
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

NetVRM: Virtual Register Memory
for Programmable Networks

Hang Zhu, Johns Hopkins University; Tao Wang, New York University;
Yi Hong, Johns Hopkins University; Dan R. K. Ports, Microsoft Research;

Anirudh Sivaraman, New York University; Xin Jin, Peking University
https://www.usenix.org/conference/nsdi22/presentation/zhu

NetVRM: Virtual Register Memory for Programmable Networks

Hang Zhu

Johns Hopkins University

Tao Wang

New York University

Yi Hong

Johns Hopkins University

Dan R. K. Ports

Microsoft Research

Anirudh Sivaraman

New York University

Xin Jin

Peking University

Abstract

Programmable networks are enabling a new class of appli-

cations that leverage the line-rate processing capability and

on-chip register memory of the switch data plane. Yet the

status quo is focused on developing approaches that share the

register memory statically. We present NetVRM, a network

management system that supports dynamic register memory

sharing between multiple concurrent applications on a pro-

grammable network and is readily deployable on commodity

programmable switches. NetVRM provides a virtual register

memory abstraction that enables applications to share the

register memory in the data plane, and abstracts away the

underlying details. In principle, NetVRM supports any mem-

ory allocation algorithm given the virtual register memory

abstraction. It also provides a default memory allocation

algorithm that exploits the observation that applications have

diminishing returns on additional memory. NetVRM provides

an extension of P4, P4VRM, for developing applications with

virtual register memory, and a compiler to generate data plane

programs and control plane APIs. Testbed experiments show

that NetVRM generalizes to a diverse variety of applications,

and that its utility-based dynamic allocation policy outper-

forms static resource allocation. Specifically, it improves the

mean satisfaction ratio (i.e., the fraction of a network appli-

cation’s lifetime that it meets its utility target) by 1.6–2.2×
under a range of workloads.

1 Introduction

Programmable networks are a new paradigm that changes

how we design, build and manage computer networks. Com-

pared to traditional fixed-function switches, programmable

switches allow developers to flexibly change how packets are

processed in the switch data plane. The programming model

of programmable switches are based on a multi-stage packet

processing pipeline [8, 9].

Programmable switches provide different types of stateful

objects that preserve states between packets, such as tables,

counters, meters and registers. Among them, registers allow

packets to read and write various states at line rate, which

then affects how the following packets are processed. Such

data-plane-accessible register memory is one of the defining

features of programmable switches, and enables a new class

of reg-stateful applications which utilize the on-chip register

memory to realize various functionalities. These reg-stateful

applications include not only the innovations in traditional

network functions like congestion control [45], load balanc-

ing [25, 35] and network telemetry [1, 18], but also novel use

cases beyond traditional networking, such as caching [23, 32],

consensus [13, 14, 22] and machine learning [42, 43].

Given the rise of reg-stateful applications, an important

open problem is how to support multiple concurent reg-

stateful applications running efficiently on a programmable

network [51]. The utility of reg-stateful applications is usu-

ally decided by the amount of allocated register memory and

the real-time network traffic [18, 23, 34, 47, 54, 58]. Thus, it

is essential to dynamically allocate the limited register mem-

ory between multiple applictions to optimize the multiplexing

benefits. Yet existing approaches of running multiple concur-

rent applications on programmable networks allocate register

memory statically [19, 44, 49, 56, 57]. Changing the amount

of register memory for one application would require recom-

piling and reloading the switch program, which would disrupt

the operation of the switch.

In this paper, we propose NetVRM, a network manage-

ment system that supports dynamic register memory sharing

between multiple concurrent applications on a programmable

network. NetVRM advances the status quo with three major

features: The first one is a novel virtual register memory ab-

straction, which allows the register memory in the switch data

plane to be dynamically allocated between multiple concur-

rent applications at runtime, without recompiling and reload-

ing the data plane program. The second one is a dynamic

memory allocation algorithm, which efficiently arbitrates the

memory usage between concurrent applications based on the

real-time utility measurements. The third one is a language

extension and a compiler to generate data plane programs

with the virtual register memory abstraction and efficient C++

control plane APIs for high-speed virtual register memory

configuration.

The virtualization of register memory allows its dynamic

allocation. Our approach is inspired by traditional virtual

memory designs in operating systems, but programmable

switches introduce two new challenges. First, register mem-

ory is distributed over multiple pipeline stages, and each

register can be accessed only from one stage. Second, switch

applications can access register memory from both the data

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 155

plane and control plane. NetVRM’s memory system design

is tailored to these characteristics. It places a page table at

the front of the virtual register memory’s processing pipeline,

using it for memory translation in the data plane. The page

table indexes the register memory regions allocated to each

application in every stage. The switch control plane manages

memory allocation. NetVRM also mediates application ac-

cesses to register memory from the control plane to ensure

addresses are correctly translated.

NetVRM’s dynamic memory allocation policy exploits

the fundamental tradeoff between memory consumption and

application utility. In particular, it leverages diminishing re-

turns: the observation that, for most reg-stateful applications,

the benefit of additional memory decreases with the amount

of allocated memory [18, 23, 34, 47, 58]. For example, af-

ter a certain point, NetCache [23] cannot further improve

the throughput significantly. More importantly, the memory-

utility relationship changes both in the temporal and spatial

dimensions based on application characteristics and traffic

conditions. For example, the amount of register memory

needed by NetCache depends on the request pattern, which

can change over time and even vary across different switches.

We design an online algorithm that does global memory al-

location between applications in the network to maximize

multiplexing benefits.

To make it easy to develop applications with NetVRM, we

propose P4VRM, an extension to P4 [8]. P4VRM allows

developers to virtualize register memory with a few simple

modifications to existing P4 code: they mark register arrays to

be virtualized and add online utility measurement primitives

provided by P4VRM. The compiler takes multiple P4VRM

programs as input and outputs a single P4 program with the

virtual register memory abstraction and all the applications’

functionalities, and generates the control plane APIs for high-

speed virtual memory configuration.

In summary, we make the following contributions.

• We propose NetVRM, a network management system that

exposes a virtual register memory abstraction to enable

dynamic register memory sharing between multiple concur-

rent applications on a programmable network at runtime

without recompiling and reloading.

• We design a dynamic memory allocation algorithm to ef-

ficiently allocate register memory between applications to

maximize multiplexing benefits.

• We propose P4VRM, a data plane program extension, and

provide a compiler to easily equip the data plane programs

with virtual register memory and generate control plane

APIs for efficient virtual memory configurations.

• We implement a NetVRM prototype. Testbed experiments

on a variety of applications show that compared to static

memory allocation, NetVRM improves the mean satisfac-

tion ratio (i.e., the fraction of a network application’s life-

time that it meets its utility target) by 1.6–2.2× under a

range of workloads.

2 Motivation and Related Work

2.1 The Case of Dynamic Register Memory Allocation

Concurrent reg-stateful network applications. There

are two broad types of objects provided by commodity

programmable switches on the data plane—stateless ob-

jects, such as metadata, packet headers, and stateful ob-

jects, such as match-action tables, counters, meters, registers.

Among them, registers, as one of the defining features of

new-generation programmable switches, provide data-plane-

accessible register memory for packets to read and write vari-

ous states at line rate and enable much of the latest exciting

research [14, 22, 25, 35, 42, 43, 45]. Register memory is

implemented with standard SRAM blocks and can be read

and written by both the control plane and data plane. Stateful

Arithmetic and Logic Unit (ALU) performs register memory

access and modification by executing a short program that

involves register data, metadata and constant. The register

memory is usually organized as register arrays. Each register

array consists of several register slots with the same width

and can be addressed by index (direct mapping) and hash

(hash mapping). We refer to the network applications that use

the register memory as reg-stateful applications.

Besides the rise and evolution of reg-stateful applications,

modern cloud service providers usually serve multiple ten-

ants concurrently [6, 30]. They allow tenants to run differ-

ent network applications dynamically. For example, Azure

and AWS provide a variety of network applications [5, 7]

to their tenants, such as network address translation (NAT),

load balancer, and network monitoring. We anticipate that the

reg-stateful applications will be provided to tenants as pro-

grammable switches are being integrated in cloud networks,

including both the datacenter networks and the wide area

networks that connect the datacenter networks.

Necessity and potential benefits of network-wide dynamic

allocation. The register memory on programmable switches

is fundamentally limited by the hardware. For example, the

maximal size of register memory on each stage is only a

few Mb on the Intel Tofino switch [50]. Besides the limited

register memory, there is a fundamental trade-off between

memory consumption and application utility (e.g., its per-

formance or accuracy) in many reg-stateful network appli-

cations [18, 23, 34, 47, 58]. Although some applications

have a fixed memory requirement, most can operate with

different amounts of available memory. Notably, our key

observation is that applications generally exhibit diminish-

ing returns [18, 23, 34, 47, 58]. The utility improvement

decreases with more memory, and for many applications, ad-

ditional memory has no utility after a point. We demonstrate

the diminishing returns for four applications in Appendix A,

including heavy hitter detection (HH) [54], newly opened

TCP connection detection (NO) [55], superspreader detection

(SS) [54] and NetCache [23]. The utility is measured using

memory hit ratio (§5.1).

156 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In all cases, the amount of memory affects the applica-

tion utility, and such effects depend heavily on the work-

load. For example, NetCache [23] needs different amount of

register memory with different skewed workload to deliver

the same utility (Appendix A). Without dynamic allocation,

this presents a formidable deployment challenge because the

workload can vary in both temporal and spatial dimensions:

different storage clusters see radically different workloads,

and even a single cluster’s request pattern changes over time

(e.g., on a diurnal cycle) [4].

The diminishing returns and the temporally and spatially

dynamic workload together also provide the opportunity to

maximize resource multiplexing benefits by efficiently arbi-

trating the memory usage between concurrent applications.

2.2 Target and Scope of NetVRM

Target applications. The reg-stateful applications that can

benefit from NetVRM must have the following properties.

• They are elastic (§5). An inelastic application (e.g.,

NetChain [22]) that has fixed virtual memory requirement

can be supported by NetVRM, but cannot benefit from

dynamic memory allocation.

• The data plane programs have to meet the constraints in

P4VRM (§6), such as stateful ALUs since each operation

of one register array must be associated with a specific

stateful ALU.

• The application utility should be obtained instanta-

neously (§5.1). It can be computed on the switch (e.g.,

hit ratio as the default utility) or reported by applications.

We remark that there are a wide range of applications with

the above properties, such as measurement applications [18,

39, 47], applications with approximate data structures [20, 34,

54], and caching applications [23, 33].

Register memory as the scope. There are a variety of re-

source types on a programmable switch, such as register

memory, SRAM used for tables, TCAM and action units [51].

NetVRM focuses on dynamic allocation for register memory

for three reasons. First, we observe that many reg-stateful

applications are bottlenecked by register memory. Second, dy-

namic allocation of other resource types (e.g., match-action ta-

bles, TCAM) has been well-studied in the context of Software-

Defined Networking (SDN) with traditional fixed-function

switches [17, 21, 36, 46]. Third, current switch hardware

cannot dynamically reallocate other resource types without

rebooting the entire switch [51]. NetVRM is readily deploy-

able on existing programmable switches.

Switch memory available that can be used as virtual reg-

ister memory could be limited because a certain amount of

memory has to be set aside for basic networking functionality,

such as L3 routing, and inelastic applications (see §5). The

evaluation in §8 shows that NetVRM outperforms the alterna-

tives, regardless of how much physical memory is available

for virtualization and dynamic allocation. Thus, NetVRM

continues to be effective even as the memory for basic net-

working functionality and inelastic applications grows in size,

leaving behind less memory for dynamic allocation.

2.3 Existing Solutions and Limitations

Recently, several existing works have explored how to support

multiple applications on a programmable switch [19, 44, 48,

49, 56, 57]. At a high level, these solutions fail to meet the

requirement of dynamic register memory allocation because

of at least one of three limitations as follows.

• Static binding of register memory. Some of the exist-

ing work combine or merge multiple applications into one

monolithic data plane program [19, 48, 56, 57] in com-

pilation time. And the binding between register memory

allocation and applications is static. Changing the alloca-

tion requires the data plane program to be recompiled and

reloaded, during which the switch has to be stopped and

restarted. This interrupts the operation of all applications

on the switch, even the basic ones such as L3 routing.

• Lack of a real switch environment. Most of the exist-

ing solutions ignore the practical hardware constraints and

are not applicable on a real ASIC-based switch (e.g., Intel

Tofino [50]). For example, P4VBox [44] provides par-

allel execution of virtual switch instances on NetFPGA.

MTPSA [49] realizes a multi-tenant portable switch archi-

tecture on NetFPGA and BMv2, a reference P4 software

switch [3]. HyPer4 [19] and HyperV [56] realize the virtu-

alization on software switches (e.g., BMv2, DPDK).

• Not doing network-wide dynamic allocation. Network

resource allocation has been well studied for SDN with

traditional fixed-function switches [16, 17, 21, 36, 37, 46].

For example, DREAM [36] does dynamic allocation for

TCAM between measurement applications. However, none

of the existing work has disclosed the potential benefit of a

network-wide dynamic allocation for the register memory

on programmable networks.

There are other related works that have explored how to man-

age and improve network applications on programmable net-

works. TEA [27] provides external DRAM for storing table

entries, not register memory. Dejavu [52] utilizes the multiple

pipelines and resubmission to fit a service chaining in one

single switch. RedPlane [28] enables fault-tolerant stateful

applications by designing a practical, provably correct replica-

tion protocol. NetVRM targets register memory and provides

a new system for sharing it between multiple concurrent reg-

stateful applications dynamically.

3 NetVRM Overview

NetVRM is a network management system that supports dy-

namic register memory sharing between multiple concurrent

applications on a programmable network. Figure 1 shows an

overview of NetVRM. NetVRM includes three critical com-

ponents: virtual register memory, dynamic memory allocation

and the P4VRM compiler. It abstracts away the complexities

of allocating physical memory in each application, increases

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 157

xx.p4vrm

Run-time API

App 1

Virtual Register Memory

App 3

…

zoom in

Dynamic Memory

Allocation

NetVRM

App 2

Network

Data

Plane

Control

Plane

P4VRM

Compiler

xx.p4vrm

Figure 1: NetVRM overview.

memory utilization via statistical multiplexing, and provides

P4VRM as an extension of P4 for developing applications

with such virtual register memory.

Virtual register memory (§4). NetVRM exposes a virtual

register memory abstraction to applications. The virtual regis-

ter memory component in every switch hides the underlying

details of the physical register memory that may span multiple

stages and be shared with multiple applications. We design

a custom data plane layout and an address translation mech-

anism to realize the virtual memory. The data plane layout

composes the register arrays in multiple stages to one large

register array, and allocates the large array to applications.

Memory translation contains two page tables. One page table

is in the data plane that translates the memory addresses com-

puted from packet headers for memory access during packet

processing, and the other is in the control plane for NetVRM

to query and update the virtual memory of applications. The

two tables are synchronized and managed by NetVRM.

Dynamic memory allocation (§5). In principle, NetVRM

can support any memory allocation algorithm built on top

of the virtual register memory. NetVRM also provides a

default network-wide memory allocation algorithm for appli-

cations without knowing the utility functions. The algorithm

exploits the diminishing returns between memory usage and

application utility to maximize resource multiplexing benefits.

We leverage the observation that many applications use the

switch as a performance accelerator and deal with insufficient

switch memory by having some kind of fallback path, either

through the switch control plane or the servers [23, 29, 47].

As such, we cast the resource allocation problem as satis-

fying as many application’s requirements as possible with

respect to available memory size. This allows operators to

specify application-specific utility metric and target for each

application, avoiding the need to compare different utility

functions across applications. NetVRM also provides a de-

fault, application-agnostic metric—the memory hit ratio—for

applications that do not define their own.

Language extension and autogeneration (§6). NetVRM

provides P4VRM, an extension to P4 [8] for developers

to develop P4 programs with virtual register memory, and

a P4VRM compiler to compose and compile individual

P4VRM programs of different applications to one single P4

program with virtual register memory abstraction. The com-

piler also generates C++ APIs for efficient virtual register

memory configuration in the control plane.

App 1 App 2 App 3

Virtual Register Memory
Page
Table

App

Virtual

Array

NetVRM

Data

Plane

Match Action

app=1 offset=0,
size=16k

app=2 offset=16k,
size=16k

app=3 offset=32k,
size=32k

0

…

16k

…

32k

…

…

…

0

…

16k

…

32k

…

…

…

0

…

16k

…

32k

…

…

…

0

…

16k

…

32k

…

…

…

Control

Plane

Page Table Multi-stage Physical

Register Arrays

Counter
Record

total_cnt

hit_cnt

total_cnt

hit_cnt

total_cnt

hit_cnt

…

…

Counter

Record

Figure 2: Virtual register memory design.

4 Virtual Register Memory

The register memory in the switch data plane is abstracted as

register arrays for developers. The main problem of dynami-

cally allocating memory is the coordination between multiple

reg-stateful applications. Because register array definitions

are hardwired in P4 programs, the code of an application has

to be modified when other applications on the switch change,

even if the application itself stays the same. NetVRM exposes

a virtual register memory space to each application, which

eliminates the coordination between applications. Each ap-

plication is implemented with a virtual register array, without

explicitly binding the register array to specific stages. As

such, the application code does not need to be modified when

the memory allocation changes. NetVRM is designed to man-

age the register memory and does not scarifice the support of

recirculation.

Page table and counter record. A key challenge for memory

virtualization on a switch, as opposed to a traditional CPU, is

that the register memory can be accessed from both the data

plane and the control plane (Figure 2). It is straightforward

to implement the page table in the control plane. NetVRM

simply does the translation in software. Specifically, it in-

tercepts application memory accesses, uses the page table to

perform the address translation, and then calls the memory ac-

cess APIs of the switch driver to update the register memory

configuration.

The page table in the data plane is more complicated, be-

cause it needs to be implemented using the programmable

processing elements in the data plane. Figure 2 shows the

design. The page table is implemented with a match-action

table, and is placed at the stage before the physical register

arrays to be virtualized. The match-action table matches on

the application ID and identifies the location and size of the

application’s memory region (offset and size). These

parameters are configured by the control plane at runtime as

memory is allocated. We remark that the page table does not

introduce register memory overhead in common cases (§7).

158 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The counter record maintains two counters for each appli-

cation, which only takes a small amount of memory. One is

total_cnt, which tracks the total number of packets for

an application. The other is hit_cnt, which tracks the num-

ber of packets that hit the switch register memory for each

application. These counters are polled and reset periodically

by the control plane to compute real-time memory hit ratios.

Memory layout. The memory layout partitions the physical

register arrays horizontally across the stages. A virtual reg-

ister array for an application is mapped to multiple blocks

with the same start index (offset in the page table) and

size (size in the page table) in each physical array. For

example, in Figure 2 application 1 has a virtual array with

64K slots, which is mapped to [0,16K) in each physical array,

and application 3 has a virtual array with 128K slots, which

is mapped to [32K,64K) in each physical array.

This horizontal memory layout has three principal bene-

fits. First, it decouples memory allocation from application

code, and eliminates their static binding. The size of a vir-

tual register array and its mapping to the physical arrays

are represented by offset and size in action parameters,

which can be dynamically changed at runtime, without re-

compiling and reloading the code in the data plane. Second,

it enables fine-grained memory allocation. Because there

are only a few stages (e.g., 10-20 stages) on commodity pro-

grammable switches [11, 50], our design can allocate the

memory at row granularity (e.g., 8-slot granularity), which is

fine-grained enough, compared with the total available slots

on the switch (e.g., 512K). Third, it represents the memory

layout using a small fixed-sized representation: only two

variables (offset and size) per application. Although a

more sophisticated memory layout might be able to achieve

better space efficiency, more complex representations such as

variable-length block lists would be challenging to implement

efficiently in the data plane.

Address translation. Let the size of a virtual register array

for an application be N. A virtual address VA ∈ [0,N) is the

index of the register slot in the virtual array. The physical

address PA is computed by PA= (VA/size, VA%size+offset)
after the page table, where VA/size denotes the physical array

index and VA%size+offset denotes the physical slot index in

the corresponding stage. Division and modulo on arbitrary

integers may not be supported in all switches. In such cases,

we allocate virtual arrays with size to be a power of two, and

implement these two operations with bit operations.

The above translation is sufficient for applications that di-

rectly access memory by VA. Besides these direct accesses,

reg-stateful applications on programmable switches often

use a lookup table or a hash function to access a register

slot. Lookup tables use match-action tables to identify the

address corresponding to a key (e.g., to find the memory

location of an object in NetCache). We adapt the match-

action table to hold a virtual address, then apply the VA to

PA translation described above. Other applications use a

hash function to map a subset of header fields to a register

slot (e.g., hashing the source IP in heavy hitter detection).

While in principle the same translation approach can be used,

hardware constraints on the Tofino platform mean that hash

functions need to be associated with a particular address

range, and adding a variable offset to the output requires

an additional stage. NetVRM uses a hash function h size,

selected during the page table lookup stage, which has out-

put in [0,size). Hash lookups first compute h size(pkt.hdr),
then, in a subsequent stage, translate that to the physical slot

location: PA = (h(pkt.hdr)%k, h size(pkt.hdr)+ o f f set),
where k is the number of physical arrays.

Some applications may need large virtual slots, each of

which may be larger than a physical slot. In such cases, we

combine multiple physical slots to implement a virtual slot.

5 Dynamic Memory Allocation

We classify reg-stateful applications on a programmable net-

work into elastic and inelastic applications based on whether

an application can work with a variable amount of reg-

ister memory. An inelastic application requires a fixed

amount of register memory; it cannot work with less (e.g.,

NetChain [22]). An elastic application does not have a fixed

register memory requirement. Our key observation is that

most elastic applications overcome insufficient register mem-

ory with a fallback mechanism to the network control plane

or the servers [23, 47]. The amount of memory typically af-

fects application-level performance metrics (e.g., the system

throughout in NetCache [23]). Although it may be possible to

transform inelastic applications to elastic ones [29], we leave

that to application developers. NetVRM supports both types,

while only elastic applications can benefit from NetVRM’s

dynamic memory allocation.

Each application is specified with four parameters: the ap-

plication type (e.g., HH); the subnet in which the application

will run (e.g., 10.0.0.0/8); the utility metric, which is either

the default metric (i.e., memory hit ratio) or an application-

specific one; and the utility target (e.g., 0.98 for memory hit

ratio). For an inelastic application, the amount of required

memory is specified instead of the utility metric and target.

NetVRM allocates the memory to it if the requirement can be

satisfied, and rejects the application otherwise.

Dynamic memory allocation is only performed for elastic

applications. NetVRM periodically polls the counters from

the data plane, obtains the utility of each application, and

dynamically allocates the register memory between the ap-

plications based on their utilities. There is a long line of

work related to network utility maximization [26, 38, 40].

NetVRM presents three particular challenges for network

utility maximization, including how to define the application

utility properly, how to approximate the utility functions, and

how to allocate the register memory in the network, which

will be demonstrated in detail as follows.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 159

(a) Estimate over_mem. (b) Estimate under_mem.

Memory

Utility

target

current

current

over_mem

actual

approximate

with cf=1

Memory

Utility

target

current

current

under_mem

actual

approximate

with cf=1

Figure 3: Utility function estimation.

5.1 Definition of Application Utility

Finding a proper definition of application utility is challeng-

ing, because different applications have their own application-

level objectives that cannot be directly compared with each

other (e.g., accuracy for a heavy-hitter detector or through-

put for NetCache). NetVRM allows applications to compute

their own utility metrics and report them to the allocator. Be-

cause not all the application-level metrics can be reported

online (e.g., accuracy for a heavy-hitter detector), NetVRM

also provides a default, generic utility definition. It is based

on the observation that for many elastic applications, a reg-

ister memory miss in packet processing usually affects the

application-level performance, e.g., extra latency to process a

packet with the fallback mechanism. Therefore, one effective

utility definition is the memory hit ratio, which is the ratio

of packets directly processed by the register memory in the

switch. Besides being application-agnostic, this utility can be

computed by tracking counters for memory hits in the data

plane by NetVRM itself (§4). Moreover, the memory hit ratio

is also a widely-used metric to evaluate the workload reduc-

tion for the fallback mechanism in many elastic applications

on programmable networks [18, 39, 47].

5.2 Problem Formulation

We denote the available virtual register memory size of c

switches in the network as M1,M2, ...,Mc, respectively. There

are l applications running in the network. Let i.target be the

utility target of application i, and i.utility(i.m1, ..., i.mc, i.T)
be the utility function of application i where i.m j is the mem-

ory usage of application i on switch j and i.T is the real-time

traffic of application i. The network resource allocation prob-

lem is formulated as follows.

max
l

∑
i=1

1(i.utility(i.m1, ..., i.mc, i.T)≥ i.target)

s.t.
l

∑
i=1

i.m j ≤M j,∀ j = 1, ...,c

The objective is to maximize the number of applications

of which the utility targets can be satisfied, and the constraint

is to ensure the sum of allocated memory on each switch

does not exceed its memory size. We remark that this is one

objective that is provided by default and has been used in sev-

(a) Wide area network. (b) Datacenter network.

Client
Rack

Client
Rack

Key-Value
Rack

O0

O1

D0

D1

S0

S1

S0 S1 S2

S3 S4

Figure 4: Examples for network-wide allocation.

eral network management scenarios [36, 37]. NetVRM also

supports other objectives and memory allocation algorithms.

Main challenge: unknown and dynamic utility functions.

The main challenge to solve the allocation problem is that the

utility functions of the applications are unknown and change

over time. It is true that some utility functions can be known

as a priori, e.g., the worst-case accuracy and the memory

requirement for sketch-based heavy hitter detection (SHH)

using count-min sketch [12] can be calculated mathemati-

cally [54]. But utility functions for many applications such

as HH, NO and SS (§2) are hard to know in advance. More

importantly, the solution needs to adapt to real-time traffic

and as the applications are started and stopped dynamically.

Solution: online utility curve estimation without appli-

cation knowledge. In order to adapt memory allocation

for the applications without knowing their utility function,

NetVRM leverages the observation that the utility func-

tion follows diminishing returns, i.e., that it is concave,

which holds for a wide range of reg-stateful network ap-

plications [18, 23, 34, 47, 58], and approximates the mem-

ory requirement for each application. Let i.util, i.target and

i.mem be the current utility, the utility target and the current

memory for application i, respectively. The utility function

is approximated by a polynomial function that intersects the

origin. For an application i above its utility target, we use

i.over mem← i.mem− (
i.target

i.util
)c f ∗ i.mem (1)

to estimate the amount of memory that can be moved from i

to other applications (i.over mem). Because of diminishing

returns, the utility function is concave and a linear function

(when c f = 1) may underestimate i.over mem (Figure 3(a)).

We use a compensation factor c f which is set to be larger than

1 to compensate this. For an application i below its utility

target, we use

i.under mem← (
i.target

i.util
)c f ∗ i.mem− i.mem (2)

to estimate the amount of memory to be added to i

(i.under mem). We use a c f larger than 1 for faster con-

vergence (Figure 3(b)).

5.3 Network-Wide Register Memory Allocation

Based on the approximation in §5.2, NetVRM uses an online

algorithm to move memory from over-provisioned applica-

tions (those above their utility targets) to under-provisioned

applications (those below their utility targets) to maximize

160 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Network-wide memory allocation

1: new plan← cur plan.copy()
2: for application i in applications do

3: if i.util ≥ i.target then

4: satis f ied list.append(i)
5: i.over mem← i.mem− (i.target/i.util)c f ∗ i.mem

6: distributed i.over mem to i.paths proportionally

7: else

8: unsatis f ied list.append(i)
9: i.under mem← (i.target/i.util)c f ∗ i.mem− i.mem

10: distributed i.under mem to i.paths inverse proportionally

11: sort satis f ied list by over mem in decreasing order

12: sort unsatis f ied list by i.under mem in increasing order

13: for application i in unsatis f ied list do

14: for path p in i.paths do

15: sort p.switches based on i’s existence and s.over mem

16: for switch s in p.switches do

17: allocate memory from satis f ied list to p.under mem

18: if all paths are satisfied then

19: update new plan

20: else

21: move memory back to satis f ied list

22: return new plan

the objective. The allocation are performed periodically to

handle real-time traffic dynamics and application changes.

Main challenge: multiple and overlapped paths of an ap-

plication. Besides the unknown and dynamic utility functions,

the network-wide allocation problem is further complicated

by the following two challenges. First, an application may

need to handle traffic between multiple origin-destination

(OD) pairs, and the traffic between each OD pair may use

multiple paths. For example, in a wide area network, the

operator may want to detect heavy hitters for flows between

multiple OD pairs, e.g., O0-D0 and O1-D1 in Figure 4(a).

In a datacenter network, the operator may want to provide

in-network caching for traffic from multiple client racks to

a key-value store rack, e.g., S0-S2 and S1-S2 in Figure 4(b).

Datacenter networks typically use multi-path routing, e.g.,

path S0-S3-S2 and path S0-S4-S2 for traffic between S0 and

S2. Second, different paths of an application may overlap,

and thus can share their allocated memory. For example, in

Figure 4(b), NetCache can be placed in S2 to save memory

instead of in both S3 and S4.

Solution: network-wide memory allocation. At a high level,

NetVRM performs network-wide memory allocation in two

steps. First, NetVRM uses the utility estimation mechanism

in §5.2 to estimate the required memory for each application,

and decomposes over mem or under mem of each applica-

tion to multiple paths. Second, it moves the memory from

over-provisioned applications to under-provisioned applica-

tions. The pseudocode is shown in Algorithm 1.

The first step is to compute and decompose over mem or

under mem of each application to multiple paths (line 2-10).

NetVRM measures the utility (i.e., the memory hit ratio by

default) and the traffic on each path. With the memory hit

ratio as the utility, the utility (memory) of application i is

the weighted average of its utilities (memories) by the traffic

p4vrm

compiler

.p4 with VRM

.cpp for

updates

developers

…

heavy_hitter

.p4vrm

netcache

.p4vrm

…

heavy_hitter

.p4

netcache

.p4

Figure 5: P4VRM compiler compiles P4VRM programs.

volume on its paths. We use the utility estimation mechanism

in §5.2 to estimate i.over mem and i.under mem. Then

i.over mem is distributed to each path in proportional to their

traffic (line 6) and i.under mem is distributed to each path in

inverse proportional to their traffic (line 10). We remark that

NetVRM also allows disproportional memory allocation.

The second step is to move memory from over-provisioned

applications to under-provisioned applications (line 11-21).

We use a heuristic that reduces the memory for applications

that are more over-provisioned first, and allocates the mem-

ory to the applications that are more likely to be satisfied first

(line 11-12). For each unsatisfied application, it tries to satisfy

the estimated memory requirement on each path (line 13-21).

Because each path contains several switches, the algorithm

needs to decide which switch to allocate memory from to sat-

isfy the application (line 15-17). Two factors are considered

in the decision, which are whether the application already has

memory allocated on a switch (i.e., i’s existence) and how

much extra memory a switch has (i.e., s.over mem). These

factors aim to avoid small amounts of memory scattering in

many switches. If the application’s requirement can be satis-

fied, the plan is updated (line 18-19). Otherwise, the memory

is moved back to the satisfied applications (line 20-21).

To accommodate path overlapping, two extensions are re-

quired to the algorithm. First, in the utility estimation, the

memory on overlapping switches is counted once for each

overlapping path. Second, in memory allocation, the memory

allocated to an application on overlapping switches is also

counted once for each overlapping path.

Admission control, drop and priority. Admission control

is critical when the total memory requirement exceeds the

register memory size in the network. NetVRM admits one

application into the network only if there is more available

memory on each path than a predefined fraction of the total

memory. NetVRM drops one application if it cannot meet

the utility target in multiple consecutive allocation epochs.

NetVRM targets elastic applications which can work even

with no register memory. Thus, if one application is rejected

or dropped, it can turn to the fallback mechanism. A mali-

cious application with a tough utility target to satisfy would

likely be dropped after a few allocation epochs. The operator

can also assign custom priorities for the applications. For

example, an application can be configured to not be dropped,

or be assigned with a minimal amount of memory to avoid

starvation when it is under-provisioned.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 161

〈p4 declaration〉 ::= 〈vrm reg declaration〉 | 〈vrm blb declaration〉 | ...

〈vrm reg declaration〉 ::= ‘vrmReg’ 〈virt stage〉 〈register declaration〉

〈vrm blb declaration〉 ::= ‘vrmMergeable’ 〈blackbox declaration〉
| ‘vrmNonMergeable’ 〈blackbox declaration〉

〈table declaration〉 ::= ...

| ‘vrmMergeable’ 〈virt stage〉 〈table declaration〉
| ‘vrmNonMergeable’ 〈table declaration〉

〈action function declaration〉 ::= ...

| ‘vrmMergeable’ 〈action function declaration〉
| ‘vrmNonMergeable’ 〈action function declaration〉

〈control statement〉 ::= ...

| ‘HIT COUNTER;’

| ‘PKT COUNTER;’

〈virt stage〉 ::= 〈decimal value〉

Figure 6: The P4VRM extensions to the P4-14. Gray non-

terminal nodes refer to legacy rules in P4-14.

Memory reallocation process. At the end of each alloca-

tion epoch, NetVRM fetches the counters from the control

plane, and computes the online utilities and the new memory

allocation plan. Updating the memory allocation plan results

in remapping from virtual addresses to physical addresses

and moving existing entries because of the remapping. There

are general solutions that can be applied to ensure the consis-

tency of memory allocation updates [24, 53]. We apply two

optimizations for particular cases in NetVRM. First, network

measurement applications periodically reset the state such as

counters maintained by the register memory. We align the

memory allocation updates with the resetting operations, so

that the memory allocation can be updated without moving

existing entries and does not scarifice application correctness.

Second, network applications that use lookup-table-based

address translation can simply use a delta update when the

memory size decreases, and allow more entries when the

memory size increases. This ensures consistency because a

lookup table is used for maintaining each address mapping.

6 Language Extension and Autogeneration

NetVRM provides P4VRM, an extension to the basic syntax

and semantics of the P4 programming language [8] that sup-

ports virtual register memory abstraction and online utility

measurement. Our implementation is based on P4-14, as more

existing implementations are implemented in this version, but

the same extensions could be applied to P4-16 as well. As

shown in Figure 5, to port existing .p4 programs, developers

extend them to .p4vrm programs by marking which register

arrays are to be virtualized and adding the online utility mea-

surement primitives (HIT_COUNTER and PKT_COUNTER)

correctly according to the applications. The P4VRM com-

piler takes multiple .p4vrm programs as input and outputs one

merged P4 program (for the data plane) with virtual mem-

ory abstraction and online utility measurement, together with

the C++ APIs (for the control plane) to configure the virtual

register memory efficiently.

✞ ☎
+ #include "params.p4"

- vrmReg 1 register stg1 {

+ register virtual_stg1 {

width:32;

- instance_count:8192;

+ instance_count:65536;

}

- vrmNonMergeable blackbox stateful_alu salu_stg1 {

+ blackbox stateful_alu salu_stg1 {

- .reg: stg1;

+ .reg: virtual_stg1;

...

}

- vrmNonMergeable action act_stg1() {

+ action act_stg1() {

- salu_stg1.execute_stateful_alu_from_hash(hash_1);

+ salu_stg1.execute_stateful_alu(params_md.slot_idx);

}

- vrmNonMergeable table tbl_stg1 {

+ table tbl_stg1 {

+ actions {act_stg1;};

+ default_action:act_stg1();

+ }

control ingress {

if (valid(tcp) or valid(udp)) {

+ apply(set_app_id);

+ apply(set_offset_hf);

+ apply(add_offset);

+ if (params_md.app_type==0) {

apply(tbl_stg1);

...

- HIT_COUNTER;

+ apply(hit_counter);

...

- PKT_COUNTER;

+ apply(pkt_counter);

+ }

}

}
✝ ✆
Figure 7: An example of P4VRM code transformation by

P4VRM compiler. ‘-’ and ‘+’ annotate the change before and

after the transformation, respectively.

Grammar. As shown in Figure 6, P4VRM extends the P4-

14 language specification [2] by introducing new keywords

(vrmReg, vrmMergeable and vrmNonMergeable) to

tag declarations related to a register array (register,

blackbox, action, and table). It marks the regis-

ter array as virtualized, and marks the related blackboxes,

actions and tables that have the same logic as mergeable.

It also specifies the stages at which the mergeable tables

should be placed (virt_stage). The two primitive state-

ments (i.e., HIT_COUNTER and PKT_COUNTER) are used

for online utility measurement. HIT_COUNTER tracks the

number of packets processed by the register memory, and

PKT_COUNTER tracks the total number of packets of the

application.

Generating merged P4 programs and C++ APIs. To merge

parsers, P4VRM compiler abstracts the packet parser of each

application as a Finite State Machine (FSM) and merges

the identical states into a single FSM. Then, the P4VRM

compiler transforms P4VRM-introduced declarations (i.e.,

vrmReg, vrmMergeable and vrmNonMergeable) to

P4-14 declarations (i.e., register, blackbox, action

and table), and adds the additional logic for address trans-

162 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

32 64 128 256
Number of concurrent applications

100

200

300

400

500

D
el

ay
 (m

s)

Tofino (default)
Vanilla C++

C++ w/ batching
NetVRM

(a) Total control loop delay vs. differ-

ent implementations.

32 64 128 256
Number of concurrent applications

0

5

10

15

D
el

ay
 (m

s)

Fetch
Calc

Reconfig
Runtime

(b) Delay breakdown for NetVRM.

Figure 8: Analysis of control loop delay.

lation, as shown in Figure 7. The compiler also loads a P4

library (params.p4) provided by P4VRM, containing ad-

ditional metadata and logic (e.g., to perform the page table

lookup) and adds the appropriate invocations at the begin-

ning of the pipeline. Finally, the compiler generates control

plane APIs for resetting counters, fetching counters, resetting

virtual memory and configuring the virtual memory.

Requirement for merge. Merging multiple reg-stateful ap-

plications needs to comply with the same resource constraints

as in existing work [19, 56, 57], most notably those related

to register memory (e.g., total register memory size per stage,

stateful ALUs per stage). If merging violates hardware con-

straints, the P4VRM compiler would fail and produce no

output.

7 Implementation

We have implemented a NetVRM prototype on a 6.5 Tbps

Intel Tofino switch [50], and used commodity servers to re-

play traces and generate traffic. The P4 library we provide

for virtual register memory support is around 500 lines of

P4-14 code. The virtual register memory spans eight physical

stages. Other stages are used for necessary functionalities

(e.g., routing and enabling concurrent applications). We em-

ulate four switches with the four independent pipelines of

the Tofino switch. The data plane program decides which

emulated switch one packet enters by checking the ingress

port. The implementation batches the data plane updates, and

uses multithreading to update the four pipelines simultane-

ously. The NetVRM control plane implementation consists

of around 2200 lines of C++ code. The P4VRM compiler is

built on Flex/Bison [31] and parses the .p4vrm files to build

an AST. It consists of around 2000 lines of C++ and 900 lines

of grammar.

Overhead of NetVRM. The address translation needs to

be done in two stages (§4), which is realized with two ta-

bles to adjust the slot_idx (Figure 7). The first table

(set offset hf) can be placed in the same stage with

other tables (e.g., set_app_id) that are necessary and in-

evitable for concurrent applications running. The register

memory in the second stage where add offset is placed

cannot be virtualized, which can be used for basic networking

functionality and inelastic applications. In some cases, the

register memory in some stages cannot be used even without

0 20 40 60 80
Time (s)

0.00

0.25

0.50

0.75

U
til

ity
 (h

it
ra

tio
)

NetVRM
MIMD

AIAD
AIMD

MIAD
Target

(a) Application utility over time.

0 20 40 60 80
Time (s)

0

5000

10000

15000

N
um

be
r o

f s
lo

ts

NetVRM
MIMD

AIAD
AIMD

MIAD
Target

(b) Register memory consumption over time.

Figure 9: Comparison of different algorithms to update mem-

ory allocation.

NetVRM because of the indivisibility between the virtual slot

size and the number of stages. For example, if there are three

physical stages available for virtualization, an application

with 2-stage virtual slots can use two stages at most. Then the

page table placed in the first stage does not introduce extra

register memory overhead. We remark that this is a common

case for many applications [18, 23, 34, 47, 54]. The extra

resource needed by each application in NetVRM is only one

table entry in the page table and two counters for the online

utility measurement, without extra stage overhead.

8 Evaluation

We evaluate our NetVRM prototype in two scales. We first

use microbenchmarks to examine the control loop delay and

the properties of the resource allocation algorithm (i.e., sta-

bility and convergence speed). With macrobenchmarks, we

demonstrate the benefits of NetVRM in combination with a

variety of network applications, workload parameters, com-

parisons with alternative approaches and network topologies.

8.1 Microbenchmark

Control loop delay. We emulate four switches by the four

independent pipelines of the Tofino switch. First, we compare

the total control loop delay, i.e., the time to complete a virtual

memory reallocation (§5.3), with different implementations,

including the default implementation on Tofino switches

which uses Python Thrift APIs, a vanilla C++ implementation,

a C++ implementation with batching, and NetVRM, which

incorporates both batching and multithreading. As shown in

Figure 8(a), the C++ implementations are an order of magni-

tude more efficient than the default implementation of Tofino

control plane APIs. NetVRM’s optimizations further reduce

the delay by a factor of ∼ 3.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 163

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

mean

5% tail

NetVRM Equal-Active Equal-All

(a) Heavy hitter detection (HH).

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(b) Newly opened TCP (NO).

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(c) Superspreader detection (SS).

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(d) Mix of HH, NO, SS.

Figure 10: Satisfaction for flow-based applications in the WAN scenario.

256 512 1024 2048
Register memory (KB) per logical switch

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

HH drop
NO drop
SS drop
Mix drop

HH reject
NO reject
SS reject
Mix reject

Figure 11: Drop/reject ratio of NetVRM for flow-based appli-

cations in the WAN scenario.

We further break down the control loop delay of NetVRM

into four parts, i.e., Fetch, Calc, Reconfig and Runtime, and

measure the latencies with different number of concurrent

applications. Fetch, Calc, Reconfig and Runtime represent the

time of fetching counters, calculating online utility and new

memory allocation plan, configuring the page table, and the

runtime overhead for resetting the state (e.g., the counters),

respectively. As shown in Figure 8(b), the time of Fetch

remains relatively constant since we use batching to fetch all

the counters together where the data size does not influence

the latency significantly. The time of Calc increases with

more applications, due to the heavier overhead to compute

the online utility and memory allocation plans. The time

of Reconfig dominates the control loop delay because of the

intensive updates to the data plane for four pipelines.

Due to the limit of our testbed, we only emulate four

switches with one Tofino switch in our experiment. We re-

mark that NetVRM can maintain the low control loop delay

and scale in real wide area networks and datacenters with

a larger number of switches for two reasons. First, Fetch,

Reconfig and Runtime, which do not need coordination be-

tween multiple switches, can be done in different switches

locally and simultaneously. Second, Calc needs to compute

the online network-wide utility and memory allocation plans

for each application which has to be done in a centralized

location. Instead of doing it on the switch OS with limited

computation capability in our experiment, the time of Calc

can be reduced easily by running it in a more powerful server.

Stability and fast convergence of NetVRM. In this experi-

ment, we compare NetVRM with other alternative approaches

which are commonly used in network resource allocation, in-

cluding AIAD, MIAD, MIMD and AIMD. Those approaches

estimate the memory requirements by increasing (decreasing)

the step size additively (A) or multiplicatively (M) when the

satisfaction status remains the same (changes) compared with

the previous epoch. We run one NetCache [23] application

on the switch and set its memory hit ratio target to be 0.5.

The workload skewness is Zipf-0.99 at the beginning, then

changes to Zipf-0.9 at 18 seconds, and finally changes to

Zipf-0.95 at 38 seconds. Figure 9(a) and Figure 9(b) show

the utility and memory usage over time, respectively. AIAD

and AIMD fail to meet the utility target when the skewness

becomes Zipf-0.9 because increasing the memory additively

is too slow. MIAD converges slower after 38 seconds because

decreasing the step size additively from a large step size is

slow. MIMD has the closest performance to NetVRM, but the

utility fluctuates around the utility target after convergence.

NetVRM estimates the memory requirements based on the

online utility (§5.2). Thus, it can react fast and more accu-

rately to the traffic dynamics and maintain the utility above

its target most of the time.

8.2 Macrobenchmark

NetVRM configuration and network topology. The default

allocation epoch and measurement epoch are both one second.

The default network topology is the Wide Area Network

(WAN), where each application has traffic from 4 switches

independently. NetVRM drops an application if it cannot

meet the utility target in four consecutive epochs and rejects

an application if the available memory on the switch is smaller

than 1/128 of the total memory.

Network applications. NetVRM supports a wide range of

network applications. We use five applications in the evalu-

ation, i.e., heavy hitter detection (HH) [47], newly opened

TCP connection detection (NO) [55], superspreader detection

(SS) [47], sketch-based heavy hitter detection (SHH) [54]

and NetCache [23]. HH, NO and SS are flow-based appli-

cations which store precise flow records on the data plane,

and evict the existing entries to the control plane upon hash

collisions, following the eviction policy in TurboFlow [47].

SHH is a sketch-based application that uses approximate data

structures (i.e., count-min sketch [12]) to approximate flow

records. NetCache maintains hot key-value pairs on the data

plane to serve a request upon a cache hit. For each application

type, there can be multiple instances of this application, e.g.,

belonging to different clients/tenants. Each client/tenant owns

164 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(a) Satisfaction.

256 512 1024 2048
Register memory (KB) per logical switch

0

0.2

0.4

0.6

0.8

1.0

D
ro

p/
re

je
ct

 ra
tio

Drop ratio Reject ratio

(b) Drop/reject ratio.

Figure 12: Experimental results for sketch-based applications

(SHH) in the WAN scenario.

a /8 subnet of source IP, and can dynamically start or stop

application instances within its subnet.

Traffic traces. The traces for measurement applications on

WAN are the 2019 passive CAIDA traces [10]. The data-

center traces are from Facebook’s production clusters [41].

We replay the traces via MoonGen [15]. The NetCache traf-

fic is generated by our DPDK client according to the Zipf

distribution with different skewness parameters.

Alternative approaches. We compare NetVRM with two

alternative approaches. (i) One is Equal-All, which statically

assigns an equal amount of register memory to all applica-

tions, active or not. For example, if each application instance

runs within a /8 subnet, then there are at most 256 concurrent

application instances. Thus, Equal-All assigns 1/256 of to-

tal memory to each instance. (ii) The other is Equal-Active,

which only assigns an equal amount of register memory to

active instances. We emphasize that Equal-Active is enabled

by the ability of NetVRM to dynamically allocate register

memory at runtime. NetVRM further improves Equal-Active

with the network-wide memory allocation algorithm in §5.

Performance metric. We use satisfaction ratio as the perfor-

mance metric for these network applications. Each applica-

tion instance has a utility target. The satisfaction ratio of an

instance is the fraction of time the utility target is met during

its lifetime. For each experiment, we compute the satisfaction

ratio for every instance, and show the mean and 5th percentile

of the satisfaction ratios across all instances. Considering the

number of instances is only a few hundreds (i.e., 256), the

5th percentile catches the tail pattern in the last ten instances,

while other options (e.g., 1th, 0.1th) are too limited which

only show the satisfaction of the last one or two instances.

8.2.1 Generality

We show that NetVRM is general to a wide range of network

application types in the WAN scenario.

Setup. We replay the CAIDA traffic on the four emulated

switches as in §8.1. We deploy four types of applications

including HH, NO, SS and SHH. We omit NetCache as it is

not a good use case for the WAN scenario. HH maintains the

flow records of the source IP and the corresponding number

of packets for all the IP traffic. NO maintains the flow records

of the source IP and the corresponding number of packets

only for TCP SYN packets. SS records the distinct IP address

0.96 0.97 0.98 0.99
Utility target (hit ratio)

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(a) Satisfaction vs. utility target.

128 192 256 320
Number of application instances

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(b) Satisfaction vs. number of appli-

cation instances.

0.96 0.97 0.98 0.99
Utility target (hit ratio)

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

Drop ratio Reject ratio

(c) Drop/reject ratio vs. utility target.

128 192 256 320
Number of application instances

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

Drop ratio Reject ratio

(d) Drop/reject ratio vs. number of

application instances.

Figure 13: Impact of workload parameters.

pair (source IP and destination IP) for all the IP traffic. SHH

maintains the flow records of the source IP and the threshold

to be identified as a heavy hitter is set to 200. We do the

following extension for a network-wide SHH: one SHH’s

utility is defined as the smallest worst-case accuracy across

its switches. Since each stage only supports 32-bit read and

write from register memory on the data plane, each virtual slot

of the three applications spans two physical stages and there

are up to 256K virtual slots (i.e., 2048 KB register memory)

on each switch.

By default, there are 256 application instances started in 20

minutes based on a Poisson Process and the running time of

the instances follows a uniform distribution from 6 minutes

to 14 minutes. The utility targets are specified by the operator

based on operational requirements. The default utility target

for HH, NO, SS, i.e., the memory hit ratio, is 0.98, and the

default utility target for SHH, i.e., the worst-case accuracy,

is 0.98. On each switch, we use a /8 instance filter and a /2

switch filter to identify the traffic to be processed by each

instance. We feed the CAIDA traces into four switches si-

multaneously and measure the mean and 5th percentile of

satisfaction across the 256 instances.

We remark that this is only one setup of a demanding

workload to stress the system, following the similar workload

pattern in [36, 37]. We show that NetVRM outperforms the

alternatives with different workload parameters in §8.2.2.

Results. Figure 10 shows the satisfaction ratios for flow-

based applications (i.e., HH, NO, SS) under different amounts

of register memory. For each vertical line, the upper square

end is the mean satisfaction ratio, and the lower round end

is the 5th percentile satisfaction ratio, among the 256 appli-

cation instances. Figure 10(a), (b) and (c) show the cases

that the instances are from the same application type, and (d)

shows the case that the instances are from all the three types.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 165

2 4 8 16
Allocation epoch (s)

0

0.2

0.4

0.6

0.8

1.0
Mean 5% tail Drop ratio Reject ratio

Figure 14: Impact of allocation epochs on NetVRM.

When the register memory is limited (e.g., 256 KB), NetVRM

significantly outperforms Equal-All and Equal-Active on both

the mean and the tail. When the register memory is abundant

(e.g., 2048 KB), NetVRM is able to maintain both high mean

and 5th percentile satisfaction ratios. In contrast, Equal-All

and Equal-Active have comparable mean satisfaction ratios,

but suffer from the tail behavior. The advantage of NetVRM

over Equal-All and Equal-Active is consistent across different

application types. SS uses src IP and dst IP as the hash key.

Thus, it has fewer hash collisions than HH and NO, leading

to a higher satisfaction ratio. Figure 11 shows the drop ratios

and rejection ratios of NetVRM under the four workloads.

Similarly, SS drops and rejects fewer application instances

than HH and NO, because it has fewer hash collisions and

less memory requirement.

Figure 12 shows that NetVRM outperforms Equal-All and

Equal-Active with the sketch-based applications (i.e., SHH)

as well. Compared with flow-based applications, the alterna-

tives have lower satisfaction ratios and NetVRM drops more

application instances because SHH needs more memory to

guarantee the worst-case accuracy bounds.

The alternatives, Equal-All and Equal-Active, have close

performance for all the applications, which means only hav-

ing the mechanism of virtual register memory to allocate

resources to active applications is not sufficient. The allo-

cation algorithm that decides the memory allocation plan is

critical to the performance.

8.2.2 Analysis of NetVRM

We analyze NetVRM by showing the impact of workload pa-

rameters and the allocation epoch. We use the same setup in

§8.2.1 and show the results for the workload of HH. The find-

ings for other application types are similar. We demonstrate

the benefits of NetVRM over the local memory allocation

approach in Appendix B.

Impact of workload parameters. Figure 13(a) shows that

NetVRM is able to manage the register memory efficiently

with different utility targets. With more strict targets, the

three approaches have worse performance as the application

instances have higher memory requirements. Figure 13(c)

shows the drop ratio and reject ratio increase with more strict

targets. Figure 13(b) studies the impact of the number of

application instances arriving in each experiment. Fewer

instances mean less resource contention, leading to higher

satisfaction. NetVRM consistently outperforms the alterna-

tives. Interestingly, Figure 13(d) shows that the drop ratio and

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM Equal-Active Equal-All

(a) Satisfaction.

256 512 1024 2048
Register memory (KB) per logical switch

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

Drop ratio Reject ratio

(b) Drop/reject ratio.

Figure 15: Experimental results in the datacenter scenario.

reject ratio are not significantly influenced by the number of

instances in the evaluated range.

Impact of the allocation epoch. Figure 14 shows that a

shorter allocation epoch leads to a slightly better performance,

both in mean and tail. A longer allocation epoch can get a

comparable satisfaction ratio but it comes with rejecting more

applications. For example, when the allocation epoch is 16

seconds, NetVRM drops and rejects about 40% application

instances, while the sum of drop ratio and reject ratio is 25%

when the allocation epoch is 2 seconds.

8.2.3 NetVRM in Datacenter Network

Setup. We use the four independent pipelines of the Tofino

switch to emulate four switches, and wire the four switches to

build a datacenter network topology (shown in Appendix C).

S0, S1 and S2 are ToR switches for client rack 1, client rack

2 and the key-value rack respectively. S3 is a spine switch

connecting to them. We run two types of applications, which

are HH and NetCache. HH records the number of packets

of distinct four tuples (source IP, destination IP, source port,

destination port). We use the Cluster-C traffic trace from Face-

book’s production datacenters [41]. The trace is anonymized

by hashing. The IP addresses are hashed to 64 bits and the

port numbers are hashed to 32 bits in the trace. The HH appli-

cation uses six physical stages to store the four tuples and one

extra stage to store the number of packets. We generate pcap

files from the Facebook trace, and assign the timestamps of

the packets uniformly in one second as the original timestamp

is at second granularity. Each application instance owns a

/8 subnet. There are 318 HH instances arriving in 20 min-

utes based on a Poisson process, and the running time of the

instances follows a uniform distribution from 6 minutes to

14 minutes. The HH instances use two paths, S0-S3-S2 and

S1-S3-S2. The utility target of HH is set to 0.96.

We run two NetCache instances. NetCache1 (NC1) uses

path S0-S3-S2, and NetCache2 (NC2) uses path S1-S3-S2.

The tenants of NC1 and NC2 are in client rack 1 and client

rack 2, respectively, which access different key-value items

in the key-value rack, so they cannot share the memory on

S2 and S3. NC1 and NC2 run throughout the 30-minute

experiment time. The workload skewness changes between

Zipf-0.99 and Zipf-0.95 every 6 minutes. The utility target

is 0.5. Each virtual slot of NetCache spans 8 physical stages,

166 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

resulting in up to 64K virtual slots per switch. The NetCache

instances are set to not be dropped.

Results. Figure 15(a) shows the satisfaction ratios of the three

approaches, and Figure 15(b) shows the drop ratios and reject

ratios of NetVRM. Similarly, NetVRM outperforms Equal-

All and Equal-Active consistently under different amounts of

register memory. It indicates that NetVRM can multiplex

the register memory between different switches in a compli-

cated scenario where applications have multiple paths and

measurement applications run along with datacenter-specific

applications such as NetCache.

9 Conclusion

We present NetVRM, a network management system to sup-

port dynamic register memory sharing between multiple con-

current applications on a programmable network. NetVRM

provides a virtual register memory abstraction that enables

register memory sharing in the switch data plane, and dy-

namically allocates memory for better resource efficiency and

application utility. NetVRM also provides P4VRM as an ex-

tension of P4 for developing applications with virtual register

memory, and a compiler to generate data plane programs and

control plane APIs.

Acknowledgments. We thank our shepherd Laurent Van-

bever and the anonymous reviewers for their valuable feed-

back on this paper. Xin Jin (xinjinpku@pku.edu.cn) is the

corresponding author. Xin Jin is with the Key Laboratory of

High Confidence Software Technologies (Peking University),

Ministry of Education. This work is supported in part by NSF

grants CNS-1813487, CCF-1918757 and CNS-2008048, and

the National Natural Science Foundation of China under the

grant number 62172008.

References

[1] In-band Network Telemetry (INT) Dataplane Spec-

ification. https://github.com/p4lang/

p4-applications/blob/master/docs/INT.

pdf.

[2] P4-14 Language Specification. https://p4.org/

p4-spec/p4-14/v1.0.5/tex/p4.pdf.

[3] P4 Behavioral Model Repository. https://github.

com/p4lang/behavioral-model.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-

value store. In ACM SIGMETRICS, June 2012.

[5] Networking and Content Delivery on AWS. https://

aws.amazon.com/products/networking/.

[6] Multitenant SaaS on Azure. https:

//docs.microsoft.com/en-us/azure/

architecture/example-scenario/

multi-saas/multitenant-saas.

[7] Azure networking services overview.

https://docs.microsoft.com/en-us/

azure/networking/fundamentals/

networking-overview.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-

own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, and D. Walker. P4: Programming protocol-

independent packet processors. SIGCOMM CCR, July

2014.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-

eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-

ing metamorphosis: Fast programmable match-action

processing in hardware for SDN. In ACM SIGCOMM,

August 2013.

[10] The CAIDA Anonymized Internet Traces 2019 Dataset.

https://data.caida.org/datasets/

passive-2019/.

[11] Cavium XPliant. https://www.cavium.com/.

[12] G. Cormode and S. Muthukrishnan. An improved data

stream summary: the count-min sketch and its applica-

tions. Journal of Algorithms, 2005.

[13] H. T. Dang, M. Canini, F. Pedone, and R. Soulé. Paxos

made switch-y. SIGCOMM CCR, April 2016.

[14] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and

R. Soulé. NetPaxos: Consensus at network speed. In

ACM SOSR, June 2015.

[15] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart,

and G. Carle. Moongen: A scriptable high-speed packet

generator. In ACM SIGCOMM Conference on Internet

Measurement Conference, 2015.

[16] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bo-

hatei: Flexible and elastic ddos defense. In {USENIX}
Security, 2015.

[17] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Kr-

ishnamurthi. Participatory networking: An API for ap-

plication control of SDNs. In ACM SIGCOMM, August

2013.

[18] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-

ford, and W. Willinger. Sonata: Query-driven streaming

network telemetry. In ACM SIGCOMM, 2018.

[19] D. Hancock and J. Van der Merwe. Hyper4: Using p4 to

virtualize the programmable data plane. In Proceedings

of the 12th International on Conference on emerging

Networking EXperiments and Technologies, 2016.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 167

https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://aws.amazon.com/products/networking/
https://aws.amazon.com/products/networking/
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/multi-saas/multitenant-saas
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/multi-saas/multitenant-saas
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/multi-saas/multitenant-saas
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/multi-saas/multitenant-saas
https://docs.microsoft.com/en-us/azure/networking/fundamentals/networking-overview
https://docs.microsoft.com/en-us/azure/networking/fundamentals/networking-overview
https://docs.microsoft.com/en-us/azure/networking/fundamentals/networking-overview
https://data.caida.org/datasets/passive-2019/
https://data.caida.org/datasets/passive-2019/
https://www.cavium.com/

[20] Q. Huang, P. P. Lee, and Y. Bao. Sketchlearn: Relieving

user burdens in approximate measurement with auto-

mated statistical inference. In ACM SIGCOMM, 2018.

[21] X. Jin, J. Gossels, J. Rexford, and D. Walker. CoVi-

sor: A compositional hypervisor for software-defined

networks. In USENIX NSDI, May 2015.

[22] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,

C. Kim, and I. Stoica. NetChain: Scale-free sub-RTT

coordination. In USENIX NSDI, April 2018.

[23] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica. NetCache: Balancing key-value

stores with fast in-network caching. In ACM SOSP,

October 2017.

[24] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,

M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic

scheduling of network updates. In ACM SIGCOMM,

August 2014.

[25] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.

Hula: Scalable load balancing using programmable data

planes. In ACM SOSR, March 2016.

[26] F. Kelly and T. Voice. Stability of end-to-end algorithms

for joint routing and rate control. SIGCOMM CCR,

2005.

[27] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and

S. Seshan. Tea: Enabling state-intensive network func-

tions on programmable switches. In ACM SIGCOMM,

2020.

[28] D. Kim, J. Nelson, D. R. Ports, V. Sekar, and S. Seshan.

Redplane: enabling fault-tolerant stateful in-switch ap-

plications. In ACM SIGCOMM, 2021.

[29] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan. Generic

external memory for switch data planes. In ACM Hot-

Nets Workshop, 2018.

[30] T. Koponen, K. Amidon, P. Balland, M. Casado,

A. Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude,

P. Ingram, et al. Network virtualization in multi-tenant

datacenters. In USENIX NSDI, April 2014.

[31] J. Levine. Flex & Bison: Text Processing Tools. ”

O’Reilly Media, Inc.”, 2009.

[32] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya. IncBricks: Toward in-network computa-

tion with an in-network cache. In ACM ASPLOS, April

2017.

[33] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,

X. Jin, and I. Stoica. Distcache: Provable load balancing

for large-scale storage systems with distributed caching.

In USENIX FAST, 2019.

[34] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and

V. Braverman. One sketch to rule them all: Rethink-

ing network flow monitoring with univmon. In ACM

SIGCOMM, 2016.

[35] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:

Making stateful layer-4 load balancing fast and cheap

using switching asics. In ACM SIGCOMM, 2017.

[36] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.

DREAM: Dynamic resource allocation for software-

defined measurement. In ACM SIGCOMM, August

2014.

[37] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.

Scream: Sketch resource allocation for software-defined

measurement. In ACM CoNEXT, 2015.

[38] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Al-

izadeh, and S. Katti. Numfabric: Fast and flexible band-

width allocation in datacenters. In ACM SIGCOMM,

2016.

[39] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,

V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim.

Language-directed hardware design for network per-

formance monitoring. In ACM SIGCOMM, August

2017.

[40] V. Nathan, V. Sivaraman, R. Addanki, M. Khani,

P. Goyal, and M. Alizadeh. End-to-end transport for

video qoe fairness. In ACM SIGCOMM, 2019.

[41] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.

Inside the social network’s (datacenter) network. In

ACM SIGCOMM, 2015.

[42] A. Sapio, I. Abdelaziz, M. Canini, and P. Kalnis. Daiet:

a system for data aggregation inside the network. In

ACM Symposium on Cloud Computing, 2017.

[43] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,

C. Kim, A. Krishnamurthy, M. Moshref, D. R. K. Ports,

and P. Richtárik. Scaling distributed machine learning

with in-network aggregation, 2019.

[44] M. Saquetti, G. Bueno, W. Cordeiro, and J. R. Azambuja.

P4vbox: Enabling p4-based switch virtualization. IEEE

Communications Letters, 2019.

[45] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krish-

namurthy, J. Nelson, and S. Peter. Evaluating the power

of flexible packet processing for network resource allo-

cation. In USENIX NSDI, March 2017.

[46] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller,

M. Casado, N. McKeown, and G. Parulkar. Can the

production network be the testbed? In USENIX OSDI,

October 2010.

168 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[47] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith.

Turboflow: Information rich flow record generation on

commodity switches. In EuroSys, 2018.

[48] H. Soni, T. Turletti, and W. Dabbous. P4Bricks: En-

abling multiprocessing using linker-based network data

plane architecture. 2018.

[49] R. Stoyanov and N. Zilberman. Mtpsa: Multi-tenant

programmable switches. In Proceedings of the 3rd P4

Workshop in Europe, 2020.

[50] Intel Tofino. https://www.

intel.com/content/www/us/

en/products/network-io/

programmable-ethernet-switch/

tofino-series.html.

[51] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R. K.

Ports, and A. Panda. Multitenancy for fast and pro-

grammable networks in the cloud. In USENIX HotCloud

Workshop, 2020.

[52] D. Wu, A. Chen, T. E. Ng, G. Wang, and H. Wang.

Accelerated service chaining on a single switch asic. In

ACM HotNets Workshop, 2019.

[53] L. Yu, J. Sonchack, and V. Liu. Mantis: Reactive pro-

grammable switches. In ACM SIGCOMM, August 2020.

[54] M. Yu, L. Jose, and R. Miao. Software defined traffic

measurement with opensketch. In USENIX NSDI, 2013.

[55] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and

B. T. Loo. Quantitative network monitoring with netqre.

In ACM SIGCOMM, 2017.

[56] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu. Hy-

perv: A high performance hypervisor for virtualization

of the programmable data plane. In 2017 26th Inter-

national Conference on Computer Communication and

Networks (ICCCN), 2017.

[57] P. Zheng, T. Benson, and C. Hu. P4visor: Lightweight

virtualization and composition primitives for building

and testing modular programs. In ACM CoNEXT, 2018.

[58] H. Zhu, Z. Bai, J. Li, E. Michael, D. Ports, I. Stoica, and

X. Jin. Harmonia: Near-linear scalability for replicated

storage with in-network conflict detection. In Proceed-

ings of the VLDB Endowment, November 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 169

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

A Diminishing Return Examples

Figure 16 demonstrates the diminishing returns for four appli-

cations. The first three are measurement applications: heavy

hitter detection (HH) [54], newly opened TCP connection de-

tection (NO) [55], superspreader detection (SS) [54]. These

applications store flow records in the data plane; hash colli-

sions caused by inadequate memory require additional control

plane processing. The fourth, NetCache [23] caches hot ob-

jects in the switch data plane to improve the throughput of

a key-value store. The utility is measured using memory

hit ratio. We evaluate the measurement applications (Fig-

ure 16(a–c)) on traffic from different subnets of the 2019

passive CAIDA trace [10], and NetCache on a synthetic Zipf

workload with different skewness parameters (Figure 16(d)).

0 1024 2048 3072 4096
Number of slots

0.00

0.25

0.50

0.75

1.00

U
til

ity
 (h

it
ra

tio
)

subnet0
subnet1
subnet2
subnet3

(a) Heavy hitter detection.

0 1024 2048 3072 4096
Number of slots

0.00

0.25

0.50

0.75

1.00

U
til

ity
 (h

it
ra

tio
)

subnet0
subnet1
subnet2
subnet3

(b) Newly opened TCP connections.

0 1024 2048 3072 4096
Number of slots

0.00

0.25

0.50

0.75

1.00

U
til

ity
 (h

it
ra

tio
)

subnet0
subnet1
subnet2
subnet3

(c) Superspreader detection.

0 1024 2048 3072 4096
Number of slots

0.00

0.25

0.50

0.75

1.00

U
til

ity
 (h

it
ra

tio
) zipf-0.99

zipf-0.95
zipf-0.9

(d) NetCache.

Figure 16: Examples for the diminishing returns of the utility

curves in reg-stateful network applications.

B Additional Evaluation Results

256 512 1024 2048
Register memory (KB) per logical switch

0.00

0.25

0.50

0.75

1.00

S
at

is
fa

ct
io

n
ra

tio

NetVRM
Equal-Active

Equal-All
Local-Alloc

(a) Satisfaction.

256 512 1024 2048
Register memory (KB) per logical switch

0

0.1

0.2

0.3

0.4

0.5

D
ro

p/
re

je
ct

 ra
tio

NetVRM drop
NetVRM reject

Local-Alloc reject
Local-Alloc drop

(b) Drop/reject ratios of NetVRM and

Local-Alloc.

Figure 17: Comparison with Local-Alloc.

Comparison with local memory allocation. Besides the

Equal-all and Equal-Active, we also compare NetVRM with

Local-Alloc which only does memory allocation and makes

drop/reject decisions on individual switches locally. One

application is counted as drop/reject only after all the four

switches have decided to drop/reject it. We report the results

for HH workload. The findings for other application types

are similar. Figure 17 shows that Local-Alloc has better per-

formance than Equal-all and Equal-Active, but is still worse

than NetVRM because it fails to capture network-wide in-

formation and makes sub-optimal allocation and drop/reject

decisions.

C Network Topology in Datacenter Scenario

We wire the four emulated switches to build a datacenter

network topology, as shown in Figure 18, to evaluate the

performance of NetVRM in the datacenter scenario.

Client
Rack1

Client
Rack2

Key-Value
Rack

S0 S1 S2

S3

Figure 18: Datacenter topology for evaluation.

170 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivation and Related Work
	The Case of Dynamic Register Memory Allocation
	Target and Scope of NetVRM
	Existing Solutions and Limitations

	NetVRM Overview
	Virtual Register Memory
	Dynamic Memory Allocation
	Definition of Application Utility
	Problem Formulation
	Network-Wide Register Memory Allocation

	Language Extension and Autogeneration
	Implementation
	Evaluation
	Microbenchmark
	Macrobenchmark
	Generality
	Analysis of NetVRM
	NetVRM in Datacenter Network

	Conclusion
	Diminishing Return Examples
	Additional Evaluation Results
	Network Topology in Datacenter Scenario

