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Abstract

The Edge-based Multi-agent visual SLAM plays a key role
in emerging mobile applications such as search-and-rescue,
inventory automation, and industrial inspection. This algo-
rithm relies on a central node to maintain the global map and
schedule agents to execute their individual tasks. However,
as the number of agents continues growing, the operational
overhead of the visual SLAM system such as data redundancy,
bandwidth consumption, and localization errors also scale,
which challenges the system scalability.

In this paper, we present the design and implementation
of SwarmMap, a framework design that scales up collabo-
rative visual SLAM service in edge offloading settings. At
the core of SwarmMap are three simple yet effective system
modules — a change log-based server-client synchronization
mechanism, a priority-aware task scheduler, and a lean repre-
sentation of the global map that work hand-in-hand to address
the data explosion caused by the growing number of agents.
We make SwarmMap compatible with the robotic operating
system (ROS) and open-source it'. Existing visual SLAM
applications could incorporate SwarmMap to enhance their
performance and capacity in multi-agent scenarios. Compre-
hensive evaluations and a three-month case study at one of
the world’s largest oil fields demonstrate that SwarmMap
can serve 2x more agents (>20 agents) than the state of the
arts with the same resource overhead, meanwhile maintaining
an average trajectory error of 38cm, outperforming existing
works by >55%.

1 Introduction

Visual simultaneous localization and mapping (SLAM) sys-
tems take video streams from one or multiple cameras as
input, reconstructing the 3D map of environment while simul-
taneously determining the position and orientation of cameras
with respect to their surroundings [29, 34, 36]. With the size
of the mapping area expanding rapidly, collaborative visual

®Zheng Yang (hmilyyz@gmail.com) is the corresponding author. Jingao
Xu and Hao Cao are co-primary authors.
'Code and data at https://github.com/MobiSense/SwarmMap.

SLAM that involves multiple agents has been attracting grow-
ing interest from both academia and industry [25,39,40,49].
For instance, Amazon, JD, and Alibaba have deployed dozens
of picking and sorting robots in their logistics warehouses
to save labor cost [45]; DJI and Amazon have also been de-
veloping drone grouping and swarming technology for urban
modeling, express delivery, and industrial inspection [12]. In
these scenarios, each agent has to conduct not only the local-
ization but mapping tasks in real-time due to (i) upper layer
applications require the latest updated environment map to
perform the subsequent maintenance and scheduling tasks,
especially in those dynamic environments; and (if) since the
two modules are tightly coupled, an agent also relies on a high-
quality on-board map for a better localization performance
and vice-versa [3,47].

The SLAM agents profile the environment with their cam-
eras, exchange data with each other, and execute vision tasks
in real-time, with a significant computation overhead. The lim-
ited computation resource on the agent soon becomes the bot-
tleneck, impairing system accuracy [3,40,47]. Edge-offload
has emerged as a promising alternative due to the following
two reasons. First, by offloading bulky tasks to edge devices,
the agents only need to run light-weight and time-sensitive
jobs locally, which effectively mitigates on-board resource
shortage [3,47]. Second, by fusing and further optimizing the
visual map globally at a centralized edge device, map informa-
tion that is originally unavailable to each other can be easily
shared among agents [39,40]. This will benefit collaborative
missions such as collision avoidance and path planning.

Albeit inspiring, the growing number of agents brings new
issues that challenge the scalability of edge-based real-time
collaborative visual SLAM systems (§2.2):

e Map synchronization stresses the network bandwidth.
Mobile agents like drones and robots heavily rely on wireless
links to communicate with an edge device. However, wireless
spectrum is a limited and overcrowded resource. Streaming
large volumes of map data over wireless links will soon satu-
rate the medium and cause significant delays.

e FCFS-based job scheduling impairs the localization ac-
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Figure 1: Industrial inspection is carried out by 10 drones and 2 autonomous Vehlcles in one of the world’s largest oil-field
(>170km?) in the Middle East. These agents are coordinated by SwarmMap that runs on an Nvidia AGX Xavier edge server.

curacy. An edge device has to processes large volumes of
requests from agents, which may cause significant delays to
latecomers (i.e., those requests positioned in the tail of the
queue). However, agents in different states are not equally
sensitive to the queuing delay. The conventional first-come,
first-served (FCFS) pipeline will exacerbate the localization
error on those time-sensitive agents.

e Map expansion exacerbates the memory footprint. The
size of the global visual map increases sharply with a grow-
ing number of agents, which is likely to exceed the limited
memory capacity allocated to SLAM tasks by an edge node,
causing memory overflow.

However, the current practice of edge-offload focuses pri-
marily on computation-oriented task partitioning [3, 8,23, 40,
47]. They fail to address the data explosion and its impact
on transmission, scheduling, and storage. Hence these pio-
neer designs cannot scale with the sheer size of the real-time
collaborative visual SLAM systems.

In this work, we present SwarmMap, a framework to scale up
the real-time collaborative visual SLAM services at resource-
constrained edge devices. SwarmMap does not innovate vi-
sual SLAM algorithms. Instead, it proposes functionality and
resource abstractions of existing SLAM algorithms and pro-
vides additional system services to enhance system scalability.
Hence, most variations of collaborative visual SLAM systems
can take advantage of our design. With SwarmMap, the upper-
layer user can outsource agent task scheduling and processing
instead of understanding every detail of SLAM algorithms
to manually adapt. SwarmMap contains three key plug-in
modules, as described below.

First, we design a Map Information Tracker (Mapit) to
maintain map data consistency between the agents and the
edge while remarkably saving network bandwidth. Unlike
existing methods that transfer bulky map data with each
other [39,40], Mapit records the operations associated with
the map modification on the agent and transmits these opera-
tions to the edge. The edge node then follows these operations
to update its local map. This allows the map synchronization

between them at the minimum bandwidth consumption even
compared with state-of-the-arts (e.g., CarMap [2]).

Second, we introduce a SLAM-specific task-aware sched-
uler (STS) that prioritizes requests based on the status of their
producer (i.e., agent). The STS scheduler runs on both the
agent and the edge. The agent STS evaluates agent status
around the clock and updates this information with the edge
through heartbeat packets. The edge STS designs a multi-level
queue to ensure those urgent tasks will be processed timely.

Third, we propose a Map Backbone Profiling (MBP) tech-
nique to alleviate the storage overhead while retaining the
mapping accuracy. This technique is based on an observa-
tion that the data quality among different agents’ maps can
be balanced by elements in co-visible areas. We propose a
set of metrics to detect high-quality map elements and use
them to offset those low-quality counterparts, thereby elevat-
ing the overall map quality. Applying model compression to
this high-quality map allows us to remove large portions of
redundant map data without sacrificing the map accuracy.

We evaluate SwarmMap on a testbed consisting of 4
Nvidia Jetson boards, 4 smartphones, 4 DJI RoboMasters,
and 4 drones. Following the standard SLAM evaluation
pipeline [2, 6,28,47], we further compare SwarmMap with
two state-of-the-art (SOTA) edge-assisted multi-agent SLAM
systems (CCM-SLAM [40] and Multi-UAV [39]) on three
gold-standard SLAM datasets (TUM [11], KITTI [10], and
EuRoC [9]) as well as a self-labeled dataset collected at a
22,927 sqft shopping mall. We also compare SwarmMap with
CarMap [2] and Sum-Map [27] to evaluate each functional
module in SwarmMap. Our head-to-head comparison shows
that SwarmMap can serve 2x more agents than these SOTA
systems with the same resource overhead, meanwhile main-
taining an absolute trajectory error within 38cm when serving
20 agents, outperforming these SOTA systems by >55%.

Real-world deployment. We have developed a real-time col-
laborative visual SLAM system based on SwarmMap and
deployed it in one of the world’s largest oil-field (>170km?)
for industrial inspection (shown in Fig. 1). Our system con-
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Figure 2: Workflow of existing edge-assisted SLAM [3,47]

sists of twelve agents that communicate with an Nvidia Jetson
AGX Xavier [46] edge node through Wi-Fi mesh networks.
A three-month pilot study shows that SwarmMap achieves an
average localization accuracy of 0.36m. The link throughput
and RAM consumption are below 17MB/s and 26GB respec-
tively, meeting inspection demands within the constraints of
available resources.

In summary, this paper makes three contributions. First,

we quantify the scalability challenges of deploying real-time
collaborative visual SLAM at the edge to motivate framework
support. Second, we design and implement SwarmMap as
a framework to address the scalability issues spanning from
communication, computation, to storage. As far as we are
aware of, SwarmMap is the first system solution to scale up
the collaborative visual SLAM in edge settings. Third, we
deploy SwarmMap in one of the world’s largest oil fields for
industrial inspections in the Middle East. Our three-month pi-
lot study demonstrates that SwarmMap makes a great process
towards fortifying multi-agent collaborative visual SLAM to
a fully practical system for wide deployment.
Contribution to the community. We implement Swar-
mMap as a software package of the robot operating system
(ROS [26]), the dominating OS in the robotics field. We be-
lieve SwarmMap can provide a collection of tools for both
academia and industry, and further enable fast prototyping of
visual SLAM-based applications in multi-agent scenarios.

2 Background and Motivation

The data volume scales with the number of agents, and the
need for framework support arises from the excessive band-
width consumption and memory footprint caused by the data
explosion. We discuss these in detail in this section.

2.1 Edge-assisted visual SLAM systems

The visual SLAM consists of multiple sub-tasks with diverse
workloads. Edge-offload places those bulky tasks to an edge
server, leaving an agent light-weight and time-sensitive jobs.
The agent can thus run visual SLAM in real-time. We use
ORB-SLAM2 [29], a top-ranked open-source visual SLAM
system, to illustrate the SLAM operations under edge settings
(refer to Fig. 2).

Front-end. Mobile agents run Tracking and part of the Lo-
cal Mapping module locally. The Tracking module extracts
2D ORB feature points from each video frame and instantly
estimates the pose of onboard camera(s) based on the ge-
ometry relationship between these feature points and the

pre-constructed local map (i.e., a set of 3D map-points and
keyframes” in which they appear). As the mobile agent moves,
the Local Mapping module updates the local map timely.
Back-end. Due to high computation costs, the optimization
part of the Local Mapping module is offloaded to the edge
device, where the bundle adjustment (BA) algorithms [42]
kick in to improve the pose and 3D location accuracy of those
newly generated keyframes and map-points. The edge server
also runs a Loop Closing module to detect repeated paths and
leverage them to re-calibrate the global map.

Data transfer in-between. To improve the map accuracy,
each agent periodically sends keyframes and map-points to
the edge server for fine-grained optimization. The optimized
visual map is then streamed to the clients.

2.2 The scalability issues

As more agents get involved, running real-time collabora-
tive visual SLAM on edge environment becomes increasingly
complex, facing several challenges: (i) the frequent data trans-
fer between agents and edge is likely to saturate wireless links,
causing significant delays; (ii) the queueing delay on edge
node exacerbates localization errors; (iii) the data volume
grows sharply, threatening the data storage at the edge node.
We discuss these issues below.

C1: Excessive bandwidth consumption. The life-cycle of
a collaborative visual SLAM system consists of cold-start
and maintenance two sessions. In the cold-start session, the
agents transfer all observed keyframes and map-points data
to the edge server. The edge server then generates a global
map of the entire space and optimizes the local map for each
agent. Once the global map generation has been completed,
the SLAM system enters the long-term maintenance session
during which each agent regularly revisits each site and cali-
brates the mapping offset. However, since map elements are
tightly coupled, a minor modification on a single map ele-
ment will spread to many other elements. This will cause a
significant amount of data transfer in the maintenance.

To reduce bandwidth consumption, recent works [2,40] de-
sign compact map representations and transfer the difference
before and after map element calibration (as opposed to trans-
ferring the entire calibrated map element [39,47]). Although
these systems can effectively reduce bandwidth consump-
tion in the cold-start session, they encounter two issues in
the maintenance session due to the frequent map updates: (i)
extra computation overhead. The acquisition of element-level
differences requires pair-wise map feature comparison across
the entire map. This will lead to extra computation workload
pressure on resource-limited mobile agents; and (ii) limited
data volume reduction. Since a minor change on an element
will spread to a batch of coupled elements. the volume of data
to be transferred is still bulky.

2Keyframes are a subset of selected frames. Each keyframe stores the
camera pose, the map-points it observed, and the co-visibility relationships
with other keyframes.
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Figure 3: The scalability issues in multi-agent scenarios.

To validate our analysis, we measure the bandwidth require-

ment of three state-of-the-art (SOTA) systems in different
number of agents settings. The results are shown in Fig. 3a.
Compared with the vanilla Multi-UAV [39], we observe that
CarMap [2] and CCM-SLAM [40] can effectively reduce the
transmission workload during map synchronization. However,
when serving more than ten agents, both systems still produce
excessive wireless traffic that can easily go beyond the link
capacity”’; thus, significant system delays are expected.
C2: Severe localization errors. Under the edge settings, the
localization accuracy of an agent highly depends on the qual-
ity of the local map which is optimized at the edge side. Typi-
cally, an agent needs to periodically (within 5s) send optimiza-
tion requests to the edge server for every 3-5 newly generated
keyframes [3,47]. As the number of agents scales, the concur-
rent requests from different agents block at the edge node’s
processing pipeline, resulting in excessive queuing delays.
Consequently, some agents get their optimization tasks done
untimely, causing severe localization errors. This situation is
worsened by the fact that agents in different running states
(e.g., flying speeds, self-tracking qualities) are not equally
sensitive to the waiting delay. Recent multi-agent collabora-
tive SLAM solutions focus on map fusion and optimization
on edge or cloud servers, but ignore the task queuing issue for
each agent. The conventional first-come, first-served (FCFS)
scheduling will inevitably exacerbate the localization error
on those task-sensitive agents (demonstrated in §5.3).

We measure the localization error (in m) of three related
works in a different number of agents settings. The results
are shown in Fig. 3b. Considering the accuracy requirement
from a broad range of SLAM applications, we treat 1m and
1.5m as acceptable localization errors for indoor (warehouse
inspection) and outdoor (anomaly detection) scenarios. Ev-
idently, all these three systems fail to meet the localization
requirement when serving more than 5 and 10 agents indoors
and outdoors respectively, leaving room for improvements.
C3: Large data storage overhead. The global map main-
tained by the edge server contains large redundancy due to
the following two reasons. First, to ensure the inspection
efficacy, different agents will re-visit the same area at cer-
tain intervals, causing significant path duplication. Second, to

3The measurement shows the maximum throughput in an outdoor mesh
and an indoor 2.4 GHz Wi-Fi network is 15MB/s and 30MB/s, respectively.

complete the 3D map reconstruction, different agents have to
share a co-visible area, resulting in bulky data redundancy. As
the number of agents grows, the data redundancy increases
sharply, and the data volume is likely to exceed the limited
memory capacity of the edge node.

We set up an edge-based collaborative visual SLAM testbed
using a commercial edge device Nvidia Jetson AGX Xavier
(with 32GB RAM and costs $599) and measure its RAM
usage in different numbers of agent settings. We repeat the
measurement on a powerful server with 4x higher storage
capacity (i.e., Dell PowerEdge T630 with 128GB RAM and
costs $6,899) for comparison. The results are shown in Fig. 3c.
In accordance with our analysis, as the system proceeds, the
RAM usage increases rapidly and soon saturates the memory
capacity of both the edge node and the high-end server. This
limitation is worsened by the mismatch between the limited
storage capacity of the edge node and the growing fidelity
of video streams (i.e., 4K or 8K videos). Such high memory
demand limits the maximum number of agents to five, which
sets a strong barrier for the practical deployment of the edge-
based collaborative visual SLAM system.

Due to the device heterogeneity (e.g., cameras on drones
and robots may differ drastically in video resolution and frame
rate) and diverse running status, the quality of maps pro-
vided by different agents may vary largely. An ideal map
compression should remove those low-quality redundancy
while retaining the high-quality counterpart. However, exist-
ing works ignore such difference when compressing the map
data [27,32,43], resulting in degraded SLAM performance
(details in §5.3).

2.3 SwarmMap: System goals

SwarmMap takes a solid step forward in solving these scala-
bility issues. We list the system goals below.

Goal 1: Functionality and resource abstraction. Swar-
mMap should provide functionality and resource abstractions
of existing SLAM algorithms. This allows any variation of
map-point- and keyframe-based collaborative SLAM algo-
rithms to take advantage of SwarmMap.

Goal 2: Plug and play. SwarmMap should be implemented
as a plug-in module, exposing well-defined APIs to end-users
for adaption. This avoids the deeply embedded manual code
changes that may again challenge the system’s scalability.
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Goal 3: Resource overhead reduction. SwarmMap should
effectively reduce the resource overhead spanning data stor-
age, client-edge communication, and task scheduling while
ensuring the precision and real-time performance.

3 Design

In this section, we first describe the high-level system archi-
tecture and then present each module design in SwarmMap.

3.1 System overview

SwarmMap is a framework design to scale up collaborative
visual SLAM service in edge offloading settings. To achieve
this goal, we make the following layer-wise functionality and
resource abstractions: (i) agent layer, where each agent local-
izes itself and builds surrounding local maps in real-time; (ii)
network layer, which enables communications and data inter-
actions between mobile and edge for map synchronization;
and (iii) edge layer, which fuses, optimizes, and maintains
the global map. This layer-wise abstraction provides a clear
view of map data transfer, processing, and storage in SLAMs.
Key functional modules. SwarmMap designs three plug-in
modules to address the resource overhead and scheduling
issues across these three layers.

e The Mapit (Map Information Tracker) module tracks sys-
tem operations associated with map data calibration. It then
transfers these operations to the peer(s) for map synchroniza-
tion (§3.2).

e The STS (SLAM-specific Task Scheduling) module opti-
mizes the batch request execution and manages the resource
allocations among multiple agents (§3.3).

e The MBP (Map Backbone Profiling) module compresses
the map data uploaded by individual agents while ensuring
the overall mapping accuracy (§3.4).

SwarmMap Architecture. Fig. 4 shows the system architec-
ture. SwarmMap shares similar edge-based architecture with
previous works and provides extra system support on both the
mobile agent and edge server side, as discussed below.

e On the mobile agent side, SwarmMap tracks the run-time
status of each agent through a light-weight evaluation-based
mechanism S7S (mobile part). It then follows a dedicated
information exchanging protocol Mapit to communicate and
update map elements with the edge server.

e On the edge side, the edge node prioritizes the agents’ re-
quests by STS (edge part) based on their run-time status. It
then takes into account the data quality of maps reported by
individual agents and extracts a lean presentation of the over-
all map through a map backbone profiling algorithm (MBP).
Finally, the optimized and compressed map backbones will
be sent to each mobile agent by Mapit.

3.2 Mapit: Map Information Tracker

The inevitable frequent map data synchronization between
clients and edge consumes large bandwidth in both cold-start
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Figure 4: System architecture of SwarmMap. Compared with
the conventional edge-based visual SLAM architecture, the
added plug-in modules are highlighted in orange.

and maintenance sessions, circumscribing the system capacity
(i.e., the number of supported agents). Recent works (e.g.,
CarMap [2] and CCM-SLAM [40]) propose a compact map
representation that greatly reduces the data transfer in the cold-
start session. However, their effectiveness fails to translate
to a sufficient reduction in the maintenance session (§2.2-
C1). Therefore, in SwarmMap we focus on the data transfer
reduction in the maintenance session.

Our design is based on an observation that the map change
on one side can be reproduced on the other side (e.g., agent vs.
edge) by solely transferring the map change operations. This
enables a light-weight map synchronization by avoiding trans-
ferring massive map-point data and the bulky geographical
descriptors such as their spatial locations, features, observa-
tion relationships with keyframes [28]. Compared with the
current practice, our design also achieves higher synchroniza-
tion efficiency because it does not require a pair-wise map
element comparison, which leads to extra computation work-
load pressure on resource-limited mobile agents.

To realize this basic idea, we design Mapit, a light-weight
map information tracker to automate the operation tracking
and reproducing on mobile and edge. Mapit runs as a daemon
on both sides, monitoring the SLAM function calls and log-
ging corresponding map operations (e.g., move a map-point
by 2cm). It then transfers this log to the agent (or the server),
based on which the agent reproduces these operations locally.
The map data are synchronized at the end.

The Mapit package periodically* synchronizes the map
operation logs, and consists of five atomic operations: add,
aggregate, push, merge, and pull (shown in Fig. 5).
® Mapit add. The atomic operation add registers a hook for
each SLAM function call (listed in Table 3) and maintains a
recording queue. Whenever an important function is called,
an operation record containing its name, parameters, and in-
fluence on map elements is added to the operation queue.

4Similar to current practice [2,3,39], we empirically set the period to 2s.
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@ Mapit aggregate. At the end of each period, Mapit ag-
gregates the records in the operation queue to reduce their
size. The intuition is that some removals or merges on cer-
tain types of functions will generate equivalent effects. For
instance, if a function changes the location of a map-point
and is marked as overwritten, we only need to focus on
the latest record of it and ignore all the previous operations
on the map-point. As for those marked as stackable, the
implication is that records about modifying a same element
can be merged by parameters. In this way, Mapit produces a
minimal set containing necessary information.

@ Mapit push. After aggregating records, the atomic opera-
tion push on an agent sends the packed records to the edge
server. By reproducing these operations, the map maintained
on edge keeps synchronized with the ones on the client.

@ Mapit merge. On the edge server, the merge module peri-
odically checks if there exists an overlap between the maps
uploaded by individual agents and the global map. Once an
overlap is detected, different maps will be coordinated and
fused by the upper-layer SLAM algorithms (e.g., Sim3 opti-
mization algorithm [28]). The map fusion process will operate
and update some map elements, and hence the merge module
also records these operations on the map elements in the same
way as add and aggregate.

® Mapit pull. The pull module can be treated as the reverse
operation of push. It requests aggregated map modification
logs generated by map optimization and merge, from the edge
server to the agent. Additionally, if the global map has already
been created (i.e., the whole system is in the maintenance
session), Mapit will also transfer a set of closest map-points
(e.g., associated with the next 5 keyframes) to the agent in
the pull process. The benefit of this strategy is to enhance the
agent’s localization performance since these map-points with
a high probability of appearing in the future would provide
prior information for the tracking module on the agent side.

3.3 STS: SLAM-Specific Task Scheduling

As more agents get involved in SLAM systems, processing
agents’ requests (e.g., local map optimization) can cause ex-
cessive queuing delays. Since agents in different running
states are not equally sensitive to the waiting delay, conven-
tional FCFS scheduling may exacerbate localization errors

on time-sensitive agents and hurt SLAM performance (§2.2-
C2). To our best knowledge, there is still a lack of scheduling
strategy tailor to multi-agent SLAM tasks.

To address this issue, we introduce STS — the first SLAM-

Specific Task Scheduler that guides the edge to strategically
prioritize requests. Specifically, STS divides agents into emer-
gency and non-emergency groups based on the agents’ status.
It timely reorders the requests based on the following princi-
ples:
(i) Prioritizing requests from agents in the emergency group.
(ii) Among those non-emergency agents, STS prioritizes re-
quests from agents that can provide higher information gain
for global map construction or optimization.

The first principle aims to prevent each agent from losing
self-tracking, and the second is for achieving a better overall
global mapping performance. We propose a set of metrics to
characterize the agent status and design a multi-level queue
to schedule the requests from agents.

3.3.1 Agent Status Evaluation and Updating

Agent side. Each agent regularly updates its status with the
edge by sending heartbeat packets. Since both environment
and device dynamics may fluctuate violently during an agent’s
movement, the heartbeat interval should be shorter than the
agent’s request interval (i.e., 2s). In SwarmMap we expose
the heartbeat setting (100ms by default) to end-users so that
they can easily adapt to different environment settings. We
define three variables that can fairly reflect an agent’s status:
e Tracking state: a 1-bit Boolean value shows whether an
agent is traceable or not. An agent’s tracking state is set to
LOST if its latest ORB feature maps cannot well match the
local feature map. This variable is provided by the tracking
module in many visual SLAM systems [29].

e Velocity burst: a 1-bit Boolean value shows whether an
agent’s speed changes abruptly or not. An abrupt change of
velocity may result in motion blur in videos and make it hard
for clients to extract visual features. In SwarmMap, we set the
variable Velocity burst to True if the current moving speed is
20% greater than the averaged speed over the latest N frames,
where N is a variable exposed to end-users. N = 10 by default.
o Tracked map-points number: an 8-bit variable represents the
number of map-points observed by an agent. A larger number
indicates the tracking module is running more stable.
Server side. Due to the heterogeneous device capability (e.g.,
cameras on different agents may differ in resolutions) and di-
versified trajectory, each agent contributes unequally to global
map construction and optimization. SwarmMap prioritizes
requests from those agents that can provide higher informa-
tion gain for global map construction and optimization. To
this end, we design the following two metrics to measure the
information gain of each agent:

e Map-point score (MS) is defined as the average score of all
map-points observed by an agent (the way to calculate the
map-point score will be introduced in §3.4). A higher average
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Figure 6: Workflow of the ST'S with an example.

score reflects that the current position is likely to have been
visited before. On the contrary, a lower score indicates the
agent is exploiting new or partially observed areas. Hence,
STS prioritizes tasks with a lower map-point score.
e Map elements generation speed (MG) characterizes the
number of unobserved map-points and keyframes uploaded
by the latest mapit push operation. An agent with a higher
map element generation speed contributes more to the edge’s
global map generation and optimization.

STS normalizes each metric and computes each agent’s
contribution score as normalized MG - normalized MS.

3.3.2 Multi-level Queue Scheduling

On the edge side, STS designs three queues with different
priorities to facilitate agent request scheduling.

e Lost Handling Queue. If an agent’s tracking state is
marked as LOST, STS will push its request into this queue.
o Lost Prevention Queue. If an agent has a velocity burst
and merely tracks few map-points, it may become prone to
LOST, and STS will push its request into this queue.

e Map Enrichment Queue. For those agents with stable
running status (i.e., without the risk of losing self-tracking),
STS will push their requests into this queue and sort them by
their mapping contribution scores.

The lost handling queue owns the highest priority, followed
by lost prevention queue and map enrichment queue. Upon the
reception of an agent’s request, STS inserts this request into
one of these three queues based on the agent’s tracking status
and mapping contribution. The back-end SLAM algorithm
pops requests from queues based on their priority.

We take Fig. 6 as an example to explain the job scheduling
in SwarmMap. Suppose there are four agents in the system,
with agent 2 in lost tracking status and agent 3 facing the
velocity burst issue. STS will push agent 2 and 3’s requests
into the lost handling and prevention queue, respectively. The
request from agent 1 and 4, two agents not in emergency
states, will be pushed into the map enrichment queue. Since

agent 1’s mapping contribution score is higher than agent 4,
the request from agent 1 will be put at the head of the queue.
The edge processes these requests in the order of 2-3-1-4.

3.4 MBP: Map Backbone Profiling

The global map maintained by the edge node contains large
redundancy (§2.2-C3). Due to the device heterogeneity (e.g.,
the onboard cameras may differ in resolution and frame rate)
and diverse running status, the quality of maps contributed by
different agents may vary largely. Existing map compression
works [6, 13, 14] ignore such difference, resulting in infor-
mation loss and hence degraded performance. The relevant
works, CarMap and CCM-SLAM, design lean map represen-
tations to reduce the transmitted data volume for a faster map
synchronization. However, they still need to reconstruct the
huge global map through these compact representations on
both mobile agent and edge node. Therefore, the memory
footprint remains high when more agents are connected.

To address this issue, we introduce a map backbone profil-
ing (MBP) algorithm. Unlike the current practice, we do not
greedily remove redundant map elements in co-visible areas.
Instead, we first leverage these redundant elements to generate
a series of virtual keyframes and use them to improve those
low-quality map segments. Once the overall quality of the
global map got improved, we can thus compress the global
map without compromising the mapping quality.

MBP first evaluates the quality and importance of each map
element. It then (i): finds high-quality map-points that could
be leveraged to generate virtual keyframes; (ii): searches for
low-quality map segments that need to be improved; and
(iii): improves the overall map quality by inserting virtual
keyframes to those low-quality map segments. Finally, MBP
operates map compression on the balanced global map.

34.1 Map Element Evaluation

Map-point evaluation has been extensively studied in related
works [14]. The gold-standard metrics include the observing
path length, maximum observing distance, maximum observ-
ing angle, and mean re-projection error. We borrow these
metrics (detailed in §A.2) to evaluate a map-point and pro-
pose three new metrics to adapt to collaborative scenarios:

e Observed number represents the number of keyframes, in
which the map-point is observed, across the entire global map.
A higher score indicates multiple agents can observe a map
point over a long period.

o Update frequency is defined as the total number of times
the map-point was modified or updated by all agents in the
last round of Mapit push operations. Map-points with high
update frequency suggest a potential hot spot in a trajectory.
e Moving velocity records the speed of a mobile device when
it generates the map element. A higher score indicates a poten-
tial blurriness that may influence the stability of the map-point.
We take its negative value to evaluate the map-point score.
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Figure 7: A running demo of MBP. The left column shows
the map elements uploaded by different agents, while the
right column presents partial zooming-in maps. The dotted
keyframes in (b) are the synthetic virtual keyframes.

MBP normalizes each metric by its maximum value. We
then define the score of a map-point as the sum of all normal-
ized metrics values. The score of a keyframe is the sum of all
observing map-point scores.

3.4.2 Map Backbone Generation

The map backbone generation consists of two steps: virtual
keyframe generation and map compression.
Virtual keyframe generation. The trajectory of an individ-
ual agent is first segmented with the awareness of where over-
laps occur. The quality of each map segment is defined as the
sum of all map element scores (i.e., scores of all keyframes
and map-points) within it. For each map segment with low
quality (e.g., its score is in the bottom 20%), MBP search
for high-quality map-points in its neighborhood (i.e., within
60° field-of-view of its keyframes) even though the original
keyframes do not observe these map-points. Furthermore,
MBP synthesizes virtual keyframes that could observe these
high-quality map-points, and the pose (i.e., spatial location
and orientation) of each keyframe can be calculated by the
ICP algorithm [38] and optimized by BA [42]. Since the vir-
tual keyframes only consider whether a map point is good
enough regardless of which agent uploads it, they can supple-
ment those low-quality segments.
Map compression. Once the quality of map segments is more
balanced, MBP performs the similar map compression algo-
rithm proposed by Sum-Map [27], eliminating redundancy by
generating an enhanced minimum spanning tree across the
global map. In addition, we introduce an extra optimization
goal that guides the spanning tree to cover as many high-
quality map elements as possible.

Fig. 7 compares the map compression performance of
MBP and Sum-Map. Map elements from different agents

are marked in red, blue, and brown in the figure. Although
Sum-Map obviously reduces the map size, it neglects the map
quality difference, making the compressed map of trace 2 too
sparse and harming the SLAM performance. In contrast, with
reducing the map size by nearly half, MBP inserts several
virtual keyframes, balancing the map quality among different
agents and ensuring mapping accuracy.

4 Implementation

We implement SwarmMap as an open-source package and
make it compatible with ROS [26]. It contains 18,000
LOC (line of C++ code). SwarmMap is built upon ORB-
SLAM2 [29], the top-ranked open-source SLAM algorithm
that has been widely used by both research and industry com-
munities. Our implementation avoids modifications on SLAM
functions (e.g., tracking, local mapping, loop closing). This
allows any variation of ORB-SLAM algorithms such as Dy-
naSLAM [5], ORB-SLAM3 [7], as well as other map-point-
and keyframe-based collaborative SLAM algorithms (e.g.,
Multi-UAV [39], C-ORB [22], CCM-SLAM [40]) to take
advantage of SwarmMap (demonstrated in §A.5). Addition-
ally, we also expose well-packaged APIs to facilitate users to
modify some parameters (map synchronization period, status
evaluation metrics, etc.) in SwarmMap according to specific
upper-layer applications. A high-level abstraction of Swar-
mMap’s implementation is detailed in §A.3.

5 Evaluation

In this section, we first present the experimental methodology
(§5.1), followed by the overall performance of SwarmMap
compared against SOTA systems (§5.2). We then conduct
an ablation study to understand each functional module in
SwarmMap (§5.3). Further, we demonstrate the portability
of SwarmMap by plugging it into baseline SLAM systems
(§A5).

5.1 Experimental Methodology

Field studies. We deploy 12 agents including 4 smartphones,
4 drones, and 4 mobile robots on a 22,927 sqft shopping
mall. These agents collaboratively localize themselves and
mapping the environment in real-time. The ground truth is
obtained through the Kinect 360 RGB-D and Opti-Track [33]
cameras. We also build a dataset using these video streams
for trace-driven evaluation.

Trace-driven evaluations. Following the conventional visual
SLAM evaluation methodology [2,22,40,47], we also con-
duct comprehensive trace-driven evaluations based on public
SLAM datasets (KITTI [10], EuRoC [9], and TUM [11]) and
the handcrafted dataset mentioned above. The characteriza-
tion of three public datasets is summarized in Table 4. In our
evaluations, the movement speed of mobile agents various sig-
nificantly, ranging from 0.5m/s (indoor DJI RoboMasters) to
15m/s (ourdoor vehicles), representing the status of devices in
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Figure 8: Overall performance comparison with a growing number of agents.

real world usage. Similar to the standard collaboration SLAM
evaluation pipeline [19,39,40], we cut the video stream into
overlapped segments and feed them to different agents to
emulate the multi-agent scenario.

Edge Setup. Most of the previous works cannot be deployed
on a resource-constrained edge node to support large numbers
of agents because they consume a considerable amount of net-
work bandwidth and edge computational resources (§2). We
thus use a powerful server, which is equipped with an Intel(R)
Xeon(R) CPU E5-2620v4 of 2.10GHz main frequency and
64GB RAM running Ubuntu 18.04, to explore the capacity
of these systems and compare them with SwarmMap. The
agents communicate with the server through 2.4 GHz and
5 GHz Wi-Fi links in the shopping mall and our laboratory.
The maximally achievable link throughput measured with
iperf3is 27.4MB/s and 46.1MB/s, respectively.

Metrics. We use absolute trajectory error (ATE, in cm) to
evaluate SLAM accuracy on the three public datasets while
adopting location error (in m) to evaluate the positioning
accuracy in field studies and our handcrafted shopping mall
dataset. ATE is a golden metric for evaluating the tracking per-
formance of SLAM algorithms [11]. Since ATE pre-calibrates
the generated trace with the ground-truth trajectories before
measuring the absolute errors, it achieves fewer errors than
the actual location errors. To evaluate system overhead, we
count the bandwidth demand (in MB/s) of all participants
in the system (defined as the sum of the average volume of
data transferred per second by all agents). Similar to previous
works [40,47], we store the global map in RAM rather than
SSD during system operation for faster map recall and update.
We hence record the RAM usage (in GB) on the edge server
to measure the memory consumption.

Map updating latency. Similar to previous works such as
Edge-SLAM [3] and CCM-SLAM [40], SwarmMap adopts
the same edge-assisted architecture where the tracking task is
running locally on the agents. This allows an agent to localize
itself in real-time (i.e., >30 fps with camera rate). We thus
take the map updating latency (in ms)—the delay until the
agent gets the latest optimized map from the server—as the
metric to evaluate the real-time performance of map updating
in SwarmMap. Map updating latency takes into account both
the map synchronization and optimization latency.

5.2 Overall Performance Comparison

We first compare SwarmMap with CCM-SLAM [40] and
Multi-UAV [39], two most relevant SOTA edge-based multi-
agent SLAM systems, to evaluate the overall performance.

5.2.1 Accuracy Comparison

We first evaluate the average ATE and location error in a
different number of agent settings. The results are depicted
in Fig. 8a and Fig. 8b. As seen, SwarmMap achieves the
best tracking and localization performance in all scenarios.
Compared with related works, SwarmMap reduces ATE by
> 30%, 20%, 20%, 50%, 55% for scales with 3, 5, 10, 15, 20
agents, respectively. The location errors are also significantly
degraded by >40% when serving more than 10 agents. On the
other hand, the performance of CCM-SLAM and Multi-UAV
degrades remarkably with the growing number of agents. (i.e.,
the ATE and location errors expand 3x and 7 x respectively
from 3 to 20 agents). When serving more than 10 agents in the
shopping mall, they fail to guarantee that the average location
error of each client is within 1.5m, which is typically the
localization precision requirement for indoor drones [48]. In
contrast, SwarmMap can still bound ATE and location error
within 40cm and 1.4m even serving 20 agents. Generally
speaking, above delightful results come from the fact that the
localization performance of each agent highly depends on the
quality of the on-board maintained local map [3,47], and the
three modules (Mapit, STS, and MBP) in SwarmMap exactly
enable each agent to acquire an optimized local map in time.

5.2.2 Map Updating Latency Comparison

We further examine the end-to-end latency of each agent from
uploading map segments to eventually obtaining the opti-
mized map from the edge node. To save space in the figure,
we denote SwarmMap, CCM-SLAM, and Multi-UAV as S, C,
and M, respectively. Fig. 8c shows the averaged latency on
map uploading, optimizing, and downloading of each system
in different number of agent settings. As seen, the total latency
of SwarmMap is around 95ms and 105ms for 5 and 15 agents
respectively, outperforming baselines by > 40% and 65%.
The majority part of the latency reduction comes from the
data uploading and downloading because Mapit reduces the
amount of data transfers to a large extent. On the other hand,
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Figure 9: Resource overhead comparison with a growing
number of agents.

the processing latency also drops around 10% when serving
15 agents as STS module reduces the averaged queuing delay.

5.2.3 Resource Overhead Comparison

Bandwidth Demand. We then measure the bandwidth de-
mand of these three systems. As depicted in Fig. 9a, on av-
erage, SwarmMap reduces > 35%, 20%, 30%, 25%, 20% of
network bandwidth requirement when serving 3, 5, 10, 15, 20
mobile agents compared with existing works. Said differently,
SwarmMap could serve more agents with the same wireless
link throughput. For instance, under 27.4MB/s shopping mall
bandwidth limitation, SwarmMap can support more than 20
agents while existing works merely around 10.
RAM Usage. We stitch the 00-05 trajectories on the KITTI
dataset to generate a trajectory with 16.2km length and con-
duct a 30min experiment to measure the RAM usage. As
shown in Fig. 9b, compared to CCM-SLAM, SwarmMap
saves an average memory overhead of 2GB and 6GB when
serving 5 and 15 agents, respectively, and the map size be-
comes stable under an upper bound (as seen, I5GB when
serving 15 agents) once the whole scene is well mapped.
Unlike CCM-SLAM which requires transmission of a large
volume of map elements, SwarmMap leverages Mapit and
significantly reduces the bandwidth demand for map synchro-
nization. In addition, the MBP module prunes the size of
the global map maintained and optimized on the server, thus
reducing the system overhead on computational resources.
Generally speaking, SwarmMap aims to scale the collabo-
rative SLAM service with the same resource overhead at the
edge. SwarmMap will achieve a better performance with more
computational resources are allocated and advanced resource
management technologies (e.g., swap or virtual memory) are
leveraged on edge, which are left as future works.

5.3 Ablation Study

We then conduct an ablation study to understand the effective-
ness of each module in SwarmMap.

Performance of Mapit. We compare Mapit with CarMap [2],
CCM-SLAM [40], and benchmark (e.g., edgeSLAM [47] and
Edge-SLAM [3] that directly transmit the entire map with-
out feature compression). Table | records the average data
interaction speed (i.e., the average amount of map data up-
loaded and downloaded by each agent per second) of them

Table 1: Transmitted data volume comparison.

Solution Average Data Interaction Speed (MB/s)
TUM | KITTI | EuRoc | Shopping Mall
Mapit 1.3 1.1 1.3 14
CarMap 1.9 0.9 1.2 1.8
CCM-SLAM | 3.2 1.9 22 2.9
Benchmark 5.2 43 4.7 49

Table 2: Map compression performance comparison.

Solution ' KITTI 02 . KITTI 05
Map Size (GB) | ATE (cm) | Map Size (GB) | ATE (cm)
MBP 3.1 7.6 1.9 6.4
Sum-Map 2.8 10.7 1.8 9.3
Benchmark 5.2 7.4 4.1 5.8

on different datasets. As seen, Mapit saves nearly two times
the bandwidth compared to CCM-SLAM and benchmark on
all datasets. Mapit performs slightly worse than CarMap on
KITTI and EuRoc datasets, where the operating environments
are relatively large (e.g., broad city roads). In these scenarios,
the agents spend most of their time in the cold-start session
during which they continuously transfer the newly generated
map elements. In contrast, on TUM and our shopping mall
datasets, the SLAM system completes the environment profil-
ing quickly and soon enters the maintenance session during
which Mapit eliminates map data transfer and saves the band-
width by adopting the strategy of transmitting only records of
map modifications rather than the modifications themselves.

Performance of STS. We evaluate STS by counting the aver-
age tracking lost percentage (i.e., proportion of video frames,
with which agents fail to track themselves, in all video frames)
of SwarmMap with (w/) and without (w/o) STS. As depicted
in Fig. 10, despite the increasing service scale, SwarmMap (w/
STS) maintains a stable service quality, and the lost percentage
is within 4% in all scenarios. In contrast, the lost percentage
of CCM-SLAM as well as SwarmMap (w/o STS) increases
rapidly, and the average lost percentage is at least 8% when
serving more than 10 agents, which may lead to a terrible self-
tracking and environmental mapping performance. Generally
speaking, the STS strategy enables SwarmMap to prioritize
tasks depending on the agent emergence states and prevent
most agents from losing self-tracking.

Performance of MBP. We finally compare MBP with a map
compression algorithm Sum-Map [27]. Specifically, we eval-
uate the map size after compression by their approaches and,
equally important, the localization accuracy of each agent
using the compressed map for self-tracking. The results are
recorded in Table 2. We conduct experiments on the KITTI
02 and 05 trajectories because of the large map redundancy
in them. The benchmark (only store the global map without
compressing it) shows the size of the original map and the
ATE by using it. As seen, MBP reduces the original map size
by almost half. Although the map compression ratio of MBP
is a little smaller than that of Sum-Map, MBP barely sacrifices
the accuracy of the global map.
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Figure 10: Tracking stability comparison.
6 Oil-field Case Study

Based on SwarmMap, we have developed a real-time collab-
orative visual SLAM system and deployed it in one of the
world’s largest oil-field (> 170km?) in the Middle East for
industrial inspection. The details about the deployment setups
can be found in §A.6. We conduct a three-month pilot study
(from June 2021 to August 2021) and summarize our main
findings regarding the SLAM accuracy and system overhead.
SLAM Accuracy. We calculate the average location error
of each agent during inspections and present these results
in Fig. 11 and Fig. 12. Note that we cannot directly obtain
ground-truth in the same way as in the experiment (e.g., de-
ploy expensive Lidar or Opti-Track cameras), hence we col-
lect the video frames captured by all agents and run the multi-
agent ORB-SLAM3 offline afterward without considering
the system latency. On this basis, we take the difference be-
tween the real-time localization performance of SwarmMap
and offline processed results as the location error. As shown
in Fig. 11, the average location error is 19.3cm and 29.1cm
in indoor and outdoor scenarios, respectively, satisfying the
task requirement (1m and 1.5m for indoor and outdoor in-
spections). Fig. 12 further illustrates the performance of each
agent, and we find that two outdoor inspection drones (agents
9 and 10) suffer from a higher location error (up to 1m). The
reason behind it is that these two drones are carrying out
oil pipeline inspection at the border of the oil field; they fly
faster (e.g., > 5m/s) and far away from the edge server (e.g.,
15km). Therefore, they may experience certain delays due to
the data forwarding through multi-hop mesh networks. Such
a transmission delay may set a barrier for the drones to obtain
the optimized map in time, causing localization errors. Never-
theless, the worst localization error of these two drones still
satisfies the localization requirement in the outdoor scenario.
Latency. We measure each agent’s onboard localization la-
tency (the delay on estimating its own location from an input
image) and map updating latency. The results are depicted
in Fig. 13. We observe that each agent could localize itself
in a real-time manner (i.e., the localization delay is within
35ms, typically the camera inter-frame interval). The average
map updating delay is around 100ms. Although agent 9 suf-
fers from a higher map updating delay (an average of 191ms)
due to multi-hop data forwarding, it can still localize itself in
real-time by leveraging its local map data.

Bandwidth demand. We record the total bandwidth demand

for indoor (4 agents) and outdoor (8 agents) inspection tasks.
Fig. 14 shows a snapshot over a span of 175 minutes. We find
there is a drop in bandwidth demand at 45min and 75min, re-
spectively. This is because the SLAM system enters the main-
tenance session at these two time points. Thanks to Mapit,
the transferred data volume in the maintenance session is
significantly reduced, with 4MB/s for indoor and 11MB/s for
outdoor inspections. Additionally, due to the relatively higher
flight speed and map updating delay for outdoor drones, the
edge server needs to frequently transmit updated maps to
them in Mapit pull to prevent them from losing self-tracking,
which results in the outdoor bandwidth demand fluctuates
more dramatically than indoor ones.

RAM Usage. We further record the edge’s RAM usage when
executing the indoor and outdoor inspection tasks. As shown
in Fig. 15, the maximum RAM usage in the indoor and out-
door scenarios is around 20GB and 12GB, both of which are
well below the capability (32GB) of the edge node.
On-board CPU Usage. We also record the CPU occupancy
rate of SwarmMap task (mobile part) on agent 1 (indoor
drone) and 6 (outdoor drone) and plot these results in Fig. 16.
The CPU usage of the outdoor drone is in the range of 20%-
35%, while the indoor drone is 22%-43% during the 210
minutes of inspections. Due to the high dynamics of the in-
door environment, the agent has to frequently update the local
map although the whole area is well-mapped, which takes up
more CPU resources than outdoor environments. Note that
SLAM is an underlying algorithm that provides an agent with
location and environmental information, and SwarmMap still
leaves more than 50% CPU computational resources for each
agent to perform upper-layer applications (e.g., context-aware
interaction, object detection, or segmentation).

7 Related work

We review the most related works in this section.

Visual SLAM. One of the most fundamental algorithms in
robotics has been a topic of research in robotics and mobile
systems for several decades [6]. It consists of the concurrent
construction of a surrounding environment and the state esti-
mation of the robot moving within it. Typically, systems use
monocular cameras [15,20], stereo cameras [29], or RGB-D
cameras [31]. Some of the more well-known visual SLAM
examples include RGBD-SLAM [16], RTAB-Map [21], and
ORB-SLAM [7,28,29]. Although SwarmMap is implemented
on the top of ORB-SLAM?2 [29], it can be easily ported to
other map point-based visual SLAM like S-PTAM [34]. Other
multi-map merging or optimization algorithms leveraged in
recent work like ORB-SLAM3 [7], can also be integrated
into SwarmMap. Our platform can also be applied to some
feature/map point-based multi-sensor SLAM systems like
VI-ORB [30], VINS [35], mmWave SLAM [24,44].

Edge-assisted Real-time SLAM. Recent studies [2, 3, 8,
23,40,47] speed up the computation-intensive tasks on agents
by task partition and offloading workload to an edge server.
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Therein, edgeSLAM [47] and Edge-SLAM [3] enable mobile
agents to run visual SLAM in real-time. They split the origi-
nal ORB-SLAM?2 architecture and offload the local mapping
and loop closure tasks to an edge server. CarMap [2] lever-
ages the map constructed by crowdsourced agents and designs
a near real-time map update framework between client and
cloud. Muti-UAV [39] and CCM-SLAM [40] leverage a cen-
tral server with potentially larger computational capacity to
merge and optimize maps constructed by different agents,
while each agent maintains partial local maps for tracking.
However, as the number of serving agents scales, these works
face severe scalability issues including excessive bandwidth
consumption, severe localization errors, and large data stor-
age. SwarmMap is the first work that solves these scalability
issues based on the same edge settings.

Multi-agent Collaborative SLAM. Collaborative SLAM
has been explored recently [6]. C2TAM [37], C-ORB [22],
and CVI-SLAM [19] present collaborative SLAM frame-
works based on PTAM [20], ORB-SLAM?2 [29], and VI-
ORB [7] respectively. CSfM [17] also proposes a framework
to coordinate maps upload from different agents. In general,
the system goals of these works and SwarmMap are orthogo-
nal: above systems mainly focus on map fusion, optimization,
and segmentation to generate a high-quality global map of
the environment, ignoring the real-time performance of each
agent and the entire system. In contrast, SwarmMap aims
at solving the scalability issues and support each agent for
real-time tracking, mapping, and map updating. Inspired by
current efforts, we could integrate some map merging, opti-
mizing, and even compressing algorithms proposed by recent
works [6, 13, 14,27,49] into SwarmMap for a better SLAM
performance, which are left as future works.

8 Discussion

We briefly discuss limitations and future work in this section.
The capacity of SwarmMap. Although SwarmMap signif-
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Figure 15: Edge server RAM usage.
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Figure 16: Mobile CPU occupation.
icantly reduces the bandwidth consumption and memory
overhead for collaborative visual SLAM systems, such re-
source consumption still grows linearly with the number of
the agents, which still fundamentally limits the system ca-
pacity. The way to make the resource consumption grow
sub-linearly [18] with respect to the number of agents worth
further research. On the other hand, the current Mapit design
merely focuses on reducing bandwidth consumption in the
maintenance session. Serving the system throughput the entire
life-cycle with Mapit could potentially save more bandwidth.
Map optimization algorithms integration. SwarmMap pro-
vides a basic map transmission and management platform
for multi-agent SLAM. To date, SLAM map optimization is
still a trending topic in the robotics field. Integrating existing
advanced technologies (e.g., map compression, fusion, and
semantic recognition) into SwarmMap for a better system
performance is an ongoing work. Furthermore, efficient map
data sharing not only between mobile and edge, but among
different agents could also benefit upper layer applications.

9 Conclusions

We have presented the design and implementation Swar-
mMap, a framework to support real-time collaborative visual
SLAM at edge devices. SwarmMap proposes functionality
and resource abstractions of SLAM systems and provides
three light-weight system services to address the communica-
tion, storage, and scheduling issues in edge-based scenarios.
We implement SwarmMap as a software package on the ROS
platform so that most variations of visual SLAM systems can
directly benefit from it. Extensive evaluations and a three-
month pilot study demonstrate its superior performance.
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A Appendix

A.1 Functions Registered in Mapit

In the Mapit add module, we dig the insights about how map
elements get changed and find these changes mainly caused
by certain important SLAM functions, a fraction of which is
listed in Table 3. Thus, modifications that happened to the
map can be recorded as calling history of these functions.
For certain functions shown in the table, some removal and
compression on the records will not harm data consistency.
For instance, if a function is marked as overwritten, it indi-
cates that its only effective change on a map element is the
latest one i.e., changing the pose of a map point. As for those
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Table 3: Functions that could change the map element (only some fundamental functions are listed)

Target Function Type Description
KeyFrame SetPose overwritten  set the pose of the keyframe
KeyFrame AddMapPoint unique add a map point to the keyframe
KeyFrame EraseMapPointMatch unique remove a map point from the keyframe
KeyFrame SetBadFlag unique mark the keyframe bad and delete it
MapPoint SetWorldPos overwritten  set map point position in the world coordinate
MapPoint AddObservation unique add a keyframe that observes the map point
MapPoint EraseObservation unique remove a keyframe from observations
MapPoint SetBadFlag unique mark the map point bad and delete it
MapPoint IncreaseVisible stackable  increase the count that map point is observed
MapPoint IncreaseFound stackable  increase the count that map point is matched
MapPoint SetLastTrackedTime  overwritten set the last tracked time of the map point
MapPoint  UpdateNormalAndDepth overwritten update the normal vector and depth of the map point
Map Clear overwritten clear the current map
Map AddLoopClosing unique add a keyframe to loop closing queue
Table 4: Dataset Description
Dataset Label Trajectory Sequence Total Time (min) Total Path (m) Total Frames  Environment
. fr2_desk 1.66 18.88 2965
T-M (TUM Medium & Easy) 3 1500 office_household 1.45 21.46 2585 office
. fr2_large_with_loo 2.88 39.11 5182 . .
T-D (TUM Difficult) frg_lafgg_no_Toopp e 10,93 2359 industrial hall

K-M (KITTI Medium & Easy) 00/ 05 7.57/4.79 3724.18 /2205.58  4541/2761 city road
K-D (KITTI Difficult) 02/04 7.77 5067.23 / 393.65 4661 /271 city road
E-M (EuRoC Medium & Easy) MH_01/MH_02 24717250 68.52/73.50 3682/3040  machine hall
E-D (EuRoC Difficult) MH_04 / MH_05 1.65/1.85 91.70/97.59 2033 /2273 machine hall
Shopping Mall (Our Dataset) N/A 15 314.2 24,365 shopping mall

marked stackable, the implication is that records about mod- obtained as

1fy1ng the same element can be merged by parameters and % = max arccos(ré’i . rlé’i ).

still yield the same effect. Jkesi

A.2 Map-point Evaluation Metrics

A typical SLAM map consists of two types of elements, map
points and keyframes. Map points represent discrete 3D land-
marks in the global coordinate, and keyframes are selected
frames indicating poses and positions of the corresponding
camera (as illustrated in Fig. 18 with corresponding notations
in Table 5). EBM [14] introduces several features based on
local geometry information; we list four important metrics to
evaluate a map-point we used in MBP:

e Observing Path Length. The distance traveled while ob-
serving the map-point and is obtained as

o= Y 66" — €.
jest
e Maximum Observing Distance. The distance traveled be-
tween two most distant keyframes on a track, and each of
them observes the map-point. Its computation requires maxi-
mization over all keyframes observing the same map-point,
ie.,
0 = max [|tg’ — t6*||2.
JkeS!

e Maximum Observing Angle. The maximum angle be-
tween two keyframes that could observe the map-point and is

e Mean Re-projection Error. Apart from the map-point
track geometry, it is also worth considering the consistency
of the map in the map-point’s locality. EBM calculate the
average re-projection error of each map-point to represent the
mapping stability, i.e.,

i Liesillmij—mi ;2
¢p - |5i|

A.3 SwarmMap Abstraction

Fig. 17 shows the high-level abstraction of SwarmMap’s im-
plementation. The MBP module assists the map fusion and op-
timization unit to eliminate the data redundancy in the global
map. The STS module replaces those handcrafted request
handlers in conventional SLAM implementations [19, 39,40]
and thus alleviates the end users’ development overhead. Fi-
nally, we replace the communication unit and map handlers
with a unified Mapit module. Such a layered implementation
decouples SwarmMap’s functional modules, allowing the end-
users to turn on/off each module as they need. It also avoids
the deeply embedded manual code changes (e.g., defining
handlers) that again challenge the system scalability.
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A.4 Experimental Dataset Description

We list the public datasets, the trajectories we used, and our
handcrafted shopping mall dataset in Table 4. We select repre-
sentative trajectories with different difficulty levels (in terms
of environmental dynamics, path length, feature point spar-
sity, ambient light intensity, etc..) in TUM, KITTI, and EuRoc
datasets, respectively.

A.5 Plug-and-play

We demonstrate the portability of SwarmMap by integrating
each of its components into two different SLAM systems.
We add STS, Mapit, and MBP to ORB-SLAM3 [7], the lat-
est follow-up of the ORB-SLAM system, and measure the

Table 5: Notation Description

Notation Description

X¢' position of map point i in global coordinate G

te/ position of keyframe j in global coordinate G

S set of all keyframes observing map point i

rg/ unit-length observing vector starting from the
observing keyframe j to map point i in global
coordinate G

PJ set of all map points observed by keyframe j

M set of all agents observing map point i

1t creation and last tracked time for map point i

Mesh Backbone Node O ng(si:;-
AR oL@

Deployment
Scenario

Figure 19: Mesh network deployment in the Oil-field.

accuracy gain brought by each module. Fig. 20 shows the
results. As seen, all these three modules contribute to localiza-
tion accuracy. When serving 5 agents, STS, Mapit, and MBP
decrease location errors by around 50% and 30%, and 10%,
respectively. The contribution of each component also grows
with an increasing number of agents.

We also integrate SwarmMap into our baselines CCM-

SLAM, Multi-UAV, and ORB-SLAM3 (abbreviated as C, M,
and O, respectively) to explore the location error reduction.
As depicted in Fig. 21, the location error of CCM-SLAM,
Multi-UAV, and ORB-SLAM3 decreases by 13.4%, 12.2%,
and 16.7% respectively in 5 agents settings. When serving
15 agents, the error decreases further to 17.2%, 31.3%, and
29.6%.
Remarks. These results show that most existing works in
multi-agent scenarios (especially scenarios with more agents)
can directly benefit from SwarmMap. It is worth mentioning
that we do not re-design or modify the code structure of these
existing works for integration. We merely provide a wrapper
to hook up these systems and SwarmMap (i.e., call the API
defined in SwarmMap).

A.6 Case Study Setups

Our system consists of 12 mobile agents to perform daily
inspection tasks both indoors and outdoors. These agents
communicate with an Nvidia Jetson AGX Xavier edge node
through Wi-Fi mesh networks, as shown in Fig. 19.
Inspection agents. We have deployed 12 mobile agents to
perform daily inspection tasks, including 4 DJI Inspire drones
(Agent #ID 1-4, equipped with 2K cameras) for indoor ware-
house inspection as well as 6 DJI Inspire (#ID 5-10) and 2
inspection vehicles (#ID 11-12, equipped with 1080P cam-
eras) for outdoor oil-field inspection. For drones, we integrate
the mobile part of SwarmMap into ArduPilot [4], a widely-
used open source drone development platform. The output
localization and mapping results are streamed to the Ardupi-
lot Mega controller through a Micro-USB port for supporting
upper-layer applications (e.g., real-time drone flight control,
abnormal events detection). The two inspection vehicles are
equipped with Nvidia Jetson TX1 as their computing units.
Edge server. We implement the edge side of SwarmMap on
an Nvidia Jetson AGX Xavier edge node with a 32GB 256-
Bit LPDDR4x RAM, a 16-core ARM v8.2 64-bit CPU, and a
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512-core Volta GPU. We also turn on the GPU acceleration by
Numba [1] and CUDA [41] to speed up the back-end global
map optimization procedure. The power consumption of the
edge node is below 30W, which is less than the available
power supply in the industrial scenario.

Wireless Network. The 4 indoor inspection drones commu-
nicate with the edge node via 2.4 GHz WiFi, while the 8
outdoor inspection agents communicate through a mesh net-

ZZ1 w/ SwarmMap
] X3 Benchmark

(m
o 4
o u o
T

Location Error
o
[6,]

g A Al HY A

C5 C15 M-5 M-15 05 O-15
System-Agents Number
Figure 21: Performance gains.

o

work. In order to make the mesh network cover the whole
170km? outdoor oil-field (the west-east distance is around
30km), 24 communication nodes, including 4 mesh backbone
nodes and associated 20 remote transmission units (RTU)
are deployed (shown in Fig. 19). The maximum throughput
measured by iperf3 in the outdoor mesh and indoor WiFi
network is 14.3MB/s and 26.8MB/s, respectively.
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