
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Evolvable Network Telemetry at Facebook
Yang Zhou, Harvard University; Ying Zhang, Facebook; Minlan Yu, Harvard University;

Guangyu Wang, Dexter Cao, Eric Sung, and Starsky Wong, Facebook
https://www.usenix.org/conference/nsdi22/presentation/zhou

Evolvable Network Telemetry at Facebook

Yang Zhou† Ying Zhang‡ Minlan Yu† Guangyu Wang‡ Dexter Cao‡ Eric Sung‡ Starsky Wong‡

†Harvard University ‡Facebook

Abstract
Network telemetry is essential for service availability and
performance in large-scale production environments. While
there is recent advent in novel measurement primitives and
algorithms for network telemetry, a challenge that is not well
studied is Change. Facebook runs fast-evolving networks to
adapt to varying application requirements. Changes occur
not only in the data collection and processing stages but also
when interpreted and consumed by applications. In this pa-
per, we present PCAT, a production change-aware telemetry
system that handles changes in fast-evolving networks. We
propose to use a change cube abstraction to systematically
track changes, and an intent-based layering design to confine
and track changes. By sharing our experiences with PCAT, we
bring a new aspect to the monitoring research area: improving
the adaptivity and evolvability of network telemetry.

1 Introduction
Network telemetry is an integral component in modem, large-
scale network management software suites. It provides visi-
bility to fuel all other applications for operation and control.
At Facebook, we built a telemetry system that has been the
cornerstone for continuous monitoring of our production net-
works over a decade. It collects device-level data and events
from hundreds of thousands of heterogeneous devices, mil-
lions of device interfaces, and billions of counters, covering
IP and optical equipments in datacenter, backbone and edge
networks. In addition to data retrieval, our telemetry system
performs device-level and network-wide processing that gen-
erates time-series data streams and derives real-time states.
The system serves a wide range of applications such as alert-
ing, failure troubleshooting, configuration verification, traffic
engineering, performance diagnosis, and asset tracking.

While our telemetry system can adopt algorithm and system
proposals from the research community (e.g., [18,27,48,50]),
a remaining open challenge is Change. Changes happen fre-
quently in our network hardware and software to meet the
soaring application demands and traffic growth [16]. These
changes have a significant impact on the network telemetry
system. First, we have to collect data on increasingly heteroge-
neous devices. This is exaggerated as we introduce in-house
built FBOSS [13], which allows switches to update as fre-
quently as software. Second, we have growing applications
(e.g., [1]) that rely on real-time, comprehensive, and accu-
rate data from network telemetry systems. These applications
introduce diverse and changing requirements for the teleme-
try system on the types of data they need, data collection

frequency, and the reliability and performance of collection
methods.

The changes this paper considers include not only the net-
work events from the monitored data, but also those updates
to the telemetry system itself: modification to monitoring
intent, advance of device APIs, adjustment of frequency con-
figurations, mutation of processing, and restructure of storage
formats. Without explicitly tracking them in our network
telemetry system, we struggle to mitigate their impact to net-
work reliability. For example, a switch vendor may change
a packet counter format when it upgrades a switch version
without notifying Facebook operators. This format change
implicitly affects many counters in our telemetry database
(e.g., aggregated packet counters), leading to adverse impact
to downstream alerting systems and traffic engineering deci-
sions. This example highlights several challenges: (1) Produc-
tion telemetry is a complex system with many components
(e.g., data collection, normalization, aggregation) from many
teams (e.g., vendors, data processing team, database team,
application teams). A change at one component can lead to
many changes or even errors at other components. As a result,
when telemetry data changes, it is difficult to discern legiti-
mate data changes from semantic changes. (2) Sometimes,
we only detect the error passively when traffic engineering
team notices congestion. Yet, we cannot diagnose it easily
because the error involves many data. Even worse, it may
only affect a small portion of vendor devices due to phased
updates. Section 2 shares more such examples.

In this paper, we propose to treat changes as first-class
citizens by introducing PCAT, a Production Change-Aware
Telemetry system. PCAT includes three key designs:

First, inspired by the database community [8], we introduce
the change cube abstraction for telemetry to explicitly track
the time, entities, property, and components for each change,
and a set of primitives to explore changes systematically. Us-
ing change cubes and their primitives, we conduct the first
comprehensive study on change characterization in a produc-
tion telemetry system (Section 3). Our results uncover the
magnitudes and the diversity of changes in production, which
can be used for future telemetry and reliability research.

Second, we re-architect our telemetry system to be change-
aware and evolvable. In the first version of our telemetry
system, we have to modify configurations and code at many
devices every time a vendor changes the counter semantics
or collection methods, or an application changes monitoring
intents. To constrain the impact of changes, i.e., the number
of affected components, PCAT includes an intent-based lay-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 961

ering design (Section 4) which separates monitoring intents
from data collection and supports change cubes across layers.
PCAT enables change attribution by allowing network engi-
neers with rich network domain knowledge to define intents
while having software engineers building distributed data
collection infrastructure with high reliability and scalability.
PCAT then compiles intents to vendor-agnostic intermediate
representation (IR) data model, and subsequently to vendor-
specific collection models, and job models. The intent-driven
layering design reduces the number of cascading changes
by 54%-100%, and enables systematically tracking changes
through the monitoring process.

Third, we build several change-aware applications that ex-
plore the dependencies across change cubes to improve ap-
plication efficiency and accuracy. For example, Toposyncer
is our topology derivation service that builds on telemetry
data and serves many other applications. We transformed
Toposyncer to subscribe to change cubes based on derivation
dependencies and greatly reduce topology derivation delay
by up to 118s. We leverage correlation dependencies across
change cubes to enable troubleshooting and validation.

The main contribution of this paper is to bring the commu-
nity’s attention to a new aspect of telemetry systems—how
to adapt to changes from network devices, configurations,
and applications. We also share our experiences of building
change-aware telemetry systems and applications that can be
useful to other fast-evolving systems.

2 Motivation
To keep up with new application requirements and traffic
growth, data center networks are constantly evolving [16]. As
a result, changes happen frequently across all the components
in telemetry systems, ranging from device-level changes, col-
lection configuration changes, to changes in the applications
that consume telemetry data.

Our first generation of production telemetry system was not
built to systematically track changes. This brings significant
challenges for telemetry data collection at devices, integration
of telemetry system components, debugging network inci-
dents, and building efficient applications. In this section, we
share our experiences of dealing with changes in our teleme-
try system and discuss the system design and operational
challenges for tracking changes.

2.1 Bringing changes to first-class citizens
We motivate the needs of treating changes as first-class citizen
in network telemetry with a few examples.
1. Build trustful telemetry data. Many management appli-
cations rely on telemetry data to make decisions. However, in
production, telemetry data is always erroneous, incomplete,
or inconsistent due to frequent changes of devices and config-
urations. Moreover, there are constant failures in large-scale
networks (e.g., network connection issues, device overload,
message loss, system instability). Therefore, applications need

to know which time range and data source are trustful and how
to interpret and use the data. This requires tracking changes
for each telemetry data value and semantics.

For example, we collect device counters at various scopes
(e.g., interfaces, queues, linecards, devices, circuits, clusters).
These counters may have different semantics with device
hardware and software upgrades or network re-configurations.
For example, we have a counter for 90th percentile CPU us-
age within a time window of a switch. When we change the
switch architecture to mulitple subswitches [13], we set the
counter as the average of 90th percentile CPU of subswitches.
However, our alert on this counter cannot catch single sub-
switch CPU spikes that caused bursty packet drops. We need
to know when to change the alerts based on counter changes.
2. Track API changes across telemetry components. Our
telemetry system consists of multiple data processing compo-
nents, which are independently developed by different ven-
dors and teams. When one component changes its interfaces,
many other components may get affected without notice.
There are no principled ways to handle such changes across
telemetry components. For example, vendor-proprietary mon-
itoring interfaces often get changed without an explicit noti-
fication or detailed specification. This is because telemetry
interfaces are traditionally viewed as secondary compared to
other major features. However today cloud providers heav-
ily rely on telemetry data for decisions in a fine-grained and
continuous manner. If we do not update data processing logic
based on device-level changes, the inconsistency may cause
bugs and monitoring service exceptions.

In one incident, a routing controller had a problem of unbal-
anced traffic distribution, caused by incomplete input topol-
ogy: a number of circuits were missing from the derived
topology. This took the routing team and the topology team
over three days to diagnose. The root cause was an earlier
switch software upgrade that changed the linecard version
from integer (e.g., 3) to string (e.g., 3.0.0). Such a simple
format change was not compatible with the post-processing
code that aggregated the linecard information into a topology.
Thus, we missed several linecards in the topology, which then
mislead TE decision and cause congestion in the network.
This is not a one-off case, given many vendors and software
versions coexist in our continuously evolving networks.
3. Debug with change-aware data correlation. As teleme-
try components keep evolving, it is hard to attribute a problem
to a change using data correlation without explicitly tracking
changes and their impacts. For example, when we fail to get
a counter, the problem can come from data collection at the
device, the network transfer, or both.

In production, we make changes in small phases: first ca-
nary on a few devices serving non-critical applications, then
gradually on more devices to minimize disruptions to the net-
work [13]. In one incident, there were a small number of de-
vices with “empty data” errors for a power counter. The errors
increased gradually and ultimately went beyond 1% threshold

962 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Gen1

Collection
infra.

Device
-level

Gen2

Applications Applications: alerting, traffic dashboard, TE, maintenance, verification, etc

Network-wide Data Processing

Gen3 (PCAT)

§4.1 Intent models

§4.2

§5

Collection infrastructure§4.1

Vendor-agnostic
data models

(#intents)

(#intents×#vendors
×#device groups)

Job models

(#intents×#vendors
×#device groups)

(#intents×#vendors
×#device groups)

Derived models (#intents)

Vendor-specific
data models

(#intents×#vendors) Device-level Data ProcessingNet-wide

Storage
Backend

Derived
Topology (SQL)

Time series
Data (ODS)

Network
States (KV)

Configs
(SQL)

Models

System layer

Data

Discovered Non-
Numerical States

Discovered
Numerical Counters

Discovered
Configs

Normalized
Configs

Normalized
Numerical Counters

Normalized Non-
Numerical States

Figure 1: Generations towards change-aware telemetry.

after two weeks and triggered an alarm. This problem was dif-
ficult to troubleshoot due to its small percentage. We manually
explored the changes through correlation: checking whether
there were code changes before the failure, whether the failed
devices shared a common region (indicating regional failure),
a common vendor, or on common data types. We tried many
dimensions of correlation and finally found the errors were
mostly related to power and environment counters. The root
cause was a vendor changing its format but the processing
code could not recognize it. This example shows a tedious
manual process of data correlation to debug problems because
of gradual change rollouts. To improve debugging, we need
to use changes to guide data correlation.

2.2 Lessons from Previous Generations
We now discuss our previous two generations of telemetry sys-
tems prior to PCAT and their limitations in handling changes.
Gen1: Monolithic collection script. In a nutshell, a teleme-
try system is a piece of code that collects data using APIs from
the devices. Our first generation is naturally a giant script that
codifies what counters to collect. It hardcodes the collection
method, polling frequency, post-processing logic, and where
to store the data. Figure 1 illustrates Gen1 as intertwined
models and system blocks. It runs as multiple cron jobs, each
collecting data from different groups of devices. This design
is intuitive to implement but is not change-friendly. If a vendor
changes the format of a counter, we need to sweep through
the entire script to change the processing logic accordingly,
and redeploy the new code to all monitors. It has high mainte-
nance burdens as it relies on expert’s deep understanding of
the code to make changes. Further, tracking changes relies on
version control system in the form of code differences, which
do not reveal the intent directly.
Gen2: Decoupled counter definition from collection pro-
cess. As our network expanded, the hulking script in Gen1
became hard to manage. We moved to Gen2, which separates
the monitoring model (i.e., what counter to collect) from the
actual collection code, shown as orange and blue boxes in Fig-

ure 1. The separation allows us to track changes to data types
separately from the collection logic (e.g., sending requests,
handling connections). However, the intent is still mingled
with the vendor-specific counter definition. For instance, one
may want to collect the “packet drops per interface”. One
needs to specify the exact SNMP MIB entry name and the
specific API command. A low-level format change would
result in updates on all model definitions. Moreover, the data
collection system includes both the collection infrastructure
and data processing logic. The data processing logics scatter
across many places, e.g., when the data is collected locally at
the collector, or before it is put into the storage. To change
a piece of processing logic, we have to change many such
places, which is cumbersome to track. In addition, when a
piece of data is changed or is absent, tracing back on what
causes the change is manual and tedious.

2.3 Challenges and PCAT Overview
Our experiences of previous two generations indicate three
main challenges in handling changes: change abstraction,
attribution, and exploration. To address these challenges, we
build our Gen3 telemetry system – PCAT.
Change abstraction. In Gen1 and Gen2, changes were not
stored structurally. They exist either as diffs in code reviews
in Gen1, or logs to temporary files in Gen2. Without a uni-
form representation, each application needs to develop ad-hoc
scripts to parse each data source. This leads to not only dupli-
cate efforts but also missing changes or mis-interpretations.
A uniform and generic change abstraction allows hundreds
of engineers to publish and subscribe to changes to boost
reliable collaboration without massive coordination overhead.
In §3, we propose a generic abstraction called change cube to
tackle this challenge.
Change attribution. The second challenge is the turmoil
to ascribe the intent of the scattering changes. The solution
involves a surgically architectural change to a multi-layer
design, shown in Figure 1 and elaborated below.

Data collection. The first step is to collect data from de-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 963

vices, called discovered data. There are three types: numeric
counters, non-numeric states, and configurations (see Table 4
in Appendix). We use different protocols for collecting dif-
ferent data and for different devices: SNMP [10], XML, CLI,
Syslog [28], and Thrift for our in-house switches [13].

Device-level data processing (normalization). The data is
different in formats and semantics across devices, vendors,
and switch software. This makes it difficult for applications to
parse and aggregate the data from different devices. We use a
device-level data processing layer to parse the raw data to a
unified format across devices, vendors, and switch software.

Network-wide data processing. Next, we aggregate device-
level (normalized) counters, states, and configurations into
network-wide storage systems for applications to query. The
normalized non-numerical states (as network states) are stored
in a key-value store. We build a tool called Toposyncer which
constructs derived topology from normalized non-numerical
states. For example, from per-device data, we can construct
the device, its chassis, linecard, as well as cross-device links.

Data consumer applications. There are many critical net-
work applications that consume PCAT data. Network health
monitoring and failure detection use monitoring data to de-
tect and react to faults. Network control relies on real-time
data for making routing and load balancing decisions [2, 38].
Maintenance and verification use telemetry data to compare
network states before and after any network operations.

There are several advantages of the new design compared
to previous generations. First, compared to Gen2, Gen3 dis-
sects a monolithic data definition into three different types,
each focusing on defining one aspect of the monitoring. The
separation brings better scalability and manageability. We
describe the details in §4. Second, we not only care about
tracking changes in data format and code, but also need to
attribute changes to the right teams (i.e., who/what authored
the change). Change attribution builds the trust of the data for
applications. It facilitates collaboration across teams towards
transparent and verifiable system development. Gen3’s intent-
based layering design lets each team play by their strength
and work together seamlessly. Specifically, the network engi-
neers can leverage their rich domain knowledge and focus on
intent definition, while software engineers focus on scaling
the distributed collection system.
Change exploration. Many designs and operations require
a clear understanding of the relations amongst changes. For
example, to debug why a piece of data is missing, we always
find the last time the data appears and check what has changed
since then. We may find one change to be the cause, which
could be caused by another change somewhere else. Similarly,
when receiving a change of an interface state, we need to
reflect the change on the derived topology and upper-layer
applications. It motivates us to develop primitives for change
exploration that serves many applications. We demonstrate
the usage in real-time topology derivation in §5.

3 Changes in Facebook Network Telemetry
In this section, we define the change cube concept and explain
how they are generated in this system, together with exten-
sive measurement results by composing queries on top of the
change cubes.

3.1 Change Cube Definition
To systematically handle changes in network telemetry, we
leverage the concept of change cubes. Change cubes are used
in databases [8] to tackle the data change exploration prob-
lem by efficiently identifying, quantifying, and summarizing
changes in data values, aggregation, and schemas. Change
cube defines a set of schemas for changes and provides a set
of query primitives. However, changes in network telemetry
are different from those in databases in two aspects: (1) Net-
work telemetry generates streaming data with constant value
changes, so the change cubes in network telemetry do not
care about value changes but only changes in schema and
data aggregation. (2) Network telemetry has frequent changes
due to fast advances of hardware and software that result in
data semantics changes.
Change cubes. We define a change cube to be a tuple <
Time,Entity,Property,Type,Dependency >. We summarize
each field of the change cube in Table 1 and explain below.
• Time dimension captures when the change happens. It de-

pends on the granularity we detect changes, e.g., seconds,
minutes, or days.

• Entity represents a measurement object, e.g. a switch, a
linecard, as well as the models that describe what to mea-
sure and how.

• Property contains the fields or attributes of the entity that
get changed. For example, a loopback IP address of a switch,
an ingress packet drop of an interface.

• Layer dictates the layer or component in the telemetry sys-
tem (in Figure 1) where changes happen. We discuss how
we land in these choices in §4.

• Dependency dimension contains a list of other changes
that this change is correlated with. Each item in the list is a
<ChangeCube, Dependency Type> pair. We support two
dependency types: correlation dependency and derivation
dependency. Derivation dependency means that a lower-
layer change causes an upper-layer change. Correlation
dependency means two changes on correlated entities or
properties.

Primitives on change cubes. Next, we introduce the opera-
tors on the change cube, which are used to explore the change
sets. We leverage the operators proposed in [8] but redefine
and expand them in the context of telemetry systems.
• Sort f (C) applies function f to a set of change cubes C, on

one or a few dimensions to a comparable value, and uses
it to generate an ordered list of C. In our problem, sort is
mainly used with time to focus on the most recent changes.

• Slicep(C) means selecting a subset of C where the predicate

964 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Dimension Sub category Examples
Time Multiple time granularities Second, minute, hour, day
Entity Intent model High-level intent, e.g., packet drops at spine switches

Vendor-agnostic data model Counter scope, unit
Vendor-specific data model Format, API
Job model Collection channel, frequency, protocol
Derived model Derived network switch

Property Model fields IP address, network type
Change attributes LoC, reason

Layer Application Adding alert to detect a new failure type
Network-wide processing Topology discovery code logic
Device-level processing Normalization rule
Collection infrastructure Codebase for collection tasks

Dependency Correlation dependency BGP session and interface status
Derivation dependency Circuit is derived from two interfaces’ data

Table 1: Change Cube Definition.

p is true. It is used to filter an entity or a property value.
• Splita(C) partitions C to multiple subsets by attribute a.

An example is to split the changes by the layer to group
changes according to where they occur. A reverse operator
to Split is Union, which combines multiple change sets.

• Rank f (PC) After we split C to multiple sets PC, we further
analyze these sets and rank them based on a function, e.g.,
cube size, the time span, the volatility.

• TraceU p(c) and TraceDown(c). These two operators are
used with the Dependency field, which are new compared
to [8]. The former traces the changes that the current change
c depends on, and the latter traces the changes that depend
on the c. They are useful for debugging through layers and
validation across data.
Explicitly tracking changes in a structured representation

eases the diagnosis process. Considering the second example
in §2.1, when the switch software is updated, it populates a
change cube to the database, indicating the API’s return result
has changed. Consequently, it triggers another change cube
at the counter model level on this specific CPU counter. This
change cube in turn propagates through the monitoring stack
to job changes and retrieved data changes. The applications
using the CPU counters can subscribe to such data change,
which can then be notified immediately. The chain of change
notifications eliminates the post-mortem debugging after the
counter change causes application errors.

3.2 Changes in PCAT
Leveraging change cubes, we provide the first systematic
study of changes and their impact on network telemetry
systems. We populate change cubes of PCAT using multi-
ple ways. For the data stored in database, we leverage our
database change pub/sub infrastructure [39]. We subscribe to
the telemetry objects’ change log and translate them to change
cubes. For code changes in collection infrastructure, data
processing logics (both device-level and network-wide), and

Queries Formulas

Q1 (Fig. 2a) SortTime(Week)(Slicelayer=“application”(C))

Q2 (Fig. 2a) SortTime(Week)(Sliceentity=“vendor−agnostic data model”(C))

Q3 (Fig. 2c) ∑
c

c.LoC,c ∈ SplitTime(Week)(Slicelayer=“application”(C))

Q4 (Fig. 3a) SortTime(Day)(Sliceentity=“ job model” & property=“ f requency”(C))

Q5 (Fig. 3b) Splitnetwork type(Sliceentity=“ job model” & property=“ f requency”(C))

Q6 (Fig. 3c) Splitnetwork type(Sliceentity=“ job model” & property=“channel”(C))

Q7 (Fig. 4a) Splitblueprint type(Slicelayer=“application” & reason=“blueprint”(C))

Q8 (Fig. 4b) Splitvender(Slicelayer=“application” & reason=“new model”(C))

Table 2: Queries used in §3.2.

applications, we parse the logs in the code version control sys-
tem to generate change cubes. Intent model, data model (both
vendor-agnostic and -specific), and job model changes are cod-
ified and thus tracked through code changes [41]. They can be
populated using the same way as other code changes. We store
all change cubes to a separate database called ChangeDB and
develop APIs to explore these changes.

We analyze changes from the perspectives of devices, col-
lection configurations, and application intents, over seven
years (2012-2019). Our results below uncover surprisingly
frequent changes and quantify the diverse causes of changes.

3.2.1 Change Overview
Change frequency. We first quantify the code changes of
our monitoring system. We map one code commit to one
change cube, involving multiple lines of code across multiple
files. We group the changes into three categories according
to where they happen in Figure 1: collection infrastructure
(bottom layer), data & job models and processing (middle
two layers), and applications, representing the infrastructure,
data, and intent respectively. We construct queries using the
primitives defined earlier. We put the actual query to generate
the figures in Table 2. Q1 uses Slice to filter the changes in ap-
plication layer, and sorts the changes by time. We replace the
“application” with other values for changes in other layers. Q1

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 965

2012-1
2

2013-1
2

2014-1
2

2015-1
2

2016-1
2

2017-1
2

2018-1
2

2019-1
2

0

10

20

30

C
om

m
it

s
p

er
w

ee
k

Collection infra.
Model and processing
Application intent

(a) Changes per week over time1.

0 5 10 15 20 25 30
Commits per week

0.00

0.25

0.50

0.75

1.00

C
D

F

Collection infra.
Model and processing
Application intent

(b) Number of changes.

100 101 102 103 104

LOC change per week

0.00

0.25

0.50

0.75

1.00

C
D

F

Collection infra.
Model and processing
Application intent

(c) Magnitude of changes.

Figure 2: Change characteristics.

Change reasons %
Collection infrastructure 67.9

Adding new devices 17.8
Topology processing 8.30

Data format 4.86
Counter processing 1.19

Table 3: Change categoriza-
tion by change reasons.

2016-1
2

2017-1
2

2018-1
2

2019-1
2

0

20

40

N
o.

of
jo

b
m

o
de

ls
p

er
da

y

Collection frequency
changes

(a) Freq. over time.
DC/PoP BB

O
ptic

al

O
th

er
s

0

10

20

30

%
of

ch
an

ge
s

25

17.1

32.9

25

(b) Collection frequency.

PoP DC BB

O
ptic

al

O
th

er
s

0

10

20

30

40

%
of

ch
an

ge
s

36.5 35.4

16.9

6.88 4.23

(c) Mngt. channel.

Figure 3: Collection configuration changes2.

O
ptic

al

FBO
SS

Ven
dor

C

Ven
dor

B

O
th

er
s

0

20

40

60

%
ch

an
ge

s

53.8

10.3 10.3
5.13

20.5

(a) Add new data type.

Lin
ec

ar
d

Sys
te

m
O

ID

Par
t num

ber

O
th

er
s

0

20

40

60

%
of

ch
an

ge
s 54.5

35.7

6.7 3.12

(b) Blueprint.

Figure 4: Network configuration changes.

can be compiled into the following SQL: SELECT COUNT(*)
FROM ChangeDB WHERE layer = “application” GROUP
BY time_week ORDER BY time_week.

Figure 2a shows the number of changes per week. We
find that types of changes vary greatly as the telemetry sys-
tem scales. More model and processing changes occur at the
beginning (the year of 2013), as we begin by adding more
counters to monitor. When the number of counters reaches a
certain scale (the year of 2016), we realize the infrastructure
needs better scalability. Thus there are more changes to refac-
tor the collection infrastructure. Application intent follows
the same trend as data changes, as adding new data is often
driven by the need from applications.

Cumulatively across time, we show the average numbers
of weekly changes of three categories in Figure 2b. They are
on the same order of magnitude, with slightly more infrastruc-
ture changes. It can be as high as 25-30 changes per week.
Note that each change is deployed on many switches and the
changes it introduces to the network is significant.
Change magnitude. We quantify the magnitude of changes
in terms of Lines of Code (LoC) using query Q3. While most
code changes are not big, some changes could touch multiple
lines due to consolidation of processing logic and refactoring.
This is obtained by first getting a slice of changes of a given
category, splitting the changes into weeks, and summing up
the LoC property. Figure 2c shows that collection infrastruc-
ture has larger changes and the application has changes with
larger volatility. We can dig into the volatility of each change
set by computing its variance and use the Rank primitive.
Both figures show there exists a significant number of large
changes. For example, there are 27 weeks with more than
1000 LoC changes for collection infrastructure. However, as
the industry’s trend is to move away from monolithic changes

1The collection and processing infrastructure were not merged into the
codebase before 2015-04; so its commits are non-trackable before that.

2The “Other” contains some changes that are hard to classify program-
matically. The same applies to Figure 4.

to many small incremental changes [13], we expect to have
more frequent small changes going forward.
Change reason categorization. We analyze the breakdown
by reason of change using Splitreason(C), which is obtained
by parsing the commit log text and adding it to the ChangeDB.
Table 3 shows that one major reason is collection infrastruc-
ture changes (67.9%). Adding new devices to the network is
the second dominant reason (17.8%). Topology processing
changes occupy 8.3%. The fourth reason is adjusting the data
formats of collection models (4.86%). Lastly, 1.19% come
from the device-level counter processing code.

3.2.2 Device-Level Changes
In our large-scale networks, we constantly add new vendors
and devices to leverage a rich set of functions and to minimize
the risk of single-vendor failures. The number of devices
increased 19.0 times and the number of vendors increased
4.7 times as observed by PCAT in six years. Even with the
same vendor, we gradually increase the chassis types, which
have different combinations of linecard slots and port speeds.
More choices of chassis types allow us to have fine-grained
customization to our network needs. Furthermore, the number
of chassis types grows from 26 to 129 (4.4×). In addition, our
in-house software switch has tens of code changes daily and
deploys once every few days [13].

3.2.3 Collection Configuration Changes
Collection frequency. Applications adjust the collection fre-
quency to balance between data freshness and collection
overhead. We first analyze collection changes by counting
daily changes of collection frequencies over time, using query
Q4. Figure 3a shows that there are constant collection fre-
quency changes over time, with more frequent changes near
December 2018 – because of tuning collection frequencies
for newly-added optical devices. We analyze collection fre-
quency changes by applying Slice on both the entity and the
property. Interestingly, Figure 3b shows that optical devices

966 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

change frequency more often (32.9%) because they cannot
sustain high-frequency data polling and thus require more
careful frequency tuning.
Management channel changes. PCAT collects data from
the management interfaces at devices. As our management
network evolves, we frequently reconfigure management inter-
faces (e.g., IP addresses, in-band vs. out-of-band interfaces).
Backbone and PoP devices have multiple out-of-band net-
work choices for high failure resiliency. Figure 3c breaks the
IP preference changes into PoPs, DCs, and Backbones. PoPs
have more frequent channel changes (36.5%) because PoPs
are in remote locations and thus have more variant network
conditions. Selecting the right channel is important to keep
the device reachable during network outages so that we can
mitigate the impact quickly.

3.2.4 Application Intent Changes
Data type changes. PCAT supports an increasing number of
diverse applications over years. Applications may add new
types of data to collect (e.g., to debug new types of failures),
or remove some outdated data. Figure 4a shows how differ-
ent vendors add new data types. Optical device vendors add
more data (53.8%) because we recently start building our own
optical management software and thus need more counter
types. Indeed, optical devices generally have more types of
low-level telemetry data compared to IP devices, e.g., power
levels, signal-to-noise ratio. They are also less uniformed
across vendors than IP devices.
Hardware blueprint changes. Hardware blueprint specifies
the internal components (chassis, linecards) of each switch
and determines what data to collect. Figure 4b shows the per-
centage of changes for hardware blueprints such as linecard
map, system Object Identifier (OID) map, part number map,
and others (e.g., OS regex map). These changes are due to net-
work operations such as device retrofit and migration. They
may cause data misinterpretation if not treated carefully.

4 Change Tracking in Telemetry System
In this section, we describe the layering design of our current
intent-based telemetry system to help track changes.

4.1 Towards change-aware telemetry
Intent modeling. We use a thrift-based modeling language
that empowers network engineers to easily specify their mon-
itoring intents. Compared to other intent language proposed
in academia [19, 31, 32], our language puts more emphasis
on device state in addition to traffic flows, and defines ac-
tions in addition to monitoring. Our language contains three
components shown in Figure 5.
• Scope captures both the device-level scope (e.g., Backbone

Router) and network-level scope, (e.g., DC fabric network).
• Monitor specifies what to monitor in a vendor-agnostic way.

For example, an intent could be capturing packet discard
for the gold-level traffic class, which will get translated

Intent Language
Scope:
owner:= string
devices:= Enum:DeviceType

Monitor:
query := select Keys from Entities

where Conditions
groupby Keys
transformby TransformFunc
reduceby ReduceFunc

Keys := String
Entities := TimeSeriesi|DiscreteEventsi
Conditions := Conditions Op Conditions | Key Sign Value
Sign := <|>|!|=|contains|!contains
Op := &|!||
TransformFunc := rate|diff
ReduceFunc := avg|max|min|p90|count|filter

Action:
alert_name := string
action_type := emitter|detector
expire_time := Integer
priority := Enum:CriticalLevel
condition := Conditions Op Conditions | Key Sign Value

Detector Rule
Scope:
owner= “Data Center Network Engineering Team”
devices= DatacenterRouter
Monitor:
Select gold_class_discards from Switches.

PhysicalInterfaces
transformby rate
reduceby avg(60)

Action:
alert_name = “Gold Class Traffic Discard High”
action_type = Detector
expire_time= 300s
priority= MAJOR
condition = gold_class_discards > 0.01

Figure 5: Intent model.

ModelDef(
name='PhysicalInterface',
properties=[PropertyDef(name='if_name',type=STRING,transform=NONE),

PropertyDef(name='if_hc_in_octets',type=INT64,transform=RATE),
PropertyDef(name='if_in_discards',type=INT64,transform=RATE),
...],

children=[ModelDef(
name='GoldQueueCounters',
properties=[PropertyDef(name='queue_name',type=STRING),

PropertyDef(name='packet_count',type=INT64),
PropertyDef(name='byte_count',type=INT64),
PropertyDef(name='packet_discards',type=INT64)]),

ModelDef(
name='SilverQueueCounters',
...),

...]),
...

Figure 6: Data model.

to a specific SNMP MIB entry or particular counters. In
the left part of Figure 5, we describe the SQL-like query
language. The keys are monitored metrics and the entities
are time-series data streams and discrete events tables. We
also support data aggregation functions such as avg, count,
filter, which aggregate samples over time and devices.

• Action includes two types: Emitter and Detector. Emitters
subscribe to discrete network events that are pushed from
devices, and define actions upon receiving these events.
Detectors allow us to write formulas for various time-series
data, and set up a threshold for the formula value as the
alerting condition. A detector example is shown in the right
part of Figure 5; it defines a detector based on the key
gold_class_discards which captures the packet drops for
gold-class traffic on a physical interface. The discard is
transformed to rate, and aggregated every 60 seconds. The
alert is triggered if the threshold is greater than 0.01.
The intent model hides low-level changes. Vendors may

change the queue drop counter names, or the mapping be-
tween queues and gold-class traffic may change. The intent
configuration remains unchanged in both cases.
Runtime system. We handle heterogeneous intents with ho-
mogeneous software infrastructure. Thanks to separation, soft-
ware engineers can focus on the runtime execution system
to solve the hard system building problems: scheduling, load
balancing, scalability, and reliability. The runtime execution
system collects data from devices according to the model,
which includes a distributed set of engines and a centralized
controller to distribute jobs and collect data from these en-
gines. The centralized controller fetches the latest collection
and job models, combines with device information in our
database, and generates a sequence of jobs to be executed

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 967

ModelDef(
...
name='GoldQueueCounters',
...

).vendor1_implementation(
name='Vendor1_Cli_Impl',
engine=CLI,
engine_options=EngineOptions(

command='show interfaces {$if_name} red drops',
parser='parse_cli_vendor1_phy_if')

).vendor2_implementation(
name='Vendor2_Thrift_Impl',
engine=Thrift,
engine_options=EngineOptions(

function='getQueueDrops($high_pri_queues)',
parser='parse_thrift_vendor2_phy_if')

)
).vendor3_implementation(

name='Vendor3_Cli_Impl',
engine=CLI,
engine_options=EngineOptions(

command='show interfaces discards {$high_pri_queues}',
parser='parse_cli_vendor3_phy_if')

)

Job(
model_tree='GoldQueueCounters ',
backend_settings=[ODS('15m')],
device_impls=[

DeviceImpl(include_filter=DeviceFilter(
os_types={OSType.VENDOR1_OS},
device_roles=['Rack Switch']),
implementation= 'Vendor1_Cli_Impl',
parser='parse_cli_vendor1_phy_if'),

DeviceImpl(include_filter=DeviceFilter(
os_types=[OSType.VENDOR2_OS],
device_roles=['Fabric Switch']),
implementation= 'Vendor2_Thrift_Impl',
parser='parse_thrift_vendor2_phy_if’),

...
])

def _parse_Cli_Vendor1_Interface_Resets (ot, data):
otn=ot.root.add_child(ot.type.root)
for line in data:

regex_match=re.match('.*\s(\d+)\s+ pkt drops', line)
if regex_match:

……
return [otn]

show interfaces eth1 red drops
……

MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
……
1 minute output rate 5M bits/sec, 5304 packets/sec

……
245 output errors, 568 pkt drops, 2 interface resets
……

Figure 7: Collection method and job model.

with a given deadline. It dispatches jobs to designated engines
based on load and latency. The engine executes the collec-
tion command, performs device-level processing, and sends
data back to the corresponding storage. The system is heavily
engineered to tackle the reliability and scalability challenges.

4.2 Change reduction w/ vendor-agnostic IR
Next, we zoom into the intermediate layer between the intent
and the runtime. The high-level monitoring intent is translated
to the intermediate representation data model, which gets
mapped to the vendor-dependent collection model, and finally
is materialized to the job model on each device. We emphasize
that how the modular design principle is translated to different
models in order to limit the impact of changes.
Vendor-agnostic intermediate representation (IR) data
model. The data model is created based on the keys field
in the intent model. It specifies data schema in the following
way, as shown in Figure 6.
• Hierarchical. We choose a tree structure as an intermediate

representation, called the model tree. An example is shown
in Figure 7. An AggregateInterface model has multiple
child models, e.g., PhysicalInterface, BGPSessions. A
PhysicalInterface also has multiple child models. Mod-
els are like templates waiting to be filled in. When they
are materialized by actual monitoring data, we call them
objects. By organizing the materialized objects in the same
hierarchy as the model tree and adding a dummy root to
connect up the top-level objects, we get a materialized ob-
ject tree. The models define the data to be collected, which
is derived from the keys field in the intent model.

• Typed. The data model defines the types of data to make
interpretation of the data easier, e.g., if_hc_in_octets is
the incoming traffic in octets.

• Processing instruction. It also defines basic processing
primitives to go with the data using the trans f orm field,
e.g., computing a per-second rate from consecutive abso-
lute counts. Both the type and the processing instruction are
determined by the intent. Placing all the processing logic in
a separated blob makes it much easier to track the changes

in processing logic.
Vendor-dependent collection model. The IR model is fur-
ther compiled down to vendor-specific counter names, spe-
cific commands to use, e.g., a CLI command, Thrift func-
tion name. Figure 7 shows two collection methods for the
GoldQueueCounters data model: CLI and thrift. In each
implementation, we define the collection API and the post-
processing function in the parser field. We show an example
of the CLI parser function that matches the regex in the output
of a command on the vendor1 device. Creating this layer of
model separately allows us a place to capture all changes due
to vendor format and API changes, which are quite common.
Vendor-dependent job model. The job model combines the
collection method with a concrete set of devices, shown in Fig-
ure 7. The implementation field matches with what is defined
in the collection method. Instead of defining a job spec for
each device, we group devices and apply the same job spec for
all of them. Figure 7 uses DeviceFilter to define device role
(e.g., rack switches), OS type, region, device state, etc. Job
models are the input to the runtime execution to handle job
scheduling and manage job completion. Job model captures
the system aspects of changes. It can be adapted according to
performance and scalability requirement, which is indepen-
dently controlled from the intent or data specifications.

5 Change Exploration

Once PCAT collects data based on monitoring intents, we run
device-level and network-level processing to report the data
back to applications. Below, we build a few change-aware
applications by exploring dependencies across change cubes.

5.1 Change-driven Topology Derivation
Toposyncer is our topology generation service, part of the
collection infrastructure (see network-wide data processing
in Figure 1). It creates derived topology from normalized
device-level data (i.e., in vendor-agnostic format) (Figure 8).
For example, from per-device data (e.g., interface counters,
BGP sessions), Toposyncer constructs the device, its chassis,
linecard, as well as cross-device links.
Toposyncer overview Toposyncer has four processes: (1)
Sync_device constructs nodes with multiple sub-components:
sub-switches, chassis, line cards (line 2-11 in Figure 9). It also
derives device-level attributes such as power and temperature,
control and management plane settings. (2) Sync_port derives
physical and logical interfaces on each node and their settings
(IP address, speed, QoS) (line 12-13). (3) Sync_circuit con-
structs cross-device circuits. A circuit is modeled as an entity
with two endpoints, pointing to the interface of each end’s
router [41]. For each interface, it searches for all possible
neighbors based on various protocol data, e.g., LLDP, MAC
table, LACP table. In case some data source is incomplete,
we search all data sources, independently identify all possible
neighbors from each data source, and consolidate the results.

968 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Linecard
Normalized
device data

Routing control

Physical if Logical if

Queue

Device Hardware blueprints
System OID map

Linecard mapLinecard

Physical if Logical if

Circuit

DeviceDesired model

Derivation
Correlation

Matching?

Sync_device Sync_circuitSync_port Sync_protocolToposyncer

Routing control

Linecard

Physical if Logical if

Circuit

DeviceDerived topology

Routing control

Drainer Audits MPLS
Assets

management
…Alerts

Applications

Figure 8: Data dependency graph. Toposyncer consumes the device data,
desired model and hardware blueprints to generate derived data. PCAT
verifies the derived data with the desired model.

1: procedure DERIVETOPOLOGY(Collection, Desired,
HdwTemps, DependencyG)

2: for d ∈ Desired.Devices do
3: DeviceObj, dep = sync_device(Collection, d)
4: DependencyG.add(dep)
5: blueprint = getBlueprint(HdwTemps, d)
6: for chassis_temp ∈ blueprint do
7: derived_chassis = sync_chassis(Collection,

chassis_temp)
8: for linecard_model ∈chassis_temp do
9: derived_chassis.add(sync_linecard(Collection,

linecard_model))
10: DeviceObj.addchassis(derived_chassis)
11: DeviceObjs.add(DeviceObj)
12: for d ∈ DeviceOb js do
13: derived_ifaces = sync_port(Collection, d)
14: for i f ace ∈ derived_i f aces do
15: neighbors.add(findNeighbors(iface, Collection))
16: circuits = sync_circuits(iface, neighbors)
17: sync_protocol(Collection, circuits)
18: procedure UPDATETOPOLOGY(UpdateQ, DependencyG)
19: while U pdateQ 6= /0 do
20: changei = UpdateQ.pop()
21: dependent_objs = changei.Dependency
22: update_func=findFunc(dependent_objs)
23: update_func(dependent_objs, changei)

Figure 9: Toposyncer algorithm

(4) Sync_protocol creates the protocol layers on top of the
circuits, such as OSPF areas, BGP sessions and their states.

Toposyncer uses two additional data sources as templates
to guide the construction: the desired model which defines
the operator’s intent topology and hardware blueprints which
include hardware specifications, as shown at the bottom in
Figure 8. Figure 9 shows the process. It uses desired device
data (names, IP addresses) to decide what device to derive
(line 2). Then, it uses the hardware blueprints and desired
data to handle ambiguity. For instance, to figure out “what
is this chassis”, it first checks the discovered chassis name
in raw data from the device. But often the discovered name
is not uniquely mapped to a chassis but to several possible
chassis versions, e.g., two versions with 4 linecards, one ver-
sion with 8 linecards. Toposyncer cross-checks with hardware
blueprints and picks the best match3 (line 6-8). This process
is similar to other topology services [29, 41], but we focus
on derived models and how we populate them automatically
from telemetry data.
Improve Toposyncer with change cubes. Our first imple-
mentation of Toposyncer did not utilize changes. It ran pe-
riodically against the latest snapshots of collected data at
a fixed frequency (e.g., 15 minutes). This method leads to
stale derived data, which affects the freshness and accuracy
of upper-layer applications. Another challenge is debugging.
When a piece of data (e.g., a circuit) is missing in the de-
rived topology, it is hard to find out whether it is because of a
raw data change, a normalized data change, a desired model
change, a hardware blueprint change, or other reasons. We
tackle these problems using change cubes and the dependency
primitives below.

3When the guess is wrong, it exhibits as a discrepancy between desired
and derived topology. We add alarming to detect such differences and involve
humans to manually investigate.

Build change cubes. We generate change cubes for nor-
malized data, desired model, hardware blueprint, as well as
Toposyncer code changes, shown as each dotted box in Fig-
ure 8. We generate these cubes by parsing database transaction
logs and model/code changes from version control system
logs and publish them to ChangeDB. For example, when an
operator changes the configuration of an SNMP MIB for a
device, we generate a record to the DB.

Derivation dependency. We populate the derivation de-
pendency across change cubes A and B if we derive data
A from data B. In the above example, the MIB change will
result in multiple change cubes of job models. We build the
dependency between the MIB config change and the rest of
job model changes. Figure 8 shows derivation dependency in
solid arrows across objects in different layers (each large dash
box representing a layer). The dependency exists between
data objects as well as between code and data.

Subscription to change cubes. Toposyncer subscribes to
the change cubes and invokes corresponding processing logic
accordingly, shown in line 19-23. For example, sync_port sub-
scribes to the device data (e.g., Thrift_Fboss_Linecards).
Snmp_entPhysicalTable), and a hardware blueprint (i.e.,
linecard map). If the hardware blueprint changes, i.e., the
same linecard name is mapped to a different hardware
blueprint, the change cube will be published and sync_port
triggers its function sync_phy_iface function on the impacted
interfaces. Similar pub/sub relation is also built between appli-
cations and derived data. For instance, as shown in Figure 8,
a drainer application subscribes to interface status and the
routing control messages to determine if it is safe to perform
an interface drain operation.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 969

5.2 Improve Trust on Data Quality
Real-world telemetry data may contain dirty or missing data.
By exploring the change history, one can better judge whether
the current values are trustworthy. Observing patterns of data
changes can help predict the occurrences of future changes
and identify missing changes.
Correlation dependency. Amongst normalized device data
or derived data, data have relationships between them, shown
as dash arrows within each large dash box in Figure 8. The re-
lationship represents the physical dependency across objects,
such as “contain”, “connect”, “originate”. Previous topology-
modeling works Robotron [41] and MALT [29] focus on the
desired model and the correlation dependency in it. The de-
sired model is built for the purpose of capturing topology
intents and generating configurations. Here we use the model
together with change cubes to verify if the actual topology’s
change is legit by comparing it against the desired models. A
change cube generated from the desired object should have a
matching change cube in the derived object, and vice versa.
This can be done with a Slice on the entity, Sort by time, and
compare the Entity of the changes.

This correlation dependency can also be used for cross-
layer validation of data quality. We implement if-then vali-
dation rules based on the correlation dependency on change
cubes. We give two examples below. One use case is hard-
stop fault detection. One rule is that if the logical interface
fails (i.e., a specific change cube on a logical interface), then
the routing session going through it will also fail (i.e., another
change cube on the routing session must exist). If we observe
significant errors at the lower layer but no upper failure, it
indicates a measurement issue. In another use case, the ag-
gregate interface consists of multiple physical interfaces. If
a member physical interface reports packet errors, then the
packet errors from aggregated interface should be larger than
or equal to the physical interface errors. If the rule is not satis-
fied, it indicates some issues. These cross-layer dependencies
can help us detect change-induced problems more quickly.

6 Evaluation
This section evaluates how the layer design of PCAT has
helped with change tracking and how much benefit the change
cube method has brought to use cases.

6.1 Change tracking implementation
First, we examine whether tracking all the changes is even
feasible in a production environment. We show the change
cube data volume grows with time in Figure 10a. Drawing
from the experiences of Facebook’s data infrastructure team,
we employ a two-tier storage solution. We have an in-memory
database to hold the change data for the most recent 30 days
and have a disk-based SQL database for longer historical data.
At the same time, the change data is published to our pub-
lish/subscribe system [4] for real-time propagation. Next, we

0 5 10 15 20 25 30
Days

0M

5M

10M

15M

#
of

T
op

os
yn

ce
r

ch
an

ge
cu

b
es

(a) # of change cubes over time.

27 28 29 30 31 32
Query time (second)

0.00

0.25

0.50

0.75

1.00

C
D

F

(b) Query distribution time.

Figure 10: Scalability and performance of change tracking.

2016-1
2

2017-0
6

2017-1
2

2018-0
6

2018-1
2

2019-0
6

2019-1
2

0K

50K

100K

L
O

C
ch

an
ge

s Infrastructure

Configurations

(a) LoC changes over time.
2016-1

2

2017-0
6

2017-1
2

2018-0
6

2018-1
2

2019-0
6

2019-1
2

0

50

100

150

200

N
o.

of
en

gi
ne

er
s

Software engineers

Network engineers

(b) Engineers over time.

Figure 11: Separating configurations with telemetry infra.

evaluate the performance of exploration using the primitives
defined in §3.1, which is implemented using SQL statements.
Figure 10b shows the query distribution time for data stored
on disk, most of which centers around 27-32 seconds, due to
the large data volume. For shorter duration of data in memory,
it takes less than one second.

6.2 Benefits of separation
Analyzing change data over time helps us evaluate the long-
term benefit of the layer design. We show it from three aspects.
Decoupled evolvement of configurations and infrastruc-
ture. We categorize changes broadly to configuration changes
vs. infrastructure changes. We quantify the magnitude of the
change using the Lines of Code (LOC) change. Figure 11a
shows that the changes for configurations are 3.1 times more
than core collection infrastructure changes. The sudden jumps
for configurations in January 2019 are due to adding a large
set of optical devices, which was not monitored by PCAT.
The second increase around July 2019 is due to the migration
to Gen3, resulting in a large number of new models added.
The result shows that we increase the monitoring scope by
configuration layer changes with a stable infrastructure.
Scaling with divided responsibility. The separation in soft-
ware systems has a long-term impact on the organization
growth and people aspects. In Figure 11b, we analyze the
change authors and categorize by their roles. It shows the
number of network engineers who have made changes to con-
figurations is increasing at a much faster pace than software
engineers, with 7.2 times more people recently. The increase
around June 2019 is due to both migration to Gen3 and adding
more optical devices to monitor. It is clear that both of these
changes are carried out by network engineers. It shows that
PCAT enables network engineers to work on different network
types while a small number of software engineers maintain in-
frastructure. It will boost a healthy collaboration environment
where each team can play by their strength.
Confining the impact of changes. We use the number of
change cubes as an approximate of the volume of changes.

970 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2016-1
2

2017-0
6

2017-1
2

2018-0
6

2018-1
2

2019-0
6

2019-1
2

0

20

40

N
o.

of
ch

an
ge

cu
b

es
p

er
w

ee
k

Data model
Job Model
Device-level
Network-wide

(a) Change cubes across time.

0 5 10
No. of change cubes per week

0.00

0.25

0.50

0.75

1.00

C
D

F

Device-level Gen2
Network-wide Gen2

Gen3
Gen3

(b) CDF of change frequency.

Figure 12: Change cube frequency.

Dat
a

m
odel

Jo
b

m
odel

Dev
-le

ve
l

Net
-w

id
e

Dat
a+

Jo
b

Dat
a+

Dev
-le

ve
l

Jo
b+

Dev
-le

ve
l

Dat
a+

Jo
b

+
Dev

-le
ve

l

0

25

50

%
of

co
rr

el
at

ed
ch

an
ge

s

7.6

54.3

1.4
13.820.1

0.5 1.6 0.6

(a) Overall correlations.

Dev
-le

ve
l

Dat
a

+
Dev

-le
ve

l Jo
b

+
Dev

-le
ve

l

Dat
a+

Jo
b

+
Dev

-le
ve

l

0

50

100
%

of
co

rr
el

at
ed

ch
an

ge
s

45.1

9.8
31.4

13.7

86.4

4.5 9.1
0.0

Gen2 Gen3

(b) Device-level correlations.

Figure 13: Correlated changes.

Figure12a shows its trends across time for data models, job
models, device-level processing, and network-wide process-
ing. The maximum numbers range from 15 to 50 for different
categories. The models (data and job) have more changes due
to the frequent intent changes. The infrastructure layers (de-
vice and network-wide processing) are more stable. Recently
there are more data model and job model changes, because
of Gen2-to-Gen3 migration. To directly illustrate the benefit
of modular design in Gen3 (§4.2), Figure12b compares the
frequency of change cubes for device-level and network-wide
processing in Gen2 and Gen3 (after 2019-02). We observe that
the average change frequency for network-wide processing in
Gen3 is 38.1% lower than Gen2, while device-level remains
similar. This means the modular design in Gen3 further pre-
vents the changes in lower data model and job model layers
from impacting upper processing layers, confining the impact
of lower-layer changes. Note that we discounted the changes
due to Gen2-to-Gen3 migration to have a fair comparison.
Reducing correlated changes. We find change cubes that oc-
cur close in time as correlated changes (e.g., data and job mod-
els are modified in the same commit). We show that PCAT’s
way of separating layers and models has helped reduce cor-
related changes. We first present the breakdown of different
correlation combinations in both generations in Figure 13a.
The largest combination is data and job, accounting for 20.1%.
It is because adding new devices requires adding both data and
job models. There are a small fraction of changes that require
updating data, job, and device-level processing all together.
Most of them are due to adding some specific counters that
require special processing. Figure13b further breaks down
all correlated changes related to device-level processing for
Gen2 and Gen3. It shows that Gen3 has significantly reduced
the correlated changes by 54.1%, 71.0%, and 100.0% (i.e.,
the second-to-last bar pairs) accordingly.

6.3 Benefits of change-driven Toposyncer
The first benefit is explicitly tracking changes in a centralized
manner. Figure14a shows the magnitude of the changes over

0 5 10 15 20 25 30
Days

0M

0.5M

1M

1.5M

2M

N
o.

of
ch

an
ge

s
p

er
da

y

(a) No. of changes to Toposyncer.

0 50 100 150 200 250
Lagging reduction (Seconds)

0.00

0.25

0.50

0.75

1.00

C
D

F

ISIS interface

BGP session

(b) Lagging reduction.

Figure 14: Change-driven Toposyncer.

time to Toposyncer. Note that this is much higher than the
changes presented earlier, since it includes the changes of raw
data for network states.

The second benefit lies in the efficiency and accuracy im-
provement to applications. We evaluate it using the lagging
time, i.e. the time between the change happening and when
changes are reflected in derived topology by Toposyncer. Fig-
ure 14b shows the topology derivation is much more timely:
reducing 118.76s lagging time for ISIS interface updates, and
108.93s for BGP session state updates, averagely.

7 Lessons and Future Directions

We discuss our lessons from building PCAT and the opportu-
nities for future research.
Efficiency vs. adaptivity. We work closely with vendors to
improve the efficiency of data collection primitives at switches
(similar to academic work on reducing memory usage and
collection overhead with high accuracy [24,26,46]). However,
pursuing efficiency brings us challenges on adaptivity. Dif-
ferent devices have different programming capabilities and
resource constraints to adopt efficient algorithms. Introducing
new primitives also adds diversity and dynamics to upper
layers in the telemetry system. For example, we work with
vendors to support a sophisticated micro-burst detection on
hardware. However, if only a subset of switches supports this
new feature, applications need complex logic to handle de-
tected and missed micro-bursts. Thus we have a higher bar
for adopting efficient algorithms due to adaptivity concerns.

To support diverse data collection algorithms, we need
a full-stack solution with universal collection interfaces at
switches and change-aware data processing and aggregation
algorithms. Recent efforts on standardizing switch interfaces
such as OpenConfig [3] is a great first step but does not put
enough emphasis on standardizing telemetry interfaces. Re-
cent trends on open-box switches (e.g., FBOSS [13]) bring
new opportunities to develop adaptive telemetry primitives.
Trustful network telemetry. Telemetry becomes the founda-
tion for many network management applications. Thus we
need to know which data at which time period is trustful. How-
ever, building a trustful telemetry system is challenging in an
evolving environment with many changes of devices, network
configurations, and monitoring intents. Fast evolution also
introduces more misconfigurations and software bugs. Explic-
itly tracking change cubes and exploring their dependencies
in PCAT is only the first step.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 971

We need more principled approaches for telemetry verifi-
cation and validation across monitoring intents, data models,
and collection jobs. Compared with configuration verification
work [7, 35], telemetry verification requires quantifying the
impact of changes to the measurement results. One opportu-
nity is that we can leverage cross-validations across multiple
counters covering the same or related network states or across
aggregated statistics over time. For example, we collect power
utilizations (watts) from both switches and power distribution
units (PDUs). In this way, we can validate the correctness of
these utilization counters by comparing the PDU value with
the sum of switch values.

Telemetry systems are complex time-series databases. We
can leverage provenance techniques [12] to support change
tracking, data integration, and troubleshooting. One challenge
is that we cannot build a full provenance system due to vendor-
proprietary code and network domain-specific data aggrega-
tion algorithms. There are also unexpected correlation depen-
dencies across data.
Integration between telemetry and management applica-
tions. Our production networks are moving towards self-
driving network management with a full measure-control
loop. PCAT shows that changes bring a new complexity to
the measure-control loop. Control decisions not only affect
the network state that telemetry system captures but also the
telemetry system itself. For example, an interface change may
affect a counter scope. A traffic engineering control change
may affect data aggregation because traffic traverses through
different switches. These telemetry data changes in turn affect
control decisions. We need to identify solutions that can feed
control-induced changes directly into the telemetry systems.

Another question is how to present large-scale multi-layer
telemetry data to control applications. Rather than providing
a unified data stream, control applications can benefit from
deciding what time, at what granularity, frequency, and avail-
ability level for data collection and the resulting overhead and
accuracy in the telemetry system. One lesson we learned is
to have the telemetry data available when it is mostly needed.
For example, the network’s aggregated egress traffic counter,
which is collected at the edge PoPs, is a strong indicator of
the business healthiness. To ensure its high availability, we
need to give control applications the option to transfer the
counter on more expensive out-of-band overlay networks.
Moreover, we may extend the intent model to explicitly ex-
press the reliability-cost tradeoffs and adapt the tradeoffs
during changes. We also need new algorithms and systems
that can automatically integrate data at different granularities,
frequencies, and device scopes to feed in control applications.

8 Related Work
Network evolvement. Several existing works have also
pointed out the importance of considering changes. Both
Robotron [41] and MALT [29] discuss it in the context of
topology modeling, but miss the practical challenges of net-

work monitoring. [16] discusses network availability during
changes, while we focus on telemetry systems during changes.
Other monitoring techniques. PCAT is a passive approach.
Active measurement injects packets into the network [14, 17,
18,34,49], and they are complements to passive measurement.
The design principle of PCAT to handle changes can be ap-
plied to existing monitoring systems [20, 25, 36, 44, 48, 50],
languages and compilers [9, 19, 32, 33]. PCAT also bene-
fits from recent software-defined measurement frameworks
[25, 27, 32, 46, 48]. For example, similar to OpenSketch [48],
PCAT frees network engineers from configuring different
measurement tasks manually. PCAT ’s intent model design
borrows ideas from the query language in Marple [32].
There are many memory-efficient monitoring algorithms
[22, 23, 26, 30, 46] that focus on the expressiveness and per-
formance of network monitoring. They provide adaptivity but
only to a limited type of new queries, resource changes, or
network condition changes. Here, PCAT focuses on a broader
set of adaptivity (e.g., adaptive to counter semantics changes,
data format changes, and more).
Dependency in network management. Dependency graph
has been widely used for root cause localization [5, 6, 37, 42,
43, 47, 50]. Statesman [40] captures domain-specific depen-
dencies among network states. We share some similarities but
use dependency to tackle the change propagation.
Techniques from database and software engineering.
Data provenance [12, 15] encodes causal relations between
data and tables in metadata. Several works [11, 45] apply
provenance to network diagnosis. [8] proposes the change
cube concept and applies it to real-world datasets. All the
above works focus on data face-value. On the other hand, soft-
ware engineering community studies the problem of how
a change in one source code propagates to impact other
code [21, 51]. Ours looks at changes from telemetry systems
from both data, configurations, and code.

9 Conclusion
This paper presents the practical challenge of a monitoring
system to support an evolving network in Facebook. We pro-
pose explicitly tracking changes with change cubes and ex-
ploring changes with a set of primitives. We present extensive
measurements to illustrate its prevalence and complexity in
production, then share experiences in building a change-aware
telemetry system. We hope to inspire more research on adap-
tive algorithms and evolvable systems in telemetry.

Acknowledgments
We thank our shepherd Chuanxiong Guo and the anonymous
reviewers for their insightful comments. Yang Zhou and Min-
lan Yu are supported in part by NSF grant CNS-1834263.

972 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Express backbone. https://engineering.fb.com/d
ata-center-engineering/building-express-ba
ckbone-facebook-s-new-long-haul-network/.

[2] Introducing proxygen facebook c++ http framework.
https://code.fb.com/production-engineering
/introducing-proxygen-facebook-s-c-http-fr
amework.

[3] OpenConfig YANG model. http://www.openconfig
.net/projects/models/.

[4] Scribe. https://github.com/facebookarchive/s
cribe.

[5] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Boon Thau Loo, and
Geoff Outhred. 007: Democratically finding the cause
of packet drops. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
18), pages 419–435, 2018.

[6] Paramvir Bahl, Ranveer Chandra, Albert Greenberg,
Srikanth Kandula, David A Maltz, and Ming Zhang.
Towards highly reliable enterprise network services via
inference of multi-level dependencies. ACM SIGCOMM
Computer Communication Review, 37(4):13–24, 2007.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 155–168, 2017.

[8] Tobias Bleifuß, Leon Bornemann, Theodore Johnson,
Dmitri V Kalashnikov, Felix Naumann, and Divesh Sri-
vastava. Exploring change: a new dimension of data an-
alytics. Proceedings of the VLDB Endowment, 12(2):85–
98, 2018.

[9] Kevin Borders, Jonathan Springer, and Matthew Burn-
side. Chimera: A declarative language for streaming
network traffic analysis. In Presented as part of the 21st
{USENIX} Security Symposium ({USENIX} Security
12), pages 365–379, 2012.

[10] Jeffrey D Case, Mark Fedor, Martin L Schoffstall, and
James Davin. Simple network management protocol
(snmp). Technical report, 1990.

[11] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao
Zhou, and Boon Thau Loo. The good, the bad, and
the differences: Better network diagnostics with differ-
ential provenance. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 115–128. ACM, 2016.

[12] James Cheney, Laura Chiticariu, Wang-Chiew Tan, et al.
Provenance in databases: Why, how, and where. Foun-
dations and Trends® in Databases, 1(4):379–474, 2009.

[13] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (SIG-
COMM), pages 342–356. ACM, 2018.

[14] Cisco. Ip slas configuration guide, cisco ios release
12.4t. http://www.cisco.com/c/en/us/td/docs/
ios-xml/ios/ipsla/configuration/12-4t/sla-
12-4t-book.pdf.

[15] Mahmoud Elkhodr, Belal Alsinglawi, and Mohammad
Alshehri. Data provenance in the internet of things.
In 2018 32nd International Conference on Advanced
Information Networking and Applications Workshops
(WAINA), pages 727–731. IEEE, 2018.

[16] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 58–72. ACM, 2016.

[17] Nicolas Guilbaud and Ross Cartlidge. Google localiz-
ing packet loss in a large complex network. Nanog57,
Feb 2013.

[18] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
pages 139–152, 2015.

[19] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proceed-
ings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 357–371, 2018.

[20] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, David Mazières, and Nick McKeown. I know what
your packet did last hop: Using packet histories to trou-
bleshoot networks. In NSDI, volume 14, pages 71–85,
2014.

[21] Ahmed E Hassan and Richard C Holt. Predicting change
propagation in software systems. In 20th IEEE Inter-
national Conference on Software Maintenance, 2004.
Proceedings., pages 284–293. IEEE, 2004.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 973

https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://code.fb.com/production-engineering/introducing-proxygen-facebook-s-c-http-framework
https://code.fb.com/production-engineering/introducing-proxygen-facebook-s-c-http-framework
https://code.fb.com/production-engineering/introducing-proxygen-facebook-s-c-http-framework
http://www.openconfig.net/projects/models/
http://www.openconfig.net/projects/models/
https://github.com/facebookarchive/scribe
https://github.com/facebookarchive/scribe
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/12-4t/sla-12-4t-book.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/12-4t/sla-12-4t-book.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/12-4t/sla-12-4t-book.pdf

[22] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. Sketchvisor:
Robust network measurement for software packet pro-
cessing. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
113–126, 2017.

[23] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketch-
learn: Relieving user burdens in approximate measure-
ment with automated statistical inference. In Proceed-
ings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 576–590, 2018.

[24] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng
Zhu, and Yungang Bao. Omnimon: Re-architecting
network telemetry with resource efficiency and full ac-
curacy. In Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and
protocols for computer communication, pages 404–421,
2020.

[25] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Flowradar: A better netflow for data centers. In 13th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16), pages 311–324, 2016.

[26] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the
ACM Special Interest Group on Data Communication,
pages 334–350. 2019.

[27] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 101–114, 2016.

[28] Chris Lonvick. The bsd syslog protocol. Technical
report, 2001.

[29] Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao.
Experiences with modeling network topologies at mul-
tiple levels of abstraction. In 17th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 20), pages 403–418, 2020.

[30] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Scream: Sketch resource allocation for
software-defined measurement. In Proceedings of the
11th ACM Conference on Emerging Networking Experi-
ments and Technologies, pages 1–13, 2015.

[31] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers

in data centers. In Proceedings of the 2016 ACM SIG-
COMM Conference, pages 129–143, 2016.

[32] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
85–98, 2017.

[33] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford,
and David Walker. Compiling path queries. In 13th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16), pages 207–222, 2016.

[34] Yanghua Peng, Ji Yang, Chuan Wu, Chuanxiong Guo,
Chengchen Hu, and Zongpeng Li. detector: a topology-
aware monitoring system for data center networks. In
2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 55–68. USENIX Association, 2017.

[35] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand,
Brighten Godfrey, and Matthew Caesar. Plankton: Scal-
able network configuration verification through model
checking. In 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20), pages
953–967, 2020.

[36] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In ACM SIGCOMM Computer Com-
munication Review, volume 45, pages 123–137. ACM,
2015.

[37] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C
Snoeren. Passive realtime datacenter fault detection and
localization. In 14th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
17), pages 595–612, 2017.

[38] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan
Katz-Bassett, Harsha V Madhyastha, Italo Cunha, James
Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng.
Engineering egress with edge fabric: Steering oceans of
content to the world. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 418–431. ACM, 2017.

[39] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang,
David Callies, Abhishek Choudhary, Laurent Demailly,
Thomas Fersch, Liat Atsmon Guz, Andrzej Kotulski,
Sachin Kulkarni, Sanjeev Kumar, Harry Li, Jun Li, Ev-
geniy Makeev, Kowshik Prakasam, Robbert Van Re-
nesse, Sabyasachi Roy, Pratyush Seth, Yee Jiun Song,
Benjamin Wester, Kaushik Veeraraghavan, and Peter

974 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Xie. Wormhole: Reliable pub-sub to support geo-
replicated internet services. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 15), Oakland, CA, May 2015. USENIX Associa-
tion.

[40] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan,
Ming Zhang, and Ahsan Arefin. A network-state man-
agement service. In Proceedings of the 2014 ACM con-
ference on SIGCOMM, pages 563–574, 2014.

[41] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong,
and Hongyi Zeng. Robotron: Top-down network man-
agement at facebook scale. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 426–439. ACM,
2016.

[42] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with path-
dump. In 12th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 16), pages
233–248, 2016.

[43] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
Netbouncer: active device and link failure localization
in data center networks. In 16th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 19), pages 599–614, 2019.

[44] Mea Wang, Baochun Li, and Zongpeng Li. sFlow: To-
wards resource-efficient and agile service federation in
service overlay networks. IEEE, 2004.

[45] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. Zeno:
Diagnosing performance problems with temporal prove-
nance. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), pages
395–420, 2019.

[46] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve

Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 561–575. ACM, 2018.

[47] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca,
Tianrong Zhang, Karl Deng, and Lihua Yuan. dshark:
a general, easy to program and scalable framework for
analyzing in-network packet traces. In 16th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 19), pages 207–220, 2019.

[48] Minlan Yu, Lavanya Jose, and Rui Miao. Software
defined traffic measurement with opensketch. In NSDI,
volume 13, pages 29–42, 2013.

[49] Hongyi Zeng, Peyman Kazemian, George Varghese,
and Nick McKeown. Automatic test packet genera-
tion. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies,
pages 241–252. ACM, 2012.

[50] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry
in large datacenter networks. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, pages 479–491, 2015.

[51] Thomas Zimmermann, Andreas Zeller, Peter Weissger-
ber, and Stephan Diehl. Mining version histories to
guide software changes. IEEE Transactions on Soft-
ware Engineering, 31(6):429–445, 2005.

APPENDIX
The first step of PCAT is to collect data from devices, which

we call discovered data. There are three types of data includ-
ing numeric counters, non-numeric states, and configurations.
Table 4 shows the examples for each category.

Types Categories & examples Impact of software upgrades

Counters

Device utilization: CPU&memory utilization, routing table size, etc Ambiguity between percentage and absolute values.
Device internal status: Interface error counter, power supply tempera-
ture, fan speeds, linecard version, optical CRC error counter, etc

XML format gets changed; linecard version format
changes from integer to string.

Packet processing counters: Packet drops, errors, queue length, etc Ambiguity of interface stats meaning.
Protocol counters: BGP neighbor received routes, etc General empty data error.

States
Interface state: Interface up, down, drained, configured IP address,
MAC address, etc

Hex-decimal change causes MAC address retrieving
error.

Protocol state: BGP neighbor state, etc State meaning ambiguity.
Configs BGP policy, queuing algorithm, etc Raw config format changed.

Table 4: Different discovered data in PCAT.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 975

	Introduction
	Motivation
	Bringing changes to first-class citizens
	Lessons from Previous Generations
	Challenges and PCAT Overview

	Changes in Facebook Network Telemetry
	Change Cube Definition
	Changes in PCAT
	Change Overview
	Device-Level Changes
	Collection Configuration Changes
	Application Intent Changes

	Change Tracking in Telemetry System
	Towards change-aware telemetry
	Change reduction w/ vendor-agnostic IR

	Change Exploration
	Change-driven Topology Derivation
	Improve Trust on Data Quality

	Evaluation
	Change tracking implementation
	Benefits of separation
	Benefits of change-driven Toposyncer

	Lessons and Future Directions
	Related Work
	Conclusion

