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activity is based on these 
accurate suggestions. 

Accuracy

How to improve accuracy with low  
latency and low cost?
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PRIOR WORK IN MODEL SERVING

Crankshaw et al  CIDR’15, NSDI’17, SoCC’20 
Yadawkar et al ATC’21 

– InFaas uses different resource types to ensure low latency at low cost. 
–  Clipper achieves higher accuracy while compromising latency.

How to do ensembling?
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What about Model Selection?
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Most accurate model  
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How to ensemble?

MODEL SPACE EXPLORATION

IEEE Access’18 Benchmark Analysis of Representative Deep Neural Network Architectures
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FULL ENSEMBLING COST

Ensembling is up-to 2x 
expensive.

Spot instances can reduce 
cost by 2x.

Transient instances- 70-80% cheaper. 
Can be revoked with short notice.
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WHAT CAN WE DO?

✦ Do we need so many models? 
✦ How to autoscale resources for each 

model? 
✦ How to handle instance failures?

9
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Accuracy

Compared to Full-Ensemble (N models)

STATIC ENSEMBLING

Most accurate N/2 
models

How to dynamically select the models?



DYNAMIC MODEL SELECTION

11



DYNAMIC MODEL SELECTION

11



DYNAMIC MODEL SELECTION

11



DYNAMIC MODEL SELECTION

11

Mobilenet (MNet)          Quill 

Mobilenet (MNet)          Slug 



DYNAMIC MODEL SELECTION

11

Leverage Class-wise Accuracy

Mobilenet (MNet)          Quill 

Mobilenet (MNet)          Slug 
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• Three optimization points: cost, latency and accuracy

• Metrics !" = 	
%&&
'()

; 	!+ = ,	 ∑ ./0)_&20)
345

/
.6"

– Where we use n models (model 7., 9 = 1	;<	=) to ensemble
– Each model 7.	has a packing factor of >?5. k is a constant which is dependent on the 

resource and the instance type

• Our objective:
Obj1:

max !"	 : D
EFF	 ≥ EFFH'I ±	EFF?(KL./
MN;	 ≤ MN;H'I ±	MN;?(KL./

Obj2:
min

V20)	W	V20)XYZ[\5][	
!+ ∶ EFF	 ≥ EFFH'I ±	EFF?(KL./



OBJECTIVE FUNCTIONS

14

Can we select the models apriori?
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• Both objective function codependent, so we solve for cost first by 
ensuring that the constraint !""	 ≥ !""%&' ±	!"")*+,-. is always 
satisfied through ensemble. 

• Ensuring  !""	 ≥ !""%&' ±	!"")*+,-.
– Say we have ‘n’ models with minimum accuracy of ‘a’

– We use majority voting ensemble : we need at least ./ + 1 give correct results.

– Prob correct =  .
ë2345û4-

6ë
2
345û4-(1 − 6).	:(ë

2
345û4-)	; <=>	? = 0	B= én/2 + 1ù

Can we drop models after selection?

Can we select the models apriori?
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EVALUATION AND SETUP
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Experiment Setup 
• 40 EC2 CPU/GPU VMs  
• Wiki Twitter Traces

Baselines 

Workloads
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Cocktail incurs ~32% lower cost 

Cocktail reduces #models by ~50% 
on average

Cocktail yields ~2x lower latency 

Cocktail gains upto ~1.25% 
more accuracy
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Cocktail quickly adjusts #Models 

Cocktail on average uses 5 models

Cocktail incurs modest accuracy loss 
upto 0.7% 

Cocktail avoid inference failures while 
compromising accuracy.



SUMMARY
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Cocktail leverages transient instances to reduce the 
deployment cost.

Cocktail leverages ensembling to achieve higher accuracy at 
lower latency

Cocktail dynamically adjusts the #models in the ensemble 
without compromising accuracy.



Thank You

Code: https://github.com/jashwantraj92/cocktail.git 
Contact: jashwant.raj92@gmail.com, cyanmishra92@gmail.com

https://github.com/jashwantraj92/cocktail.git
mailto:jashwant.raj92@gmail.com
mailto:cyanmishra92@gmail.com



