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Abstract
With the broad deployment of distributed applications on
clouds, the dominant volume of traffic in cloud networks
traverses in an east-west direction, flowing from server to
server within a data center. Existing communication solutions
are tightly coupled with either the control plane (e.g., pre-
programmed model) or the location of compute nodes (e.g.,
conventional gateway model). The tight coupling makes it
challenging to adapt to rapid network expansion, respond to
network anomalies (e.g., burst traffic and device failures), and
maintain low latency for east-west traffic.

To address this issue, we design Zeta, a scalable and robust
east-west communication framework with gateway clusters in
large-scale clouds. Zeta abstracts the traffic forwarding capa-
bility as a Gateway Cluster Layer, decoupled from the logic
of control plane and the location of compute nodes. Specif-
ically, Zeta adopts gateway clusters to support large-scale
networks and cope with burst traffic. Moreover, a transpar-
ent Multi IPs Migration is proposed to quickly recover the
system/devices from unpredictable failures. We implement
Zeta based on eXpress Data Path (XDP) and evaluate its scal-
ability and robustness through comprehensive experiments
with up to 100k container instances. Our evaluation shows
that Zeta reduces the 99% RTT by 5.1××× in burst video traffic,
and speeds up the gateway recovery by 10.8××× compared with
the state-of-the-art solutions.

1 Introduction

With an increasing number of distributed applications (e.g.,
MapReduce [82] and Elasticsearch [32]) on the clouds, east-
west communication between instances has become the ma-
jority load (even up to 75% [17]) in cloud networks [65]. In
addition, cloud providers usually offer isolation for tenants
through Virtual Private Cloud (VPC) [77]. Therefore, it is
essential for cloud networks to support high-speed and reli-
able intra-VPC communication [83]. However, two factors
∗Gongming Zhao and Hongli Xu are the co-corresponding authors.

bring much pressure on cloud networks. On one hand, a large-
scale cloud can accommodate over 100k servers and millions
of instances with Pbps bandwidth [7], bringing congestion
risks to the network. According to the monitoring log of a
cloud with 1,500 servers, we can observe congestions that
last over 1s for more than 12,500 times in one day [38]. On
the other hand, containerization leads to centralized startup
and short life cycles of instances, which bring great dynamics
to the network. For example, Google launches several billion
containers per week into Google Cloud [31, 50].

As a result, the east-west communication between instances
faces several challenges in large-scale and highly dynamic
cloud networks. (1) Scalability. The expansion of the in-
stances scale in cloud networks leads to a rapid increase in
forwarding rules consumption. For example, the control plane
will install 487M rules for a preprogrammed network with
40k instances [22], which brings high latency on the rules
lookup and traffic forwarding. Therefore, installment of nu-
merous rules will limit the size of a single VPC and the whole
network. (2) Robustness. Although the failure probability of
a specific equipment is usually low, network abnormal events
in large-scale clouds are frequent and inevitable, including
device failures [18, 59] and burst traffic [68, 81]. They pose
severe network congestion/interruption and degrade the ten-
ants’ experience. (3) Latency. The latency of configuring
forwarding rules and establishing/resuming communication
is a crucial metric. When instances launch/migrate, some pre-
vious solutions require the control plane to inform all relevant
hosts and install/update rules, which especially affects short-
lived tasks. For example, a function task (e.g., MilliSort and
MilliQuery [47]) usually completes in milliseconds, while
it may take a few seconds to launch a function instance and
establish connection for it.

The existing east-west communication solutions in cloud
networks are usually divided into two main categories. One
is the hardware solutions, such as AWS Nitro System [6, 67],
Azure FPGA-based SmartNIC [28, 46, 61] and AliCloud P4-
based Gateway [57]. The other is the software solutions,
including the preprogrammed model (e.g., VMware NSX
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Figure 1: Three Typical East-West Communication Models. (a) Neutron model realizes layer-2 communication by learning MAC
address and utilizes DVR (qrouters) for layer-3 communication. (b) Preprogrammed model pre-installs all potential rules when
launching VMs. (c) Gateway model pre-installs default rules pointing to the gateway on the host. The gateway forwards the
header packets, and the direct path rules of elephant flows will be offloaded to the source hosts.

[39, 56]) and the gateway model (e.g., Google Cloud Hov-
erboard [22]). Considering the high cost and long develop-
ment cycles of hardware, software solutions have become
the preferred choice for many medium-sized cloud providers.
However, the existing software solutions also face several
critical disadvantages (see §2.1 for details). First, the prepro-
grammed model pre-installs numerous rules for VMs and is
coupled with the control plane. The conventional gateway
model depends on fixed gateways allocated for host zones
and is coupled with the location of compute nodes. Hence,
they lack the scalability or robustness to adapt to large-scale
networks. Second, the existing control loops are complex,
which aggravates the recovery delay in network abnormal
events, including device failure/overload and VM migration.

To overcome the above challenges, we propose a scalable
and robust east-west communication framework in large-scale
clouds, called Zeta. Zeta abstracts the traffic forwarding capa-
bility as a gateway cluster layer, decoupled from the location
and logic of other modules. Specifically, Zeta mainly proposes
the following innovative designs. (1) Zeta utilizes gateway
clusters to improve the fault tolerance of a single gateway
and leverages eXpress Data Path (XDP) [36] to accelerate
gateway forwarding, thereby enhancing the network scalabil-
ity and robustness. (2) Zeta adopts the flow table and group
table [84] to realize the intra-cluster gateway load balancing.
(3) Zeta proposes Multi IPs Migration to achieve gateway
fast recovery, which implements failover by migrating the
vIPs of the failed gateways. This scheme avoids updating the
on-host default rules pointing to the gateways, making failure
recovery transparent to hosts/tenants.

The main contributions of this paper are as follows:
• We analyze the pros and cons of existing typical east-

west communication models in large-scale clouds and
present the design principles for our framework.

• We design a prototype framework, called Zeta, to achieve
scalable and robust east-west communication in large-
scale clouds. Zeta is publicly available at https://
github.com/futurewei-cloud/zeta/.

• We evaluate the robustness and scalability of Zeta
through comprehensive experiments. Evaluation results
show that Zeta reduces the 99% RTT by 5.1××× in burst
video traffic, and speeds up the gateway recovery by
10.8××× compared with the state-of-the-art solutions.

2 Background and Motivation

We will analyze the limitations of three typical east-west
communication models in large-scale clouds and motivate our
work in this section.

2.1 Limitations of Prior Works

As an open source cloud computing architecture, OpenStack
helps quickly deploy small-scale clouds [63]. As shown in
Figure 1(a), OpenStack Neutron provides the networking ca-
pability for the clouds. Specifically, Neutron provides layer-2
networking communication by learning MAC address [55].
When two VMs in the same layer-2 domain communicate
for the first time, the source VM will broadcast ARP packets
to obtain the MAC address of the destination VM. However,
when encountering burst traffic in large-scale networks, it may
cause unnecessary layer-2 broadcasts and unicast flooding,
leading to poor robustness and scalability [71]. For layer-3
networking, all the traffic will be routed by specific network
node(s) in the initial OpenStack releases. It may suffer the
risk of network node(s) failure and high forwarding delay in
large-scale networks. To this end, OpenStack has released
the Distributed Virtual Router (DVR) since Juno version [13],
which can significantly mitigate the robustness and latency
issues. However, DVR suffers the oversize routing tables and
frequent synchronization problems, which also decrease the
network scalability [64]. In general, OpenStack gradually im-
proves forwarding performance through evolutions. But due
to the lack of targeted designs for large-scale clouds, it still
faces robustness and scalability issues.
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Table 1: Comparison of the advantages and disadvantages of existing models

Models Robustness Scalability Latency

Gateway Failure Burst Traffic VPC Size Global Scale Forwarding VM Launching VM Migration

Neutron [13, 55] # # # # # ! #

Preprogrammed [39] ! # # ! # #

Gateway [22] # # ! ! ! ! !

Ours: Zeta ! ! ! ! ! ! !

To reduce the forwarding latency between VMs, the prepro-
grammed model was adopted by many early platforms, such
as VMware NSX [39, 56]. As shown in Figure 1(b), the con-
trol plane pre-installs all potential rules when launching VMs,
as it cannot exactly predict which pairs of VMs will commu-
nicate. The traffic between VMs will be forwarded directly
with low delays. However, the preprogrammed model brings
some nonnegligible system overhead. First, it will pre-install
a quadratic number of rules on hosts, which limits the network
scalability. Specifically, in a cloud network with h hosts and
n VMs, 2n rules should be pre-installed before launching a
new VM in the worst case, and there will be O(n×h) rules in
the system. A massive number of pre-installed rules will slow
down the rules lookup and traffic forwarding, thus limiting
the network scale. Second, numerous preprogrammed rules
seriously delay the VMs deployment/migration. The control
plane needs to pre-install/update all potential rules on hosts,
which will cause a significant delay in communication estab-
lishment/recovery. For example, the preprogrammed model
takes 74 seconds to install 487M rules for a large network
with 10k hosts and 40k VMs [22,39]. Above system overhead
leads to poor scalability and flexibility of the preprogrammed
model, especially in large-scale cloud networks.

To overcome the disadvantages of the former two models,
the gateway model on-demand installs rules, and has been
widely adopted by cloud providers, such as Google Cloud
Hoverboard [22]. As shown in Figure 1(c), the gateway model
organizes all servers into host zones. Host zone/cluster is a
collection of colocated machines with uniform network con-
nectivity, each of which is equipped with a master gateway
and several backups. This model only pre-installs default
rules pointing to the gateway on the host’s vSwitch. When a
new flow arrives, the vSwitch sends the header packets to the
gateway according to the default rules. Then, the gateway for-
wards these packets and offloads direct path rules for elephant
flows [22], so that the subsequent packets of those elephant
flows will be forwarded to the destination directly.

The gateway model improves the network scalability
through on-demand rules offloading. However, it allocates
a fixed number of gateway(s) to each host zone and may en-
counter the robustness issues. 1) Gateway failure. Although
the master-backup gateway model provides disaster tolerance,
it will take a long time to migrate all the traffic from the mas-

ter gateway to the backup ones, and cannot effectively cope
with gateway failures. For example, it takes 260-310ms [72]
to inform 14 affected hosts and update the default entries on
each OVS. The recovery delay far exceeds the carrier-grade
requirements of 50ms [52, 72, 78]. The network interruption
caused by the excessive recovery delay will seriously decrease
the QoS. 2) Burst traffic. The gateway model only assigns a
master gateway to each host zone. When a host zone encoun-
ters burst traffic, the corresponding master gateway will be
easily overloaded (especially when the control plane cannot
detect and offload high bandwidth flows immediately).

2.2 Our Intuitions
As summarized in Table 1, the gateway model combines the
advantages of both Neutron and Preprogrammed model in
terms of scalability and latency. However, the existing gate-
way model usually assigns fixed gateway(s) to each host zone.
Its gateways incur a high risk of overload/failure under ab-
normal events, including burst traffic and gateway failures.
A natural solution is to deploy multiple master gateways in
a host zone to alleviate the impact of burst traffic or abnor-
mal events. However, the gateways need to be provisioned
for peak bandwidth usage, making it difficult to efficiently
schedule gateway resources.

Another intuitive solution is to organize all gateways into a
large virtual cluster to improve disaster tolerance. The new ar-
rival flows will be forwarded to gateways through ECMP [69].
However, once VMs launching/migration occurs, the control
plane should notify all gateways to update the forwarding
rules, which brings high synchronization overhead on both
the gateways and the control plane [60]. For example, as-
suming that a large datacenter contains 500 gateways and
launches 3k containers per second [31, 50]. The controller
needs to send 1.5M update messages in one second, which
poses a severe risk of control plane overload. Obviously, this
solution is not feasible for large-scale clouds.

In order to integrate the pros, but mitigate the cons of mod-
els discussed above, we divide all gateways into multiple clus-
ters. A gateway cluster can effectively improve fault tolerance
while reducing the synchronization overhead, as the controller
only needs to push latest forwarding rules to the gateways of
one cluster every time. Moreover, we abstract the gateways’
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forwarding capability as Gateway Cluster Layer, which is de-
coupled from the location and logic of other planes/modules.
On the one hand, we utilize gateway clusters independent of
the compute nodes to enhance robustness and achieve high
performance. We adopt the Multi IPs scheme, which is trans-
parent to hosts/tenants to achieve gateway fast recovery. The
independence of gateway cluster gives us flexibility in build-
ing high-performance data plane. We choose XDP as the data
plane of Zeta, because of its integration with Linux kernel
and similar speed as DPDK [24]. On the other hand, the new
framework allows easy integration with existing cloud plat-
forms. Thus, we can make full advantage of existing designs,
such as Open vSwitch (OVS) [58] group table. According to
the above ideas, we design a scalable and robust east-west
communication framework in large-scale clouds to support
high-performance traffic forwarding.

3 System Design

3.1 Design Goals
Zeta is an east-west communication framework with gateway
clusters in large-scale clouds. Our design goals are as follows:

• Robustness: High reliability is the core requirement of
east-west communication, especially for cloud providers.
In particular, Zeta focuses on effectively dealing
with burst traffic and abnormal events (e.g., gateway
failure/overload/expansion), to avoid network conges-
tion/interruption degrading the tenants’ experience.

• Low Latency: Since east-west traffic is very sensitive
to latency. Zeta aims to reduce the latency of the traf-
fic forwarding through the high-performance in-kernel
fast-path. In addition, the lightweight control loop helps
reduce the delay of VMs launching/migration.

• Scalability: With the rapid growth of cloud scale, Zeta
should better support large-scale virtual networks up to
100k instances.

• Compatibility: Zeta is open source and can also serve
as a common hosting platform to integrate customization
network functions into the overall virtual networking.

3.2 System Overview
As shown in Figure 2, to realize the above design goals, we
propose an efficient east-west communication framework,
called Zeta, which consists of three core modules: Gateway
Cluster, On-host Forwarding and Framework Management.

Gateway Cluster Layer establishes a forwarding network
based on VXLAN tunnel [48]. It leverages XDP to pro-
vide high-performance traffic forwarding and on-demand
rules offloading for tenant instances (§4.2). The application
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Node2 Node3
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VM VM VM

On-host 
Forwarding Layer   Header Packets
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  Direct Path Zeta 
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(K8S)
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Figure 2: Zeta Framework Overview. Gateway Cluster pro-
vides high-performance traffic forwarding and on-demand
rules offloading for tenant instances. On-host Forwarding
transmits traffic according to default/direct rules and achieves
the intra-cluster gateway load balancing through group tables.
Framework Management manages the whole network and
further improves the system robustness through scheduling.

of gateway cluster ensures better scalability and robustness.
Gateways detect the elephant flows and sends OAM (Opera-
tions, Administration and Maintenance) packets to the source
hosts, which contain direct path rules (§4.3). In addition, Zeta
adopts Multi IPs Migration to achieve fast recovery from gate-
way failure/overload/expansion, which makes failure recovery
transparent to hosts/tenants (§4.4).

On-host Forwarding Layer transmits traffic according to
the rules on OVS. Before deploying a new VPC, a default rule
will be pre-installed on the host, which consists of a flow entry
and a group entry to achieve the intra-cluster gateway load bal-
ancing (§5.1). When two VMs communicate for the first time,
the header packets will be sent to a specific gateway according
to the default rule. Each host deploys a Zeta Agent, which is
responsible for parsing OAM packets and installing the direct
path rules on the on-host OVS. In addition, the lightweight
control loop based on Zeta Agent can make a quick response
to network adjustments, such as passive instance migration
(§5.2).

Framework Management Layer manages the whole net-
work and further enhances the robustness of gateway clus-
ters. When Zeta is initialized, the management layer will
determine the VPC-cluster mapping for inter-cluster load bal-
ancing (§6.1). To deal with the abnormal events and traffic
dynamics, the Multi IPs Scheduler will dynamically adjust
the configurations (e.g., multi IPs allocation and cluster parti-
tion), thereby avoiding overload of partial clusters for better
robustness (§6.2).
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4 Gateway Cluster Design

4.1 Gateway Cluster Overview

Zeta Gateway Cluster establishes a VXLAN-based forward-
ing network. Specifically, it provides high-performance traf-
fic forwarding and on-demand rules offloading for tenant in-
stances with scalability and robustness guarantee. As shown
in the left plot of Figure 3, Gateway Cluster Layer consists of
a cluster controller and several gateway clusters.

Cluster Controller contains management and scheduling
logic for gateway clusters. On the one hand, it facilitates the in-
teraction with the Framework Management Layer through its
Northbound RESTful API, such as receiving forwarding rules.
On the other hand, it manages the gateway clusters and main-
tains the gateways load balancing through its Southbound API
based on gRPC [66]. Cluster Controller is deployed within its
own Kubernetes cluster hosted on Zeta control node(s).

Gateway Clusters constitute the data plane of the forward-
ing network. We divide all gateways into several clusters to
achieve the robust gateway forwarding. In practice, each clus-
ter consists of several isomorphic gateways, which store the
same forwarding rules to collectively provide traffic forward-
ing and rules offloading services for tenant instances. Each
gateway contains the Forwarding Module (FWD) and the
Distributed Flow Table Module (DFT). Specifically, FWD
forwards the packets to the destination hosts and offloads
direct forwarding rules to the source hosts for those elephant
flows. DFT is a lightweight key-value store, which maintains
a consistent forwarding table on each gateway of a cluster.
When the forwarding table changes (e.g., instances launch-
ing/migration), the cluster controller will push the latest rules
to each gateway of the corresponding cluster. In addition,
there is no state synchronization among gateways (in §4.3).

4.2 XDP-based Traffic Forwarding

The forwarding module of a Zeta gateway is implemented
based on XDP [36] to improve the forwarding perfor-
mance and reduce the transmission latency. XDP is a high-
performance and programmable network data path, which can
directly process layer-2 frames at the NIC driver and hence
bypass the kernel network stack [12, 36, 79]. As illustrated in
the right plot of Figure 3, we converge the forwarding, com-
puting and storage functions together, which eliminates the
overhead of network stack processing [14, 49].

Forwarding Module works at the NIC driver and can di-
rectly operate on raw Ethernet frames. The workflows of
XDP-based forwarding program are as follows: (i) Receiving
header packets of the source instance from the NIC RX buffer.
(ii) Obtaining the forwarding rule of the target instance by
querying the storage module, that is, determining the desti-
nation host of the traffic. (iii) Parsing the protocol field of
VXLAN inner packets. ARP messages will be directly re-
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Figure 3: Illustration of Gateway Cluster Design. The left plot
is the overview of gateway cluster and the right plot is the
implementation details of XDP-based gateway.

sponded to the source instance, while other types of packets
will be forwarded to the destination. (iv) Sending OAM (Oper-
ations, Administration and Maintenance) packets containing
direct rules to the source hosts for the elephant flows.

Storage Module consists of several eBPF maps [2, 19].
These maps are key-value stores [29] that serve as the data
channel between DFT and FWD. The forwarding module will
also cache the real-time information of flows in eBPF maps.
For example, FWD will count the OAM packets generated
for each flow to avoid repeatedly offloading one flow.

4.3 Gateway Flow Detection

In order to further reduce the rules stored on the hosts, so as
to conserve memory and reduce the forwarding delay caused
by rules lookup. Zeta adopts XDP’s high-performance packet
processing features to detect elephant and mice flows on the
gateway, which can improve the efficiency of the detection
program and the system’s robustness. When encountering
burst traffic generated by a simultaneous batch of workloads
(e.g., MapReduce [82]), the on-host flow detection program of
existing gateway model may be overloaded, as its host agent
is usually equipped with limited resources, e.g., 1 CPU core
and 1.5GB memory [22]. In contrast, the additional overhead
of detecting elephant flows is almost negligible for the XDP-
based gateways of Zeta while forwarding traffic.

When traffic arrives at the XDP forwarding module, it will
accumulate the total size of each flow in a certain period
and store the records in an eBPF LRU Hash map [44, 79].
If the cumulative size of a flow exceeds the threshold (e.g.,
20kbps [22]) before the next period, it will be identified as an
elephant flow and offloaded to the source hosts. Each flow is
only sent to a specific gateway according to the 5-tuple hash
(in §5.1), which avoids synchronization of flow size statistics
among gateways. In addition, Zeta will monitor the gateway
load. When a gateway’s CPU or memory utilization reaches
the threshold (e.g., 80%), the gateway will pause the elephant
flows detection and offload direct rules for all flows.
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4.4 Dealing with Failures through Multi IPs

The number of gateways in a cluster will change dynamically
due to gateway failures and scaling requirements, and the
hash modulo of the default rule will change accordingly (i.e.,
group entry buckets in §5.1). Therefore, we have to modify
all the installed default rules associated with the updated clus-
ter. To this end, massive affected hosts need to be informed,
which leads to heavy notification overhead and unacceptable
delay [54]. To address this issue, we design the Multi IPs
Migration. Briefly, each gateway node is logically assigned
multiple virtual IPs (vIPs), and the vIPs can be reallocated
among nodes. Tenant traffic is bound to vIPs and decoupled
from gateways.

The feature of XDP working in the layer-2 networking in-
spires a solution of gateway failure recovery. We propose the
Multi IPs scheme to achieve fast failure recovery. Specifically,
the cluster controller maintains a Multi IPs Mapping Table.
When a gateway cluster is initialized, each gateway node in
the cluster will be allocated several logical virtual IP-MAC
pairs, and send RARP packets [27] to add MAC table entries
on the connected ToR switch(es). It should be noted that these
vIPs and vMACs are not actually configured in the gateways’
NIC, as XDP program can directly operate on the raw Ether-
net frames. When a gateway fails, the cluster controller will
reassign the logical vIP-vMAC pairs of the failed gateway to
other healthy gateways in the cluster. Since the forwarding
rules maintained by each gateway in a cluster are consistent,
there is no synchronization overhead/delay among gateways
during failure recovery. Next, the healthy gateways that have
obtained migrated vIP-vMAC pairs will utilize RARP to in-
form the connected switch(es) to update MAC address table.
Then, the packets from instances can be correctly forwarded
to healthy gateways.

Figure 4 illustrates an example of fast recovery through
Multi IPs Migration. Initially, Gateway Cluster 1 contains
three gateway nodes, each of which is assigned with two vIP-
vMAC pairs, as shown in the Multi IPs Mapping Table. When
Node2 fails, the cluster controller will update the mapping
table, ip3-mac3 and ip4-mac4 originally assigned to the Node2
are reassigned to Node1 and Node3 respectively. Next, Node1
and Node3 utilize the RARP protocol to update the MAC
address table of the connected ToR switch, so that the packets
toward the failed Node2 will be immediately diverted to the
healthy nodes. As a result, the failure recovery is transparent
to hosts/tenants without modifying any default OVS entry
or on-host ARP cache that involves the failed gateway(s).
According to the experiments in §8.3.2, Zeta reduces the
average gateway recovery latency from 62ms to 5.5ms.

In conclusion, the Multi IPs Migration scheme only needs
to update the IPs mapping table and send the RARP packets
to ToR switches. The recovery process does not require the
participation of control plane or hosts. Therefore, the failure
recovery delay and the notification overhead can be almost
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Figure 4: Dealing with Gateway Failures through Multi IPs.
When Node2 fails, the cluster controller first updates the map-
ping table to reassign the vIP-vMAC pairs to healthy gateways
(i.e. Node 1&3). Then Node 1&3 send RARP packets to up-
date the MAC entries on the connected switch. The recovery
scheme avoids modifying the default OVS rules on hosts.

negligible. It significantly enhances the robustness of gateway
clusters. In addition, the Multi IPs Migration can also be
applied in (1) Intra-cluster load adjustment and (2) Rapid
cluster scaling (covered in §6.2).

5 On-host Forwarding Design

5.1 Load Balancing through Group Tables
This section elaborates on the designs of default entries to
achieve intra-cluster gateway load balancing. In order to real-
ize the decoupling of gateway cluster and location (i.e., host
or host zone), we construct default rules in VPC granularity.
Thus, when launching a new VPC on a compute node, the
default rule of this VPC will be pre-installed by Zeta Agent
on the on-host OVS.

To achieve the gateway load balancing within a cluster,
we utilize the flow table and group table of on-host OVS to
orchestrate the gateway clusters. Specifically, each entry of
the group table points to a cluster, and the buckets in each
group entry specify the gateway nodes in this cluster. When
the header packet of a flow reaches OVS, it first matches
the flow entry and jumps to a group entry according to the
VPC identifier (VPC_id) so that the target cluster for this flow
is determined. The VPC-cluster mapping algorithm will be
elaborated in §6.1. Then, the packet will be hashed to a bucket
in the group entry, which determines the target gateway for
this flow. The group entry selects the target gateway based on
the 5-tuple hash of a flow. Finally, the load balancing within
a gateway cluster can be guaranteed.

We give an example in Figure 5 to illustrate the intra-cluster
gateway load balancing with the flow table and group table.
Assuming that VM1 belonging to VPC1 communicates with
VM3 for the first time. When the header packet arrives at
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Figure 5: Illustration of Interaction between Flow Table and
Group Table. When VM1 belonging to VPC1 communicates
with VM3 for the first time, Host1 lookups the OVS1’s default
tables, and the default gateway IP of VM1’s flow is ip2. Then,
Host1 sends the header packets of VM1 to Node2.

the OVS of Host1, the OVS first matches the flow entry with
VXLAN VNI=1 and jumps to the group entry with Group_id=1.
Each bucket in a group entry corresponds to the IP address of
a gateway node in the cluster, and the packet will be hashed to
a bucket according to its 5-tuple information. In our example,
the packet is hashed to bucket3, that is, the destination address
of the packet is ip3. Then, Host1 sends the header packets of
VM1 to Node2, and the gateway will forward these packets
and offload a direct rule to the source Host1.

5.2 Lightweight Control Agent
The lightweight control loop based on Zeta Agent can ef-
fectively reduce the recovery latency of the passive instance
migration, such as Kubernetes Pod Eviction [42]. In a Kuber-
netes cluster, when a compute node is out of resources, the
Kubernetes scheduler [43] will migrate the relevant pod(s)
to other host(s). Conventionally, Kubernetes does not inform
its networking plugin (e.g., Flannel [4] and Calico [1]) of
pod(s) migration actively. The networking plugin needs to
poll Kubernetes database (e.g., Etcd [3]) to obtain the latest
pod information. Therefore, the hosts cannot update the in-
stalled direct rules immediately. The traffic is still forwarded
to the former destination hosts, which results in a network
interruption between the affected pods.

Three steps are required in Zeta to restore communica-
tion: (i) Obtaining the latest forwarding rules. (ii) Redirecting
the packets toward the migrated pods to the correct destina-
tion. (iii) Updating the direct rules on the source hosts. We
hope Zeta Agent remains lightweight to occupy fewer host
resources. Meanwhile, Zeta gateways support the above opera-
tions. Thus, instead of directly implement above three steps on
agent, the traffic towards the migrated pods will be redirected
to the gateways and forwarded to the correct destinations.

Host1

Zeta 
agent

Gateway

DFT

Host2

Zeta 
agent

Host3

Zeta 
agent

migrate

  Update Direct Path

  Redirect

 

  Direct Forwarding

  Forward Correctly

Etcd

  Lookup Etcd

Pod1 Pod2 Pod2

FWD

OVS1 OVS2 OVS3

Figure 6: Lightweight Control Agent on compute nodes.
When Pod2 is migrated, the flows sent to Pod2 will be redi-
rected to gateway. The gateway forwards the flows and queries
the database, then updates the direct path on the source host.

As illustrated in Figure 6, when Pod2 is migrated, the Zeta
Agent on Node2 will install an entry on OVS2 to redirect
all packets toward the Pod2 to the gateway. FWD on Zeta
gateway recognizes the redirected packets and reports their
destinations to DFT. DFT queries the latest location informa-
tion of Pod2 from Kubernetes database and updates the rules
cache of FWD. Then, FWD will forward the redirected pack-
ets to the correct destination Node3, and send OAM packets
to the source Node1. Finally, the Zeta Agent on Node1 will
update the direct forwarding rule to Pod2.

6 Framework Management Design

6.1 Gateway Cluster Mapping

When Zeta is initialized, the management layer will determine
the VPC-cluster mapping for inter-cluster load balancing.

Gateway Cluster Model. In the Zeta framework, we use
C = {c1,c2, ...,cn} to denote the gateway clusters, where
n = |C| is the number of clusters. For each gateway clus-
ter c, its forwarding capacity is denoted as B(c). We denote
V = {v1,v2, ...,vm} as the VPC set, where m = |V | is the
number of VPCs in the cloud. Let T = {t1, t2, ..., t|T |} denote
the tenants set and each tenant t ∈ T consists of a VPC set
Vt = {vt

1,v
t
2, ...,v

t
|Vt |}. Obviously, V =V1∪V2...∪V|T |. More-

over, the traffic demand of each VPC is denoted as f (v).
Problem Formalization. We define the gateway clusters

mapping (GCM) problem in the Zeta framework. To enhance
the system robustness and improve the QoS, we need to con-
sider the following two constraints. (1) VPC Constraint. A
VPC will be mapped to one and only one gateway cluster, as
all the vIPs of a group entry belong to the same cluster (§5.1).
(2) Tenant Constraint. We limit the number of gateway clus-
ters that each tenant can be mapped to. For security reasons,
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we do not expect that burst/malicious traffic from a single
tenant will affect all gateway clusters.

Moreover, we use binary xc
v ∈ {0,1} to denote whether a

VPC v ∈V is mapped to a gateway cluster c ∈C or not. Let
binary yc

t ∈ {0,1} represent whether the gateway cluster c∈C
is assigned the VPCs belonging to tenant t ∈ T or not. The
objective of GCM is to achieve the load-balancing among all
gateway clusters. We formulate GCM as follows:

min λ

S.t.



∑
c∈C

xc
v = 1, ∀v ∈V

∑
v∈V

xc
v · f (v)≤ λB(c), ∀c ∈C

xc
v ≤ yc

t , ∀v ∈Vt,c ∈C, t ∈ T

∑
c∈C

yc
t ≤ k, ∀t ∈ T

xc
v ∈ {0,1}, ∀v ∈V,c ∈C

yc
t ∈ {0,1}, ∀t ∈ T,c ∈C

(1)

The first set of equations means that all traffic of a VPC will
be forwarded to one gateway cluster by default. The second
set of inequalities describes the traffic load on each gateway
cluster, where λ ∈ [0,1] represents the load balancing fac-
tor. The third set of inequalities indicates that the tenant t
is mapped to gateway cluster c only if VPC(s) of tenant t is
processed by cluster c. The fourth set of inequalities repre-
sents the Tenant Constraint, that is, the VPCs of a tenant will
be mapped to at most k gateway clusters. Our objective is to
achieve the load balancing among all gateway clusters, i.e.,
minimizing the load balancing factor λ.

We give an empirical formula to set the tenant constraint
k in §A.1, and propose a rounding-based algorithm for the
VPC-cluster mapping in §A.2.

6.2 Multi IPs Scheduler
The Multi IPs Scheduler executes the IPs migration scheme
proposed in §4.4. It dynamically updates the IPs allocations
to eliminate the overload of gateway clusters caused by the
burst traffic and abnormal events. In practice, when a gateway
exceeds the load threshold (e.g., 80%), it will immediately
report such overload to the control plane. Then the Multi IPs
Scheduler starts to perform the following two steps:

Step 1: Intra-Cluster Load Adjustment. The scheduler
first sorts all gateways of a cluster in the descending order
of their load. Next, the scheduler attempts to migrate a vIP-
vMAC pair from the overloaded gateway to the gateway with
the lightest load, and re-sorts gateways’ load. Then, the sched-
uler will repeat above IPs migration and gateway sorting pro-
cedure until none of the gateways in the cluster is overloaded.
If we cannot eliminate the overloaded gateways with step 1,
the scheduler will go to step 2.

Step 2: Cluster Scaling. If a cluster cannot eliminate over-
load through internal load adjustment, e.g., a legitimate VPC

has burst traffic. The scheduler will migrate gateways from
other clusters to this cluster or expand new gateways for this
cluster. The scheduler first sorts all the clusters by their aver-
age load in the descending order and attempts to reassign a
gateway from the least loaded cluster to the overloaded cluster.
We can utilize Multi IPs Migration to achieve rapid gateway
migration among clusters. However, if the gateway migration
causes overload risk to the source cluster, the scheduler will
directly expand the overloaded cluster with a new gateway.

7 Implementation

We implement Zeta based on Linux 5.4 kernel. The Cluster
Controller includes 3k lines of Python code, the XDP-based
gateway forwarding function includes 4.5k lines of C code,
and the Zeta Agent includes 2k lines of C++ code.

Zeta provides two deployment methods. One is based on
physical machines, and we give a best practice in §B.2. The
other is based on Kernel-based VMs (KVMs), which can
quickly deploy dozens of KVM-based gateways on several
physical machines (see §B.3 for more details).

8 Evaluation

We first conduct an ablation analysis to measure the perfor-
mance of Zeta gateway. We then test the robustness of Zeta
under burst traffic and abnormal events. Finally, we evaluate
the scalability of Zeta in public and private cloud scenarios.

8.1 Experimental Setting

Testbed Setups. We use 23 servers to build the testbed, all
running Ubuntu 18.04 with Linux kernel 5.4. Considering our
limited number of servers, we deploy KVM-based gateways
on several physical machines to simulate gateway clusters. In
addition, we launch a large number of container instances on
each compute node to evaluate scalability, because of limited
number of compute nodes. The scalability in this paper mainly
refers to the instance scale, instead of the host scale, as the
forwarding rules stored in the gateways and the tenant traffic
depend on the instance scale.

Specifically, 20 servers are compute nodes, each equipped
with dual 22-core Intel Xeon 6161 CPUs, 640GB memory
and an Intel XL710 40GbE NIC. The other 3 servers are used
to deploy gateway clusters, each equipped with dual 16-core
Intel Xeon E5-2697A CPUs, 256GB memory and an Intel
XL710 40GbE NIC. We deploy a total of 45 KVM-based
gateways on the 3 physical gateway machines. Each KVM-
based gateway is equipped with 4 vCPUs and 16GB memory.
For Zeta, we divide the 45 gateways into 10 clusters.

Moreover, according to the empirical data in [22], we set
the rules offloading threshold to 20kbps on the gateway.
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Benchmarks. We compare the robustness and scalability
of Zeta with other three typical frameworks. The first frame-
work is the conventional gateway model [22], called GWZone,
and its gateway is modified based on the implementations of
Zeta’s gateway. It allocates a master gateway for each host
zone and equips backups to deal with gateway failure. Un-
like Zeta, GWZone detects elephant flows on compute nodes.
When GWzone faces gateway failure, it will update the de-
fault entries on affected hosts and migrate traffic to the backup
gateways. We equip GWZone with 9 additional backup KVM-
based gateways. As the backup gateways only consume ∼0.1
vCPU and ∼2GB memery in standby, they will not affect the
performance of the master gateways. The second one is the
OpenStack Neutron [55], which provides layer-2 network-
ing communication by learning MAC address. The third one
is the Preprogrammed model, which is a simplified imple-
mentation of VMWare NSX [39, 56] as it is not open source.
The Preprogrammed model will pre-install all potential rules
before launching VMs.
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8.2 Microbenchmark
We first evaluate the impact of flow detection and rules of-
floading on forwarding performance with a physical core. We
use iPerf [37] to generate UDP traffic, and the inner packet
size is 64 bytes. In addition, the number of entries stored in
eBPF map ranges from 2k to 100k. As shown in Figure 7,
a single physical core can forward 1.86M packets per sec-
ond under 2k entries. When the rule offloading or flow de-
tection is supplied, the forwarding rate reduces by 8.1% to
1.71Mpps, as these two functions introduce additional eBPF
map read/writes for flow statistics. After adding both flow
detection and offloading functions on the gateway, the perfor-
mance decreases slightly. For example, the forwarding rate
only reduces by 1.2% from 1.71Mpps to 1.69Mpps under 2k
entries. This is because the map read/writes are the majority
overhead for forwarding, while the detection and offloading
functions require the same number of map read/writes. When
the number of entries scales to 100k, the forwarding rate with
rule offloading and flow detection drops by 14% to 1.45Mpps,
as the timeout mechanism of maps for flow statistics leads to
throughput degradation with the number of entries increasing.
We will optimize the timeout mechanism in future work.

We then measure the rules offloading latency with flow
detection on gateway and host. The gateway still performs
traffic forwarding and rules offloading with a physical core.
We use iPerf to generate UDP flows on a host, each of which
is 10Mbps. Figure 8 shows that flow detection on gateway can
reduce the 99th percentile of offloading latency by 22% under
500 flows compared with that on host, as the performance of
on-host detection is worse than XDP on gateways.

In general, flow detection on gateway can reduce the rules
offloading latency (e.g., reduce 22% as shown in Figure 8)
and has little impact on the forwarding performance (e.g.,
decrease 1.2% from 1.71Mpps to 1.69Mpps as shown in
Figure 7). Thus, Zeta detects elephant flow on gateways for
faster rules offloading with little detection overhead.

We also evaluate the linear scaling throughput of Zeta gate-
ways (§C.2).

8.3 Robustness Evaluation

In this section, we evaluate the performance of Zeta under
various burst traffic workloads and different abnormal events.
Based on the further transformation (§C.1) of Google cluster-
data [30], we deploy 100 VPCs with 2,000 VMs on the 20
compute nodes. Each VPC contains 10-90 VMs, and each
VM is equipped with 1 vCPU and 6GB memory.

8.3.1 Robustness under Burst Traffic

We compare the robustness of the Zeta gateway cluster with
GWZone under burst traffic of different applications. We
choose three typical traffic workloads according to the traffic
characteristics in cloud networks [8, 45], including MapRe-
duce, video and audio. Specifically, we deploy a MapReduce
cluster in each VPC and execute the word-counting applica-
tion on each MapReduce cluster simultaneously with input
size of 10GB, which mainly generates TCP elephant flows.
We also deploy video and audio applications in each VPC.
The video traffic contains UDP elephant flows with bandwidth
ranging from 2.4Mbps (720P video) to 100Mbps (8K video)
[10, 15]. The audio traffic consists of UDP mice flows whose
transmission rate ranges from 12.2kbps to 23.85kbps [41].

Figures 9-12 illustrate the performance metrics of Zeta
gateways under different burst traffic scenarios. Zeta assigns a
gateway cluster to each VPC, while GWZone assigns a master
gateway to each host zone. Thus, Zeta can achieve better load
balance to deal with various burst traffic. For example, Fig-
ure 9 shows that Zeta can reduce the maximum gateway load
by 18.5%, 33.9% and 25.2% compared with GWZone in the
three applications, respectively. In addition, it is noteworthy
that the acknowledgment and retransmission mechanism of
MapReduce’s TCP flows further increase the gateway load,
which leads to the highest gateway load compared with video
and audio streams. Moreover, Figure 11 shows the 99th per-
centile of normalized FCT, which is normalized to the FCT
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without burst traffic. The 99% normalized FCT achieved by
Zeta is 21.3%, 14.8% and 26.8% lower than that of GWZone
under three scenarios, respectively. Although the gateway load
of audio traffic is low, it mainly consists of mice flows, which
will be forwarded by gateways without offloading direct path
rules. Thus, the cumulative delay of the audio flows caused
by gateway forwarding will be the largest among the three ap-
plications, which results in the maximum FCT of audio flows.
Besides, we observe from Figure 12 that the 99th percentile
of packet loss rate of Zeta under the three scenarios reduces
by 53.8%, 58.2% and 63.3% compared with GWZone. The
above results prove that Zeta can effectively conquer different
burst traffic and avoid gateways overhead.

Furthermore, we evaluate several performance metrics of
Zeta in burst video traffic compared with other frameworks,
as shown in Figures 13-18. During an interval of 0.5s, we
record the CPU utilization of gateways, number of offloaded
rules, rule offloading latency and FCT. Specifically, Figure 13
shows the maximum gateway load of Zeta and GWZone in
10k burst video flows. According to the experimental settings,
burst traffic are generated randomly in 5-15s, so the gateway
load increases sharply at the 5th second. Next, Zeta detects
elephant flows faster on the gateways, so it quickly achieves
the balance between offloading and newly coming elephant
flows. However, the mice flows continue to increase, so the
load of Zeta between 7-15s increases slightly on the basis of
stability. Meanwhile, the on-host flow detection of GWZone
suffers from high latency, and the elephant flows can not be
offloaded in time. Thus, the loads of GWZone’s gateways
increase sharply from 5s to 13s.

To further study how the workload of gateways distributes,
we show the gateways’ CPU utilization at the 12th second,
when Zeta and GWZone both suffer high gateway workload,
in Figure 15. Zeta achieves lower average load with more con-
centrated load distribution than GWZone, which means better
load balancing. Figure 14 shows the load CDF of gateways
in 10k burst video flows. GWZone’s backup gateways are
lightly loaded, while 25% master gateways are overloaded
(i.e., the CPU load exceeds 80%). The above results show the
superiority of Zeta gateway cluster in load balancing.

Figure 16 shows the number of offloaded direct forwarding
rules in 10k burst video flows. Due to the latency of the on-
host flow detection program, the number of offloaded rules
for GWZone increases slowly. The number of Zeta offloading
rules is increasing rapidly. Preprogrammed is constant at a
high point as its preprogrammed model. The trend of Neutron
is similar to Zeta. Figure 18 shows CDF of Normalized FCT
in 10k burst video flows. The results are similar to Figure 16.
The preprogrammed model performs the best, followed by
Zeta and Neutron, while GWZone is the worst.

8.3.2 Fast Recovery from Abnormal Events

We measure the recovery latency of Zeta under abnormal
events. Zeta adopts Multi IPs Migration for fast recovery,
while GWZone updates the default OVS entries on hosts.

Considering that anomaly detection is usually performed
by polling, we hope that the delay measurement of failure re-
covery can avoid the error caused by polling interval. Specifi-
cally, we first sequentially send Ping probe every 0.5ms. We
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Figure 21: Launching Time vs. No. of Containers
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Figure 22: Gateway CPU Utilization vs. No. of Containers

make an artificial abnormal event and notify the controller
immediately. Then, the controller performs the IPs Migration.
By counting the number of lost packets during the failure
recovery, we derive the recovery delay.

From the results in Figure 19, we observe that Zeta can
greatly reduce the recovery latency of the three abnormal
events compared with GWZone. For example, the gateway
failure recovery delay of Zeta is 5.5ms, which is ∼10.8×××
faster than that of GWZone, because GWZone needs to inform
each host and update ∼100 default entries on each OVS.

Figure 20 illustrates the load status of each gateway in a
cluster of Zeta during the overload event. Specifically, the
burst flows with default destination of Node1 arrive in 35ms,
and the CPU load of Node1 increases rapidly. When the gate-
way’s CPU utilization reaches the 90% threshold, the Multi
IPs Migration is triggered in 120ms, and three vIPs on Node1
are reassigned to the other three nodes with lighter load. Then,
the load of Node1 quickly decreases to a normal level within
19.5ms. It is intuitive that Multi IPs can effectively conquer
the overload of a single gateway and rapidly adjust the load
imbalance of intra-cluster.

8.4 Scalability Evaluation
In this section, we evaluate the scalability of Zeta in both
public and private cloud scenarios. We first measure the la-
tency of launching up to 100k container instances. Then, we
evaluate the performance metrics of Zeta and GWZone under
the large-scale cloud network.

The public cloud scenario contains a large number of in-
stances/VPCs. Based on the transformation (§C.1) of Google

cluster-data [30], we deploy 568 tenants and 1885 VPCs with
up to 100k containers on the 20 compute nodes. Each VPC
contains 2-364 containers. The private cloud scenarios have
a small number of VPCs/tenants, but a VPC may contain a
large number of instances. We deploy 52 tenants and 90 VPCs
with up to 10k containers on the 20 compute nodes, and each
VPC has a number of instances ranging from 2 to 2765.

According to the bandwidth distribution of flows in [22],
we let 16% of container pairs communicate, and the traffic
intensity of each flow ranges from 10kbps to 1Gbps.

8.4.1 Large-Scale Instances Launching

Figure 21 shows that the on-demand rules offloading model
has a lower instance deployment latency compared with the
preprogrammed model when spawning a large number of in-
stances in a large-scale cloud network. For example, when
launching 100k containers in the public cloud environment,
Zeta spends 3178 seconds and installs 12k default forwarding
rules, while Preprogrammed spends 4097 seconds and pro-
grams a total of 3.4M rules. That is, Zeta reduces the launch-
ing time by 24% and the number of rules by 278××× compared
with Preprogrammed. The reason for the above results is that
the on-demand rules offloading can avoid pre-installing nu-
merous entries for instances that never communicate with
each other, thus it reduces the latency of instances launching.

8.4.2 Large-Scale Instances Communication

Figures 22-24 show the advantages of Zeta gateway cluster un-
der large-scale networks. As shown in Figure 22, the average
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Figure 23: 99% Normalized FCT vs. No. of Containers

10 20 30 40 50 60 70 80 90 100
No. of Containers (×103)

0.000

0.005

0.010

0.015

0.020

Pa
ck
et
Lo

ss
Ra

te
(%

) GWZone_mice
Zeta_mice
GWZone_elephant
Zeta_elephant

(a) The public cloud

1 2 3 4 5 6 7 8 9 10
No. of Containers (×103)

0.000

0.002

0.004

Pa
ck
et
Lo

ss
Ra

te
(%

) GWZone_elephant
Zeta_elephant
GWZone_mice
Zeta_mice

(b) The private cloud

Figure 24: Packet Loss Rate vs. No. of Containers

load of Zeta gateways is close to that of GWZone. However,
Zeta gateways achieve more concentrated load distribution
than GWZone and there is a big gap between maximum and
minimum load of GWZone gateways, which means the supe-
riority of Zeta gateway cluster in load balancing.

Next, we evaluate the impact of Zeta and GWZone gate-
ways on FCT. The Normalized FCT of elephant flows and
mice flows are calculated respectively. Figure 23 shows that
though Zeta and GWZone have the similar normalized FCT,
Zeta still outperforms GWZone by 7% in public cloud sce-
nario, as there is no flow detection load on hosts. In addition,
the FCT of elephant flows are both smaller than that of mice
flows, because the elephant flows will be forwarded directly.

Finally, we evaluate the packet loss rate of Zeta and GW-
Zone with offloaded elephant flows and non offloaded mice
flows to prove the scalability of Zeta. Figure 24 shows that the
packet loss rate of Zeta is lower than that of GWZone because
of the better load balancing effect of Zeta gateway cluster.
For example, in public cloud with the network scale of 100k
containers, the packet loss rate of elephant flows and mice
flows of Zeta is 24% and 37% lower than that of GWZone,
respectively. In addition, the packet loss rate of elephant flows
is higher than that of mice flows. The reason is that these
elephant flows will be forwarded by the gateways at the be-
ginning, and burst traffic will cause the gateways overload,
resulting in a higher packet loss rate. Therefore, the packet
loss of elephant flows is mainly concentrated in the initial
gateway forwarding period, and the packet loss of direct path
forwarding after offloading will be significantly reduced.

9 Related Work

Cloud and datacenter virtual networks. There are a multi-
tude of researches on the cloud/datacenter virtual networks,
including control plane [21, 26, 35, 40, 73] and data plane
[22, 39, 55, 61]. As a crucial solution, overlay network adopts
tunnel encapsulation protocols (e.g., VXLAN [48], NVGRE
[70], Geneve [33], etc) to build the scalable and flexible vir-
tual networks. Virtual network devices (e.g., vSwitch [58,76],
vRouter [69] and gateway [22, 57]) are essential in the cloud
networks, as they are dedicated to provide efficient, secure
and stable connections for tenants in clouds. In this paper, we

focus on improving the robustness of east-west forwarding
with the designs of gateway cluster and multi IPs migration.

High performance and programmable data plane. Data
plane is the most performance-critical part of the cloud net-
works, which is usually accelerated with specialized hardware
components and sophisticated software methods [9]. In hard-
ware, ASIC [57, 75], FPGA [16, 28, 46, 61] and network pro-
cessor [51, 53] can provide high-throughput and low-latency
packet processing. In contrast, software methods have the
advantage of fast and flexible iteration, including DPDK [24],
XDP [36], Netmap [62], etc. Though XDP is not the first
mover in this area, we choose XDP as the data plane of Zeta,
because of its integration with Linux kernel, interaction with
other kernel components and similar speed as DPDK.

eBPF and its applications. eBPF is an instruction set and
an execution environment inside the Linux kernel [79]. It
enables injecting custom code into the kernel through the
hooks. eBPF is extensively used in security [25], tracing [11]
and networking [20]. XDP is one of the most widely used
eBPF hooks for high-performance packet processing that can
bypass the kernel network stack [36].

10 Conclusion and Future Work

In this paper, we propose a scalable and robust east-west
communication framework in large-scale clouds, called Zeta.
Comprehensive experiment results show high robustness and
scalability of Zeta. For example, Zeta speeds up the gateway
failure recovery by 10.8××× compared with the existing solu-
tions. In future, we will optimize the timeout mechanism of
eBPF map to reduce the impact on forwarding performance.
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A Additional Details of Cluster Mapping

A.1 Empirical Formula for Tenant Constraint
We use C = {c1,c2, ...,cn} to denote the gateway clusters,
where n = |C| is the number of clusters. In addition, let It
denote the number of instance owned by tenant t ∈ T . Then,
we use the following empirical formula to set the tenant con-
straint k:

k = dmaxt∈T{It}
∑t∈T It

×ne+1 (2)

For example, when our testbed in §8.4 contains 100k con-
tainer instances, the largest tenant has 27652 instances. We
set the tenant constraint k = 4, which means the VPCs of a
tenant will be mapped to at most 4 gateway clusters.

A.2 Rounding-Based Algorithm
To solve the problem in Eq. (1), we propose a rounding-based
gateway cluster mapping (RGCM) algorithm for the GCM
problem. The RGCM algorithm includes two steps. The first
step is to construct a relaxed version of GCM, named LP-
GCM, by relaxing the variable binary constraints. Specifically,
LP-GCM assumes that each flow can be splitable and for-
warded to multiple gateway clusters. Since LP-GCM is a lin-
ear programming, we can derive the fractional solutions {x̃c

v}
and {ỹc

t } with an optimization solver, such as Gurobi [34].
The optimal fractional result is denoted as λ̃.

The second step is to derive the integer solutions with
rounding scheme. The integer solutions are denoted as {x̂c

v}
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Figure 25: Best Practice for Zeta Physical Deployment.

and {ŷc
t }. For each tenant t ∈ T , RGCM first sorts each gate-

way cluster c ∈C by the value of ỹc
t in the descending order.

Then RGCM sets the top k maximum ŷc
t to 1, which means

that the traffic of tenant t can be processed by these k gateway
clusters. The set of clusters that are available to the tenant t
is denoted as Ct , i.e., Ct = {c|ŷc

t = 1,c ∈C}, where |Ct |= k.
When variables {ŷc

t } have been determined, RGCM will as-
sign a gateway cluster to each VPC v ∈ V , i.e., determine
variables {x̂c

v}. For each VPC v ∈V , the algorithm selects a
cluster c ∈Ct with the least burden and sets variable x̂c

v to 1.
While solving a linear programming might take a long time

for a large network, we note that tenants/VPCs/instances are
deployed incrementally, and the number of VPCs/tenants is
usually much smaller than that of instances. For example, if
hundreds of thousands of instances boot up at the same time,
the corresponding VPCs are thousands and the corresponding
tenants are hundreds. We utilize Gurobi solver [34] to run the
RGCM algorithm on a server equipped with a 10-core Intel i9-
10900 CPU. The solution time is 1.15s for the network with 10
gateway clusters, 568 tenants and 1885 VPCs in §8.4, which is
acceptable compared to the VPC/instance deployment time.

B Additional Implementation Details

B.1 eBPF Map Size

In the current Linux kernel implementation, the memory us-
age of an eBPF hash map grows with its entry number. How-
ever, the maximum entry size is bounded by the max_entries
defined by XDP/eBPF program during map initialization. The
user space function bpf_map__resize() can resize an eBPF
map only before it is initialized in the kernel. Unfortunately,
we cannot resize an eBPF map after it is created. We have to
deploy a new XDP/eBPF program to reinitialize the map size.

Thus, the number of instances that a gateway cluster can
serve is limited by the max_entries of the eBPF maps. For
example, the endpoint hash map in Zeta stores instance
forwarding rules and its max_entries is set to 128*1024
(∼131k). To avoid the above limitation, we can set a larger
entry number for the endpoint hash map, such as 1024*1024
(∼1M). In addition, the key size and value size of one

ens0

KVM-based
Gateway

vnet0

eth0

XDP

XDP1

XDP2

Host

Figure 26: Early Version of KVM-based Gateway.

endpoint entry is 8 bytes and 16 bytes, respectively. The
total memory size of 1M entries is only 24MB.

B.2 Best Practice for Physical Deployment
Zeta is usually deployed as two self-contained parts: (i) One
Kubernetes micro-service hosting Cluster Controller services;
(ii) One Gateway Cluster for Zeta data plane, which is based
on physical machines in production environment.

Figure 25 illustrates the best practice of Zeta deployment,
which includes a control node, several gateway nodes and
compute nodes. The leftmost control node deploys the man-
agement service of the cloud platform and Kubernetes cluster
hosting Zeta Controller. The middle ones are gateway nodes,
each of which deploys DFT and FWD modules. The eth1 in-
terfaces of all nodes access the Device Management Network.
In addition, we use separate interfaces for the Zeta API Net-
work and Tenant Network, which prevents massive tenants’
traffic from blocking the control messages. The Zeta API
Network is responsible for sending the operation instructions
and reporting status information, including OAM packets, IPs
allocation/migration policies and gateways’ load information.
The Tenant Network transmits the east-west traffic through
the VXLAN tunnel [48] for tenant instances.

B.3 Additional Details of Virtual Deployment
In the early development of Zeta, we use TUN/TAP device
[74] as the NICs of KVM-based gateways. In addition to de-
ploying XDP in the KVM-based gateways, we also deploy
additional XDP programs on the physical machines to accel-
erate the host-VM datapath [5,80]. As shown in Figure 26, we
attach XDP1 to the NIC (i.e., eth0) of the physical machine
to accelerate the host-VM ingress traffic. We attach XDP2
to the TAP device (i.e., vnet0) on the physical machine to
accelerate the VM-host egress traffic.

However, Zeta suffers from the poor forwarding perfor-
mance. For example, the packet forwarding rate of a KVM-
based gateway equipped with 4 vCPUs is only 1.36Mpps. The
reason is that attaching XDP program to VM’s NIC will affect
the function of TAP device in host and lead to a significant
hit on VM RX performance [5].
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Finally, Zeta adopts SR-IOV [23] for KVM-based gateways.
Although the driver of Intel XL710 VF (i.e., iavf) does not
support XDP Native mode, and Zeta adopts XDP Generic
mode with reduced performance in KVM-based gateways
[19, 36]. We obtain an acceptable forwarding performance.
For example, the pure forwarding rate of one virtual core is
0.86Mpps under 2k entries, which drops 54% compared with
one physical core with XDP Native mode.

C Additional Evaluation Details

C.1 Transformation of Google cluster-data
We query the a.CollectionEvents table of Google cluster
trace and obtain the mapping of <user,machine,job> [30].
The machine number is 10001 and the user number is 1952.
Considering that we only have 20 compute nodes, while there
are 10001 machines in the table. Thus, we merge the jobs of
every 500 machines to one compute nodes.

C.2 Linear Scaling Throughput of Gateways
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Figure 27: Throughput vs.
No. of Physical Cores
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Figure 28: Throughput vs.
No. of KVM-based Gateways

Linear Scaling Throughput. Figures 27-28 show that the
total throughput will scale linearly with the increasing num-
ber of physical cores and KVM-based gateways. Specifically,
when the inner packet size is 512 bytes and the number of
entries in eBPF maps is 2k, the throughput of a physical core
is 5.4Gbps, and 8 physical cores will hit the NIC’s bandwidth
limit of the physical machine at 40Gbps. The throughput
of a KVM-based gateway with 4 vCPU is 12.7Gbps, and 9
KVM-based gateways will nearly reach the NICs’ total band-
width limit of the 3 physical gateway machines at 120Gbps.
In addition, the timeout mechanism of maps for flow statistics
leads to throughput degradation with the number of entries in-
creases. We will try to optimize this issue in future work. The
linear scaling throughput of Zeta gateways greatly enhances
the scalability of Zeta gateway clusters.
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