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Abstract
Performance monitoring and diagnosis are essential for data
centers. The emergence of programmable switches has led to
the development of a slew of monitoring systems, but most of
them do not explicitly target posterior diagnosis. On one hand,
“query-driven” monitoring systems must be pre-configured
with a static query, but it is difficult to achieve high coverage
because the right query for posterior diagnosis may not be
known in advance. On the other hand, “blanket” monitoring
systems have high coverage as they always collect telemetry
data from all switches, but they collect excessive data. Spi-
derMon is a system that co-designs monitoring and posterior
diagnosis in a closed loop to achieve low overhead and high
coverage simultaneously, by leveraging “wait-for” relations
to guide its operations. We evaluate SpiderMon in both Tofino
hardware and BMv2 software switches and show that Spider-
Mon diagnoses performance problems accurately and quickly
with low overhead.

1 Introduction
An efficient network monitoring and diagnosis system are
essential to meeting the performance requirements of modern
applications. Since production clouds have stringent SLAs,
even a small network performance degradation may lead to
significant application slowdown [13, 30]. Many network
performance problems, such as high end-to-end latency, low
throughput, and packet drops [38], can be attributed to traffic
contention of some kind [4], although across scenarios, the
root causes for the contention are diverse (e.g., bursty UDP
traffic, ECMP load imbalance, and routing loops).

The emergence of programmable switches has led to a slew
of monitoring systems being developed [12, 16, 32, 33, 39, 44,
48], but most of them do not explicitly target posterior diagno-
sis. For instance, “query-driven” monitoring systems [16, 32]
need to be pre-configured with a static query. Since root
causes for performance degradation could vary, and there
may be a wide variety of reasons for performance problems,
it is challenging to select the right query in advance. In princi-
ple, one could adaptively change the monitoring query based
on the observed symptom; but in practice, many transient
problems happen at fine timescales and their sporadic nature

requires always-on monitoring. On the other hand, “blanket”
monitoring systems always monitor and collect telemetry data
from the switches to achieve high coverage [10,14,22,26,27].
However, this would result in excessive data that may not be
needed by the diagnosis in the first place.

Therefore, having a monitoring and diagnosis system that
achieves either low overhead or high coverage is not hard,
but achieving both simultaneously is challenging. The key
question we explore is whether it is possible to design a
streamlined system that performs efficient monitoring but
achieves high coverage, achieving the “best of both worlds”.
We present SpiderMon, a system where the monitoring and
diagnosis operations are explicitly designed to work with
each other in a closed loop. It enables a suitable tradeoff be-
tween accuracy and overhead when debugging network-wide
performance problems. To achieve efficient and accurate mon-
itoring, SpiderMon leverages a concept called “wait-for” [46]
relations. Since many performance problems stem from in-
network contention, “wait-for” relations target such behaviors
in the telemetry collection in a precise manner. Moreover,
such information is also exactly what is needed in diagno-
sis. For instance, a victim flow with high latency may have
“waited for” many interfering events across multiple hops.
By capturing and analyzing such relations, SpiderMon can
achieve an effective diagnosis, with precise, targeted, but also
high-coverage operations.

Since the symptom of “wait-for” events is usually high
latency, SpiderMon uses timing information to trigger reac-
tive telemetry collection. Precisely, SpiderMon detects perfor-
mance problems when it encounters flows with excessively
high queuing delay. After a problem is detected, SpiderMon
uses the wait-for relations to track and collect other relevant in-
formation in the data plane across the network. For diagnosis,
SpiderMon also identifies the root causes of the performance
problem by summarizing the most significant wait-for rela-
tions from the collected telemetry data. It does so by jointly
analyzing wait-for patterns together with other types of net-
work knowledge (e.g., topology) and telemetry data (e.g.,
flow-level results). In this way, SpiderMon collects teleme-
try data only when the diagnosis process needs to analyze a
problem, and it performs targeted collection based on what
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the diagnosis process would require.
To realize this idea, SpiderMon addresses three technical

challenges. The first challenge is to detect performance degra-
dation without interfering with actual packet processing. Spi-
derMon leverages programmable switches to record telemetry
data about network traffic. It piggybacks telemetry data in
packet headers and checks for performance anomalies. The
second challenge is to precisely collect the relevant telemetry
information across the network. Relying on wait-for relations,
SpiderMon notifies relevant switches and activates teleme-
try data collection from these locations. Finally, SpiderMon
identifies the root causes of the performance problem using
the telemetry information and the knowledge of the network
configuration. The wait-for relation again is critical for iden-
tifying abnormal network behaviors, and for matching those
behaviors to the signatures of root causes.
Contributions. Overall, SpiderMon is a closed-loop system
for monitoring and diagnosing performance problems in the
network. We have implemented a prototype of SpiderMon,
and our results show that SpiderMon can diagnose perfor-
mance problems accurately and quickly with low overhead.

2 Motivation
SpiderMon focuses on network performance problems that
arise due to contention, which are challenging for at least three
reasons. First, network contention may occur due to many
root causes, so its diagnosis requires a general mechanism.
Second, the root cause can be unpredictable both spatially and
temporally, requiring agile solutions that can capture transient
problems. A third practical challenge is that the solution must
have a sufficiently low overhead on the network. SpiderMon
does not target problems that happen because of silent packet
drops, packet corruptions, control plane misconfigurations,
slow servers, or other causes unrelated to network contention,
although it can be used in combination with other techniques
for these scenarios.

2.1 Root Causes Are Diverse

To illustrate the diversity of root causes of network perfor-
mance problems, consider some examples in a 3-layer Clos
network as shown in Figure 1.
Micro-bursts. Recent studies [10, 22, 45] found micro-
bursts—i.e. momentary surges in traffic volume—to be a
common root cause for sporadic excessive delays and packet
losses. Detecting and diagnosing a micro-burst requires
switch queuing delays to be monitored and the main contribu-
tor to queuing delays to be identified before the micro-burst
disappears.
Multiple flow contentions. A victim flow encounters multi-
ple contentions at different switches—flow 1 (e.g., a bursty
UDP flow) and flow 2 (e.g., a high-priority flow) contend
with the victim flow at switch 0 and switch 6, respectively
(Figure 1(a)). The end-to-end latency for the victim flow be-
comes very high. For detection, we need to monitor per-flow
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Figure 1: Several performance degradation problems

latency; for diagnosis, information about all contending flows
is needed to identify the root causes.
ECMP load imbalance. Due to the skewed nature of flow
distributions or imperfect hash mechanisms, ECMP load im-
balance is a common problem in data centers [3]. Consider the
network in Figure 1(b), where all links are 40Gbps. Switch 0
assigns 25% of the total traffic (32Gbps) to path 1 and 75%
to path 2. The victim flow contends with the flows on path
2, which leads to high congestion at switch 7. This could be
avoided if switch 0 assigns the traffic for the two paths equally.
The root cause for this problem is the imbalanced assignment
at switch 0, but the performance degradation occurs at switch
7, which is 3 hops away from switch 0. Once high latency is
detected at switch 7, the previous hops’ information of the
flows involved in the congestion is required for debugging.
Transient/persistent loops. During network updates, the con-
figurations of different switches may not be synchronized.
Some switches may fail to execute the reconfiguration com-
mands silently. Under those circumstances, a forwarding loop
may form [28]. An example is shown in Figure 1(c), where
switches 6 and 9 are wrongly configured, which causes some
flows to be stuck in a loop, leading to congestion and packet
drops. The incompatible switch configurations should be
blamed for the loop in the network. However, to identify
the switches that need to be reconfigured, information from
all the switches along the loop, namely, switches 6, 9, 4, and
8, needs to be collected for analysis.

2.2 Root Causes Are Unpredictable

There are three key features that make network performance
problems challenging to detect or diagnose.
Sporadic. Performance degradation is usually sporadic, oc-
curring occasionally at different places and at an unpredictable
time [1]. Any flow may be affected, so detection algorithms
need to monitor every flow all the time.
Network-wide. The root causes may be network-wide, e.g.,
contention at different hops. The interfering flows may even
have normal performance [38], despite the fact that they cause
performance degradation to other flows. Thus root cause di-
agnosis requires network-wide monitoring.
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Transient. Traffic contentions sometimes are transient and
disappear quickly [21]. For instance, transient loops may only
form for a short time during network updates, but the perfor-
mance problem introduced by packet drops may need a much
longer time to fully recover. This feature requires the debug-
ging system to maintain fine-grained information about recent
events, in case the problems disappear quickly but happen in
the network frequently.

2.3 Existing Solutions Fall Short

Existing solutions all fall short in monitoring and diagnosing
network performance problems due to the above challenges.
Host-based solutions. Solutions like Trumpet [31] and Dap-
per [14] rely on end hosts to store telemetry data for diagnosis.
But they all use inference algorithms to reconstruct what may
have happened in the network from the collected data, which
may not be accurate. Instead, SpiderMon collects data from
the switches to achieve a better in-network view for diagnosis.
In-network solutions. Some existing solutions also collect
telemetry data from the switches. (i) Blanket telemetry sys-
tems like NetSight [17] and PINT [8] collect information
network-wide indiscriminately, even on network nodes un-
related to the problem. Those systems usually have high
overheads, and much of the collected data is unnecessary
for diagnosis. (ii) Query-based systems deploy queries into
switches for data collection, such as Sonata [16], Marple [32],
FlowRadar [26], and NetSeer [47]. They require that the op-
erators know the nature and location of the problems, but
problems could arise from sporadic congestion at random lo-
cations. Although in principle, queries can be changed based
on the monitoring results, this happens at coarse timescales
and cannot capture transient problems. SpiderMon can cover
problems that cannot be succinctly defined using static queries
and only capture events relevant to the problems.

3 SpiderMon Design
SpiderMon monitors and diagnoses performance problems
caused by in-network contention in three steps: 1) SpiderMon
encodes every packet’s accumulated latency in header fields,
and triggers telemetry collection once excessive latency is
detected (§3.1); 2) the switch that detects high latency initiates
“spider” packets and rapidly delivers them to relevant switches
using the wait-for relations; relevant switches receiving spider
packets report their telemetry data (§3.2); 3) the root cause
analyzer constructs wait-for relations from the evidence for
root cause analysis (§3.3).

3.1 Problem Monitoring

Goal: Detect excessive cumulative queuing delays. Rather
than wait for the occurrence of harmful events (e.g., packet
loss, TCP congestion window back-off), SpiderMon detects
the performance problems based on a much earlier sign—
abnormal cumulative queuing delays experienced by packets.
It reacts quickly to performance degradation.

Design: 1) Use cumulative latency for detection. Instead
of storing per-hop latency information in the header, Spider-
Mon uses cumulative latency to guarantee that the header
length stays constant regardless of hop count. The cumula-
tive latency L is updated at every hop based on the current
queuing delay and the cumulative latency experienced by the
packet so far, L = L+ queuing_delay. Every switch on the
path checks whether the cumulative delay exceeds the latency
threshold. To further reduce overhead, SpiderMon can com-
press the additional fields to less than 2 bytes by extracting the
most significant bits (more in §C.2). 2) Assign different la-
tency thresholds for different traffic types. Given that the
tolerable latency varies for different applications, SpiderMon
allows network operators to customize the latency thresholds
for different applications. 3) Detect problems and trigger
telemetry in the switch data plane. Unlike some monitor-
ing systems using a central controller to monitor network
problems [6, 31, 48], SpiderMon triggers fast reactions in
the data plane. The communication delay within the data
plane (tens of ns) is much lower than that between the data
plane and the control plane (hundreds of µs). 4) Monitor
every packet at every hop for target flows. Compared to
sampling-based detection [2, 34], SpiderMon achieves full
coverage without losing any important information. Also,
rather than detecting problems at the end hosts [9,24], Spider-
Mon detects performance problems inside the network and
reacts more quickly to the problem. 5) Be transparent to
end-hosts. The latency threshold and cumulative latency are
added at the edge switches when packets enter the network
and removed when packets leave the network. Hosts remain
unchanged.

Consider Figure 1(a) as an example. The victim flow suffers
from queuing delay at switches 0 and 6, but the cumulative
latency exceeds the threshold only at switch 6. Thus the prob-
lem is detected at switch 6, and switch 6 triggers the telemetry
collection procedure.

3.2 Telemetry Collection

Goal: Only collect evidence relevant to root cause analy-
sis. SpiderMon maintains a small amount of telemetry infor-
mation as evidence on the switches to facilitate subsequent
diagnosis; this information is not collected from the switches
unless needed. First, to minimize the amount of telemetry
data collected to the analyzer while maintaining the diagnosis
accuracy, SpiderMon only targets switches relevant to the
observed performance problem as detailed in §3.2.1. Second,
SpiderMon collects the relevant telemetry data within a short
time such that each switch only needs to keep a small amount
of historical telemetry data as detailed in §3.2.2.

3.2.1 Relevant Switches Notification

#1: Only collect data after problem detection. Compared
to other systems which collect data to a centralized collec-
tor all the time [6, 16, 32, 48], SpiderMon uses a default-off
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collection strategy to minimize overhead. After the problem
is detected, a special ‘spider” packet is generated to notify
relevant switches and start the telemetry collection on those
switches. A “spider” packet carries: 1) an event_ID, which
concatenates the switch ID and the event index to uniquely
identify the problem, and 2) the 5-tuple of the victim flow.
Spider packets are generated by mirroring the packet that trig-
gered the diagnosis and recirculating it for transmission, while
the original packet transmits as normal. To prevent possible
packet drops during the transmission, all “spider” packets are
prioritized in the network for lossless transfer.
#2: Only collect data from relevant switches. Instead of
collecting telemetry from all switches, SpiderMon identifies
the switches that are relevant to the detected problem by track-
ing packet-level provenance; it only retrieves data from these
switches to minimize overhead. Packet-level provenance is
modeled as G := (V,E) for a detected event and the corre-
sponding causality relations. G is a directed acyclic graph,
where each node v represents an event, and each directed edge
e = (v1→ v2) represents that v1 leads to the event v2. For la-
tency problems in a network, all wait-for contentions in the
switch queues are considered events in the provenance data.
Since events at the upstream switches affect the events at the
downstream switch, such upstream events are also incorpo-
rated into the provenance model. In this way, we can construct
a provenance graph for a performance problem. By analyz-
ing the locations of events, SpiderMon can select switches
relevant to the specific problem.
#3: Track the provenance graph in the data plane. Unlike
the central controller that Trumpet uses to inform relevant
nodes, SpiderMon performs this procedure entirely in the data
plane to reduce the latency of notifying relevant switches. It
only requires switches to maintain telemetry data for a shorter
time for the recent interval without losing necessary data. To
achieve this, SpiderMon repeats the following two steps on
each switch that receives the “spider” packet: 1) sends a trace-
back “spider” packet along the historical path of the victim
flow, where the path is obtained using a bloom filter, 2) sends
branch-search “spider” packets to ports that sent traffic and
contended with the victim flow, where the ports are identified
by a per-port traffic meter. Switches drop spider packets with
duplicate IDs to avoid unnecessary processing (§C.1).
Timeout bloom filter. SpiderMon uses a timeout bloom fil-
ter (TBF) to track the victim flow’s historical path. Regular
bloom filters allow the insertion and the membership test of a
flow ID. However, they can only support insertions, and the
false positive rates increase with the number of inserted flows.
A rotating bloom filter, on the other hand, can instantiate one
instance per epoch, so that older data can be safely discarded;
however, this is very coarse-grained as it only supports per-
epoch deletion. To address those problems, SpiderMon adds
a timeout feature to remove unneeded data from the bloom
filter; this method provides a “sliding window” of histori-
cal flow information. For a switch with N ports, each egress

Algorithm 1: Timeout bloom filter data structure
Input: B: Timeout bloom filter, inPort: Incoming port index,

5− tuple: 5-tuple, curr_T S: Current timestamp, epoch:
Timeout epoch

1 Function updateBF(inPort, 5− tuple):
2 hashValues = HASH (5− tuple)
3 for hashValue ∈ hashValues do
4 B [hashValue] [inPort]← curr_T S

5 return

6 Function checkBF(inPort, 5− tuple):
7 hashValues← HASH (5− tuple)
8 for hashValue in hashValues do
9 stamps← B [hashValue] [inPort]

10 if curr_T S− stamp > epoch then
11 return False

12 return True

pipeline maintains a bloom filter group with M rows and
N cells per row, and each column represents a bloom filter
for the corresponding port. The TBF replaces the bit record
with a short timestamp, which can be used to recognize the
outdated records when querying the TBF. The details about
maintaining and querying the TBF are shown in Algorithm 1,
Figure 2(a) and Figure 2(b). The memory footprint of TBF
can be reduced by shrinking the size of stored timestamps
(§C.2).
Most recent, per-port traffic meter. SpiderMon identifies
the relevant ports that contribute to high latency. To distin-
guish an ingress port with low throughput, SpiderMon main-
tains a traffic meter for each ingress port’s traffic volume in
the most recent time. Normal traffic meters in the switch are
reset to 0 periodically, leading to information loss. Therefore,
SpiderMon divides the time window into several small win-
dows and associates those meters’ values to realize a sliding
window of the traffic amount within the most recent time
window (details in §B).
#4: Reduce the collected telemetry data by pruning the
provenance graph. Some causality relations are more im-
portant than others. SpiderMon leverages this to reduce over-
head without sacrificing diagnosis accuracy. Specifically, if
the traffic volume from some ingress ports is significantly
lower than others, it is excluded from the possible root causes;
so switches that contribute minimally to the problems are
ignored. SpiderMon provides a tunable threshold and only
sends spiders to the ports with high traffic rates. The robust-
ness of this threshold is shown in §4.3.

To illustrate the relevant switch notification procedure, we
use Figure 3 as an example of a multiple contention scenario.
The high latency is detected at switch 0. Then the traceback
“spider” is sent to the reverse path of the victim flow, namely,
switches 1, 2, and 3. At the same time, the branch-search “spi-
der” is sent to switches 4 and 6, with switch 5 being ignored
due to the small traffic volume. If the traffic from switch
4 came from two other switches has sufficient volume, the
branch-search “spider” packets will also be sent to those ports.
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(a) Update timeout bloom filter (b) Test timeout bloom filter (c) Per-port Traffic Meter (d) Telemetry data structure

Figure 2: SpiderMon data structures

Figure 3: “Spider” packets propagation

3.2.2 Telemetry Data Collection

#1: Collect per-epoch per-flow information. Per-packet
telemetry incurs a very high overhead and usually is unnec-
essarily fine-grained for diagnosis. SpiderMon records the
history with a per-epoch flow-level log, which is stored in
the switches’ egress pipeline and each egress port has its
own log. Dividing into epochs this way allows SpiderMon to
observe changes among epochs. Each switch keeps a fixed
number of epochs on the data plane and keeps the most recent
ones in a circular buffer. When reporting the telemetry data,
information of all epochs will be sent to the analyzer.

SpiderMon collects 36 bytes of data per flow, including the
flow’s 5-tuple, sequence number range, total traffic volume,
total packet count, total queuing depth, the priority of the
flow, and the incoming port. The network operators can add
extra flow-level information in the telemetry data structure
for diagnosing other network problems. The total amount of
telemetry data varies with the flow arrival rate. To update,
SpiderMon first identifies the right telemetry table based on
the outgoing port, then hashes the flow ID to assign a slot in
the telemetry data structure for that flow. By doing a bit-wise
XOR between the packet’s 5-tuple and the 5-tuple in the slot,
we can determine whether this packet belongs to the existing
flow by checking whether the result is 0. If so, this packet will
be used to update this entry; otherwise, it will be considered
as a new flow and replace the old one. The old entry will be
packed and sent to the control plane for storage.

SpiderMon must maintain telemetry data for a minimum
duration to ensure that the needed evidence for diagnosis
is available, and this duration can be estimated as follows.
Denote the threshold for detecting an unacceptable cumulative
delay as T and the maximum round-trip propagation delay
across the network as RT T . The time it takes to propagate
spider packets from the initiator to relevant switches—recall
that spider packets have high transmission priority and do not

wait for normal traffic—is half RT T in the worst case. Since
the problem is detected after accumulated delay exceeds T ,
the time duration a switch must maintain telemetry data to
diagnose this problem is, therefore, T + RT T

2 . The common
RT T and T in the data center network is 0.5-2 ms and 10-15
ms respectively [15], so it would be more than enough for
SpiderMon to preserve history for 20 ms.
#2: Provide synchronization among switches using flows’
sequence number. The host-based solution cannot replay
accurately, one of the reasons is the various network delay
for packets, namely, the order of packets is not preserved at
switches. SpiderMon has a similar problem when choosing
the most relevant epoch on different switches for analysis.
The correct epoch for the switch that triggered the problem
is no doubt the most recent epoch, but for other switches on
the historical path, the delay from the queuing and propa-
gation may have caused the most relevant epoch to become
a historical epoch. To solve this, SpiderMon keeps track of
the [min_seq, max_seq] for each flow, and uses the victim
flow’s sequence numbers to find the correct epoch with the
maximum overlap with this sequence number interval for the
relevant switches.
#3: Trigger telemetry packet generation in the data plane.
Unlike NetSight that uses mirroring for collection, SpiderMon
uses the packet generator to report the per-epoch per-flow
log to the root causes analyzer. The packet generator can
be directly triggered in the data plane to minimize latency.
Compared to retrieving the data via the switch control plane
as in several previous works [27], SpiderMon is much more
agile because it bypasses the low bandwidth and high latency
connection between the data plane and the control plane.

The telemetry packet header contains 1) an event ID for
identifying the performance problem; 2) a switch ID; 3) a
partition index of the telemetry data; 4) a part of the teleme-
try data. The telemetry packets are generated by the packet
generator on a programmable switch. The generated packets
only have Ethernet and IPv4 headers without the payload for
bandwidth savings. The IPv4 destination address of telemetry
packets is set to the root cause analyzer so that the network
will forward the packets to the analyzer. There is a maximum
amount of telemetry data that can be inserted into a single
packet, which is around 200 bytes due to the limitation of
the PHV fields for the programmable switches. So the packet
generator will generate a fixed number of telemetry packets
according to the size of the telemetry tables.
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Algorithm 2: Replay the queue condition
Input: T : the epoch period; N: flow packets count, s: time for the

last packet
Output: time_list: time list for the packets

1 for t ∈ N do
2 t← s+ T

N
3 time_list← time_list + t

4 return time_list

#4: Only collect the telemetry data from relevant ports to
reduce overhead. When a switch receives a spider packet
from a certain port, usually only the telemetry data for that
port will be reported to the analyzer, which reduces the
amount of data collected.

3.3 Root Cause Analysis

SpiderMon develops a diagnosis strategy that is generalizable
to diverse root causes with high precision and recall.

Efficiently localizing network problems and accurately
identifying the root causes can be difficult, especially when
the network conditions are dynamic and complex. Firstly, a
good diagnosis algorithm needs to understand flow interac-
tions and find the corresponding flows that occupied the queue.
Secondly, once the problem has been localized, the diagnostic
algorithm needs to further identify each problematic scenario
with one or more root causes, such as micro-bursts or transient
loops. However, most existing diagnostic algorithms do not
have a clear boundary between those two steps. The identi-
fications of the root causes are based on the matching of the
problem patterns and observations, leading to slow diagnosis
time and reduced diagnosis accuracy.

SpiderMon addresses these challenges with a two-step di-
agnostic algorithm: 1) efficiently analyze the queuing infor-
mation at both flow level and aggregate level to recall all
the problematic flows using wait-for graphs (WFG), as dis-
cussed in §3.3.1; 2) apply signature matching between the
problematic flows and the root cause type, as described in
§3.3.2.

3.3.1 Find the Possible Root Causes

To find all possible root causes with a high recall rate, Spi-
derMon uses WFG at both flow-level and aggregate-level to
identify the abnormal behaviors from the telemetry data.
Wait-for relation. If a packet from flow A enters a queue
where the packets from flow B already exist in the queue, then
flow A waits for flow B at this queue.
Flow-level wait-for graph (WFG). Each vertex represents a
flow, and a directed edge from vertex A to vertex B represents
that flow A waits for flow B.
Wait-for weight. Each directed edge’s weight is calculated
as follows: for a packet pk from flow A, if xk packets from flow
B exist in the queue when pk enters, then flow B blocks flow A
with weight xk. For all n packets from flow A during a certain
period, the average weight 1

n ·∑k∈[1,n] xk is the wait-for weight
for the directed edge from vertex A to vertex B.

Figure 4: Identify the main contributors in WFG

Algorithm 3: Wait-for Graph Construction
Input: Seq: A sequence of packet, level: flow or port
Output: G: Wait-for graph for the given sequence

1 for i ∈ [0,Seq.length] do
2 if level=flow then
3 Seq[i].vertex← Seq[i]. f low

4 else if level=port then
5 Seq[i].vertex← Seq[i].port

6 if Seq[i].vertex /∈ G then
7 G.AddVertex(Seq[i].vertex)

8 for i ∈ [0,Seq.length] do
9 for j ∈ [0, pkt.qdepth] do

10 edge← (Seq[i].vertex⇒ Seq[i− j].vertex)
11 G.AddEdgeWeight(edge,1)

12 return G

Aggregated wait-for graph. SpiderMon also aggregates the
flow according to the source IP, incoming port, or other keys
to construct aggregated-level WFGs to find root causes other
than flows’ misbehavior. One typical example used in Spider-
Mon is the port-level WFG.

After receiving all the telemetry data from the switches,
SpiderMon uses the gap-based sampling strategy [25] to re-
play the queuing condition on the switch (Algorithm 2). The
actual sequence of the packets is not important since we only
need the generated wait-for graph to be similar.

To find the main contributors for the queuing, we rely on
the wait-for graphs to show the provenance relations between
contending flows. For each queue, SpiderMon will construct
flow-level WFGs and port-level WFGs as in Algorithm 3,
which will be used to determine the main contributors. Basi-
cally, to identify the main contributors of the queue is to divide
the flows in the queue into victims (suffer from queuing) and
main contributors (contribute to queuing) and maximize the
wait-for relations between those two groups. SpiderMon is
able to show that this division can be easily derived by the
following Theorem 1, and identify the main contributors as
in Algorithm 4. We prove Theorem 1 in Appendix §A.
Degree of the vertex. Sum of all incoming edge weights sub-
tracts the outgoing edge weights.
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Algorithm 4: FindContributor
Input: G: Wait-for graph for the given sequence
Output: ctrs: A set of main contributors

1 for X ∈ G do
2 D(X) = ∑

e
e∈{<i, j>| j=A}we−∑

e
e∈{<i, j>|i=A}we

3 if D(X)>0 then
4 ctrs← ctrs+X

5 return ctrs

Theorem 1. The wait-for relation between two groups, di-
vided by one cut, is maximum, if and only if one group only
contains positive degree vertices while the other contains only
negative degree vertices.

Figure 4 is an example scenario of micro-burst with flows 0
and 1 as the burst flows, and both of them have been identified
by the algorithm as the main contributors.

3.3.2 Precisely Identify Root Causes

To precisely identify the reason behind the main contributors
determined in the first step, SpiderMon relies on signature
matching to recognize different root causes. We give four
signatures for four common root causes in Algorithm 5, using
both telemetry and network configuration information. The
signatures can be extended if more root causes are added.
For better illustration, we consider the scenarios in Figure 1
and show the signatures in Figure 5. A detailed signature
definition can be found at §G.

Micro-bursts. SpiderMon can identify all the main flow-level
contributors at different hops along the victim flow’s historical
path. As shown in Figure 5(a), the micro-burst flow has many
wait-for edges with large weights pointing to itself due to a
large amount of traffic during the problematic time.

Different priorities. For contention between flows with dif-
ferent priorities, SpiderMon checks the priority of the victim
flow and the main flow-level contributors. The contributor
flows with higher priority compared to the victim flow can be
identified as the root causes, as shown in Figure 5(b).

ECMP load imbalance. For the load imbalance problem
displayed in Figure 1(b), SpiderMon will find the flow-level
main contributors and check if they are routed by ECMP. Then
SpiderMon calculates the ECMP imbalance ratio with the
throughput of all flows routed by ECMP rules, using the traffic
volume provided by per-flow telemetry data. The problematic
ECMP groups can be identified when the calculated ratio is
largely imbalanced as in Figure 5(c).

Transient/persistent loops. For the latency problem caused
by transient or persistent loops as shown in Figure 1(c), Spider-
Mon searches the port-level contributors along the contributor
traffic’s path. If the same port is observed twice during the
search procedure, all those ports have a high possibility to
form a loop for specific traffic. Furthermore, the flow ID will
be checked to further confirm the transient/persistent loop.

Algorithm 5: Root Causes Diagnostic Algorithm
Input: f _WFG: flow-level WFG, p_WFG: port-level WFG, T :

Telemetry information, K: Network topology and
configuration

1 /* Diagnose flow-level problems */
2 for sw ∈ Switches on victim’s path do
3 f _CT Rsw← FindContributor( f _WFGsw)
4 for f ∈ f _CT Rsw do
5 // Is micro-burst?
6 check flow f throughput
7 // Is priority problem?
8 check flow f priority
9 // Is routed by ECMP rules?

10 check aggregated throughput for ECMP switches

11 /* Diagnose port-level problems */
12 for sw ∈ Switches on victim flow’s path do
13 p← victim flow’s outgoing port
14 CheckPort(p,{})
15 /* Recursive function for port-level */
16 Function CheckPort(p, p_set):
17 // Does routing contain loop?
18 check whether there is a loop
19 // Search dominant port contributors
20 p_CT Rsw← FindContributor(p_WFGsw)
21 for p′ ∈ p_CT Rsw do
22 // Check the related port
23 src_p← the port connect to port p′

24 CheckPort(src_p, p_set + p)

4 Evaluation
Next, we evaluate SpiderMon along several dimensions: diag-
nosis effectiveness, overheads, and robustness.
Setup. Our hardware testbed deploys SpiderMon to a Bare-
foot Tofino switch, written in 1147 lines of P4-Tofino code,
to evaluate the switch-level performance. The switch is logi-
cally partitioned to emulate a topology with multiple logical
switches; logical links are emulated by port-to-port connec-
tions using direct attach cables. The switch is also physically
connected to eight servers through 25 Gbps links. The switch
has 32× 100Gbps ports, and each can be configured as four
25Gbps ports with a breakout cable; each server has two six-
core 3.4GHz CPUs, 128GB RAM, and one 25Gbps NIC. In
addition, we have set up a simulation environment that uses
the BMv2 software switches in the NS3 simulator with 945
lines of P4 code running on CloudLab servers, evaluating
the network-level performance. Each server has an eight-core
2.0GHz CPU and 32GB RAM. A K=4 standard fat-tree topol-
ogy with 20 switches and 32 hosts is simulated with 1 Gbps
link bandwidth. We also implement the root causes analyzer
with 843 lines of Python code.
Workloads. We simulate empirical workloads from produc-
tion networks for our evaluation. The flow size distribution is
taken from three different traces: web search [5], cache [35],
and Hadoop [35]. The arrival time of different flows is based
on a Poisson process and the flow arrival rate is varied to
obtain different load utilizations in the network. The source
and destination for each flow are chosen uniformly at random.
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All flows are TCP.
Baseline systems. We compare SpiderMon against five base-
line solutions. 1) Trumpet [31]: a trigger-based reactive host
system. When it detects a problem requiring network-wide in-
formation on one host, the controller will collect data from re-
lated servers upon a trigger. This incurs a latency of at least an
RTT. 2) NetSight [17]: an in-network system that proactively
collects ‘postcards’ for each packet from the switches. 3)
Marple [32]: a query-based in-network system, which is de-
ployed to all switches using monitoring queries that a) detect
high latency, b) query packet counts, and c) perform ‘EWMA
over latencies’. 4) Pathdump [37] and SwitchPointer [38]:
two proactive, network+host solutions. Pathdump tracks paths
and performs diagnosis on end-hosts, and SwitchPointer fur-
ther tracks packet epochs in the network.

4.1 Diagnosis Effectiveness

We evaluate the diagnostic effectiveness of SpiderMon using
multiple scenarios.
1. Micro-bursts are created by injecting 5 short-lived (10-100
µs) UDP flows from SW0 to SW1 and from SW2 to SW3
as in Figure 1(a). The throughput of micro-burst flows is set
to 90%×line-rate. Diagnosis: Fig. 5(a) shows the combined
wait-for graph at two switch ports generated by SpiderMon,
which shows that the two micro-burst flows E and H domi-
nate the queues and are the only two main contributors with
positive degrees. The other 3 UDP flows are not included in
the WFG since they end before the victim flow starts or start
later than the 2 contending UDP flows.
2. Priority contentions inject 5 high-priority TCP flows with
priority queuing from SW0 to SW1 and from SW2 to SW3
as in Figure 1(a). Diagnosis: As Figure 5(b) shows, flow C
and D are the main contributors to the congestion with higher
priority and larger degrees. Other priority flows have no inter-
ference with the victim flow so the WFG excludes them.
3. ECMP imbalance scenarios randomly pick a switch (ex-
cept core switches) and split traffic to two uplink ports with
4:1 imbalanced load. The ECMP group imbalanced lasted
for hundreds of microseconds. Diagnosis: When we find
the main contributors to the queuing, SpiderMon will check
whether they are routed by ECMP policy. In Figure 5(c), both
main contributors (flow C and D) are routed by ECMP rules
on switch 0, so SpiderMon uses the telemetry information
for switch 0 and computes the number of flows and traffic
amount sent to each ECMP port. If the number of flows or
traffic amount within that epoch is largely imbalanced, then
there is an issue with the ECMP rules or hash functions.
4. Loops create a 4-hop routing loop with 2 aggregation
switches and 2 core switches as in Figure 1(c). The routing
loop only affects a small group of flows and the problem only
lasts for 100 µs. Diagnosis: Port-level WFGs identify a loop
as the root cause: the victim flow is reported on switch 8 port 1
so that the WFG leads us to the main contributor, port 0. Since
SW8-P0 receives traffic from SW4-P0, we further construct

a WFG for SW4-P0 and determine another main contributor.
With this recursive searching procedure, SpiderMon finds that
the port-level contributors form a loop and the traffic belongs
to the same group of flows.
5. Complex problem diagnosis. Next, we test a diagnostic
scenario with multiple problems. In Figure 6, the victim flow
contends with a micro-burst flow at switch 1, a high priority
flow at switch 7, and high-volume traffic caused by ECMP
imbalance at switch 5. First, SpiderMon constructs the WFG
with the collected information for the problem and identifies 5
flows (flow C, E, F, J, and L) with positive degrees. Next, Spi-
derMon checks the property of each such flow and identifies
flow C as a micro-burst flow without any congestion control,
while flow J is a flow with higher priority than any other flows
crossing those switches. Then it checks the amount of the
transmitted traffic in the same epoch and identifies flows E
and F to be related to an ECMP imbalance. However, flow L
is removed from the root causes; it is a normal TCP flow since
its degree is small and there is no further evidence from the
telemetry information to show that this flow is problematic.
6. Sporadic & transient problem diagnosis. We also evalu-
ate multiple diagnostic situations with sporadic and transient
problems. The traffic workloads are generated from random
sources and destinations, and the problems could happen at
different locations in the network randomly with short-lived
root causes. Take the micro-burst experiment as an example.
A high throughput UDP flow is introduced between a random
source and destination at a random time, lasting for 100 µs.
The experimental results shown in Section 4.2 are generated
with sporadic problems for each scenario.

4.2 Comparison with Baseline Systems

Precision and recall. We first show the precision and recall
rate for different solutions, by tuning the parameters of each
system so that it can achieve the best performance for each
scenario. Those include the maximum tolerable link load
imbalance ratio, link utilization, per-flow throughput, and so
on. Details about each scenario’s parameters are in §F. Here
we show the results for web trace only, the results for cache
and Hadoop traces are included in §E.2. For the web trace,
30% of the flows are 1–30MB, so that multiple large flows
can be concurrently active from/to one switch port.

As shown in Figure 7, Trumpet cannot achieve both high
recall and accuracy at the same time for the transient conges-
tion since it can only infer the in-network condition based on
the calculated link utilization and end-to-end delay. Due to
the different network delays and packet loss, the evidence for
the transient problems may be inaccurate and unreliable on
the host. Trumpet also fails to diagnose the ECMP imbalance
problem because it does not have path information for every
flow to identify the traffic split at the ECMP switches. Trum-
pet also fails to diagnose the loop problem because packets
involved in loops do not reach the hosts, leaving no evidence
for Trumpet to find out the root cause.
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WFG for switch 4 port 0
SW4‐P1 is found => SW9‐P0

WFG for switch 6 port 1
SW6‐P0 is found => SW8‐P1

Both flow C, D routed by ECMP on SW 0
Check telemetry information on SW 0
SW0‐P1’s ECMP traffic amount >> SW0‐P0’s
SW0‐P1’s ECMP flow number >> SW0‐P0’s

(a) Micro-burst Contention (b) Priority Contention (c) ECMP Load Imbalance (d) Loop

WFG for switch 9 port 0
SW9‐P1 is found => SW6‐P1

WFG for switch 8 port 1
SW8‐P0 is found => SW4‐P0

Figure 5: Example wait-for graphs of several root causes. Each box (TCP flow/port), circle (UDP flow), and pentagon
(High priority flows) represent one flow or port, and the port name is described according to Figure 1(c). Bolder edges
represent heavier wait-for relations, edges with small weights are tailored. The number under the flow/port name shows
the node degree, and positive degrees will be identified as main contributors.
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Figure 6: The WFG for victim flow P, with a micro-burst,
a priority-related contention, and an ECMP imbalance
at different hops.

Marple falls short in diagnosing transient contention like
micro-bursts. This is because Marple enables queries only
when needed, so it collects data reactively, which incurs an
additional latency. The per-hop queuing information is only
collected when the accumulated queuing latency exceeds the
threshold. This control loop delay leads to information loss
for transient problems—when the system begins collecting
data from a switch near the destination, the transient bursty
flow at a previous hop may have already ended. Only Marple
and Trumpet are reactive systems in our evaluation.

PathDump and SwitchPointer both achieve relatively good
performance. PathDump carries path information along with
the packets, and SwitchPointer upgrades PathDump with
switch data that records the flows that travel the same switch
in the same epoch, which outperforms PathDump. However,
both of them failed to identify transient problems since they
lack queuing information—they instead recompute link uti-
lization using packets received at end hosts. If a large amount
of packets are dropped in the network due to congestion loss
or TTL expiration, it would be very hard to reconstruct the
transient network condition. Another interesting fact is that
both solutions add extra in-network mechanisms (path track-
ing [37]) to detect the routing loop, so they both achieve great
performance in detecting and diagnosing loops.

NetSight achieves the second-best performance since it

(a) Micro-burst (b) Priority contention

(c) ECMP imbalance (d) Loops (solutions except Marple and
Trumpet overlap at the top right corner)

Figure 7: Diagnostic effectiveness for different solutions

collects per-packet postcards. One drawback is that to keep
overhead down, NetSight omits important data like packet
priority or precise timestamps. Instead, it uses topology infor-
mation to place the postcards in order. However, information
that describes how flows interact cannot be obtained, which
is essential for diagnosing transient problems.

SpiderMon is able to achieve nearly 100% recall and pre-
cision for all tested scenarios. The reason is that SpiderMon
collects accurate packet-level information within a time inter-
val. For micro-burst and priority flow contention, each flow’s
throughput within the same epoch where congestion happens
will be recorded and reported in the telemetry data; for the
ECMP imbalance problem, the flow ID and output port will
be recorded, so that the ECMP imbalance ratio can be calcu-
lated; for the loop problem, the loop can be easily detected in
the procedure of WFG construction.

To summarize, host-based solutions (Trumpet, PathDump
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(a) Diagnostic data complexity (b) Additional bandwidth overhead

Figure 8: Diagnostic data complexity for different sys-
tems; the additional per-packet header shows the band-
width overheads for Trumpet (TP), PathDump (PD),
SwitchPointer (SP), NetSight (NS), Marple (MP), and
SpiderMon (SMon).

and SwitchPointer) all lack accurate in-network information,
like accurate queuing information and the packet loss for traf-
fic other than TCP (they can only observe packet loss at the
sender with the help of TCP’s congestion control). As for
the proactive in-network approach in NetSight, it scarifies
the telemetry data granularity to keep overhead low. Only
the packet header, switch ID, output port, and a version num-
ber are included. It uses topology information to assemble
out-of-order postcards since the fine-grained timestamps and
queuing information are not included in the postcards. The
reactive in-network Marple system can potentially collect the
information at very fine granularity but it can only start this
reactive network-wide query after a half-RTT delay after the
problem has been detected. The experiments over Cache and
Hadoop traces have qualitatively similar results with the web
search trace; more details can be found in §E.2.

Diagnostic overhead. To evaluate the diagnosis complex-
ity and resource usage of different solutions, we measure
the amount of collected data and the extra bandwidth re-
quirements. We measure the diagnosis complexity using the
amount of telemetry data stored and used in the diagnostic
procedure, using (flow×port) as the unit to denote the com-
plexity of flow information collected at switch ports. Since the
host-based solutions collect information from the end hosts,
and they reconstruct the utilization of different links [37],
we multiply the average path length with the flow×host as
the overall complexity. Both switches and hosts have limited
storage spaces and may restrict the scalability of the solu-
tions. Under the same scenario for diagnosing micro-bursts,
we show the amount of telemetry data for different systems
in Figure 8(a). Reducing the diagnosis complexity not only
relieves the burden to process the collected information for
the central controller but also saves the storage space to store
the diagnostic data for future usages.

Trumpet processes packets and match triggers in real time
during the monitoring phase, so no packet is stored. But in
the reactive data gather-report phase, data from multiple hosts
will be reported. In order to construct every link utilization,
the throughput of all flows will be reported and stored for

(a) The resource usage on Tofino
switch is low. Per-port traffic meter is
too small to be visible in the figure.

(b) Relative memory usage under dif-
ferent controller latency with Spider-
Mon as the baseline.

Figure 9: Switch memory occupation

further analysis. Pathdump and SwitchPointer need to store
per-packet history, since the problem may be detected after
analysis. But both systems rely on the path information to
find out the flows that travel the same link with the victim
flow so that the data complexity can be reduced by filtering
out irrelevant flows. Marple stores the query results from
every switch to reproduce the scenarios, so such data will
be transmitted as well as stored on the hosts. But Marple
starts the collection after problem detection and stops after the
problem disappears, collecting less but potentially incomplete
data. NetSight stores all packet postcards and processes them
in real time. All flows from all the switch ports are collected
and stored, leading to a similar data complexity as Trumpet.
SpiderMon only collects data after a problem is detected and
only from relevant switches. Thus, the overhead for collecting
telemetry data is much lower than the other systems.

Monitoring bandwidth overhead. Next, we measure the
amount of extra bandwidth usage during monitoring. Trumpet
never collects in-network data; it only uses the network to
communicate with other servers, so it has a low overhead.
PathDump and SwitchPointer both use two VLAN tags of
24 bits for path and switch epoch information. NetSight al-
ways collects per-packet postcards to the host for analysis,
and the per-packet additional bandwidth occupation is 15
bytes/packet × average hop count because NetSight will gen-
erate a postcard for the packet at every hop. Marple introduces
a 16-bit header to carry the per-packet end-to-end latency, and
during the monitoring phase, it will group the packets with
their per-hop queuing latency and sent them to the controller.
SpiderMon adds a 16-bit monitor header to every packet when
it enters the network, and removes it before forwarding the
packet to the end-host as mentioned in §3.1.

Switch resource overhead. Figure 9(a) shows the switch
resource usage of SpiderMon, which fits comfortably in a
Tofino pipeline. It also shows how SpiderMon scales with the
number of flows seen during a collection period. Modern data
centers have millions of concurrent flows per switch, but since
SpiderMon only keeps tens of milliseconds of history, the
number of flows per epoch is much smaller. Switch memory
size increases steadily over time [29], so SpiderMon can scale
to even more flows with more recent hardware.
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(a) Diagnosis time for root cause (b) Collected telemetry data size

(c) Diagnosis time with different num-
ber of switches

(d) The latencies for “spider” packets
and telemetry

Figure 10: Branch-search metrics for SpiderMon

To show the benefit of informing related switches in the
data plane in a distributed manner, we compare SpiderMon
with a centralized reactive strawman system, which uses a cen-
tralized node to receive the detected problems, identifies the
related switches, and retrieves data from them. We vary the
additional latency that this centralized controller introduces.
Figure 9(b) shows that this solution requires more memory to
store a larger amount of historical data to avoid the loss of rel-
evant evidence for diagnosis. In comparison, SpiderMon only
needs to preserve the history within the maximum queuing
latency + half RTT (§3.2.2).

4.3 Diagnostic Robustness

We finally evaluate the diagnostic robustness of SpiderMon us-
ing different metrics related to branch-search coverage, epoch
length, and cumulative latency. Within a range of adjustments,
SpiderMon can diagnose the performance problems with ideal
precision and recall. Network operators are allowed to adjust
the parameters of SpiderMon according to their requirements.
Overall methodology. SpiderMon empirically adjusts the pa-
rameters under different network loads. Given a particular
network traffic load, operators could systematically test the
precision and recall rates of SpiderMon with different met-
ric choices. Suitable choices should strike a good balance
between the recall rate and the size of collected telemetry
data for throughput metrics, switch memory consumption for
epoch metrics, and the sensitivity of problem detection for
latency metrics. The optimal parameters vary under different
network loads. We provide the results of parameter adjust-
ments using our experimental settings in the following, while
network operators could follow the same methodology to
obtain their preferred parameters.
Branch-search threshold. SpiderMon provides different op-
tions for spider packet propagation in terms of its reach (e.g.,

(a) Precision & recall rate for the root
causes with 30% load

(b) Upper-bound of throughput thresh-
old

Figure 11: Throughput metrics for SpiderMon

all or some branches). Figure 10(a) and Figure 10(b) provide
comparisons with different options on both the diagnosis time
of root cause analysis and the size of collected telemetry data.
Note that the number of relevant switches in SpiderMon is
generally much smaller than the total network size since Spi-
derMon uses the wait-for relation and provenance model to
precisely target only those relevant switches that contribute
to the observed performance problem. Therefore, even with
all-branches spider packets propagation (search all ports with
> 0 throughputs), SpiderMon is efficient compared to more
rudimentary diagnosis strategies that must comb through all
data from all switches. Even for relatively widespread perfor-
mance problems involving up to 30 relevant switches, it takes
under 4 seconds to run the root cause diagnosis algorithm
(Algorithm 5) on a 4.3GHz CPU, as shown in Figure 10(c).
In addition, we evaluate the latency for spider packets prop-
agation and the subsequent retrieval of the telemetry data,
using 50 Gbps link bandwidth and 20µs link delay. From the
results shown in Figure 10(d), we can see that a few microsec-
onds are enough to perform the entire retrieval operation with
arbitrary fat-tree topologies, no matter the choices of branch-
search options. This is because SpiderMon’s mechanisms run
in the data plane. As a result, network operators can send
“spider” packets without setting the branch-search threshold
if the overhead can be tolerated based on their requirements.

We further evaluate the precision and recall rates under
different branch-search coverage with different network loads.
Figure 11(a) shows the results under 30% network load, indi-
cating that the precision can always achieve 100% while the
recall rates decrease if the threshold is too high. To trade-off
the branch-search overhead and the recall rates, we suggest
using 70% as the threshold in this case since it strikes a good
balance. Following the same strategy, we summarize the up-
per bound of branch-search thresholds for operators to adjust
under different network loads, as shown in Figure 11(b).
Epoch length. SpiderMon can change the length of the
telemetry epoch to save memory but trade-off telemetry gran-
ularity. Network operators can adjust the telemetry epoch ac-
cording to their requirements. Under different network loads,
we provide the upper bound of the epoch length. For exam-
ple, Figure 12(a) shows the results with the network load at
30%. We evaluate the precision and recall rates under dif-
ferent epoch lengths. The precision is always 100%, while
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(a) Precision & recall rate for the root
causes with 30% load

(b) Upper-bound of epoch length

Figure 12: Epoch metrics for SpiderMon

the recall rate decreases in some scenarios when the length
of epoch exceeds 30 ms. We further measure the precision
and recall rates under different network loads, and identify
the upper-bounds of epoch length, as shown in Figure 12(b).
The upper-bound epoch length used for telemetry collection
decreases with increasing network load.
Cumulative latency threshold. SpiderMon provides a tun-
able cumulative latency threshold for problem detection, al-
lowing network operators to customize problem trigger fre-
quency for different applications. Figure 13(a) shows the CDF
of different cumulative latency under different network loads
in the absence of problems, where the cumulative latency
is normalized by the maximum queuing latency of a single
switch. Under different loads, the choice of cumulative latency
threshold varies according to the trade-off between overhead
and recall rate. The higher the sensitivity of the network to
problem detection, the more switches are visited, and thus
higher overhead. We further evaluate the recall rates of Spi-
derMon under different loads and summarize the upper bound
of cumulative latency thresholds for reaching 100% recall in
all scenarios in Figure 13(b).

5 Related Work
Switch-based telemetry. Telemetry systems such as Sonata
[16], Marple [32], FlowRadar [26], *Flow [36], NetSeer [47]
and Dapper [14] leverage programmable switches for fine-
grained data collection. However, query-driven systems [16,
32] cannot dynamically change the targeted events at small
timescales, and blanket monitoring systems [17,36] incur high
collection overhead. SpiderMon aims to achieve lightweight
yet accurate telemetry information collection. Two recent
works, NetSeer [47] and PINT [8], share our high-level goal of
reducing telemetry overhead. NetSeer detects per-flow perfor-
mance events for compression, and PINT aggregates telemetry
information across hops or flows to save bandwidth. Com-
pared to these works, SpiderMon co-designs monitoring and
posterior diagnosis based on wait-for relations for closed-loop
diagnosis.
Diagnosis systems. SwitchPointer [38] and PathDump [37]
collect both in-network and host data for diagnosis. Trum-
pet [31] monitors every packet at hosts and reports triggered
events. SNAP [43] diagnoses network problems using logs
(e.g., TCP statistics, socket calls) collected at hosts. How-

(a) Cumulative latency under different
network loads

(b) Upper-bound of cumulative latency
threshold

Figure 13: Latency metrics for SpiderMon

ever, these systems rely on a central controller and perform
software-based monitoring. NetMedic [23], 007 [6], Net-
Poirot [7] use statistical methods and/or machine learning
to identify root causes. Network provenance [42] tracks how
packets flow through a network and apply formal reasoning
to identify root causes. Deter [25] can process and replay a
TCP trace to diagnose performance degradation. Compared to
these works, SpiderMon leverages the telemetry information
from programmable switches, and it uses wait-for relations to
reason about performance contention in-network. Our recent
workshop paper sketches a similar roadmap [41], but it does
not contain a concrete design, implementation, or evaluation.
Monitoring. Another line of recent work focuses on design-
ing compact data structures [11, 18, 19, 27, 44] with tradeoffs
between accuracy and resource footprints. OmniMon [19] di-
vides flow-level monitoring across different network entities
to satisfy resource constraints. BeauCoup [11] supports mul-
tiple distinct counting queries simultaneously while requiring
a small number of memory accesses. These data structures
complement SpiderMon by reducing switch resource usage.

6 Conclusion
SpiderMon is a system that achieves high coverage and low
overhead in monitoring and diagnosing network performance
problems. It monitors every flow in the data plane and triggers
diagnostic events upon problem detection. It precisely collects
diagnostic information in an as-needed fashion. We prototype
SpiderMon on Tofino hardware and BMv2 software switches
and show that it can leverage wait-for relations to accurately
pinpoint root causes for complex problems. SpiderMon also
has low overheads for telemetry collection, switch resources,
and network bandwidths.
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A Proof for Contributors Identification Algo-
rithm

Definition 6. Degree of vertex. In a WFG, the degree of vertex
A is the sum of all the adjacent edges’ weights we:

D(A) =
e

∑
{e=<i, j>|i=A‖ j=A}

αe ·we (1)

where αe is 1 when A is the sink of edge e and -1 when vertex
A is the source.
Lemma 1. For a WFG, the sum of all the vertex’s degree is 0:

X

∑
X∈V

D(X) = 0 (2)

Proof: the WFG is a directed graph where every edge is
pointing from a vertex to another vertex in the graph, so each
edge will add weight w to the sink vertex and weight −w to
the source vertex.
Definition 7. Flux of cut. For a cut in a WFG, the vertex will
be divided into two sets, S1 and S2. Given all edges in the
WFG has a positive weight according to the definition, we
denote the flux of this cut as:

Flux(cut) =

∣∣∣∣∣ e=<i, j>

∑
i∈S1, j/∈S1

we +
e=<i, j>

∑
i/∈S1, j∈S1

−we

∣∣∣∣∣ (3)

where e represents the edge from vertex i to vertex j
Though the sum of all vertex’s degree is 0, we can always

find a cut whose flux is maximum, representing the prove-
nance relation between vertexes from those two groups is the
strongest. The set with a positive degree considers as the main
contributor to the queue, while the other set contains victims
of the queue, like normal flows or small flows. To find this cut
efficiently, we have shown the hints by the following lemmas
and theorems.
Lemma 2. The flux of one cut is just the absolute value of the
sum of all vertices’ degrees in either set.

Proof: The absolute value of the sum of all vertices’ degrees
in one set (ASD) can be written as:

ASD =

∣∣∣∣∣ e=<i, j>

∑
i∈S1| j∈S1

αe ·we

∣∣∣∣∣
=

∣∣∣∣∣ e=<i, j>

∑
i∈S1& j∈S1

αewe +
e=<i, j>

∑
i∈S1& j/∈S1

αewe +
e=<i, j>

∑
i/∈S1& j∈S1

αewe

∣∣∣∣∣
=

∣∣∣∣∣0+ e=<i, j>

∑
i∈S1& j/∈S1

−we +
e=<i, j>

∑
i/∈S1& j∈S1

we

∣∣∣∣∣= Flux(cut)

(4)

Theorem 1*. The WFG cut with maximum flux will divide
the vertices with positive degrees into one set and negative
degrees into the other set.

Given the sum of all vertices’ degrees are 0, for any cut:
∑X∈S1 D(X) = −∑Y∈S2 D(Y ), namely, the absolute sum of
degree for two sets are the same. Thus, for the cut that divide
all vertices with positive degrees into one set, by contradiction,
we can easily prove this is the cut with maximum flux.

The flux represents the wait-for relation between two
groups from a cut of the wait-for graph, and the degree repre-
sents the value of incoming edges weights subtracting outgo-
ing edges weights so that Theorem 1 is proofed.

B Fine-grained Sliding Window

During the telemetry collection process, SpiderMon main-
tains bloom filter and per-port per-epoch data structures to
trace back all the relevant switches. However, part of these
structures (e.g. traffic meter) needs to be reset to 0 at the be-
ginning of an epoch due to the limited resources of the switch
data plane. Therefore, there will be some information loss at
the beginning of an epoch, leading to the diagnosis algorithm
being inaccurate. SpiderMon employs a fine-grained sliding
window on the data plane to achieve high accuracy for the
used data structures.

The sliding window strategy slices each epoch into multiple
pieces, and it proceeds in two actions: an update action and a
decrease action. To explain simply, we take the traffic meter in
the per-port data structure as an example. Assume one epoch
T is divided into n small time slots. There will be n sub-traffic
meters and each of them aims at a single time slot. When a
switch receives a new packet during the update phase, the
switch will update the corresponding sub-traffic meter based
on the current time slot, as well as the total traffic meter. For
decrease action, when the oldest sub-traffic meter no longer
exists in the sliding window, the value of the corresponding
sub-traffic will be subtracted from the total traffic meter and
that sub-traffic meter will be reset to 0. Network operators are
able to tune the fine-grained sliding window according to their
demands. Basically, the more time slots an epoch is divided
into, the higher the accuracy that the system can achieve. On
the other hand, the overhead of telemetry data structures can
be reduced with fewer time slots.

C Resource Usage Optimization

C.1 Avoid Duplicate Detection

In the scenario of the performance problem, there are lots
of packets from the victim flow suffering from high latency
problems, but not all of them will generate a diagnostic event
independently. SpiderMon sets a limitation on the interval
between two diagnostic events generated by the same flow,
meaning that during one congestion, only the first packet
suffering from high accumulated latency will trigger the di-
agnostic event. To avoid receiving multiple audit requests for
the same diagnosis event, the switches will drop the duplicate
"spider" packets with the same event ID as well.
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C.2 Data Field Compression

For the applications like SpiderMon built on top of the pro-
grammable switches, keeping track of some data fields in the
packet header or on the switch memory is always required.
Compressing those data fields in order to reduce the extra
header size or switch memory occupation is critical to the
application performance. SpiderMon provides a method to
compress the size of the data by extracting the most signifi-
cant bits. This idea can be widely applied to many recorded
data in such systems, and here are two typical examples that
use this strategy:

The timeout bloomfilter in SpiderMon requires storing a
large number of timestamps for each slot in the bloom fil-
ter, which is very resource consuming and inefficient. The
timestamp is usually stored with 48 bits on the switch and
SpiderMon uses the timestamp to perform the timeout op-
eration. Given that the only operation on the timestamp is
the subtraction of two timestamps and compare the differ-
ence with the timeout period, we can easily observe that the
only significant bits in the timestamp are the bits around the
period. Take the timeout period as 1 ms as an example, the
most significant bits in the timestamp are the 10th, 11th, and
12th bits from the right, representing 0.512 ms, 1.024 ms, and
2.048 ms respectively. By extracting these three bits from the
original timestamps and comparing the difference with bit
array 010, we can get an approximation of the exact value
that is calculated with the original timestamp. Adding more
bits on the left (e.g. 13th and 14th) can prevent us from the
danger of overflow while adding more bits on the right (e.g.
9th and 8th) can help us obtain a more precise result of the
subtraction. With this method, SpiderMon only needs to store
6 bits for each timestamp and reduce the memory usage of
the timeout bloomfilter by 87.5%.

Another example is the queuing information carried by
the packets in SpiderMon, which is used to detect the perfor-
mance problem by comparing the accumulated delay with the
maximum delay threshold. For a certain application, the max-
imum delay threshold may be 1 ms. Then when we calculate
the accumulated delay, the most significant bits are 8th, 9th,
and 10th bits from the right, representing 0.128 ms, 0.256 ms,
and 0.512 ms respectively. If any bit on the left of the 10th
bit is not 0, SpiderMon will trigger the problem immediately,
since it exceeds the threshold with this single-hop delay. In
this way, SpiderMon only needs to add an extra header with
4 bits to carry each delay field instead of 19 bits, shrinking
the overhead from the extra header by 78.95%. Note that in
evaluation, we use 8 bits for each data field to provide better
accuracy.

D Implementation
We have implemented SpiderMon on a Barefoot Tofino switch
with 1147 lines of P4-Tofino code and also a BMv2 version
for NS3 and MiniNet environments with 945 lines of P4 code.
We also implement the root causes analyzer on the end-host

with 843 lines of Python code.
Figure 14 depicts different components in a switch and the

workflow for different packet types. The event record is used
for checking duplicate “spider” packets, and the telemetry
counter for guiding telemetry packet generation. Those two
data structures are placed in the ingress because they need
to make decisions on whether to mirror packets in the traffic
management unit. The per-port meter and timeout bloom filter
provide provenance data to guide the propagation of the “spi-
der” packets, and the telemetry data structure stores historical
flow information for diagnosis. Those two data structures,
along with the problem detection component, are placed in
the egress pipeline because they may require queuing infor-
mation, which is only available in the egress pipeline. Note
that the per-port telemetry information is stored separately
on the switch, but not necessarily one table per stage. One
stage in SpiderMon can store multiple egress ports’ telemetry
information.

To implement SpiderMon, the egress pipeline is required to
detect the problems, store telemetry information, and provide
temporary provenance hints for “spider” packet propagation.
For switch architectures like SimpleSumeSwitch [20] (NetF-
PGA), P4FPGA [40], and SmartNICs, SpiderMon can also
be implemented by taking the next switch’s pipeline as the
“egress pipeline” of former switches to detect congestion and
collect telemetry information. This design requires more com-
munication among switches, so both the latency for diagnos-
ing the problem and the link bandwidth used by SpiderMon
would also increase.

As for the hardware switch resource, modern switches have
increasing memory sizes [29], and more ports usually repre-
sent more on-chip memory, which, we shall demonstrate in
§4, is more than sufficient to support SpiderMon.

E Additional Experiment Results
E.1 Header Bandwidth Usage

Packet Size (B) 1480 1000 500 100
SpiderMon (Gbps) 23.51 23.5 22.84 20.51

Baseline (Gbps) 23.65 23.5 22.84 21.87

Table 1: SpiderMon’s maximum throughput is quite close
to the baseline switch with only forwarding rule.

As the monitor header added by SpiderMon is removed
before forwarding the packet to the end-host, the correspond-
ing overhead of the additional header is very trivial. We use
iPerf to show the maximum throughput of traffic with differ-
ent average packet sizes on the Tofino switch equipped with
SpiderMon in Table 1 and compare it with a baseline switch
program with only basic forwarding rules. As expected, Spi-
derMon ’s end-to-end throughput is nearly identical to the
baseline, meaning that the bandwidth overhead of the moni-
toring phase could be neglected.
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Figure 14: The placement of SpiderMon components on the switch stages

E.2 Cache & Hadoop Workloads

Besides the Web search trace, we also run the same experi-
ments on the Cache trace and Hadoop Trace.

For the Cache trace, most of its flow sizes fall into 1KB
to 100KB. Thus, to reach the same link utilization, we have
to insert more number flows during the simulation. The re-
sults for Cache trace are similar to the Web search trace. The
only difference is that all algorithms have improved perfor-
mance. This is because the flow sizes are very small so that
the root-cause traffic (e.g. micro-burst) flow can be easily
distinguished from the normal flows; false positive and false
negative are reduced.

For the Hadoop trace, most of the flows have less than 10
KB flow size. Similar to the Cache trace, we also increase
the number of flows to keep the same link utilization. The
overall results for the Hadoop trace are also similar to the
Cache trace.

(a) Micro-burst (b) Priority contention

(c) ECMP imbalance (d) Loops (solutions except Trumpet
all overlap at the top right corner)

Figure 15: Diagnostic effectiveness with Cache trace

(a) Micro-burst (b) Priority contention

(c) ECMP imbalance (d) Loops (solutions except Marple
and Trumpet all overlap at the top right
corner)

Figure 16: Diagnostic effectiveness with Hadoop trace

F Tunable Parameters for Different Solutions
We vary the following parameters when using those systems
to diagnose problems of the four scenarios. The goal is to find
the parameter sets with the best precision and recall rate. We
do nested iterations over different parameters by fixing some
parameters and iterate the other parameters. The parameters
are different across systems, and for the same system, the
parameters vary according to the scenarios that we are trying
to diagnose. The details are shown in Table 2 and Table 3.

G Constructing Signatures for Root Causes
SpiderMon uses both the collected telemetry information and
the static network configuration information to recognize the
root causes. The telemetry information is collected by Spider-
Mon, and the configuration information is simply provided
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Micro-burst-related Contention Priority-related contention

Trumpet
Tolerable per-flow throughput,
tolerable end-to-end latency difference,
tolerable TCP packet loss

Tolerable per-flow throughput,
tolerable end-to-end latency differences,
tolerable TCP packet loss

PathDump
Tolerable per-flow throughput,
tolerable link utilization

Tolerable per-flow throughput,
tolerable link utilization

SwitchPointer
Tolerable per-flow throughput,
tolerable link utilization

Tolerable per-flow throughput,
tolerable link utilization

NetSight
Related time intervel length,
tolerable link utilization

Related time intervel length,
tolerable link utilization,
postcard arrival sequences

Marple
Network-wide query lasting time,
tolerable per-flow throughput

Network-wide query lasting time,
tolerable per-flow throughput

SpiderMon Maximum allowed flow throughput /

Table 2: Parameters for micro-burst and priority

ECMP load imbalance Loop
Trumpet / /

PathDump
Tolerable link utilization,
tolerable link utilization imbalance ratio Maximum header size

SwitchPointer
Tolerable link utilization,
tolerable link utilization imbalance ratio Maximum header size

NetSight
Related time intervel length,
tolerable link utilization,
tolerable link utilization imbalance ratio

/

Marple
Network-wide query lasting time,
tolerable link utilization imbalance ratio Network-wide query lasting time

SpiderMon Tolerable link utilization imbalance ratio /

Table 3: Parameters for load imbalance and Loop

by the topology information and routing information, which
is known by the operator in advance.

To add a new signature for a new root cause, network opera-
tors could simply use the above information to construct their
own signatures. Here we provide some telemetry information
and static configuration information used in the 4 example
signatures in Table 4. This is not an exhaustive list and more
information could be added when new signatures are intro-
duced. To construct new signatures, we should know that any
signature consists of two parts: 1) the root cause’s pattern, like
a flow with large throughput for the micro-burst root cause;
2) the relation between the problematic flow and the victim
flow, namely, the problematic flow should be one of the main
contributors to the victim flow’s poor performance. Here we
also provide 4 different signatures as examples.

Telemetry Info

Edge weight from flow i to flow j:
E( f lowi, f low j)
Main contributors for a queue:
Contributors(SwitchiPort j)
Flows traveling a switch port:
Flows(SwitchiPort j)
Priority: P(flow)
Data volume: V(flow)

Config Info
Port mapping in Topology:
Topo(SwitchiPort j)=SwitchxPorty
Flows belonging to an ECMP group:
Flows(group)

Table 4: Selected telemetry information and static config-
uration information

Micro-bursts. SpiderMon can identify all the main flow-level
contributors at different hops along the victim flow’s histori-
cal path. As shown in Figure 5(a), the micro-burst flows have
many wait-for edges with large weights pointing to them-

selves due to a large amount of traffic during the problematic
time. For example, for the micro-burst problem, there must
exist one micro-burst node root which satisfies:

The root cause flow has the same priority as the victim
flow:

P(victim) = P(root) (5)

The root cause flow has similar edge weight to itself as to
other flows:

E(root,root)≈ E(victim,root) (6)

The victim flow contends with the root cause flow:

∃m,n,where
victim ∈ Flows(SwitchmPortn)

root ∈Contributors(SwitchmPortn)
(7)

The larger the weights of E(root,root) and E(victim,root),
the more confidence SpiderMon has on determining the micro-
burst flow.
Different priorities. For contention between flows with dif-
ferent priorities, SpiderMon checks the priority of the victim
flow and the main flow-level contributors. The contributor
flows with higher priority compared to the victim flow can
be identified as the root causes, as shown in Figure 5(b). The
high priority flow root should satisfy:

The root cause flow has higher priority than the victim
flow:

P(victim)< P(root) (8)

The root cause flow has smaller edge weight for the edge
pointing to itself than the edge pointing to the victim:

E(root,root)< E(victim,root) (9)

The victim flow contends with the high priority flow:

∃m,n,where
victim ∈ Flows(SwitchmPortn)

root ∈Contributors(SwitchmPortn)
(10)

ECMP load imbalance. For the load imbalance problem
displayed in Figure 1(b), SpiderMon will find the flow-level
main contributors and check if they are routed by ECMP. Then
SpiderMon calculates the ECMP imbalance ratio with the
throughput of all flows routed by ECMP rules, using the traffic
volume provided by per-flow telemetry data. The problematic
ECMP groups can be identified when the calculated ratio is
highly imbalanced as in Figure 5(c). Within the problematic
ECMP group ecmp on Switch Switchx, there must exist one
or more flows root, which satisfies:
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The ECMP traffic split on some switches is not balanced:

T hroughput(SwitchxPorty) = ∑V ( f lowi),

where f lowi ∈ Flows(SwitchxPorty)
(11)

∃x,y,∀i 6= y,

T hroughput(SwitchxPorty)

> T hroughput(SwitchxPorti)
(12)

The root cause flow is one of the flows from the ECMP
port that has larger throughput.

root ∈ Flows(ecmp)∩Flows(SwitchxPorty) (13)

On another switch, the victim flow contends with the root
cause flow:

∃m,n,where
victim ∈ Flows(SwitchmPortn)

root ∈Contributors(SwitchmPortn)
(14)

Transient/persistent loops. For the latency problem caused
by transient or persistent loops as shown in Figure 1(c), Spider-
Mon searches the port-level contributors along the contributor

traffic’s path. If the same port is observed twice during the
search procedure, all those ports are highly likely to have
formed a loop for specific traffic. Furthermore, the flow ID
will be checked to further confirm the transient/persistent loop.
The formal signature for a flow root with a transient/persistent
loop can be written as:

Exist a port list:[Switchm0Portn0 , ...,Switchmk Portnk ] (15)

The port list forms a ring in the topology and the root cause
flow routed in a loop on that ring:

∀i,
Topo(SwitchmiPortni) == Switchmi+1Portni+1

root ∈ Flows(SwitchmiPortni)

(16)

The victim flow contends with the loop traffic on one of
the switches on that ring:

∃ j,where j ∈ [0,1, ...,k]
victim ∈ Flows(Switchm j Portn j)

root ∈Contributors(Switchm j Portn j)

(17)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    285




	Introduction
	Motivation
	Root Causes Are Diverse
	Root Causes Are Unpredictable
	Existing Solutions Fall Short

	SpiderMon Design
	Problem Monitoring
	Telemetry Collection
	Relevant Switches Notification
	Telemetry Data Collection

	Root Cause Analysis
	Find the Possible Root Causes
	Precisely Identify Root Causes


	Evaluation
	Diagnosis Effectiveness
	Comparison with Baseline Systems
	Diagnostic Robustness

	Related Work
	Conclusion
	Proof for Contributors Identification Algorithm
	Fine-grained Sliding Window
	Resource Usage Optimization
	Avoid Duplicate Detection
	Data Field Compression

	Implementation
	Additional Experiment Results
	Header Bandwidth Usage
	Cache & Hadoop Workloads

	Tunable Parameters for Different Solutions
	Constructing Signatures for Root Causes



