at low cost. – **Clipper** achieves higher accuracy while compromising latency.

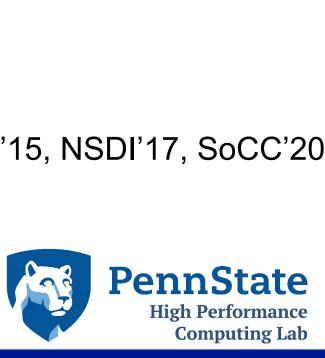


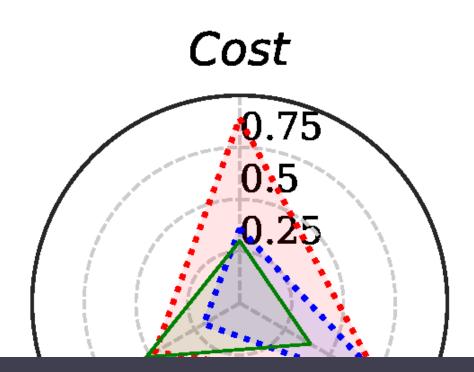




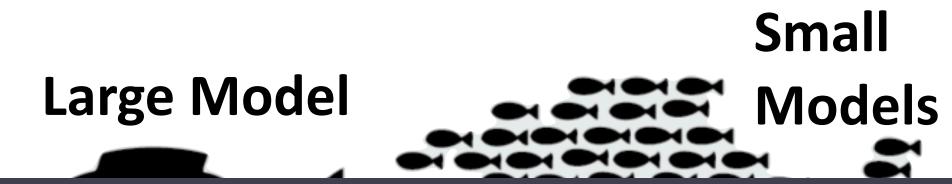


### – InFaas uses different resource types to ensure low latency at low cost. - Clipper achieves higher accuracy while compromising latency.



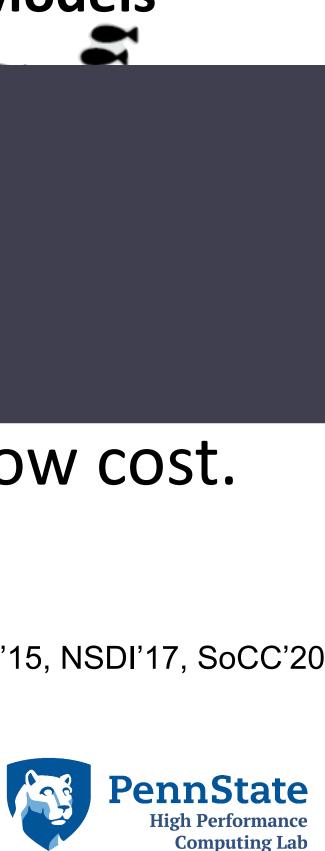


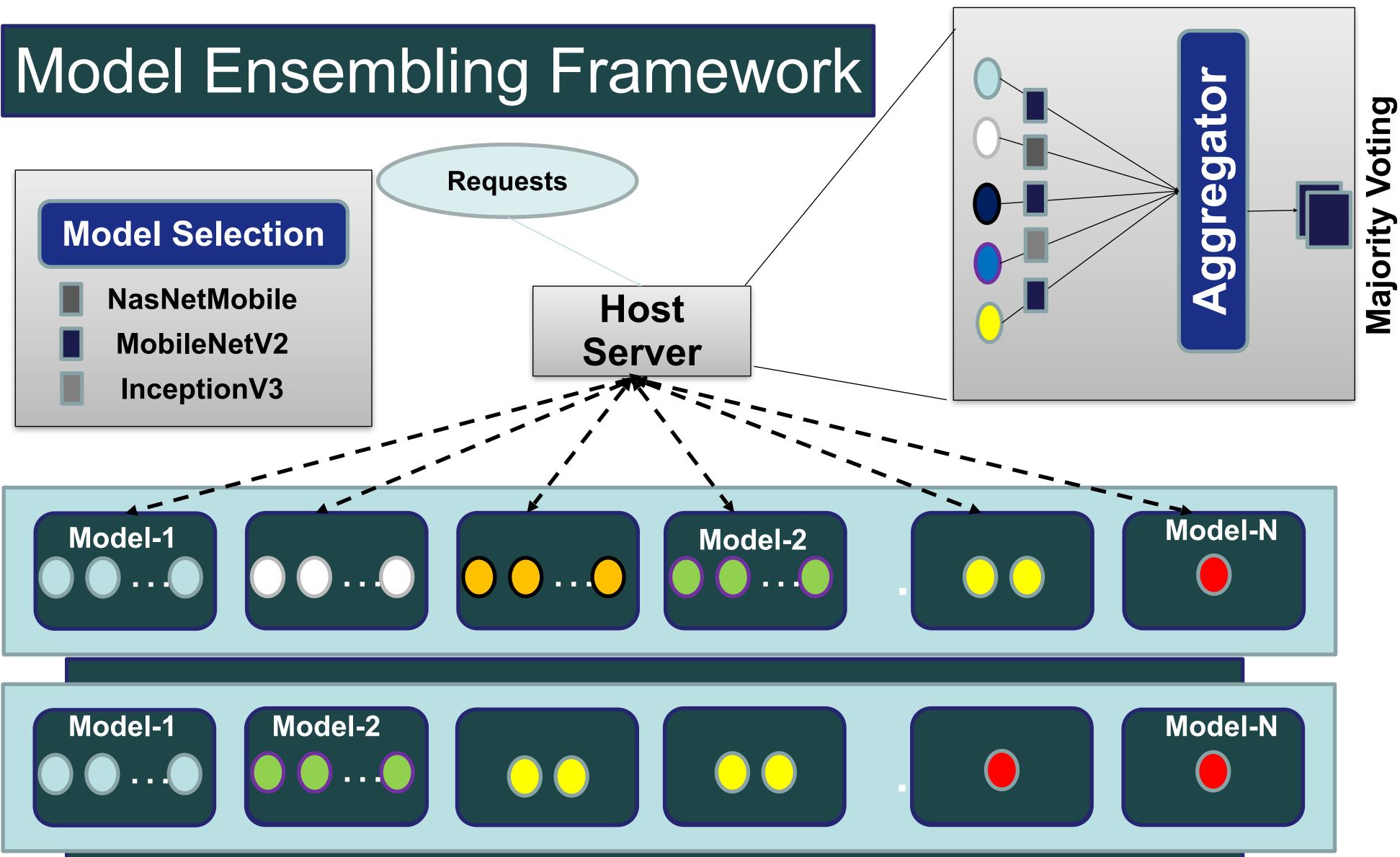




## How to do ensembling?

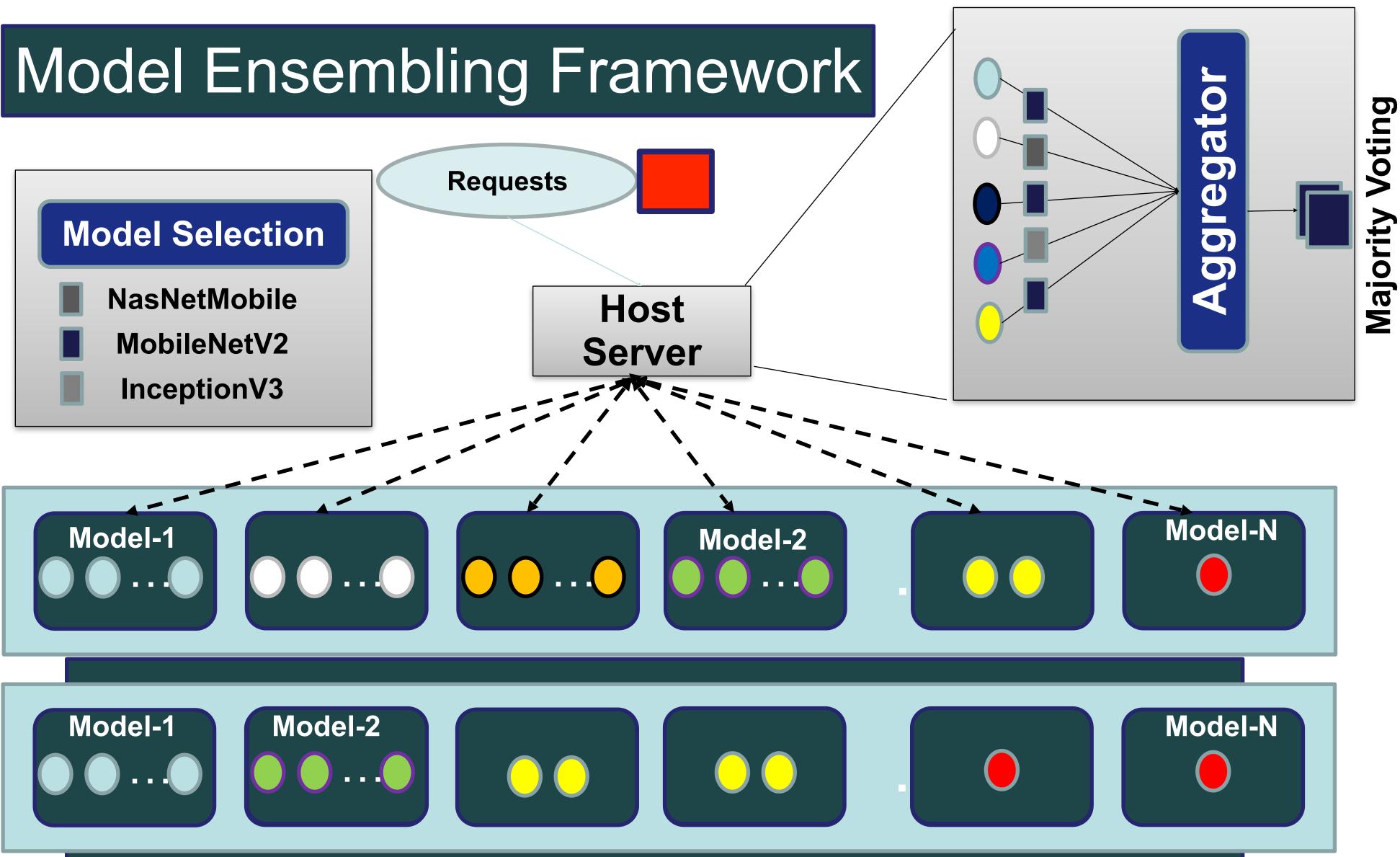
- InFaas uses different resource types to ensure low latency at low cost. - Clipper achieves higher accuracy while compromising latency.





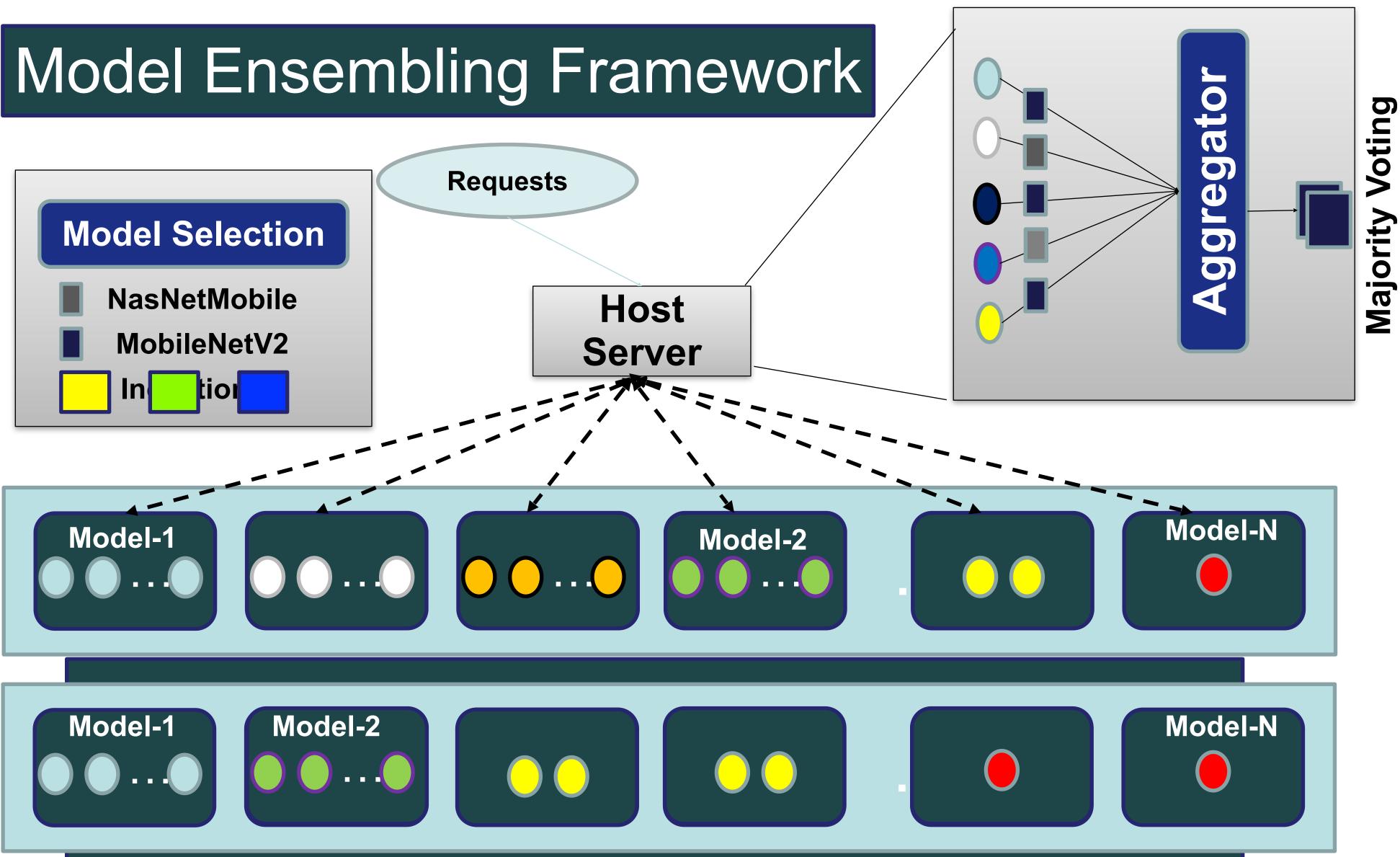






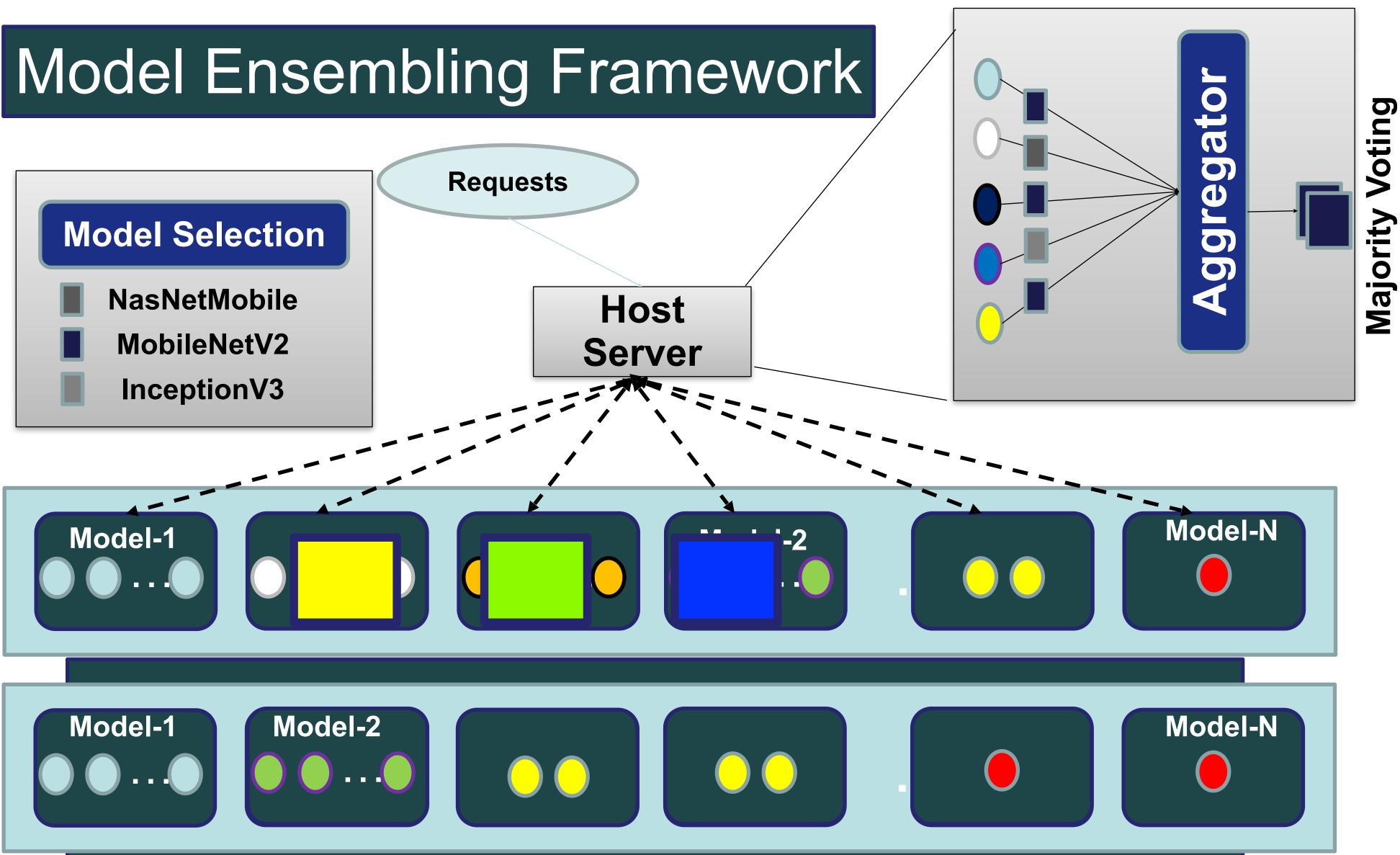






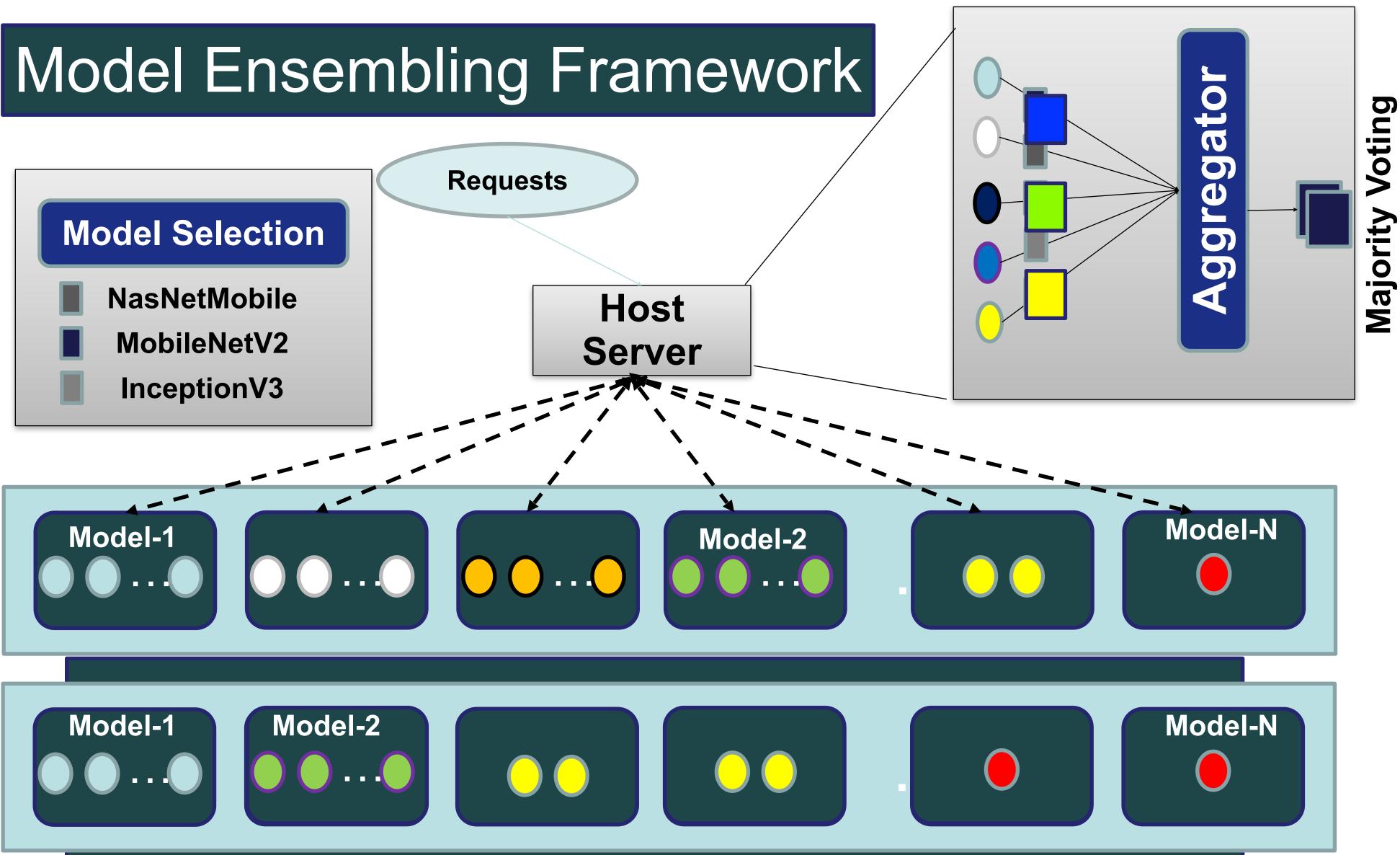






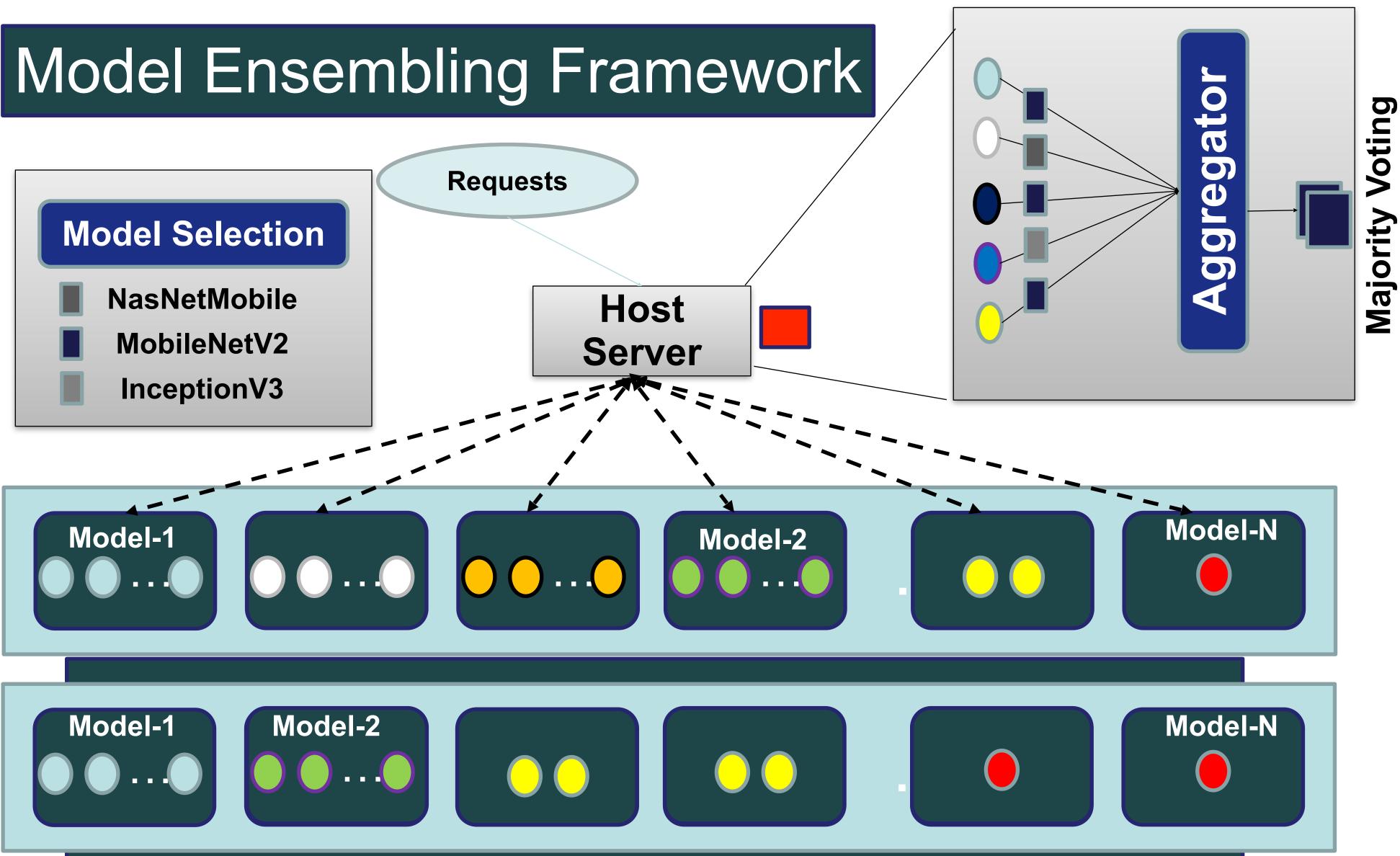






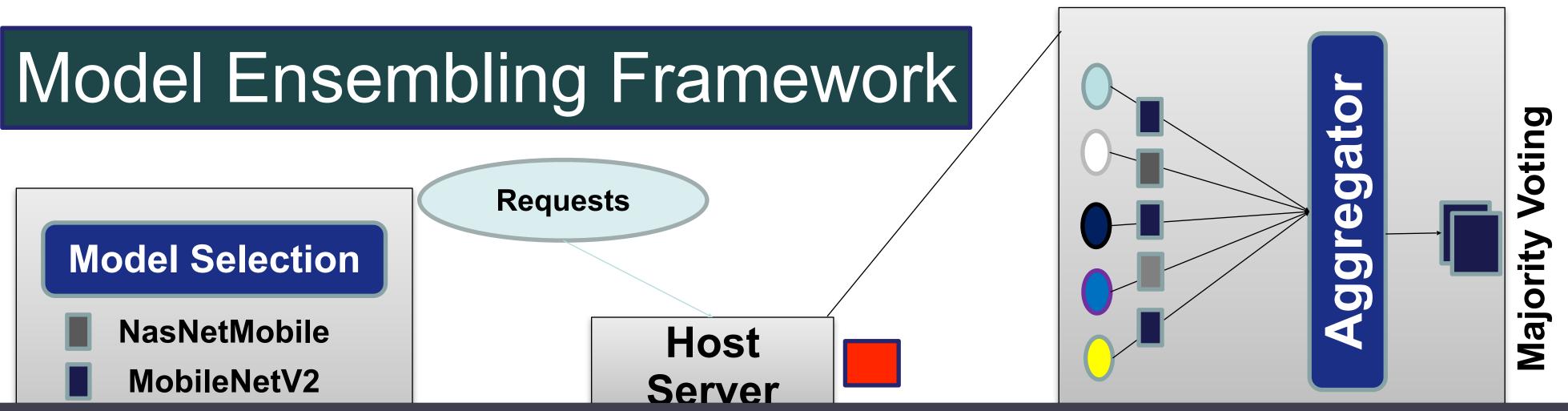




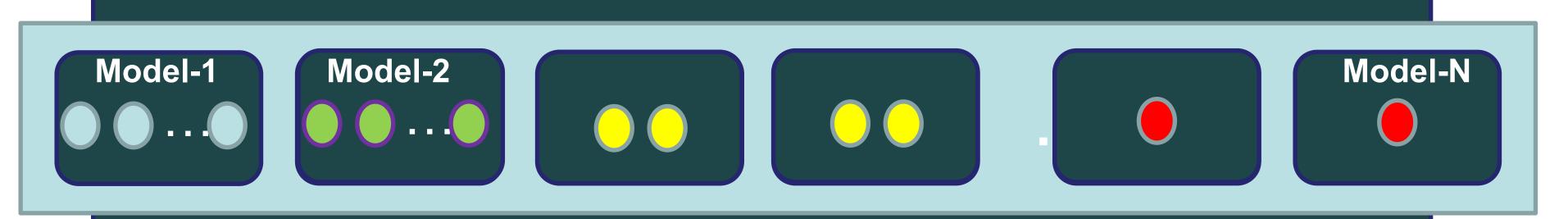








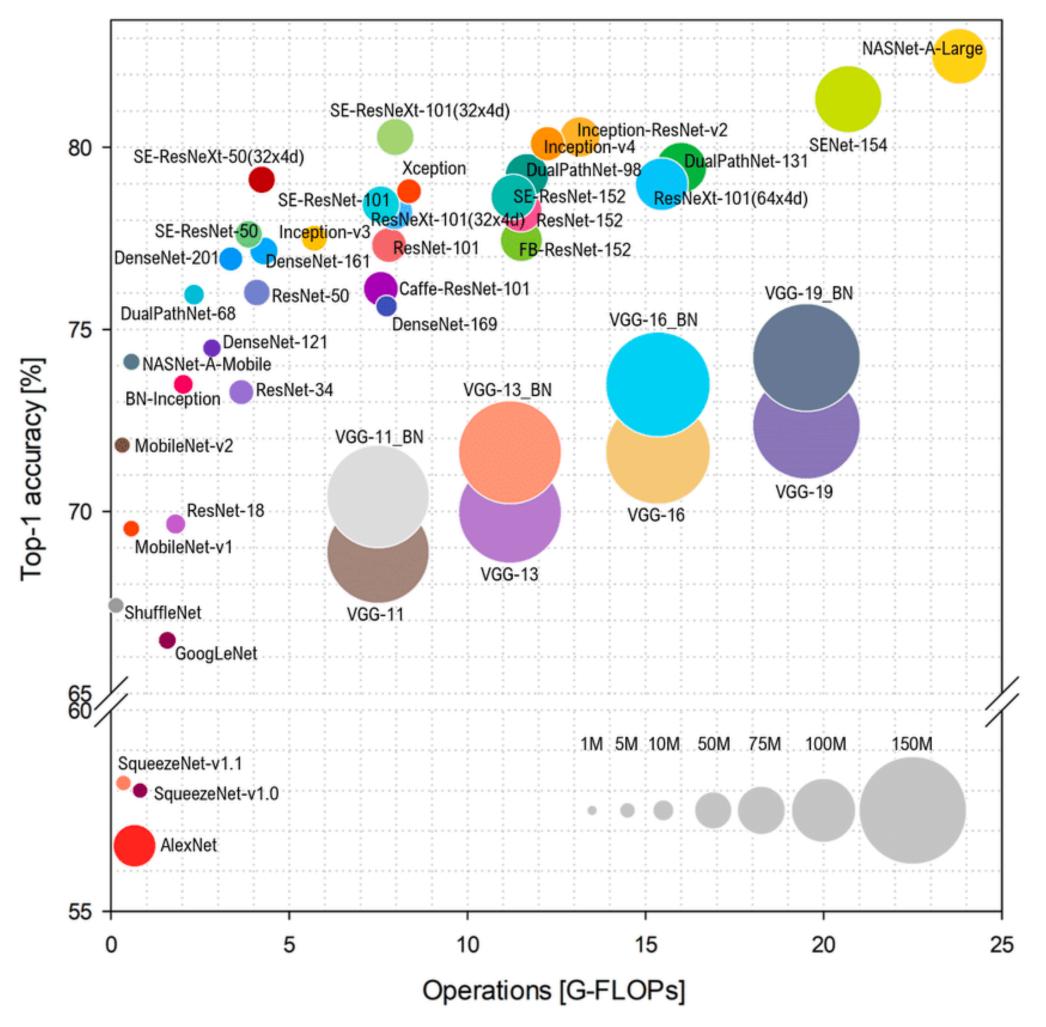
## High Resource Footprint What about Model Selection?







## Model Space Exploration

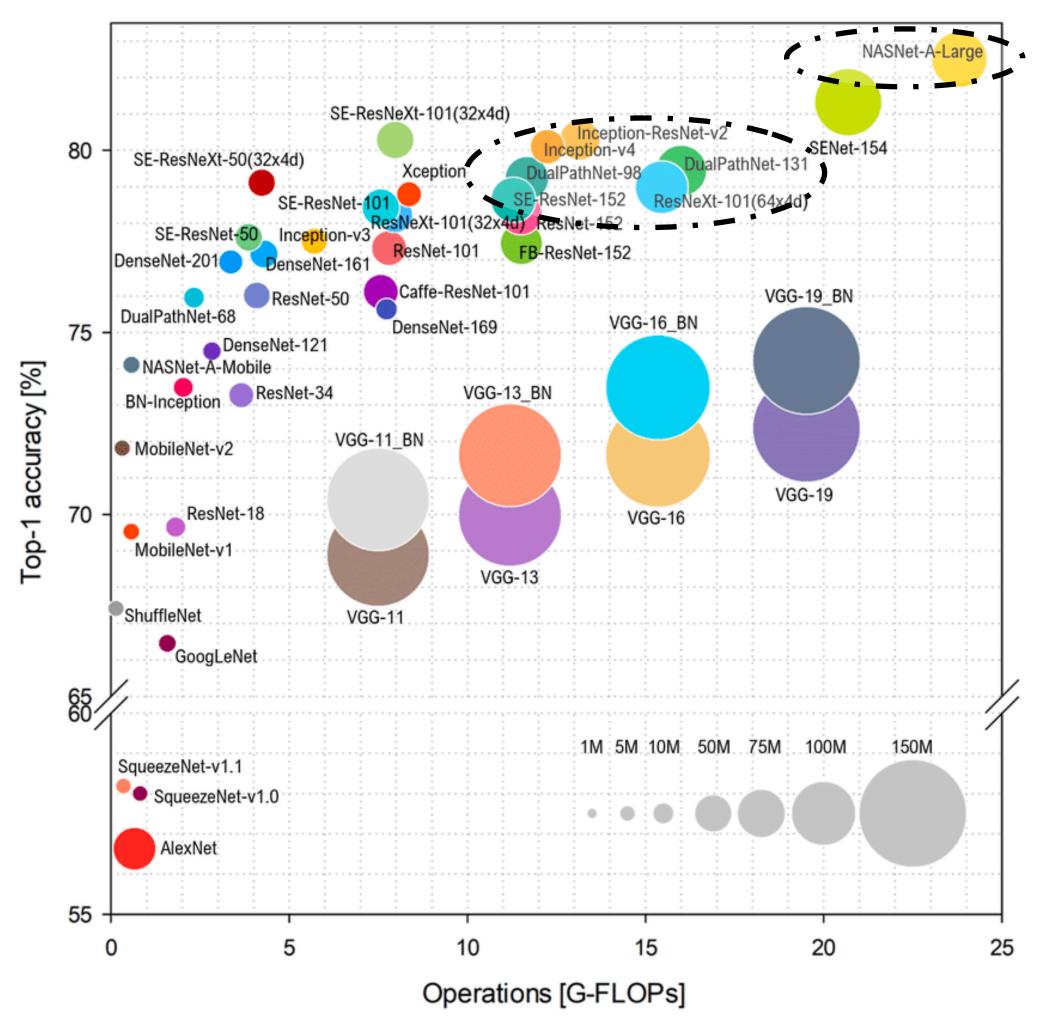


IEEE Access'18 Benchmark Analysis of Representative Deep Neural Network Architectures





## MODEL SPACE EXPLORATION



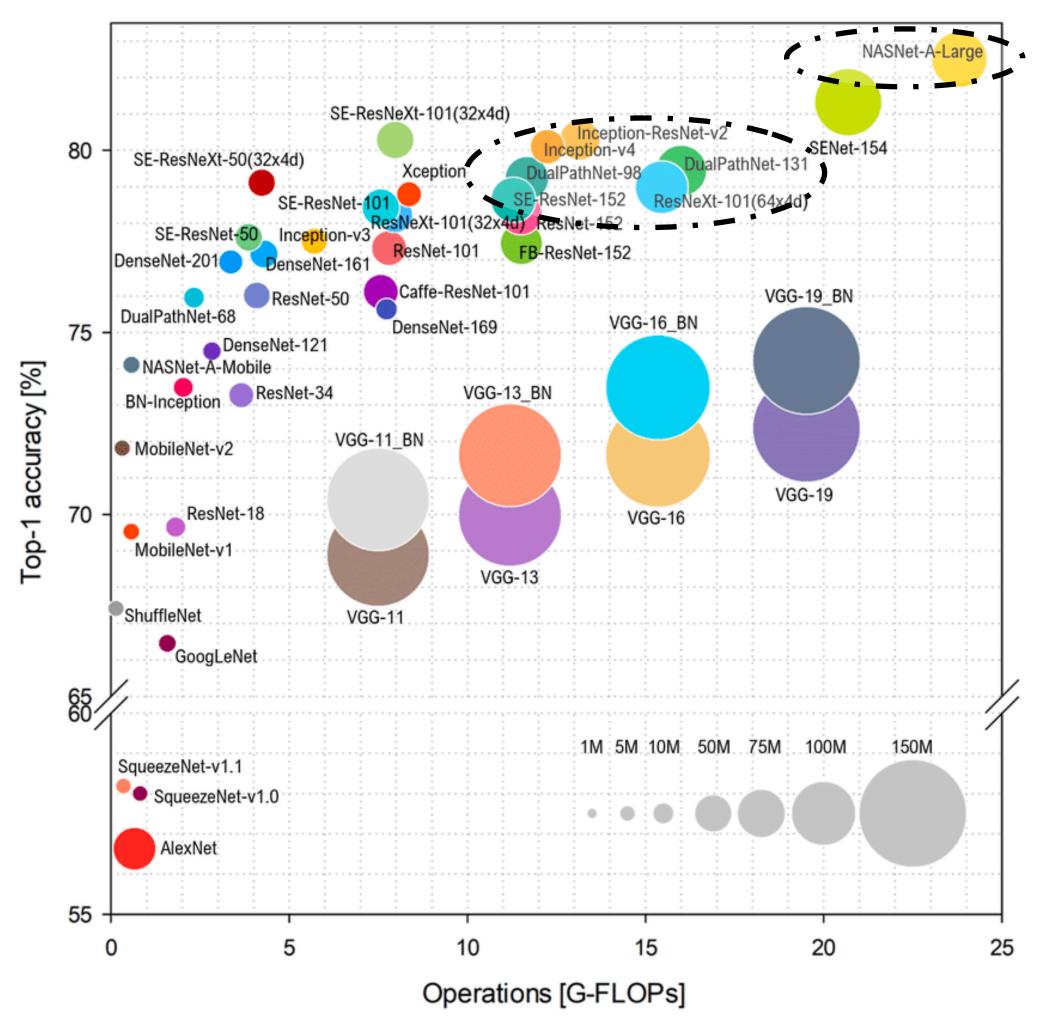
IEEE Access'18 Benchmark Analysis of Representative Deep Neural Network Architectures



### Most accurate model \*~2x parameters, latency \*~2% more accuracy



## MODEL SPACE EXPLORATION



IEEE Access'18 Benchmark Analysis of Representative Deep Neural Network Architectures

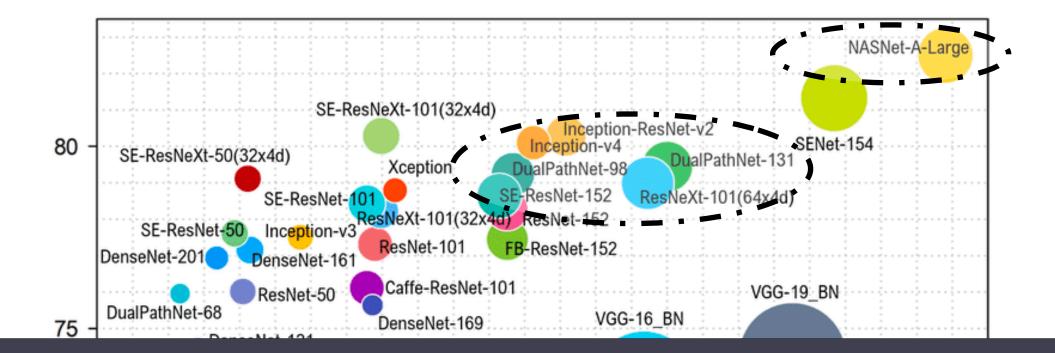


### Most accurate model \*~2x parameters, latency \*~2% more accuracy

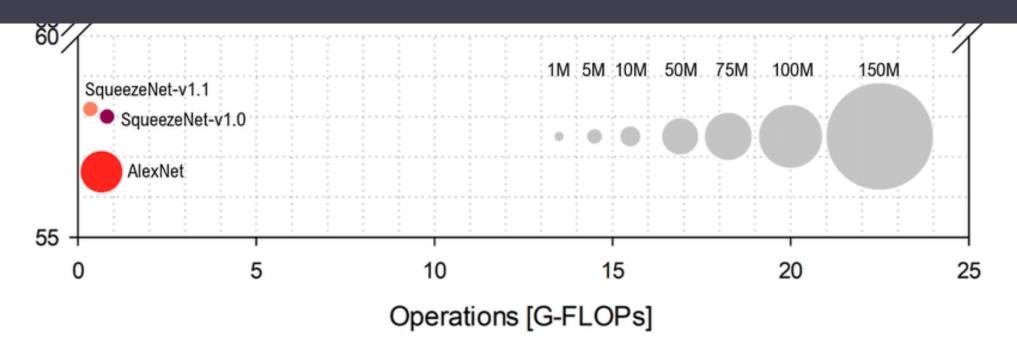
How to bridge the 2% accuracy gap?
What about cost?



## MODEL SPACE EXPLORATION



## How to ensemble?



IEEE Access'18 Benchmark Analysis of Representative Deep Neural Network Architectures



Most accurate model \*~2x parameters, latency \*~2% more accuracy

### What about cost?





### Model Set: Top 12 frequently used models from Keras Tensorflow

### **Choose baseline models in decreas** order of accuracy

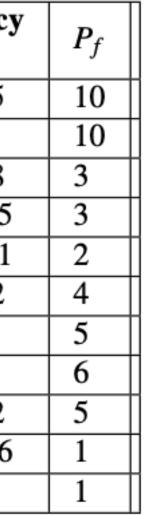
### **Combine all models which are under the** latency of baseline model.



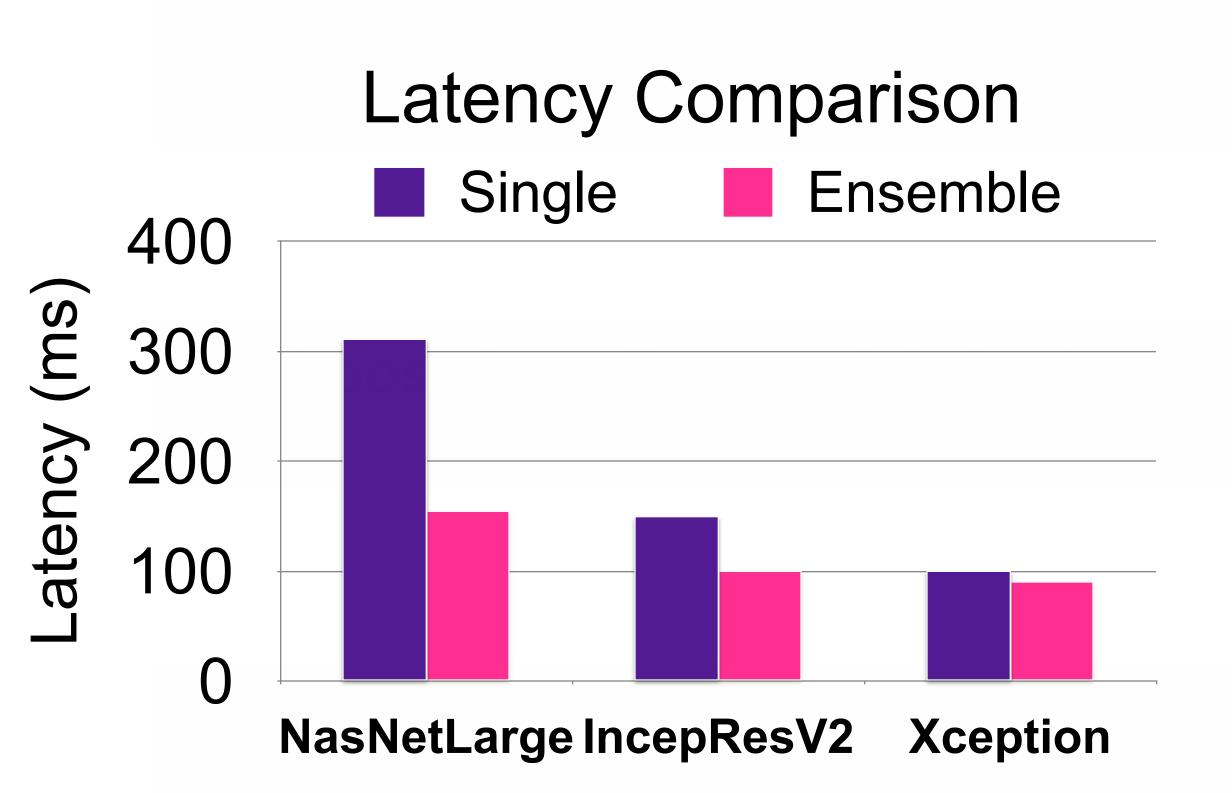
## FULL ENSEMBLE

|      | Model (Acronym)        | Params  | Top-1       | Latency |
|------|------------------------|---------|-------------|---------|
|      |                        | (10k)   | Accuracy(%) | (ms)    |
|      | MobileNetV1 (MNet)     | 4,253   | 70.40       | 43.45   |
|      | MobileNetV2 (MNetV2)   | 4,253   | 71.30       | 41.5    |
| sing | NASNetMobile (NASMob)  | 5,326   | 74.40       | 78.18   |
|      | DenseNet121 (DNet121)  | 8,062   | 75.00       | 102.35  |
|      | DenseNet201 (DNet201)  | 20,242  | 77.30       | 152.21  |
|      | Xception (Xcep)        | 22,910  | 79.00       | 119.2   |
|      | Inception V3 (Incep)   | 23,851  | 77.90       | 89      |
|      | ResNet50-V2 (RNet50)   | 25,613  | 76.00       | 89.5    |
|      | Resnet50 (RNet50)      | 25,636  | 74.90       | 98.22   |
|      | IncepResnetV2 (IRV2)   | 55,873  | 80.30       | 151.96  |
|      | NasNetLarge (NasLarge) | 343,000 | 82.00       | 311     |
|      |                        |         |             |         |



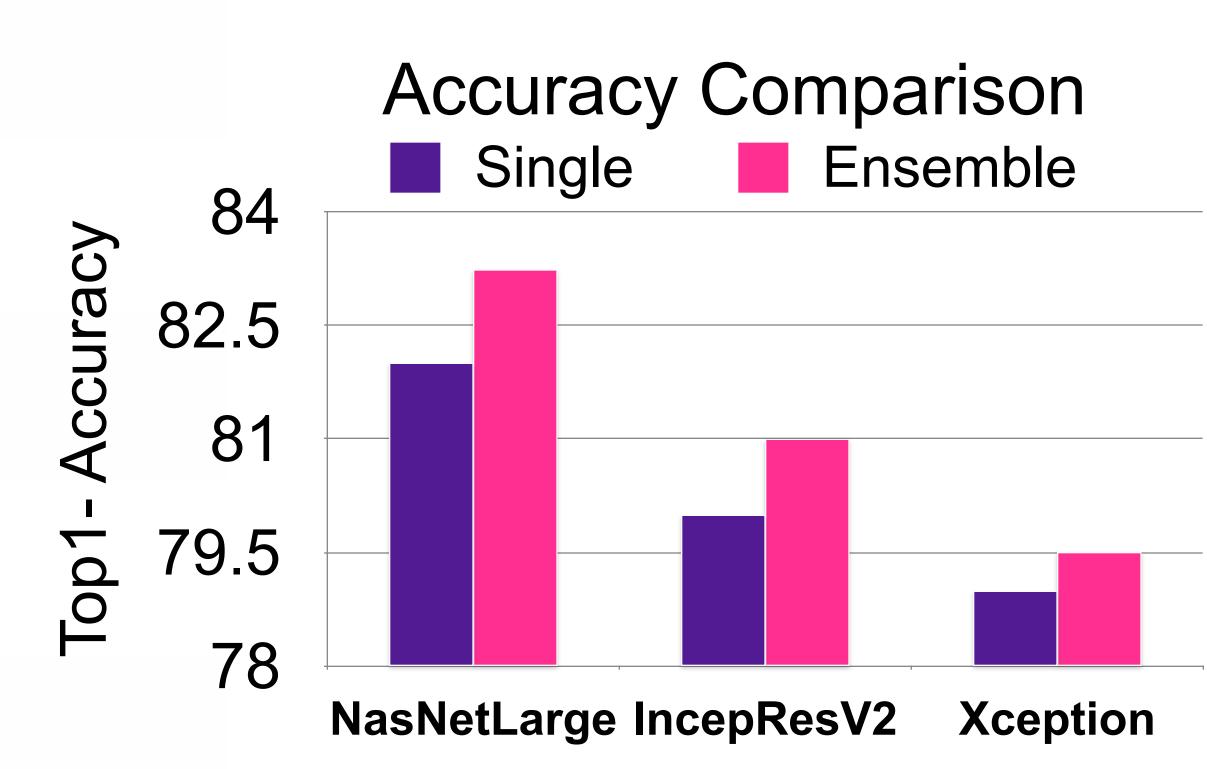






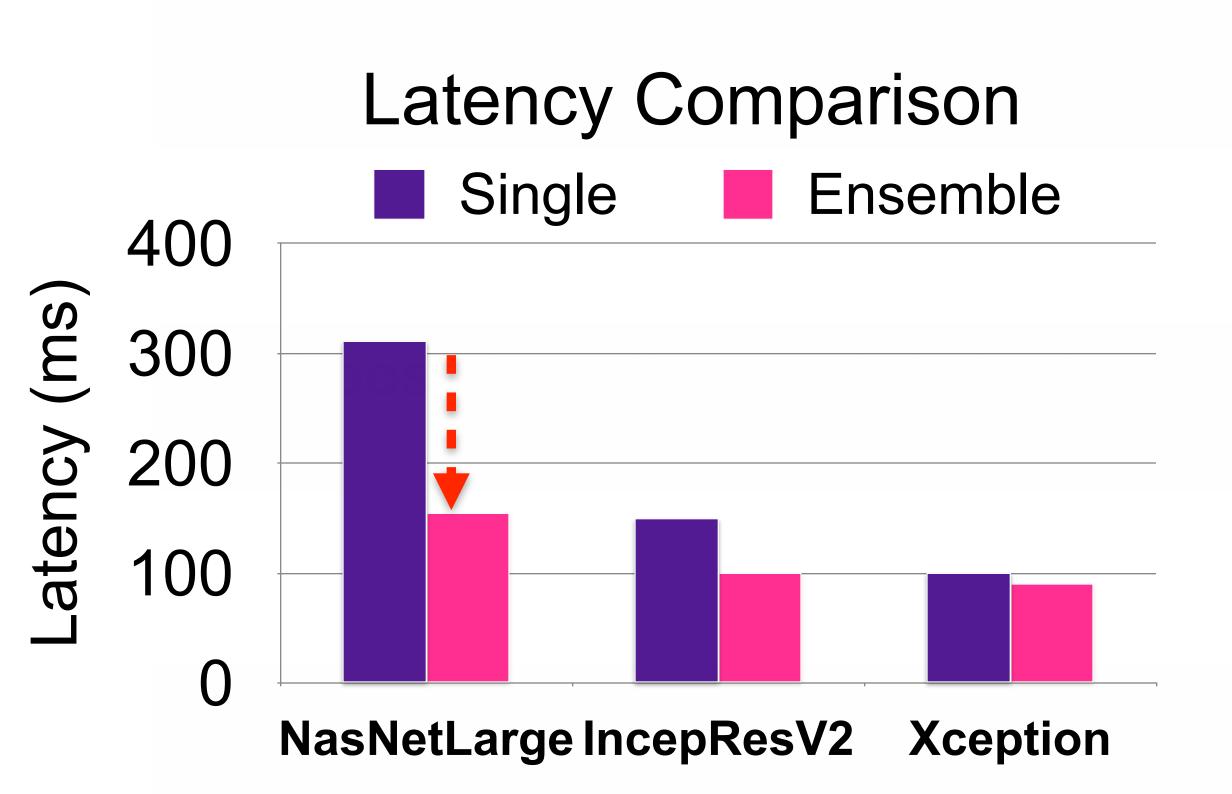


## FULL ENSEMBLE



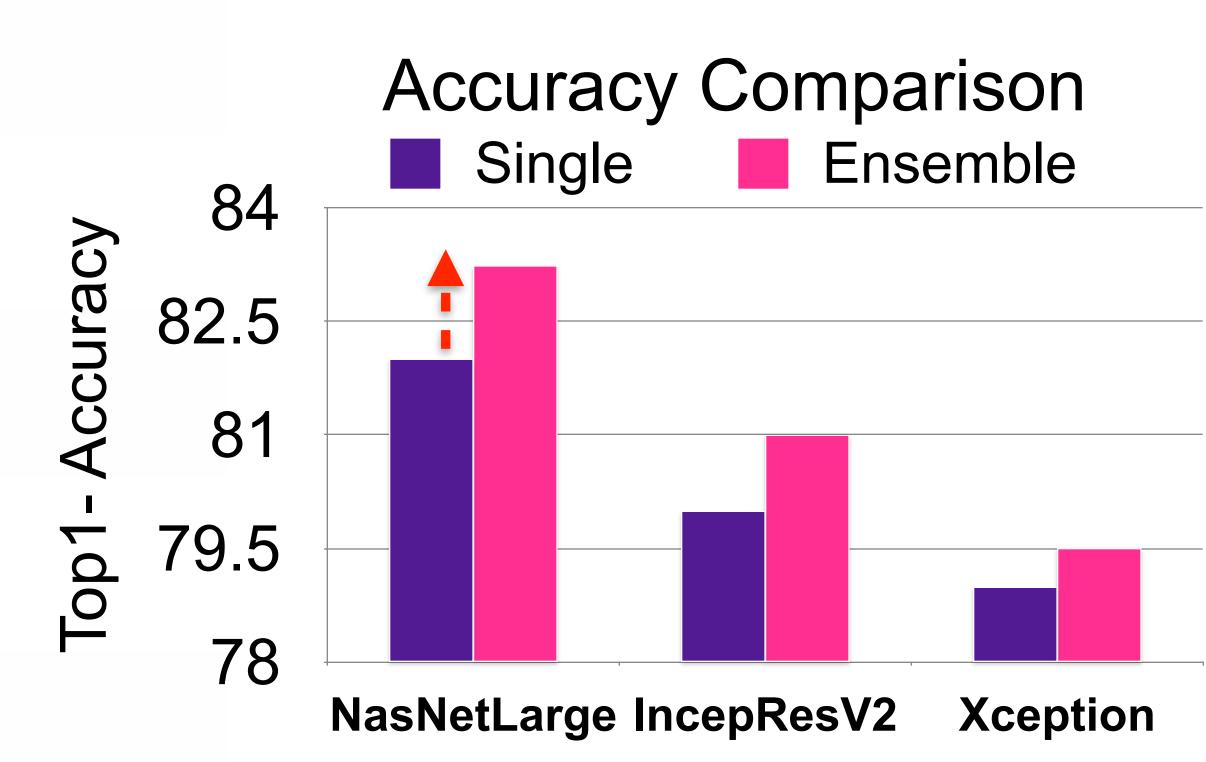








## FULL ENSEMBLE

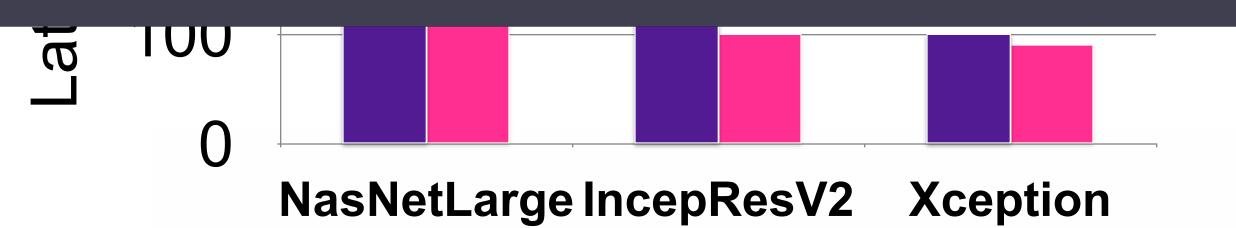






### Latency Comparison Sinale Ensemble

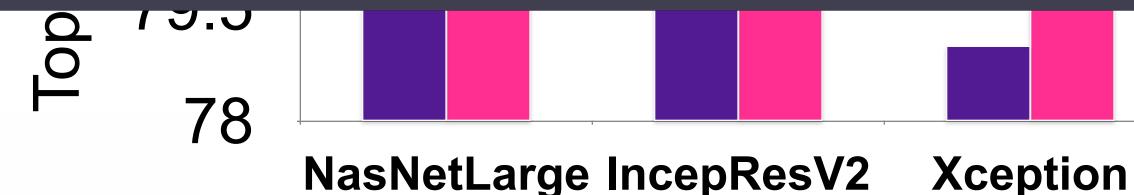
## What about Cost?



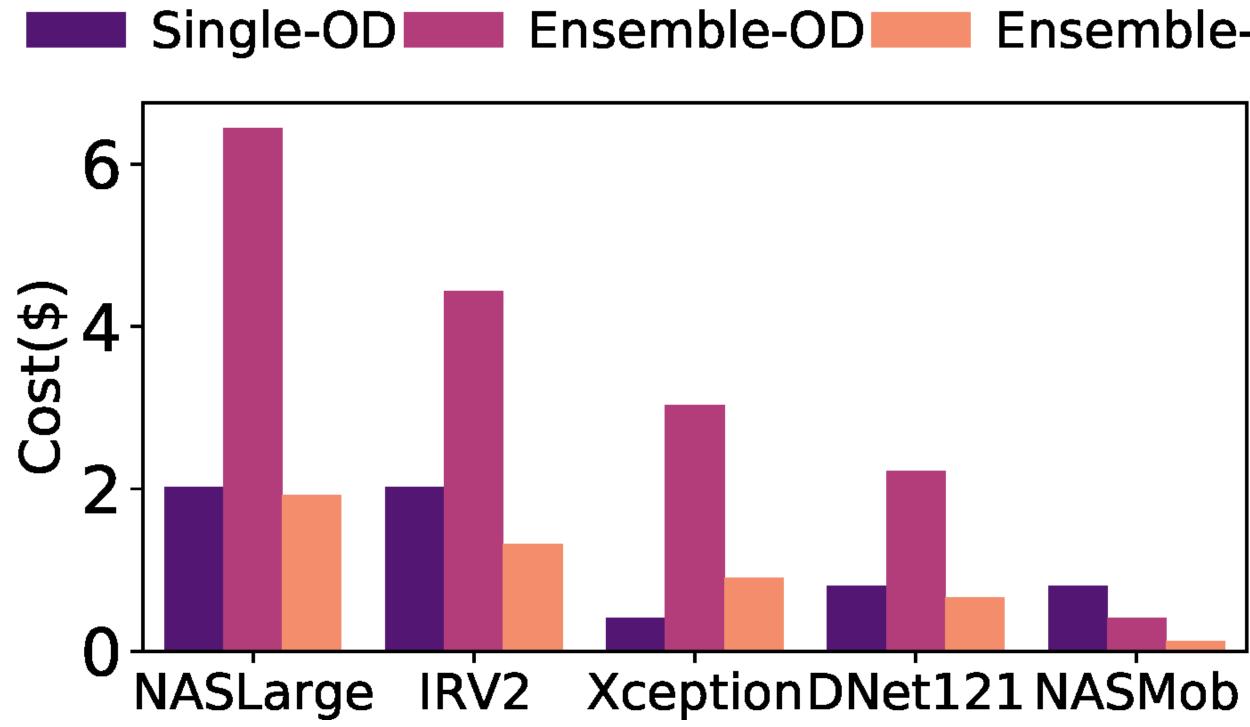




### Accuracy Comparison Ensemble Single

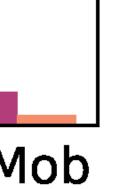




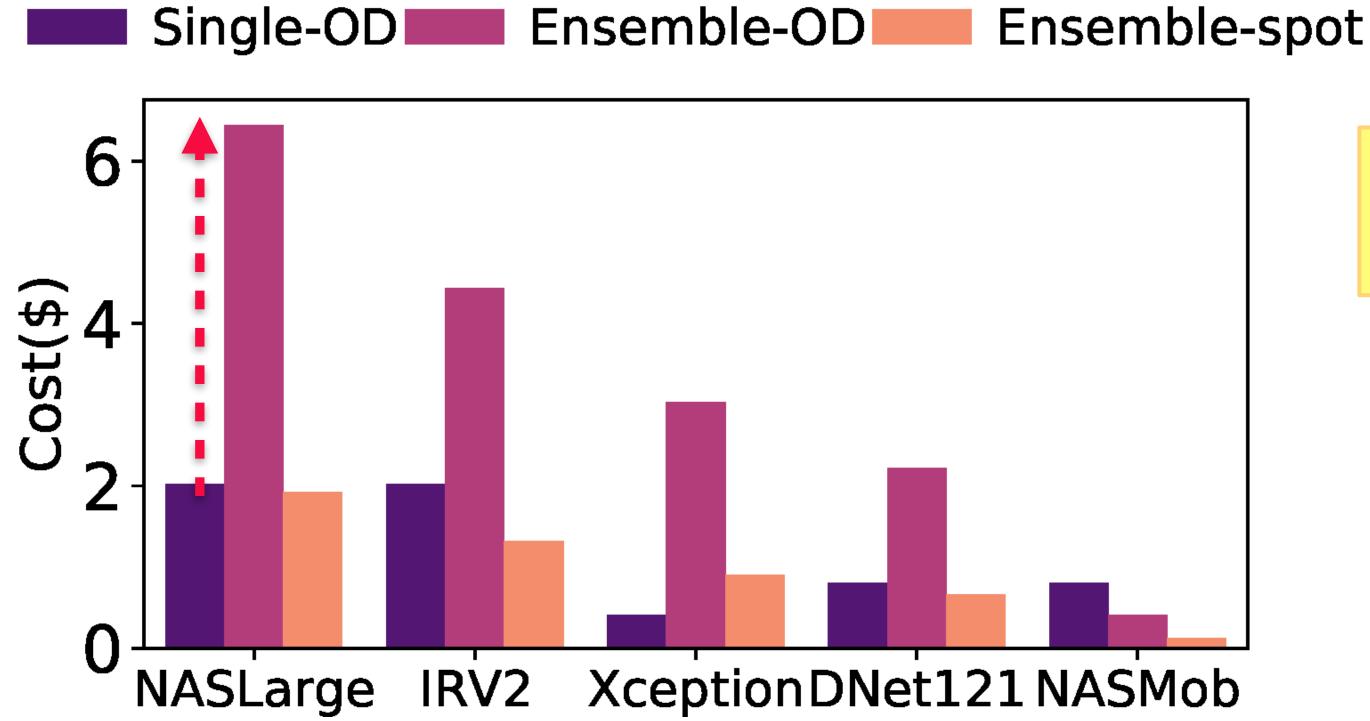




Ensemble-spot



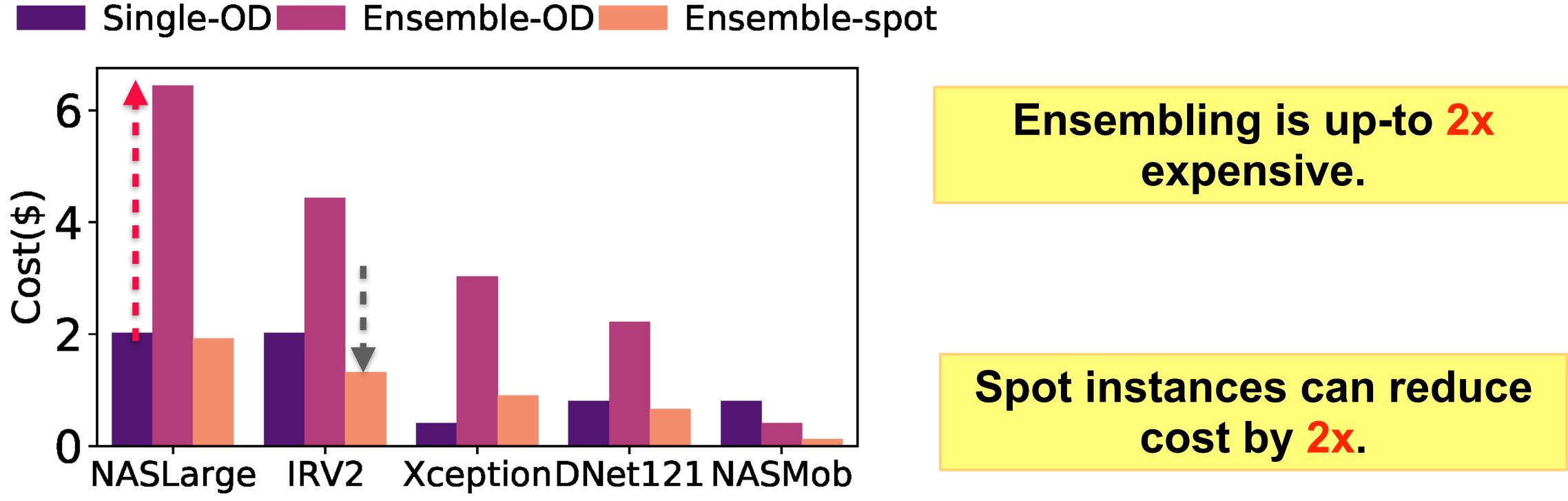






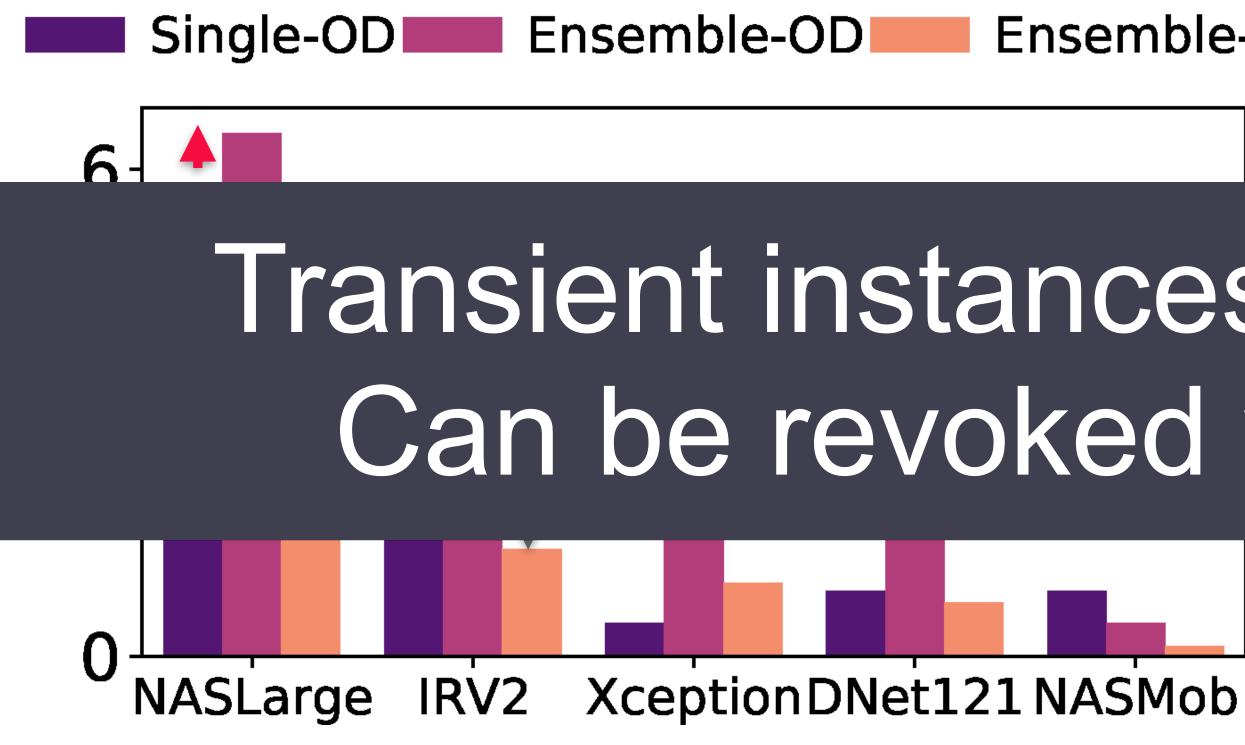
### Ensembling is up-to 2x expensive.













### Ensemble-spot

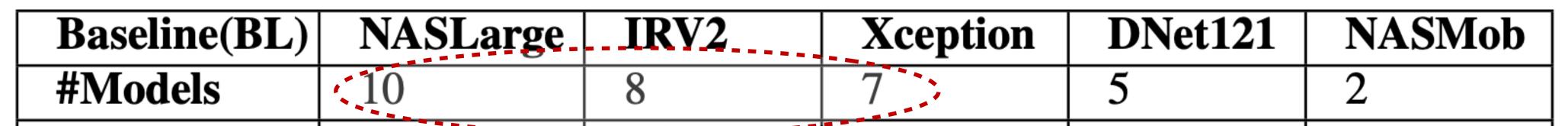
### Encompling is up to 2

## Transient instances- 70-80% cheaper. Can be revoked with short notice.

### **Spot instances can reduce** cost by 2x.





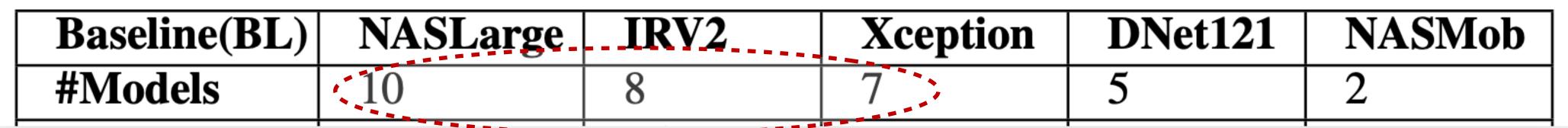




# WHAT CAN WE DO?











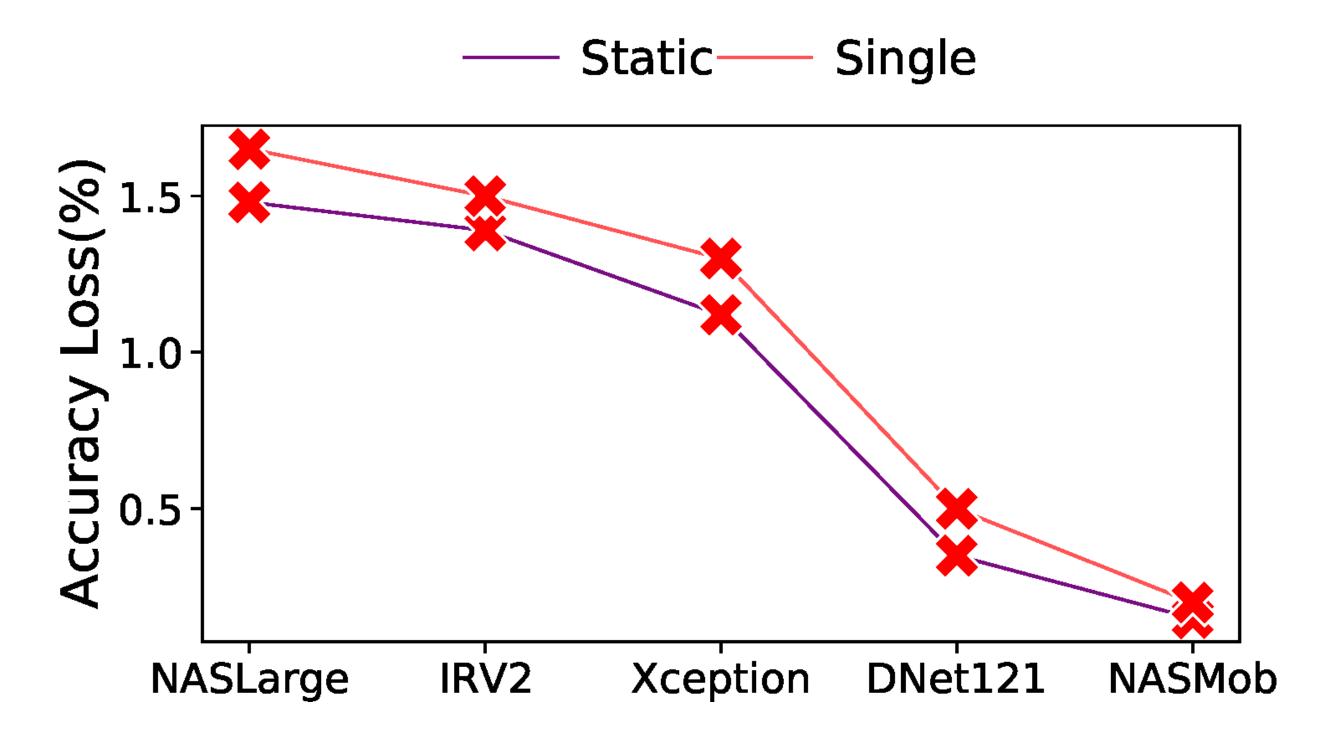
# WHAT CAN WE DO?

## Do we need so many models? How to autoscale resources for each

### How to handle instance failures?

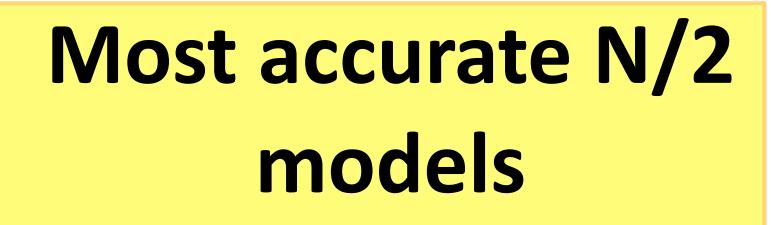


### **Compared to Full-Ensemble (N models)**



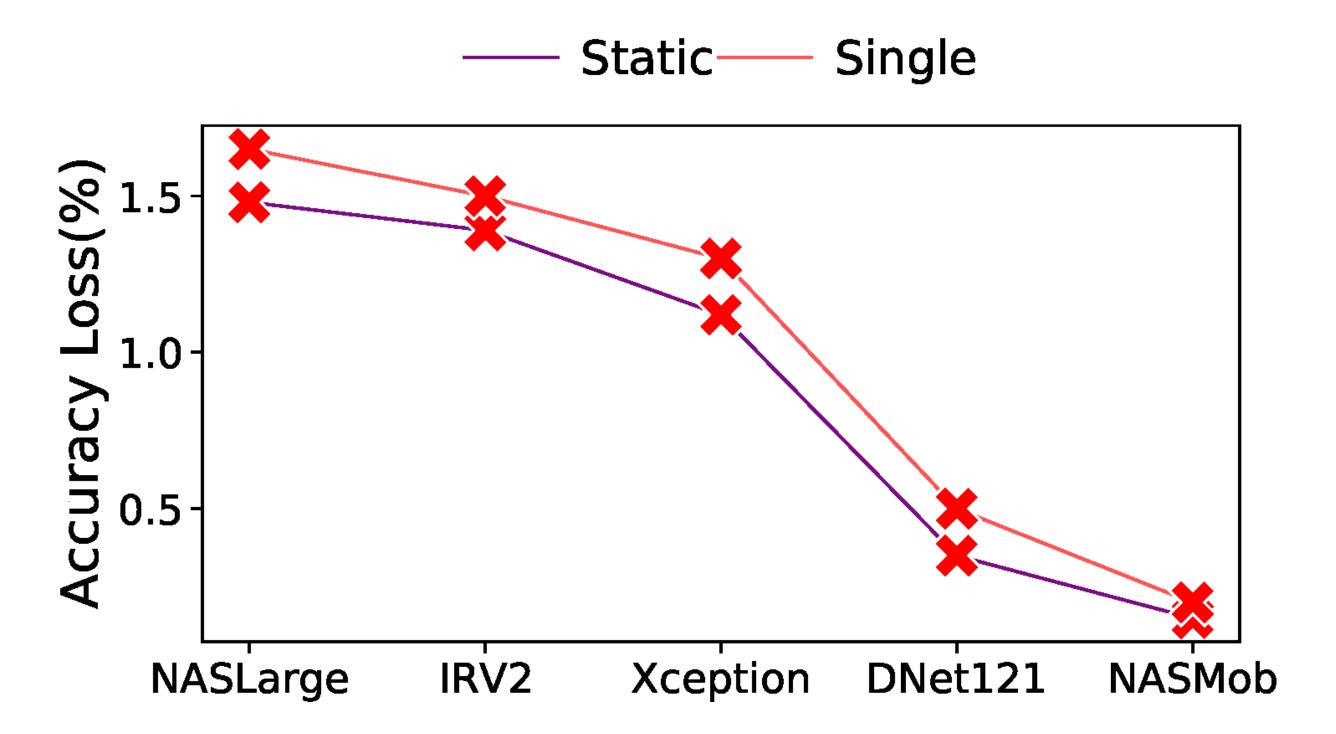


# STATIC ENSEMBLING



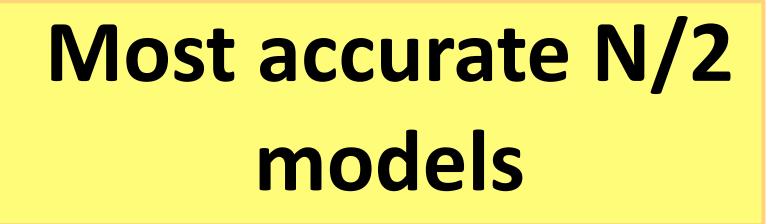


### **Compared to Full-Ensemble (N models)**





# STATIC ENSEMBLING







### **Compared to Full-Ensemble (N models)**

Static — Single

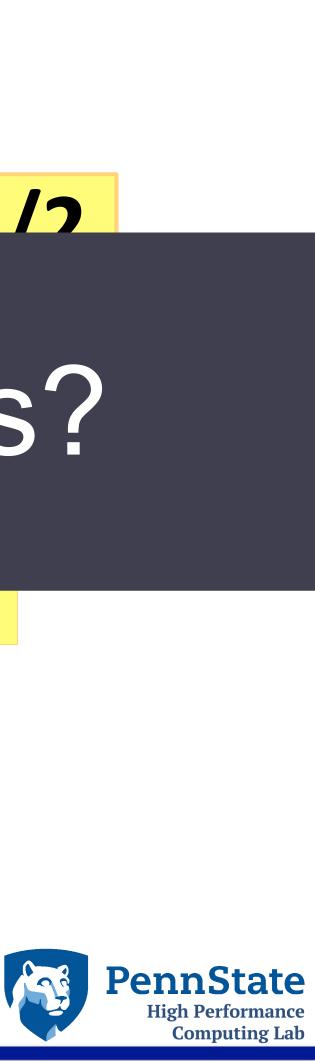
# How to dynamically select the models?





# STATIC ENSEMBLING

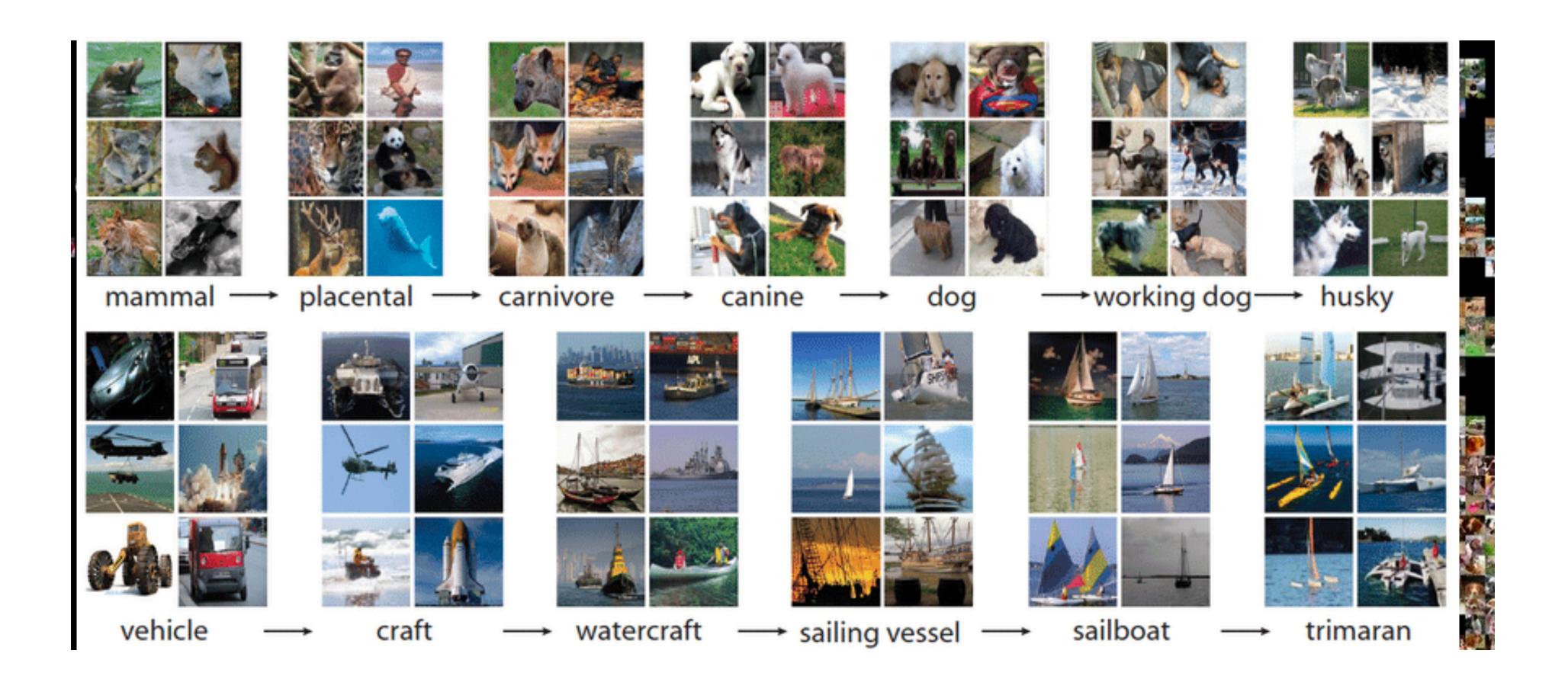
#### Most accurate N/2







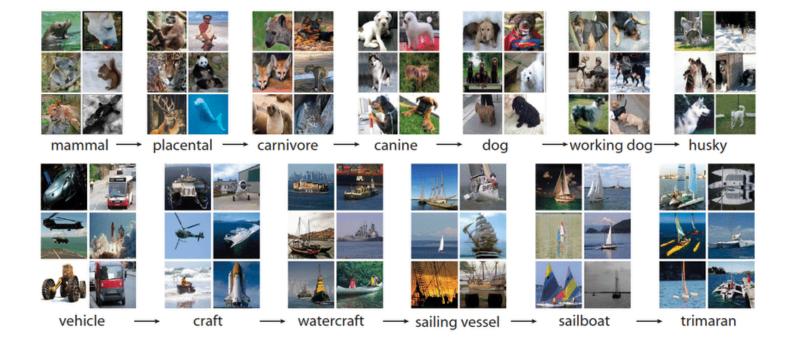






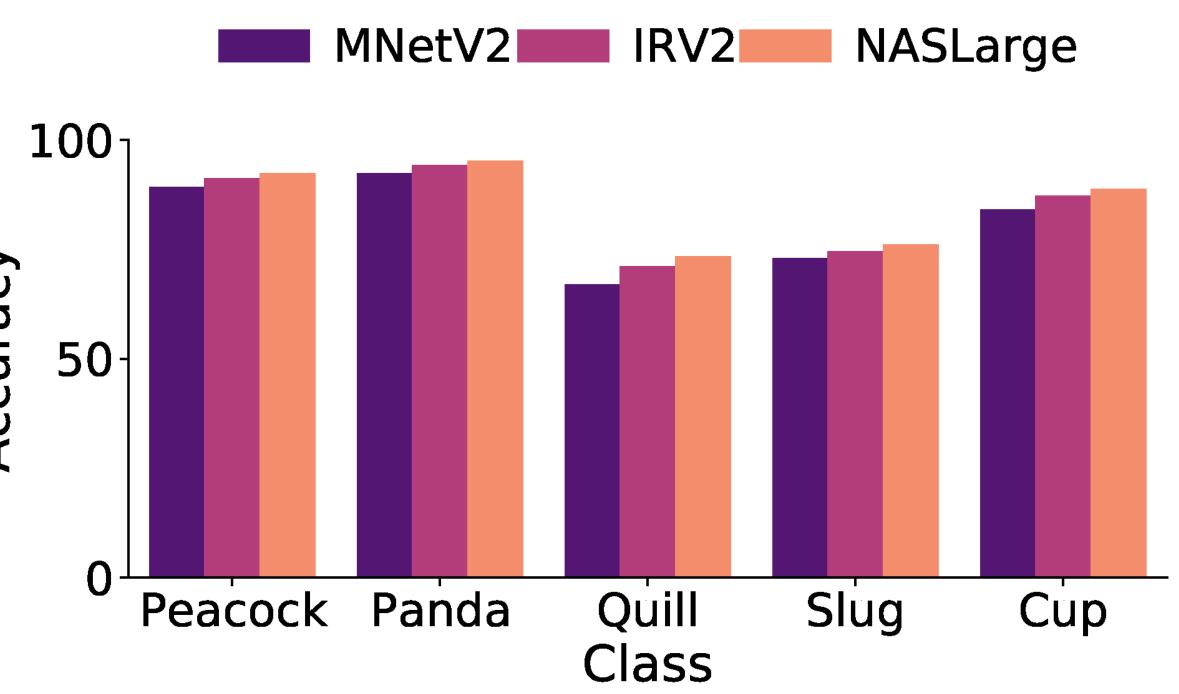






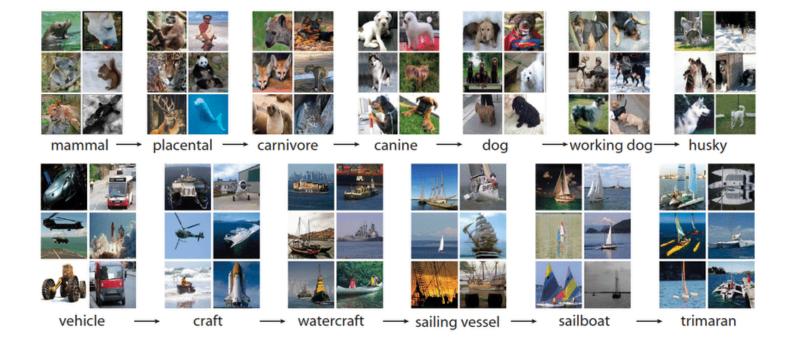


Accuracy



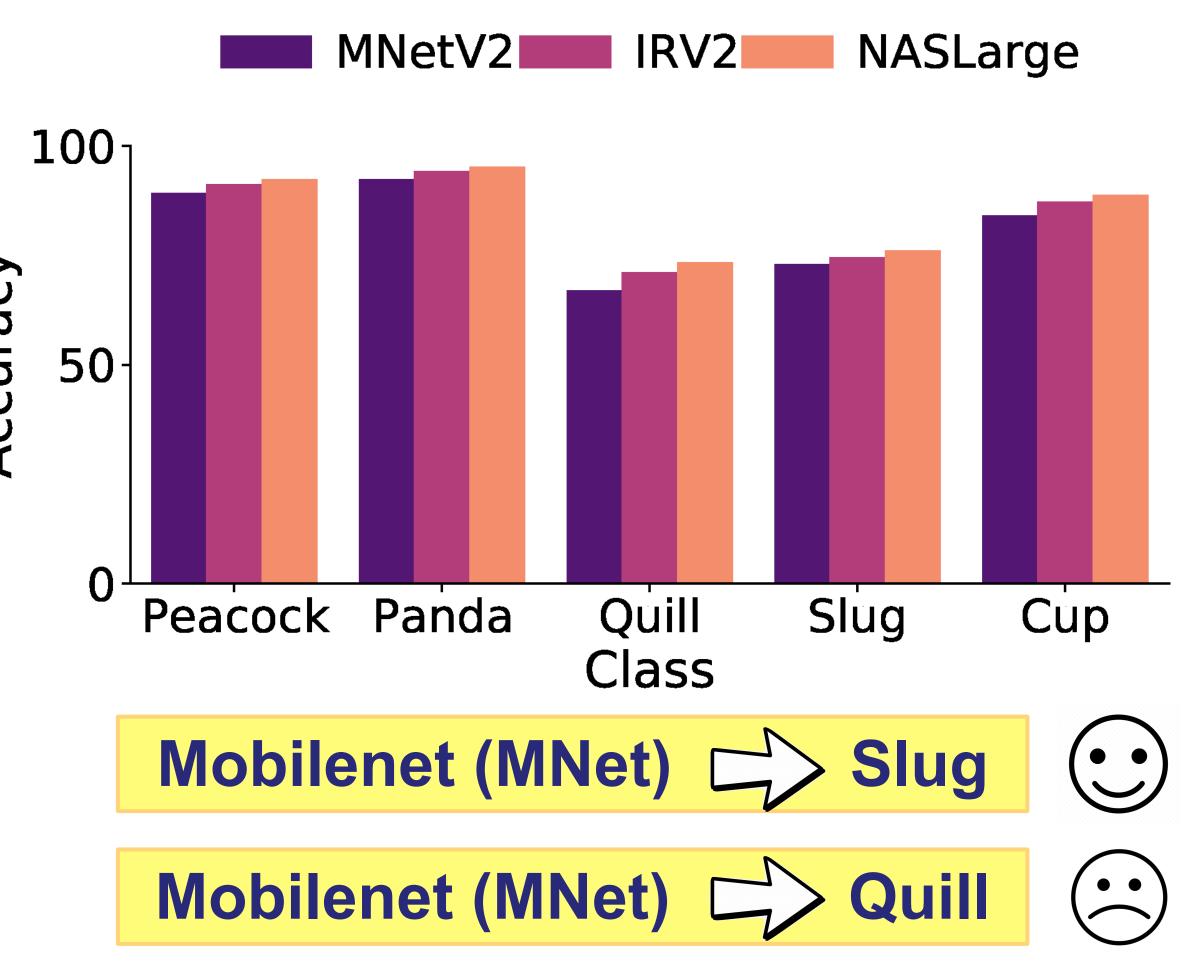








Accuracy



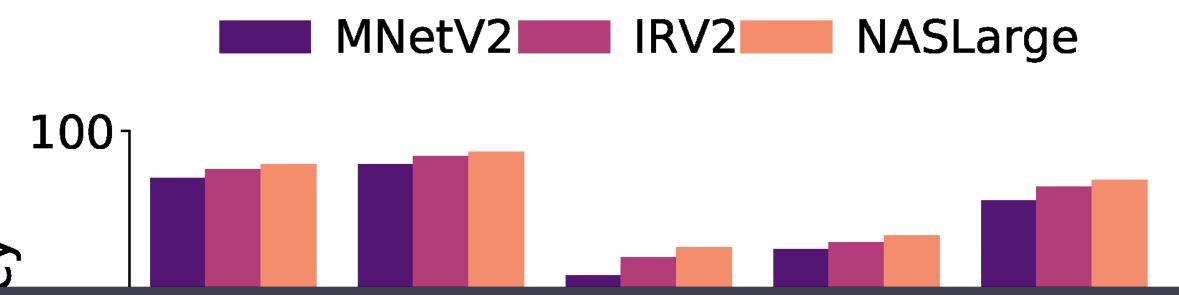


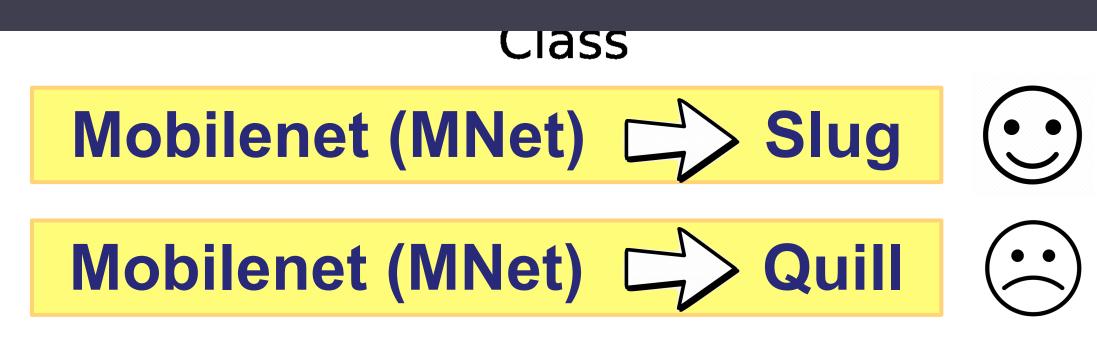


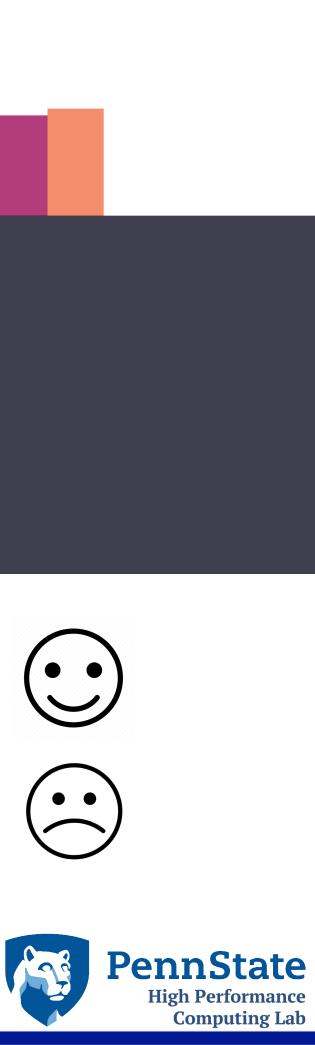
## Leverage Class-wise Accuracy



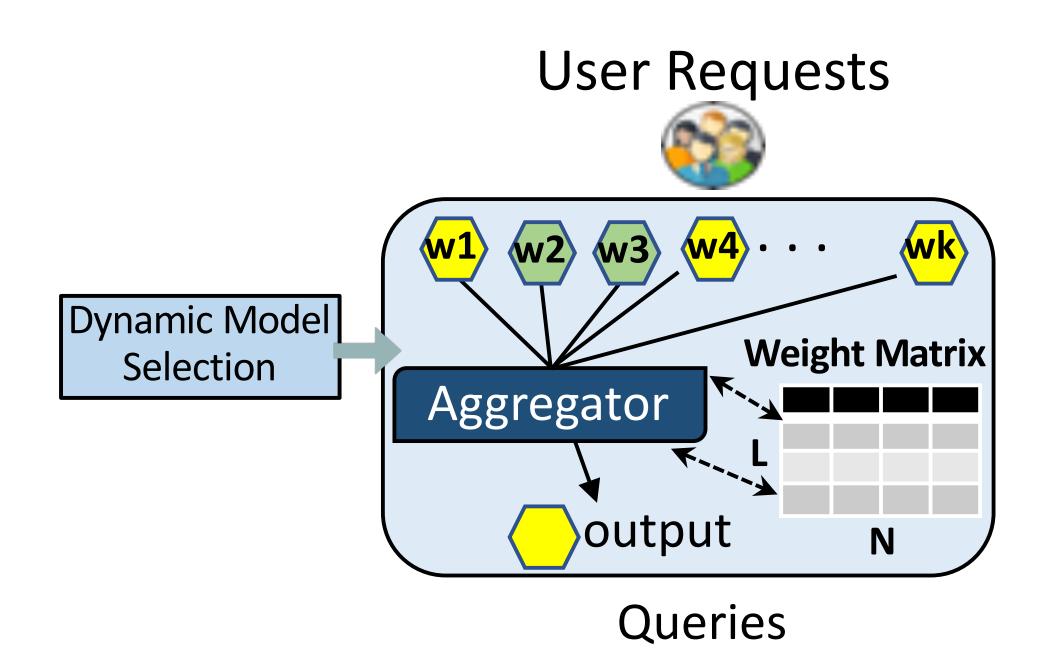








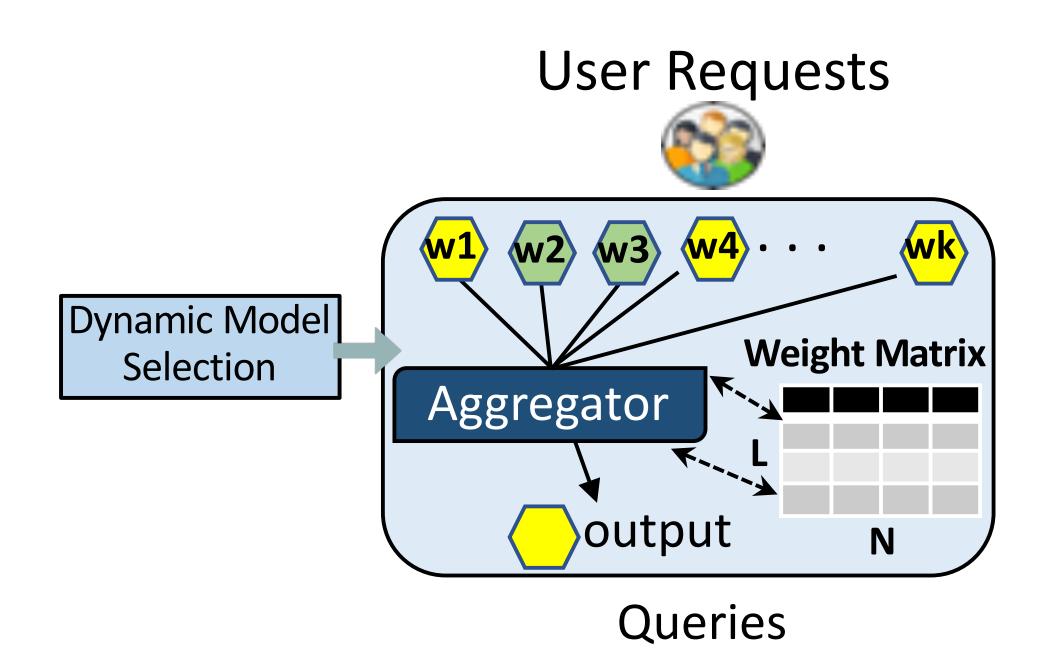
## COCKTAIL- MULTIDIMENSIONAL OPTIMIZATION FOR ENSEMBLE LEARNING IN CLOUD







### COCKTAIL- MULTIDIMENSIONAL OPTIMIZATION FOR ENSEMBLE LEARNING IN CLOUD





#### **Class-wise dictionary**

#### **Weighted Selection**



# **OBJECTIVE FUNCTION**

- Three optimization points: cost, latency and accuracy
- Metrics  $\mu_1 = \frac{Acc}{Lat}$ ;  $\mu_2 = k \sum_{i=1}^{n} \frac{inst\_cost}{p_{m_i}}$ 
  - Where we use n models (model  $m_i$ , i = 1 to n) to ensemble
  - Each model  $m_i$  has a packing factor of  $p_{m_i}$ . k is a constant which is dependent on the resource and the instance type —
- Our objective:

Obj1: max $\mu_1$ :  $\begin{cases} Acc \ge Acc_{SLO} \pm Acc_{margin} \\ Lat \le Lat_{SLO} \pm Lat_{margin} \end{cases}$ 

Obj2: min  $\mu_2: Acc \geq Acc_{SLO} \pm Acc_{margin}$  $Cost \leq Cost_{Baseline}$ 





## **OBJECTIVE FUNCTIONS**



Can we select the models apriori?



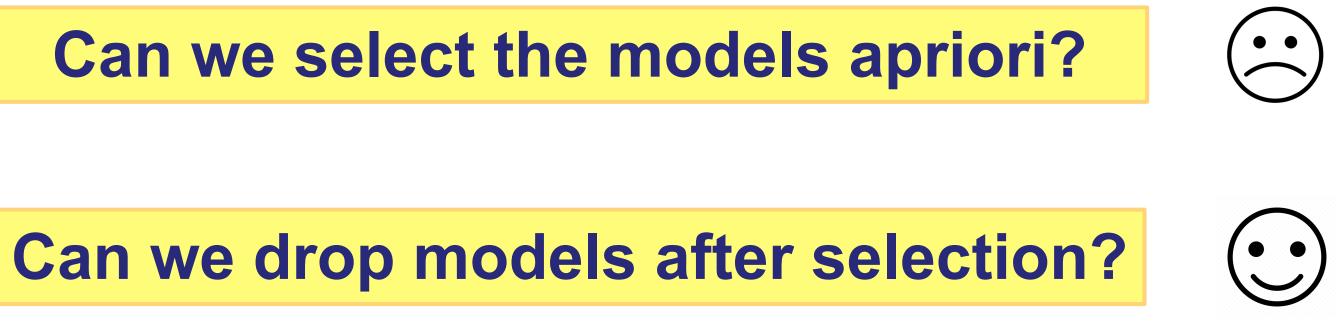


# **OBJECTIVE FUNCTIONS**

Ensuring  $Acc \geq Acc_{SLO} \pm Acc_{margin}$ - Say we have '*n*' models with minimum accuracy of '*a*' 

- Prob correct = 
$$\binom{n}{\lfloor \frac{n}{2}+1 \rfloor + i} a^{\lfloor \frac{n}{2}+1}$$

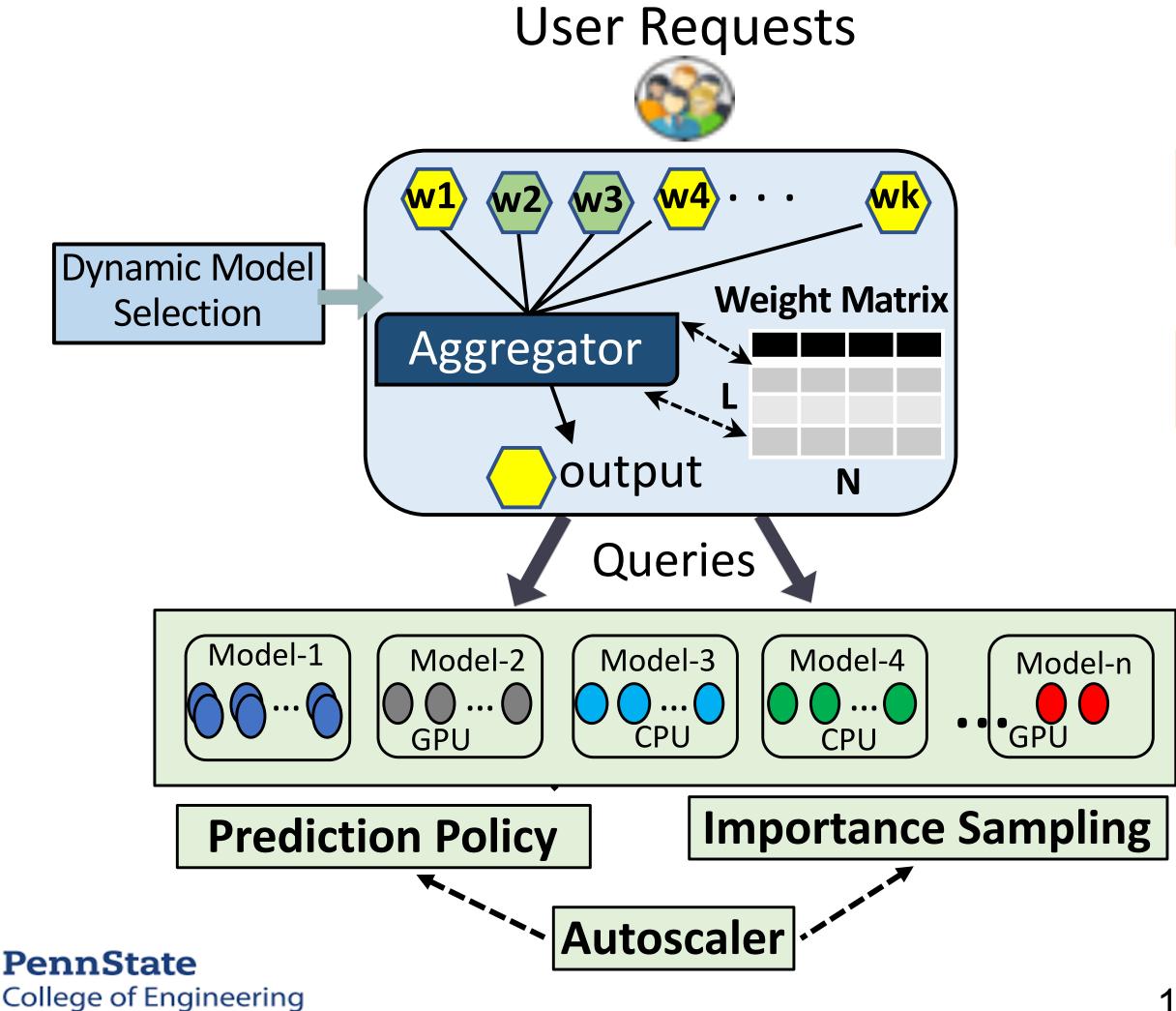




- We use majority voting ensemble : we need at least  $\frac{n}{2}$  + 1 give correct results.  $1^{1+i}(1-a)^{n-(\lfloor \frac{n}{2}+1 \rfloor+i)}$ ; for i = 0 to  $\lceil n/2 + 1 \rceil$ 



## COCKTAIL- MULTIDIMENSIONAL OPTIMIZATION FOR ENSEMBLE LEARNING IN CLOUD





#### **Weighted Selection**

**Dedicated Pools** 

**Per model Scaling** 

#### Fault tolerant



## EVALUATION AND SETUP



#### Workloads

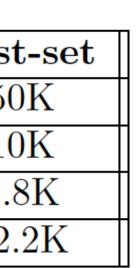
2.0

| Dataset         | Application | Classes | Train-set        | Tes |
|-----------------|-------------|---------|------------------|-----|
| ImageNet [56]   | Image       | 1000    | $1.2\mathrm{M}$  | 50  |
| CIFAR-100 [116] | Image       | 100     | $50\mathrm{K}$   | 1(  |
| SST-2 [117]     | Text        | 2       | 9.6K             | 1.  |
| SemEval [118]   | Text        | 3       | $50.3\mathrm{K}$ | 12  |





- InFaaS: Single Models
- **Clipper:** Static Ensemble
- **Clipper-X**: Dynamic ensemble



### **Experiment Setup**

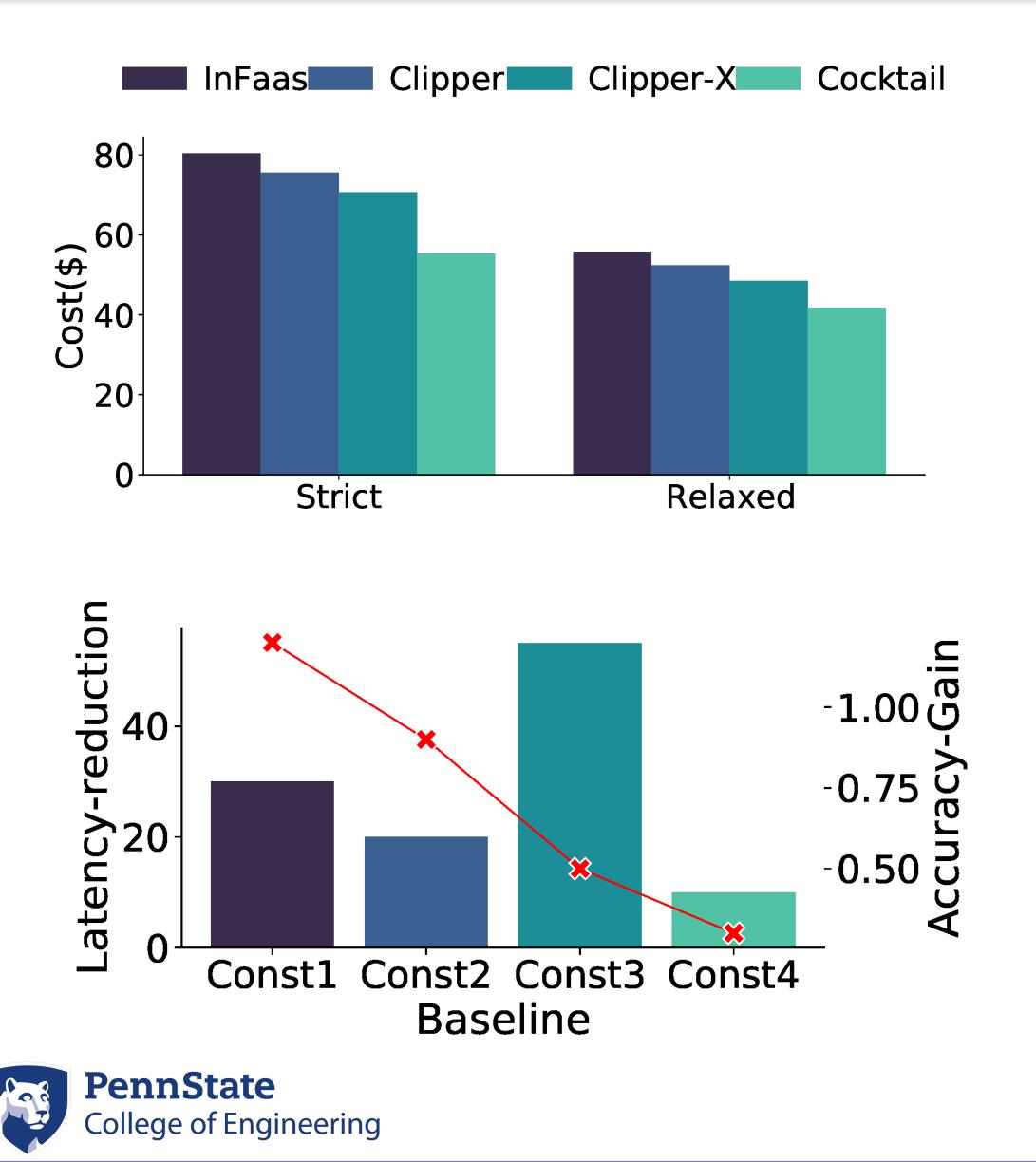


- 40 EC2 CPU/GPU VMs
- Wiki Twitter Traces







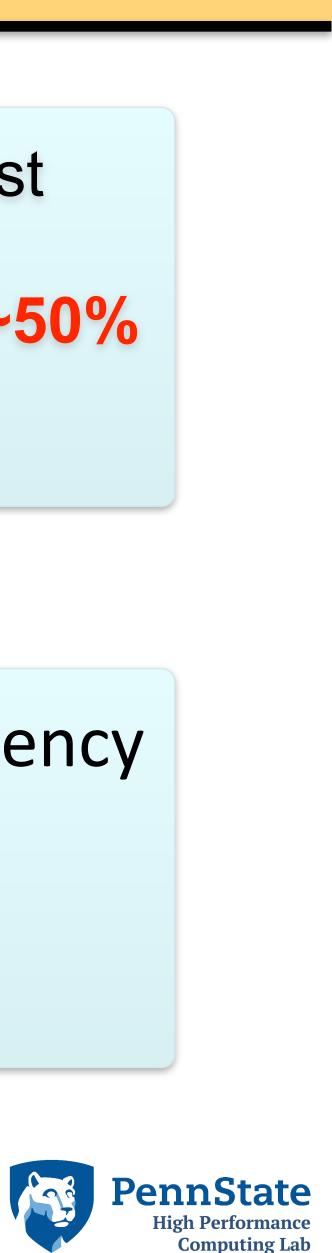


#### ☑ Cocktail incurs ~32% lower cost

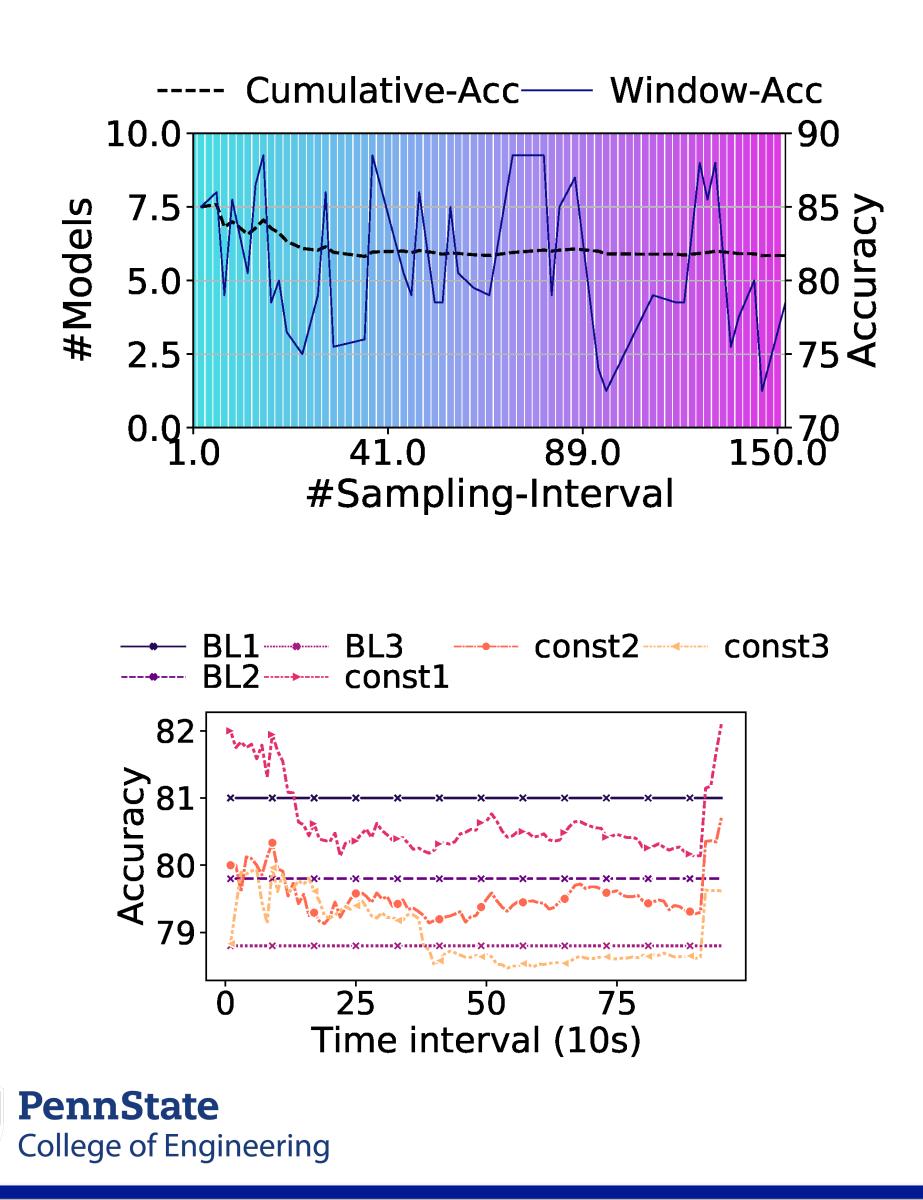
#### ☑ Cocktail reduces #models by ~50% on average

#### Cocktail yields ~2x lower latency

☑ Cocktail gains upto ~1.25% more accuracy







#### Cocktail quickly adjusts #Models

#### Cocktail on average uses 5 models

#### Cocktail incurs modest accuracy loss upto **0.7%**

Cocktail avoid inference failures while compromising accuracy.



**Cocktail leverages ensembling to achieve higher accuracy at lower latency** 

**Cocktail dynamically adjusts the #models in the ensemble** without compromising accuracy.

**Cocktail leverages transient instances to reduce the** deployment cost.









Code: <u>https://github.com/jashwantraj92/cocktail.git</u> Contact: <u>jashwant.raj92@gmail.com</u>, <u>cyanmishra92@gmail.com</u>



# Thank You

