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Abstract

We present an approach to improve the scalability of online
machine learning-based network traffic analysis. We first
make the case to replace widely-used supervised machine
learning models for network traffic analysis with binary neu-
ral networks. We then introduce Neural Networks on the NIC
(N3IC), a system that compiles binary neural network models
into implementations that can be directly integrated in the
data plane of SmartNICs. N3IC supports different hardware
targets, and it generates data plane descriptions using both
micro-C and P4 languages.

We implement and evaluate our solution using two use
cases related to traffic identification and to anomaly detection.
In both cases, N3IC provides up to a 100x lower classification
latency, and 1.5-7x higher throughput than state-of-the-art
software-based machine learning classification systems. This
is achieved by running the entire traffic analysis pipeline
within the data plane of the SmartNIC, thereby completely
freeing the system’s CPU from any related tasks, while for-
warding traffic at line rate (40Gbps) on the target NICs. En-
couraged by these results we finally present the design and
FPGA-based prototype of a hardware primitive that adds bi-
nary neural network support to a NIC data plane. Our new
primitive requires less than 1-2% of the logic and memory
resources of a VirteX7 FPGA. We show through experimental
evaluation that extending the NIC data plane enables more
challenging use cases that require online traffic analysis to be
performed in a few microseconds.

1 Introduction

Online traffic analysis is a fundamental building block in to-
day’s networks, as it enables traffic classification [2, 5, 14,26],
security [10,25,31] and application-specific traffic forwarding
strategies [40]. The complexity of network traffic patterns and
the use of encrypted communications are driving the wide-
spread adoption of traffic analysis based on Machine-Leaning
(ML), implemented on commodity servers [13]. However,
it is challenging to meet the throughput and latency require-
ments of modern networks while performing ML-based traffic
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analysis [47]. Current high-performance solutions use pro-
grammable network interface cards (NICs) [12,29, 48] to
offload parts of the traffic analysis (e.g., flow statistic col-
lection [1, 3,28]) directly in their data plane, while still per-
forming machine learning inference on a separate executor,
e.g., the host’s CPU. Unfortunately, moving the collected flow
statistics across sub-systems introduces an important bottle-
neck [30], forcing high throughput solutions to send collected
data to the ML executor in batches, thus sensibly increasing
the processing latency (§ 2).

Recognizing that running ML inference within the network
data plane would avoid data movements and solve the issue,
state-of-the-art solutions implement widely used techniques,
i.e., Decision Trees and their ensembles (Random Forests),
using match-action tables, which are available within a NIC
data plane [8, 55]. However, these solutions rely on expen-
sive TCAM memories, and fitting Decision Trees in match-
action tables requires restricting their depth to a few levels,
thus impacting their accuracy. More specifically, [55] reports
a maximum of five levels implemented on the NetFPGA,
while [8] supports only Decision Trees of depth four on the
Barefoot Tofino. Therefore, currently, network operators have
to compromise between throughput, latency, or accuracy.

In this paper, we propose a new approach that efficiently
leverages programmable NICs’ hardware (and can achieve
high throughput and low latency) while maintaining com-
parable accuracy with respect to existing ML-based traffic-
analysis solutions implemented in software. The key insight
is to exploit binary neural networks (BNNs) [15], a recently-
proposed ML model targeting battery-powered edge devices.
We show that BNNs can provide better classification accu-
racy than Decision Trees and Random Forests on the tested
traffic analysis tasks (§ 3). Importantly, BNNs use single bits
to represent inputs and weights, which provides two critical
properties: (i) they exhibit a very compact memory footprint
even for larger models; (ii) unlike mainstream Deep Neu-
ral Networks (DNNs), BNNs require only simple operations
such as XOR and population count. This enables the imple-
mentation of efficient BNNs executors in a NIC’s data plane,

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 513



Expert knowledge: @

e.g. num. of bits per feature ««sssss , > Input features quantization

(optional)
Binarized (]
Expert knowledge: dataset [

]

]

i ]

eg. listof models +evararirunanaiip BNN model search H
Q

(optional)

3SVHd INIT440 JIEN

0 Target selection ——>{ 11l 0 e e

! [N 1Y N
: o
i microC P4 HDL

Features extraction

and networking tasks ==————> DP program integration

Data Plane program . Integrated Data
; Plane program

N3IC ONLINE PHASE

[ ! )

Figure 1: N3IC overview. Users provide a labeled dataset.
N3IC uses it to generate a binary neural network model, which
is then compiled to a data plane program for a target NIC.

without requiring expensive resources, such as TCAMs.

Building on this insight, we developed N3IC, a com-
plete solution to perform network traffic analysis using
BNNs with commodity programmable NICs. N3IC com-
prises two key components (Figure 1, § 4): @ a frame-
work to train a BNN using a labeled dataset provided by
the user, and @ a compiler that translates the trained model
into target-specific executable code. To show the general-
ity of our approach, we implement two compiler backends:
one targeting micro-C, a subset of the C language used by
Netronome SoC-based NICs [29], and one targeting the P4
language [6]. The latter enables compiling to a growing set
of P4-enabled NICs [21], including FPGA-based NICs using
the P4->NetFPGA toolchain [16].

Furthermore, we evaluate the cost of providing BNN exe-
cution as a native hardware primitive that can be exposed to
high-level programming languages (e.g., using P4’s extern).
We prototype this on the NetFPGA using RTL description
language and show it only needs a modest 1-2% of a Xilinx
Virtex7 FPGA’s logic resources. While prior work has shown
the potential of implementing ML models on FPGA [24,51],
they target ML models for application-level data processing,
which has millisecond-scale latency requirements (as opposed
to microsecond), and they are typically based on FPGA mono-
lithic implementations. To the best of our knowledge, we are
the first ones integrating a streamlined BNN executor, tailored
to network traffic analysis models, within the NIC data plane.

We evaluate N3IC across different hardware platforms us-
ing traffic classification, security anomaly detection and net-
work tomography as use cases (§ 6). Results show that N3IC
can perform traffic analysis with high accuracy and with la-

tency in the microseconds, for millions of network flows per
second, while processing packets at NICs’ line rate. Com-
pared to a similar system that implements the traffic analysis
on a general-purpose CPU (with packet forwarding and fea-
ture extraction still offloaded to the NIC), N3IC provides up
to 7x higher throughput and up to 100x lower latency.

Contributions. In this paper, we:

* demonstrate that BNNs provide high accuracy and low
memory footprint for the selected traffic analysis use cases.

¢ design and implement an end-to-end system that performs
traffic analysis in programmable NICs’ data plane: this
includes a framework to train BNNs and a compiler that
translates models into both P4 and Netronome’s micro-C.

* develop a new hardware primitive that enables BNN in-
ference as first-class-primitive for next-generation pro-
grammable NICs.

* evaluate our solution on three traffic analysis use cases: (i)
traffic classification, (ii) anomaly detection, and (iii) net-
work tomography.

* Source code to reproduce key results of our work is at:
https://github.com/nec-research/n3ic-nsdi22

2 Motivation and Challenges

Motivation. Modern data-center networks comprise a variety
of network appliances, e.g., traffic classifiers, load balancers,
and security middleboxes [34,36]. They need to handle over
a million of flows per second while only incurring a few tens
of microseconds of processing latency per packet to avoid
affecting the end-to-end latency [11,23].

To meet these tight requirements, mainstream systems of-
fload the packet capture and feature extraction steps to a
programmable NIC [1,28]. Periodically, the host system polls
the extracted features from the NIC, and performs the analysis
step. This approach relieves the load on the host’s CPU and
achieves higher throughput but at the cost of higher process-
ing latency. To illustrate this trade-off in practice, we set up an
experiment in which we offload the feature extraction on the
Netronome NFP4000 NIC while we execute the analysis on
an Intel E5-1630 v3 CPU. The results in Figure 2 (NIC+CPU
line) show that as the throughput increases, the processing
latency scales super-linearly. For instance, at 0.2M flows per
second, the latency is 42us but if we increase the throughput
to 1M flows per second, the latency grows beyond 800us.

There are two reasons for this. First, having the feature
extraction and analysis steps running on two different sub-
systems requires moving data, e.g. crossing the PCle bus,
which can take up to a few microseconds [30]. Second, and
most critically, CPUs require input data batching to improve
the per-core processing efficiency. Batching improves data lo-
cality, avoiding stalls in the CPU pipeline due to data read de-
lay, and it allows to fill the CPU’s vector processing registers,
thereby increasing the overall throughput but at the expense
of much higher latency. This trade-off also applies to GPUs,
which extensively rely on batching to achieve high through-
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and our system N3IC.

put, and it explains why even network-attached GPUs [32]
are not well-suited for low-latency packet processing.

A way to address the above issues is to perform the analysis

directly within the subsystem that collects the data to be
analyzed, i.e., within the NIC data plane. This would allows us
to (i) avoid data movements from one subsystem to the other,
and (ii) leverage the architectures of programmable NICs
tailored to perform latency-efficient per-packet processing.
As we detail in the rest of the paper, this indeed enables
maintaining low latency (<40us) even at high throughput, as
shown by the performance of N3IC in Figure 2.
Challenges. Existing solutions advocating for performing ML
inference in the data plane of packet-processing hardware [8,
55] strictly rely on match-action tables that support ternary-
matching. These resources are (i) not always available in a
NIC data plane; (ii) costly, when available, since they use
ternary content-addressable memory (TCAM), which is about
6x more expensive in terms of silicon area than SRAM [7];
(iii) limited; thus enabling only Decision Trees with small
depth with an impact on the inference accuracy.! While using
exact-matching tables may be a workaround, it would require
enumerating the values to match on. For instance, to handle a
single 16b feature, we may need to add 65k entries.

Enabling ML inference without the use of match-action
tables resources and doing so while guaranteeing high-
throughput, low latency, and high-accuracy requires solv-
ing three key challenges. First, existing programmable NICs
have at most few 10s of MBs of fast on-chip SRAM mem-
ory [29,48,49]. Most of this memory, though, is needed to
store forwarding and policy tables, leaving little space avail-
able for application data. This makes it hard to implement
ML models within the NIC, often requiring trading-off model
complexity for memory utilization. Second, to achieve high
throughput the application logic needs to be highly paralleliz-
able in order to fully utilize all compute resources on a NIC.

IBoth IISY [55] and pforest [8] report an ability to run Decision Tree
models with depth capped to five and four layers, respectively.

In fact, the NIC may provide a good amount of available pro-
cessing resources if its architecture parallelism is leveraged.
We show this in Figure 3, which plots the throughput achieved
on the Netronome NFP4000 SmartNIC for different packet
sizes as we increase the number of operations performed per
packet. The larger the average packet size (and, hence, the
less packets per second need to be processed), the higher is
the number of operations that can be performed, before the
forwarding throughput is negatively impacted. Finally, some
ML models require complex arithmetic functions, such as
multiplications or floating-point operations, which usually are
not available on programmable NICs [45]. This limitation
does not only affect the implementation of the ML model, but
it also impacts the ability to perform pre-processing on the
input features, as required by some models such as Support-
Vector-Machine or K-Nearest-Neighbor.

3 Traffic Analysis with BNN

In this section, we show that binary neural networks (BNNs)
are a promising option to address these challenges. Originally
proposed for energy-efficient image processing on battery-
powered devices, BNNs are an extreme quantized version of
traditional DNNs in which each weight is encoded in just one
bit rather than the typical 8-, 16- or 32-bit values. This makes
them particularly appealing for our goals due to the following
reasons. First, the single-bit input and weights drastically
reduce their memory footprint. Second, the BNN’s neurons
perform a XOR between the input and weight vectors, and
use as activation function the sign function on the population
count (popcnt) performed on the bit vector resulting from the
XOR. Therefore, they can be implemented efficiently (and
with high performance) in hardware since XOR and popcnt
operations are commonly supported by most platforms.

Unsurprisingly, for complex tasks such as image recogni-
tion, BNNs exhibit 3-10% points lower prediction accuracy
than fully-fledged DNNs [20]. However, as we illustrate in
the rest of this section, network traffic analysis models are
usually much simpler and this enables BNNs to achieve an
accuracy comparable (if not better) than existing implementa-
tions relying on decision trees and random forests.

3.1 Use cases

We introduce two typical traffic analysis uses cases that we
use as running examples throughout the paper: IoT Traffic
Classification and Security Anomaly Detection. Both use
cases are general machine learning classification tasks, and
therefore they are representative of common analysis use
cases performed on network traffic. Further, they have open
datasets, which helps making our results reproducible.

IoT Traffic Classification assigns an IoT device type to an
observed network flow. For instance, this can be used in edge
networks by operators to assign IoT traffic to specific Quality-
of-Service classes. We focus on a 10-classes classification
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task, where each flow is assigned to 9 possible device cate-
gories, such as home assistants, IoT cameras, sensors, or to
a 10-th class that includes anything else, e.g., smartphones
or laptops network traffic. We use 17 flow-level features to
perform the classification. Examples of features are the num-
ber of packets and bytes being transferred, the mean packet
interarrival time or the mean packet sizes. We remark that
the selected features are not specific to this use case: they are
widely supported in open source tools and used in production
settings [35]. We use the dataset published by [44].

Security Anomaly Detection is about flagging network flows
that are related to security issues, such as Denial-of-Service
attacks, port scans, etc. This is a network analysis task widely
applied in networks of any size, and in different scenarios
including telecom operators networks, datacenters, and en-
terprises. For this task, flows are classified into two classes,
i.e., good or bad. Usually, this kind of classification is used
to potentially trigger more expensive downstream analysis
on the traffic, and it has the goal to capture the large bulk of
potentially malicious network interactions, rather than guar-
anteeing complete protection. For this task, in addition to the
17 flow-level features reported earlier, we add 3 additional
features that look at the behavior of multiple flows. For in-
stance, we consider the number of flows from a single source
IP address. Like in the previous case, these features are well-
known and widely adopted in operational settings. We use the
dataset published by [27].

3.2 BNN Analysis Pipeline

To apply BNNs, we have to define the input features quantiza-
tion strategy, to convert float and integer numbers into BNN’s
binary features. Then, we perform the training of the binary
neural network using the labeled dataset. Finally, we evaluate
the classification performance with previously unseen data.

Input preparation Previous work on BNNs introduces a first
regular non-binary network layer that is trained together with
the remaining binarized layers. This enables "learning" the
quantization strategy for the features, but at the same time, it
introduces multiplication operations within the first layer. We
cannot afford to perform such operations in the data plane.
Therefore, we designed a different quantization approach (Fig-

ure 4): we use as input to the BNN the concatenation of the
flow feature values’ binary representations. For instance, an
input feature in the range 0-255 can be represented by an 8b
vector. Our approach has two advantages: it does not require
any additional processing since we reuse the hardware repre-
sentation of the features; and it allows to assign to the features
the number of bits their value ranges require. For instance, a
single vector of 64b can be used to represent 4 features on
16b, or 3 features on 16b and 2 features on 8b; and so on.
BNN Training Like other ML models, BNNs need to be
trained offline on a training dataset, in order to define the
values of the weights that will be used during the online anal-
ysis phase. We perform training using the technique from
Courbariaux and Bengio [9], which is based on a canonical
back-propagation algorithm. This solution trains the network
using float values, but it ensures that the BNN’s weights con-
verge to values included in the [-1, 1] range, and that they are
normally distributed around 0. This helps in reducing the loss
of information when the float weight values are mapped to
just two values, i.e., 0 and 1 [9].

BNN traffic analysis performance We test three different
BNNSs architectures, each with 256 input binary features and
three fully-connected layers. The three models differ by the
number of neurons in the hidden layers: [32, 16, 10]; [64,
32, 10]; [128, 64, 10]. For both datasets, we use a 256b input
vector. Although we have 17 and 20 features for the two cases,
respectively, we can represent different number of features
with the same binary input vector size by changing the number
of bits used to represent each feature, as mentioned earlier (cf.
Figure 4). We compare the BNNs to Decision Trees (DT) and
Random Forests (RFs). For DTs, we vary the depth of the tree,
between 3 and 10. RFs are an ensemble of DTs, therefore
they have as an additional hyperparameter the number of
trees, which we vary between 3 and 5. For readability, since
the trends are similar, we only plot a subset of the results in
the figures, i.e., three depth values of 3, 6, and 9, and always
5 trees for the RF. In all the tests, we perform 5-fold cross-
validation, and report averaged results.”

In Figure 5 and Figure 6 we plot the classification accu-
racy vs the amount of memory required by the ML models,
for the IoT and Security use cases, respectively. In the top
plots, we do not make distinction between memory of type
SRAM, used by BNN implementations, and of type TCAM,
required by DT and RF implementations. Here, we can ob-
serve that the two larger BNNs achieve an accuracy that is
closer to that of DTs and RFs of at least depth 6. The two
larger BNNs achieve 96% and 97.4% using 2.5KB and 5.5KB
of SRAM, vs 97% and 96.9% accuracy of DT6 and RF6, us-
ing 1.3KB and 6.4KB of TCAM, respectively. The smaller
BNN achieves 92.4% accuracy using 1.2KB of SRAM. In
the Security dataset, the classification is harder, and only the

2The ToT dataset is balanced across the 10 classification categories, with
each category having 43k distinct flows. In the Security dataset, we have a
binary classification with 164k anomalous and 90k normal flows.
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larger DT9 and RF9 achieve accuracy above 90%, using re-
spectively 3.4KB and 16.9KB of TCAM. The smallest BNN
achieves 91.1% accuracy using just 1.2KB of SRAM. How-
ever, it should be noted that ternary matching with TCAM is
roughly 6x more expensive than binary matching with SRAM,
in terms of required silicon resources [7] and TCAM is often
not available on NICs.

SRAM implementations: To compare the memory require-
ments when targeting similar hardware, in the bottom plots
of Figure 5 and Figure 6 we show the memory consumption
of DTs and RFs when using SRAM-based implementations.
As described in [55], in the absence of TCAM support from
the hardware target, all the values of the features selected by
model fitting have to be enumerated as appearing in the data.
Given that some of our features are flow statistics, the values
they can potentially assume range from the minimum to the
maximum observed from the data. In fact the memory re-
quirements for DTs and RFs grow orders of magnitude larger
(in this case, the plots have the x axis in log scale). Even the
smallest DT3 model requires at least 40.2KB of SRAM for
the IoT case, and 173.3KB for the Security case.

F1-score and FPR: We now look more carefully at the classi-
fier performance, reporting F1-score and False Positive Rate
(FPR) for the tested models. The F1-score is a harmonic mean
of Precision and Recall, whereas the False Positive Rate tells
the quota of negative samples mis-classified as positive, in
a two-classes classifier. For this metric, in the IoT case that
has 10 classes, we use a 1-vs-all strategy. The BNN models
achieve always better F1-score when compared to the small-
est DT and RF models, in both use cases. For larger models,
the F1-score is in the range 88-91.6 in all cases, showing

relatively small variations among classifiers.

For the FPR, it is important to consider this metric in rela-
tion to the Recall of the classifier. In fact, a low FPR may be a
symptom of a classifier assigning very few samples to the pos-
itive class. We can see this in Figure 7. DT3 and RF3 appear
to have a relatively good FPR (3.0% and 2.1%). However,
these low FPRs are due to the classifiers inability to identify
the positive class. In particular, as captured also by F1-scores,
DT3 and RF3 have a low Recall of 73.1% and 81.5% for the
10T case, whereas the smallest BNN has Recall at 92.4% with
an FPR of 0.8%. We can see a similar issue in the Security
use case (Figure 8). For instance, DT6 has FPR at 5.9% but
Recall at 88.2%, whereas the smallest BNN has a higher FPR
of 15.9% with a better Recall at 95.1%. Here, it should be
noted that in this use case a reasonably higher FPR is not
necessarily an issue. The anomaly detection is often used as
a filter, before performing more expensive analysis on the
flows classified as suspicious, e.g., diverting the traffic to a
Scrubbing Center [33]. We provide more results in Appendix.

4 System design and implementation

We now present the design and implementation of N3IC, our
end-to-end solution that enables to perform traffic analysis
within a NIC data plane using BNNs (cf. Figure 1).

N3IC operations N3IC takes a training labeled dataset as
input, and outputs programs that can be integrated into a
target device’s data plane. Currently, we support outputs in
micro-C and P4 languages, targeting SoC-based Netronome
SmartNICs and PISA-based architectures, respectively. N3IC
entirely automates the generation of the BNN model and its
implementation in the target data plane programming lan-
guage. However, programmers need to perform the final in-
tegration step, to connect the input features extracted from
the network packets with the programs generated by N3IC.
In fact, feature extraction may happen in different ways, and

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 517



NN INPUT NN INPUT NN INPUT ‘

Island Island

| |6
II N t II I Threadl Threadz
$ b ! 4
CLS | CTM CLS | CTM IMEM EMEM
64KB| |256KB, 64KB| (256KB 4MB 3MB(Cache) DRAM
] $ 3

Figure 9: The architecture of a Netronome NFP4000’s pro-
grammable blocks and the BNN processing with N3IC-NFP.

Thread n

it is generally dependent on the implemented data plane fea-
tures [3, 8]. Furthermore, since N3IC leverages the same hard-
ware in the switching chips’ data plane used also for other
tasks, the networking and traffic analysis functionality can
usually be intertwined, e.g., in the case of programs target-
ing the PISA architecture the same pipeline stages may take
forwarding decisions and compute BNN’s neurons. This is a
process that in the future may be automated too, as data plane
composability technology matures [46].

BNN model generation We described in § 3 the input feature
quantization and training processes for BNNs. N3IC applies
these processes on the provided labeled dataset. For input
quantization, N3IC takes hints from the programmer, who can
provide the number of bits that should be used to represent
each feature. For instance, the programmer may have expert
knowledge about what value ranges a given feature may have.
Otherwise, N3IC can perform an automatic assignment of
features to the binary input features vector, using the range
of values observed in the dataset as a guide. Once the fea-
ture quantization strategy is fixed, N3IC starts a model search
task. During this task several models are trained, and their
performance on the provided data set is tested using K-fold
cross validation. Also in this case the programmer can guide
the process, providing a list of models to test or limitations
on the maximum model size. Our current implementation
performs a simple exhaustive search over a predefined (or
programmer-provided) set of models, however, this step can
also be enhanced with techniques that implement more so-
phisticated ML architecture search solutions [38].

At the end of these two steps, N3IC generates a BNN model
implementing an MLP architecture, described by the num-
ber of layers, number of neurons per layer, and the corre-
sponding weights. This description is finally passed to the
target-specific BNN compilers, which generate the data plane
programs that implement the BNN executors. We describe
these implementations next.

4.1 SoC NIC: Netronome NFP4000

The NFP4000 architecture, shown in Figure 9, comprises
tens of independent processing cores, which in Netronome
terminology are named micro-engines (MEs). MEs are pro-
grammed with a high-level language named micro-C, a C
dialect. Each ME has 8 threads, which allow the system to
efficiently hide memory access times, e.g., context switching

Algorithm 1: BNN layer processing function.
Weights and inputs are in groups of block_size.

Input

:x input vector, w weights matrix, n num. of
output neurons,
Qutput : y output vector
1 block_size + 32;
2 assert(n % block_size == 0);
3 sign_thr = (len(x) * block_size) /2,
4 y[n/block_size] < {0};
5 for neur < Oton—1by 1 do

6 tmp < 0;
7 | fori<+ Otolen(x)—1by1do
8 | tmp += popent(w(neur][i] © x[i]);
9 end
10 if tmp >= sign_thr then
1 | tmp_out |= (1 << (neur % block_size));
12 end
13 if (neur + 1) % block_size == 0 then
14 y[neur] <— tmp_out;
15 tmp_out < 0;
16 end
17 end

between threads as they process different packets. MEs are
further organized in islands, and each island has two shared
SRAM memory areas of 64KB and 256KB, called CLS and
CTM, respectively. Generally, these memory areas are used to
host data required for the processing of each network packet.
Finally, the chip provides a memory area shared by all is-
lands, the IMEM, of 4AMB SRAM, and a memory subsystem
that combines two 3MB SRAMs, used as cache, with larger
DRAMs, called EMEMs. These larger memories generally
host forwarding tables, access control lists, and flow counters.
The BNN executor implementation has to share the MEs
and memory resources with packet processing tasks, thus, it
has to strike the right balance between the needs of quickly
forwarding network packets and running BNN inference. For
both processing tasks the main bottleneck is the memory
access time. Therefore, selecting the memory area to store
BNN’s weights plays a major role in our design.

If the BNN is small, like in our cases, it is worth consider-
ing the fastest available on-chip memories, i.e., the CTM and
CTS, with an access time of less than 100ns [29]. However,
the CTM memory is usually dedicated to packet processing
tasks, being the memory used by the NFP to store incom-
ing packets and making them available to the MEs. Thus,
using the CTM may impact packet processing and should be
avoided. Because of this, our implementation loads the NN’s
weights at configuration time in the CLS memory. Then, to
run the BNN, N3IC outputs a function that can be run within
an ME’s thread, and which performs Algorithm 1. This func-
tion implements the BNN executor, with input and weights
packed in 32b integers (i.e., block_size is 32). As a con-
sequence, multiple threads can perform BNN executions in
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Algorithm 2: popcount implementation. X|, is the
y-times concatenation of the binary number X; Z||W is
the concatenation of the binary numbers Z and W.

Input :7 input number;
Output : ¢ output counter
1 B« [loga(n+1)/8] *38;
2 L+ logyB;
3 bits[L] + {1,2,4,...,B/2};
4 masks[L] <
{01|B/270011|B/4700001111‘B/8a70‘3/2Hl|3/2}7
5 cm
6 fori< OtoL—1by 1do
7 | ¢4 (c &masks[i]) + ((c >> bitsli]) & masks]i]);
8 end

parallel (Figure 9), and it is up to the programmer to decide
when and how many threads to use for the BNN execution.

For example, a typical implementation would have, at boot
time, each of the MEs’ threads registering itself to be noti-
fied of packets reception. The NFP takes care of distributing
packets to threads on a per-flow basis. This is a standard ap-
proach when programming the NFP. Thus, whenever a new
packet is received, the NFP copies its content in an island’s
CTM, and notifies one of the island’s threads to start packet
processing. The notified thread can perform regular packet
processing tasks, such as parsing, counters update, forwarding
table lookups. The programmer can include in this context a
trigger condition to start the processing of the BNN executor,
by calling the function provided by N3IC. An example of trig-
gering condition is the the reception of a predefined number
of packets for a given flow.

4.2 BNN->P4->NetFPGA

P4 [6] is a domain-specific, platform-agnostic language for
the programming of packet processing functions. N3IC imple-
ments a compiler that transforms BNN descriptions into BNN
executors described with P4, targeting a PISA architecture. In
principle, a P4-based implementation allows us to separate the
N3IC’s BNN executors from the underlying hardware-specific
details, thus it should make the executor portable to any PISA
architecture. However, as we will discuss at the end of the
section, the target hardware architecture has still an important
impact on the final implementation.

Compiling BNN to P4. The NNtoP4 compiler takes as input
the BNN description created by the model generation step,
and generates P46 code for a generic P4 target based on the
PISA architecture. PISA is a spatial forwarding pipeline ar-
chitecture, with a number of match-action units (MAUSs) in
series. A packet header vector (PHV), containing both the
input packet and metadata information, is passed through the
MAUEs to perform the programmed processing tasks. Each
MAU combines a table memory structure, for quick lookups
using the PHV fields, with arrays of ALUs that perform oper-
ations on such fields. The code generated by NNtoP4 imple-

DalGs> 2
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Figure 10: The logical steps required to implement a BNN
using a PISA architecture.

ments a function, on top of the PISA architecture, which reads
the input value from the PHV, performs the NN execution and
writes back to a PHV’s field the result of the computation. The
NN weights are stored in the MAUs’ fast memories to enable
runtime reconfiguration. The generated P4 code also includes
headers definition, parser, de-parser and control blocks. The
code can therefore be easily extended to integrate with any
other required packet processing function.

The basic operations needed to implement Algorithm 1 are
(1) XNOR, (2) popcount and (3) SIGN function. Executing
a XNOR and a comparison (SIGN) is readily supported by
the P4 language. Unfortunately, the popcount operation is
not. The main issue is that its execution time depends on
the input size, which makes popcount difficult to implement
in networking hardware, and therefore not supported in the
PISA architecture. To overcome this issue using only current
P4 primitives, we adapted the solution proposed in [4] (Item
169), as shown in Algorithm 2. The idea is to implement the
popcount by combining basic integer arithmetic and logic
operations in a tree structure whose depth is dependent on
the input size.” A tree structure can be easily pipelined, with
the processing of different tree’s levels assigned to different
pipeline’s stages, thus achieving pipeline-level parallelism.

Overall, the processing includes five steps, each one
mapped to a logical pipeline stage, except for the popcount
which requires multiple stages, depending on the input size
(cf. Figure 10). First, the NN input is replicated in as many
PHYV fields as the number of neurons to exploit the parallel
processing on multiple packet header fields. Specifically, this
corresponds to an unrolling (or partial unrolling) of the first
for cycle of Algorithm 1. Second, each field, containing a
copy of the NN input, is XNORed with the corresponding
weight. The resulting value is further duplicated to additional
fields to implement the shift, AND and sum as described in
Algorithm 2. The outcome of each popcount is then compared
with a threshold to implement the SIGN function, whose re-
sult is the output of each neuron. Finally, the resulting bits,
stored in one PHYV field for each neuron, are folded together in
a single field. Depending on the NN depth, NNt oP4 replicates
and concatenates the described operations as many times as
the number of layers to obtain the complete MLP execution.

For hardware targets, it is worth noticing that the PHV

3See [52], chapter 5, for a longer description of the algorithm.
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Figure 11: Hardware design of the BNN Executor module.

size limits the number of neurons the pipeline can execute in
parallel. This is due to the need to replicate the input in the
PHYV to enable parallelism at the MAU level.

Generating P4 code for the NetFPGA. The NetFPGA is a
4x10GbE FPGA NIC, incorporating a Xilinx Virtex-7 FPGA.
We integrate N3IC in the reference NIC project provided with
the NetFPGA-SUME code base. We used the P4->NetFPGA
workflow [16] to port the generated target-independent P4
code to the NetFPGA platform. The P4->NetFPGA workflow
is built upon the Xilinx P4-SDNet [54] compiler and the
NetFPGA-SUME code base. It translates P4 code to Verilog,
and integrates it within the NetFPGA pipeline.

The P4->NetFPGA workflow required several adaptations
to the NNtoP4 compiler, in order to meet the FPGA resources
and timing constraints. First, the P4-SDNet compiler does
not support 1f statements among the operations of a MAU.
Thus, we replaced all the if statements required by the SIGN
function using a combination of bitwise logic operations and
masks. Second, MAUSs use the CAM IP core from Xilinx to
implement lookup tables, which restricts the maximum width
size that can be used for each entry. Consequently, a maxi-
mum of 32B can be fetched from memory every time a table
is called, limiting the number of neuron weights that could
be loaded in parallel by each table. To overcome this issue
we had to write the weights as constant values in the MAU’s
operations code, effectively trading the possibility to perform
runtime reconfiguration with the ability to compute more neu-
rons in parallel. Finally, P4-SDNet is capable of performing a
large number of operations on a field in a single MAU. This
is in contrast with ASIC targets, which are instead usually
constrained to execute a single operation per MAU [45]. This
allowed us to describe several steps of a BNN computation in
a single MAU, thus reducing the number of MAUs required
to implement the BNN computation.

5 Hardware support for BNNs

While N3IC can generate data plane programs that implement
a BNN executor, a native support for BNNs could enable
more challenging use cases. In this section, we present the
implementation of a data plane’s hardware primitive to run
BNN, and an example of a use case that can benefit from it.

5.1 BNN inference primitive

BNN executors have been presented in the past, however,
their implementations were more generally targeted to appli-
cations within devices dedicated to AI and ML workloads,
e.g., cameras. Instead, our target is to design a BNN executor
integrated within the data plane of a NIC. This changes the
implementation constraints. Most notably, our executor tar-
gets smaller models, and it is designed to fetch input data from
the internal data plane data buses. We target the NetFPGA
prototyping platform, and design our BNN executor in HDL.

Figure 11 shows the architecture of our BNN executor.
The module is composed of multiple blocks. Each of them
performs the computation of a single NN layer, and can be
parametrized providing the sizes n and m for the input and
output vectors, respectively. Together, the blocks build a BNN
Executor for specific BNN architectures. For instance, three
of these blocks are required to build a 3 layers MLP. The NN
layer weights are stored in the FPGA on-chip memories, i.e.,
Block RAM (BRAM). The BRAMs are organized as tables
with a number of rows dependent on the number of neurons,
and with a width of 256b. Each row can be read in 2 clock
cycles and, depending on the size n of the input vector, can
store one or multiple weights, e.g., 1x256b or 16x32b. The
BRAMs are shared by all the blocks of a BNN module.

A single block is a pipeline of three stages. The first reads
the weights from the BRAM and performs the XNOR with
the input. The second performs the first step of the popcount.
Here, we create Lookup-Tables (LTs) of 256 entries each, in
order to associate one 8b integer (address) to the correspond-
ing population count value. Each block has n/8 of these LTs.
As a consequence, for a 256b input we create 32 LT’ that op-
erate in parallel. In the last stage, the LTs outputs are summed
together, the sign function is applied on the final sum and
its result is stored in one of the m bits of the output register.
If multiple weights are placed in a single BRAM’s row, the
module performs the execution of several neurons in parallel.

5.2 Enabling more challenging use cases

The BNN inference primitive can enable more challenging ap-
plications that have very low processing latency requirements.
To highlight this, we look at a recently presented network to-
mography solution: SIMON [14]. SIMON periodically sends
probe packets to measure network path delays, and then it uses
the collected delay measurements to infer congestion points
and the size of the related queues. The analysis of probe de-
lays is performed offline with neural networks (MLPs). The
high processing latency only enables post-mortem analysis.
Therefore, in its current implementation, SIMON cannot be
used to create a measurement and control loop, i.e., for path
selection. The probe periodicity defines the processing latency
constraint and it depends on the fastest link speed [14]. For
instance, probes have to be sent every 250us and 100us for
40Gb/s and 100Gb/s links, respectively. As a consequence, to
work at modern datacenters’ link speeds and in real-time, the
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Figure 13: Box plot of the
accuracies for the predicted
queues in the network tomog-
raphy use case. BNNs makes
our approach practical while
trading just a tiny amount of
accuracy with respect to non-
binarized NNs.

execution latency has to be lower than few tens of ps.

We tested the use case simulating a CLOS-like Fat Tree
datacenter network with ns3 [50], using different link speeds
and traffic workloads. Following the methodology suggested
by [14], we split the problem of inferring queue sizes in multi-
ple sub-problems, each targeting a subset of the queues. This
allows us to run smaller MLPs on each of the NICs. Un-
like SIMON, our approach does not infer the actual size of a
queue, but it only infers which queues are bigger than given
thresholds levels. This information is usually sufficient for the
control plane to take a flow-steering decision (See Figure 12).

We implement SIMON with N3IC, providing as input fea-
tures 19 probes’ one-way delays per BNN. A NIC can run
multiple BNNS, since each of them infers the congestion sta-
tus of a specific queue. We show the accuracy of prediction
for each of the network queues in Figure 13, comparing the
BNNs accuracy to that of non-binarized neural networks. For
a BNN with three layers and 128, 64, 2 neurons per layer,
across all the queues of the simulated network, we achieve a
median accuracy in predicting a congested queue above 92%,
which is comparable with the non-binarized neural network
accuracy. As we will see in § 0, the introduced BNN hard-
ware primitive will enable running these BNNs within the
processing latency required for links faster than 400Gb/s.

6 System-level Evaluation

In this section, we present the experimental evaluation of
N3IC’s BNN executors. We report and discuss the end-to-end
performance of the use cases presented in § 3, and of the the
network tomography use case from § 5. Furthermore, we re-
port results for micro-benchmarks and resource requirements.

Testbed. Unless stated otherwise, the system-under-test (SuT)
uses a machine equipped with an Intel Haswell E5-1630 v3
CPU and either a Netronome Agilio CX, with an NFP4000
processor, or a NetFPGA-SUME". The Haswell is clocked at

4The Haswell CPU was produced with a 22nm factory process, i.e., a tech-
nology comparable to the NFP4000 (22nm) and NetFPGA Virtex7 (28nm).

3.7GHz, the NFP at 800MHz, and the NetFPGA at 200MHz
for both the N31C-P4 and N3IC-FPGA (i.e., using the hard-
ware primitive) implementations. The host system runs Linux,
kernel v.4.18.15. The SuT is connected back-to-back to a sec-
ond machine that hosts the traffic generators and receivers.
For stress tests, we use a 40Gb/s capable DPDK packet gen-
erator’, and we use HTTP clients and ngnix as receiver, both
hosted on the second machine. We always measure that the
SuT is the performance bottleneck, ensuring that the setup
achieves line-rate when removing the SuT from the loop.

Comparison term. We compared our prototypes with a traffic
analysis system (bnn-exec) that performs feature extraction
on the NIC and the analysis task in software, using binary
neural networks like those employed by N3IC. bnn-exec is
available at [43]. We wrote bnn-exec in C, and optimized it
for the Haswell CPU, with some parts in assembler to take full
advantage of the CPU’s architecture features, such as AVX2
instructions. bnn-exec is faster than any other software BNN
executor we tested, and performs the analysis task with per-
formance comparable to that of optimized libraries for DTs
and RFs [17]. We setup bnn-exec to read flows statistics/data
from the Netronome NIC and ran bnn-exec only with the
Netronome NIC since its driver is more mature than the NetF-
PGA’s: it can better handle fast communication between the
NIC and the host system. When performing analysis with
bnn-exec we took into account (1) the time to read one or
more flow statistics; (2) the time to run the BNN itself; and
(3) the time to write back the result on the NIC. This allows
us to perform a fair comparison against N3IC.

Feature extraction. Our end-to-end system need feature ex-
traction to be implemented in the NIC’s data plane.In fact, the
quality of the inference tasks performed by the downstream
ML model strictly depends on the quality of the extracted
features. In some use cases, feature extraction may be simpler
than in others. For instance, in the IoT use case the outcome
of the inference task assigns flows to QoS classes. While a
mis-classification is undesirable, its impact on the infrastruc-
ture is usually limited, and one may give priority to efficiency
of implementation vs accuracy. Instead, in security use cases
there may be a stricter need to ensure that feature extraction
is robust, e.g., to protect against adversarial attacks [37].

For the tests in this section, we use two different state-of-
the-art feature extraction strategies. In stress tests, we use a
simpler approach that allows us to evaluate the N3IC imple-
mentations, ensuring that N3IC is the actual system bottleneck.
In this case, the NIC stores the per-flow features in a hashtable,
using the flow’s 5-tuple as lookup key. When a packet is re-
ceived, the corresponding flow’s features are retrieved from
the hashtable and updated. If the lookup produces a miss,
the packet is considered as belonging to a new flow. Entries
are removed from the hashtable lazily, if no packets for the
corresponding flow are received in a given time window. In

Shttps://git.dpdk.org/apps/pktgen-dpdk/
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TCP flows.

this approach, only the TCP’s connection establishment is
tracked, and no further connection tracking is performed.

In a second approach, we use a more complex solution
performing full TCP-connection tracking. A connection track-
ing automaton validates that a received packet belongs to the
5-tuple flow (e.g., checking sequence numbers), before per-
forming the features update as in the simpler approach. We
used the TCP-connection tracking implementation of Flow-
blaze [36] that also allows us to change the behavior for
sequence number checking, e.g., using either window shifting
or window advancing solutions.

In both cases, we only track flow-level features. Collecting
the 3 host-level features used in the Security use case re-
quires more complex operations, which we did not implement
since the impact of such features on the BNN classification
accuracy is negligible (Cf. Appendix for a detailed report).
Flow-level features can be: directly extracted from the packet
headers (e.g. protocol number), computed by accumulating
values extracted from packet headers (e.g, total transferred
bytes) or derived from the calculation of flow level metrics
(e.g. packet interarrival, mean flow size). In the latter case
difference based metrics (e.g. flow duration) are computed for
each packet in the flow, while mean based metrics are only
partially computed (i.e. total and number of values are stored
separately) per packet and then finalized (i.e. total/number)
each time the feature is fed to the NN. Additional per flow
values are stored in order to compute the flow level metrics
(Table 4 in Appendix). The computation of the per-flow statis-
tics is a memory-bound operation so the extra overhead due to
the metric computation is negligible respect to the cost of ac-
cessing the flow tables. We implement the feature extraction
strategies both in the Netronome NFP and in the NetFPGA,
for which we report its resources consumption in Table 1. We
refer to the two Feature Extraction (FE) strategies as simple
FE and advanced FE, respectively.

6.1 End-to-end performance tests

In all the end-to-end tests, we measure the analysis throughput
and latency, while the system-under-test forwards network

0.1

Throughput [Million NN exec/s]
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Figure 16: N3IC-NFP Figure 17: N3IC-FPGA Figure 18: Maximum
throughput for the IoT can support the network throughput in number of
use case when analyzing tomography use case BNNs execution per sec-
500, 1k, and 10k parallel even in fast 400Gb/s net- ond for N3IC BNN ex-

works with probes sent ecutors.
every 25ps.

traffic at 40Gb/s within the NIC (NFP4000 or NetFPGA).

Traffic analysis use cases We perform two different tests to
measure the end-to-end N3IC performance with the use cases
from Section 3. First, we run a stress test generating a large
number of small packets with the DPDK packet generator,
then we perform a performance test with real TCP flows
generated by HTTP clients and nginx. For the stress test, the
provided traffic contains 1.8M flows per second.® This is a
challenging load for a single server, being more common in
ToR switches handling traffic for high throughput user-facing
services [23]. If N3IC can meet this performance goal, it is
likely to be capable of handling a large range of ordinary
use cases. For the TCP tests, we vary the number of flows
between 500 and 10k, and always generate 40Gb/s of traffic.
Baseline: We measured the NIC performance when only col-
lecting flow statistics with the simpler approach introduced
earlier. The Netronome provides its 40Gb/s line rate only with
packets of size 256B (18.1Mpps) or bigger. This is achieved
using 90 out of the 480 available threads, and it is in line with
the device’s expected performance for such class of applica-
tions. In fact, the NFP can efficiently hide hash-table lookup
latencies by distributing the processing on multiple threads,
while consistently assigning flows to different threads. This
avoids expensive locking of the hash-table, since different par-
allel executors do not access the same entry. The NetFPGA,
instead, is capable of forwarding 40Gb/s with minimum size
(64B) packets while collecting flow statistics, in any case.

Stress Tests: We use the smaller BNN models reported in § 3
to test N3IC performance, since they achieve comparable accu-
racy with the larger DTs and RFs models. We summarized the
throughput results in Figure 14. N3IC implementations can
all achieve the offered throughput of 1.81M flow analysis/s.
Instead, even if using larger batch sizes, bnn-exec is unable
to cope with such load, when running on a single CPU core.
bnn-exec maximum throughput is 1.18M analyzed flows/s,
when using very large batches of 10K flows. More interest-
ingly, Figure 15 shows that N3IC implementations provide
also a low processing latency, with a 95-th percentile of 42us

®That is, an average of 10 packets per flow at 40Gb/s @256B.
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for N3IC-NFP, and only 2us and 0.5us for N3IC-P4 and N3IC-
FPGA, respectively. In comparison, for bnn-exec to achieve
a throughput above the 1M flows/s, the processing latency is
Ims and 8ms with batch sizes 1K and 10K, respectively.
TCP Test: we run an additional experiment, using the IoT
application, to check the functionality of N3IC with flows
generated by HTTP clients and nginx, when using the second
feature extraction strategy with full TCP tracking. The HTTP
clients generate 40Gb/s distributed among 500, 1k, and 10k
parallel flows. Since TCP flows have larger average packet
size (close to the maximum of 1.5KB), this corresponds to
about 3.2Mpps at 40Gb/s line rate. We further instrument
N3IC to perform inference on a flow after every (10, 100,
1000) received flow’s packets. This corresponds to up to over
320k ML inferences per second. Figure 16 shows that N3IC
can forward all the received packets, while collecting statis-
tics and performing ML inference (we show only N3IC-NFP,
and for inferences every 10 flow’s packets, since results for
the other experiments and for N3IC-FPGA are similar). An
interesting observation is that the NFP’s throughput does not
change when adding N3IC inference load. This happens since
feature extraction requires memory lookups, whereas BNN
inference requires mostly processing power from the NFP’s
ME:s, thus the two workloads can be efficiently co-located.

Network Tomography When testing the network tomogra-
phy use case, the NIC stores the one-way-delay value for the
received network probes, before passing them to the analy-
sis engine, i.e., either N3IC or bnn-exec. Here, processing
latency is the critical performance indicator. Figure 17 shows
that bnn-exec provides a processing latency of about 40ps,
which is within the budget of 100us.” However, upcoming
network links of 400Gb/s could not be supported, since they
would lower the periodicity of the probes to 25us. N3IC pro-
cessing latency for SIMON’s BNNs with 128, 64, 2 neurons
is 170us for N3IC-NFP and below 2pus for N3IC-FPGA. As
we further clarify next, N3IC-P4 cannot scale to run larger
BNNSs, and can only run the smaller 32, 16, 2 neurons net-
works with about 2us of delay, at the cost of reduced accuracy.
For upcoming 400Gb/s network speeds, the BNN hardware
primitive enables running more accurate BNN models, while
being within the processing latency requirement.

6.2 Scalability tests

We now evaluate the processing throughput and latency when
varying the size of the BNN. We performed this evaluation
fully loading N3IC, and by executing a single BNN layer with
256 binary inputs. We varied the number of neurons to be 32,
64, and 128.° Figure 18 shows that the throughput decreases
linearly with the layer’s size for N3IC-NFP and N3IC-FPGA.
Latency, instead, increases linearly (not shown). This is ex-

7In this case high-throughput is not required, so we use a batch size of 1.

8The layer is fully-connected, therefore its size is the number of input
times the number of neurons: a layer with 128 neurons has 4KB of weights,
i.e., about 4x the size of the NN used for the traffic analysis use cases.

LUT BRAM
% tot # | % tot
Reference NIC (RN) 494k | 11.4% | 194 | 13.2%
RN + simple Feature Extraction (FE) | 50.0k | 11.56% | 258 | 17.6%
RN + simple FE + N3IC-FGPA 52.6k | 12.16% | 275 | 18.8%
RN + simple FE + N3IC-P4 145.1k | 33.56% | 582 | 39.6%
RN + advanced FE 92.0k | 21.56% | 458 | 32.6%
RN + advanced FE + N31C-FPGA 95.0k | 22.86% | 475 | 33.8%

Design 4

Table 1: NetFPGA resources usage. N3IC-FPGA requires lit-
tle additional resources. N3IC-P4 uses a large amount of NIC
resources due to the PISA computation model constraints.

pected given the design presented in § 4. In comparison,
N3IC-P4 throughput results are much higher for a layer with
32 and 64 neurons. Unfortunately, results for 128 neurons are
missing, since N3IC-P4 could not scale to handle such layers.
We provide more insight on this in the next subsection.

6.3 System resources usage

We quantify the resources needed by N3IC. Compared to state-
of-the-art systems like bnn-exec, N3IC does NOT use any
CPU cores and keeps the PCle bus free. It does however use
additional resources on the NIC. We evaluate this referring to
the BNNs used in the traffic analysis use cases.

In the NFP case, N3IC has to store the NN’s weights in the
NFP4000’s memory system. The NNs used with the traffic
analysis use cases require 1.5% of the CLS memory, and 480
threads to face the offered load, instead of the 90 required to
achieve line-rate throughput when the NIC is only collecting
flow statistics. Here, it should be noted that it is possible
to use less threads, if a performance drop in NN inference
throughput is acceptable. For instance, using only 120 threads,
i.e., 30 additional threads compared to the baseline, reduces
the throughput of flows analyzed per second by 10x. This still
provides the ability to analyze over 100k flows per second,
which is sufficient for many workloads.

In the NetFPGA cases, we measured the hardware re-
sources required to synthesize N3IC on the Virtex7 FPGA,
and compare them to the standard NetFPGA reference NIC
design’s resources, including the resources required to im-
plement the feature extraction logic. Table | summarizes the
results. N3IC-FPGA requires only an additional 0.6% and
1.2% of the FPGA’s LUTs and BRAMs, respectively. The re-
source consumption is so small since we included in the data
plane a single BNN executor module, which was dimensioned
to achieve the analysis throughput measured in the tests re-
ported in this section. Instead, the N3IC-P4 implementation
requires a relatively large amount of resources, with an addi-
tional 22% for both LUTs and BRAMs. For comparison, the
implementation of DTs with depth 5 in the data plane reported
in [55] requires 27% and 40% of LUTs and BRAMs, respec-
tively. This is the case because the P4 implementation embeds
the BNN executor within a PISA-like pipeline targeted by
the P4->NetFPGA toolchain. That is, the computations of
the BNN are unrolled to be distributed on multiple PISA’s
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match-action stages. While this has the effect of completely
pipelining the BNN execution, it also requires using a large
amount of FPGA resources. That is, like it is the case for other
P4 programs using the P4->NetFPGA toolchain, with N3IC-
P4 the successful compilation and synthesis of the P4 program
guarantees the NIC’s line rate during execution. Therefore,
N3IC-P4 can run a BNN inference for each received packet
and still match packet forwarding line rate (cf. Figure 18). For
this reason, it should also be noted that in N3IC-P4 most of
the resources can be reused to implement also regular packet
forwarding, since the pipeline stages required by N3IC can
host forwarding rules coming from other processing tasks.

7 Discussion

What are the limitations? Since N3IC BNNs run in the data
plane, only features that can be computed/extracted within the
data plane can be used as input. This limits the applicability
of N3IC to devices that offer such functionality. For instance,
porting N3IC to a switch’s data plane may be limited by the
availability of input features. For similar reasons, more com-
plex models that require application-level data, e.g., payload
of packets and with KBs of input size, are not well handled
by N31IC. For these kind of analysis tasks, more relevant so-
lutions may be previous work such as Brainwave [24] and
Taurus [47], or some recently presented NICs that combine
specialized executors for ML models, e.g., NVIDIA EGX
A100 [32] and Xilinx Alveo SN1000 [53]. In fact, although
these executors are not well suited for the low latency anal-
ysis tasks addressed by N3IC (cf. § 2), they are especially
designed to perform complex algorithms on larger data, with
processing latency in the ms.

Is it all about scalability and performance? While N31C
improves the performance of existing traffic analysis systems,
we believe the ability to perform flow-level traffic analysis
entirely in the NIC can provide a tool to rethink system ar-
chitectures. For instance, the ability to track the queue status
of network switches in near real time (§ 5.2) would make it
practical the implementation of load-aware data center load
balancing schemes that take decision from the end host [18],
or it could enable new congestion control algorithms.

8 Related Work

Traffic analysis with machine learning is performed by sys-
tems in many operational settings [39], e.g., for traffic classifi-
cation [2, 5, 14,26,40] and security [3, 10, 19,25]. Some solu-
tions scale traffic analysis performance using NICs [12,29,48]
that have the ability to perform feature extraction (e.g., flow
statistic collection [1, 3, 28]). Unlike these solutions, N3IC
enables also the execution of machine learning-based analy-
sis within the NIC’s data plane. Previous work presented a
similar idea when targeting switches [8,55], and [8] covers
also the issue of selecting the subset of features that can be
efficiently collected within the data plane. In N3IC we lever-
age the flexibility of a NIC’s data plane, designed to process

significantly less traffic than a switch, to relax this issue.

The idea of using binary neural networks within the net-
work data plane was presented in some early works [41,42].
[42] presents a conceptual design for RMT [7] switches. [41]
targets end-host ML applications, in which the NIC works as
a co-processor for Convolutional Neural Networks for image
classification that runs on the host. We build on similar in-
sights and extend those early ideas in many ways. First, we
show the suitability of BNNs for traffic analysis use cases,
comparing them with state-of-the-art ML techniques. Then,
we present an end-to-end system design that builds BNN ex-
ecutors for different NIC architectures, starting from a labeled
dataset. Finally, we present a complete evaluation of BNN
executors on two NICs, propose a dedicated hardware-native
implementation, and include an end-to-end evaluation of three
networking use cases, with related trade-offs.

Finally, while not directly related to N3IC, recent work on
the security of network applications that use machine learning
is likely to influence developments in this area [22,31].

9 Conclusion

We addressed the problem of improving throughput, latency,
and efficiency of packet- and flow-level network traffic analy-
sis, usually performed by software middleboxes and network
functions. We first show that binary neural networks can re-
place widely-adopted decision trees and random forests, on
the tested network traffic analysis tasks. Then, we make the
case for implementing them in the data plane of commodity
programmable NICs.We design and implement an end-to-end
system composed of a binary neural network model gener-
ation module, and a compiler that generates data plane pro-
grams to execute the binary neural network model in the data
plane of commodity programmable NICs (i.e., Netronome
SmartNICs and P4-enabled NICs). Moreover, we also design
and prototype a new hardware primitive that allows a NIC
to perform BNN model execution directly. We evaluated our
approach using two different NICs, Netronome NFP4000 and
NetFPGA, and for a set of use cases representing a large va-
riety of current traffic analysis applications, including traffic
classification, anomaly detection and network tomography.
Our results show that our system can accurately perform anal-
yses for millions of flows per second, with low latency, while
processing packets at NICs’ line rates.
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A Appendix

We provide additional details and test results about the tested
machine learning (ML) models, and about the implementation
of the BNN executors.

A.1 Input Features

Table 2 reports the set of features used by the IoT Traffic
Classification use case to perform the classification, while
Table 3 reports the ones used by the Security Anomaly De-
tection use case. It should be noted that all the features used
by the former use case are also used by the latter. However,
some of the features shared by the two use cases differ in the
number of bits used for their binary encoding. For example,
feature dur in the IoT use case requires twice the number of
bits with respect to the Security use case.

For the Security use case, we tested the classification per-
formance of the ML models with and without the host-based
features. In fact, these features complicate significantly the
feature extraction process on the NIC. As we will see in the
next subsections, this impacts significantly the classification
performance of Decision Trees, while it has minimal impact
on BNNs. We speculate that this is the case since not only
BNNSs perform classification using all the available features,
but they also naturally build intermediate features (i.e., feature
engineering) in their hidden layers; whereas DTs and RFs
use only a subset of the provided features. This observation
suggests that there maybe more advantages in using BNNs,
beyond those reported in the paper. E.g., BNNs may enable
to perform inference using a set of features that are cheaper
to collect. However, we leave more investigation into this for
future studies, and therefore we only report that this is indeed
the case for the Security use case.

Features number vs Memory requirements. Another aspect
we did not discuss in the paper is the memory requirement
associated with the features. This is usually a bigger issues
in switching devices that deal with larger amounts of traffic,
such as network switches and routers, while it is not a hard
constraint in NICs that are provided with larger (per-flow)
memories. In the use cases analyzed in the paper, we use
a 256b feature vector, i.e., each flow entry has a memory
occupation of 45B (13B for the flowkey, and 32B for the
features). That is, a features table for e.g., 10K active flows
needs less than 0.5MB of (SRAM) memory.

Feature extraction additional counters. Table 4 lists ad-
ditional counters that are needed for the feature extraction.
Indeed, in order to calculate duration and average input fea-
tures, five per flow counters have to be stored. Timestamps of
the flow start and the last packet sent by the source/destination
are used to calculate: the duration of the flow (dur Table 2, 3),
the average load (sload, dload), the interarrival times (sinpkt
and dinpkt) and TCP connection setup time (ackdat, synack).

Feature  Description Bin. enc.
length
dur record total duration 16
proto transaction protocol 8
sbytes src -> dst transaction bytes 24
bytes dst -> src transaction bytes 24
sttl src -> dst TTL value 8
dttl dst -> src TTL value 8
sload source bits per second 24
dload destination bits per second 24
spkts src -> dst packet count 16
dpkts dst -> src packet count 16
smean Mean of the flow packet size tx by the src 16
dmean Mean of the flow packet size tx by the dst 16
sinpkt source interpacket arrival time 16
dinpkt destination interpacket arrival time 16
teprtt TCP connection setup round-trip time the sum, 8
of ’synack’ and "ackdat’.
synack TCP connection setup time, the time between, 8
the SYN and the SYN_ACK packets
ackdat TCP connection setup time, the time between 8

the SYN_ACK and the ACK packets.

Table 2: IoT Traffic Classification input features

While the source/destination total packet counters are used
only to calculate the mean flow size.

A.2 Machine Learning Models
A.2.1 Additional evaluation metrics

This section provides supplementary evaluation results to
complement the F1-score and False Positive Rate (FPR) met-
rics presented in Section 3 of the paper. TP, TN, FP and FN
indicate the True Positives, True Negatives, False Positives,
and False Negatives, respectively. We report here the follow-
ing metrics:

* Accuracy: computed as (TP+TN)/(TP+TN+FP+
FN), it quantifies the percentage of correct predictions.

* Precision (P): computed as TP/(TP + FP), it quanti-
fies the quota of positive class predictions that actually
belong to the positive class.

* Recall (R) or True Positive Rate (TPR): computed as
TP/(TP+FN), it quantifies the quota of positive sam-
ples that are correctly predicted as positive.

* Fl-score: computed as 2TP/(2TP+ FP+ FN), it is the
harmonic mean of Precision and Recall.

* False Positive Rate (FPR): computed as FP/(FP+TN),
it quantifies the quota of negative samples that are
wrongly predicted as positive.

* False Negative Rate (FNR): computed as FN/(FN +
TP), it quantifies the quota of positive samples that are
wrongly predicted as negative.

* ROC-AUC: the Receiver Operating Characteristic (ROC)
curve captures the TPR-FPR tradeoff at different classifi-
cation thresholds. ROC-AUC is the area under the ROC
curve and provides an aggregate measure to quantify
the performance of a classification model across all the
classification thresholds.
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Feature Description Bin. enc.
length
dur record total duration 8
proto transaction protocol 8
sbytes src -> dst transaction bytes 16
bytes dst -> src transaction bytes 16
sttl src -> dst TTL value 8
dttl dst -> src TTL value 8
sload source bits per second 24
dload destination bits per second 24
spkts src -> dst packet count 16
dpkts dst -> src packet count 16
smean Mean of the flow packet size tx by the src 16
dmean Mean of the flow packet size tx by the dst 16
sinpkt source interpacket arrival time 16
dinpkt destination interpacket arrival time 16
teprtt TCP connection setup round-trip time, 8
the sum of ’synack’ and ’ackdat’.
synack TCP connection setup time, the time 8
between the SYN and the SYN_ACK packets
ackdat TCP connection setup time, the time 8
between the SYN_ACK and the ACK packets
Host-based
features
ct_src_Itm No. of connections of the same dst address 8
in 100 connections according to the last time
ct_dst_Itm No. of connections of the same src address 8

in 100 connections according to the last time
No of connections of the same src/dst address 8
in 100 connections according to the last time

ct_ds_src_Itm

Table 3: Security Anomaly Detection input features

Counter
flow start
dst pkt count
src pkt count
dts last pkt ts
src last pkt ts

Description

flow start timestamp

Total number of packets sent by dst
Total number of packets sent by src
Timestamp of the last pkt sent by dst
Timestamp of the last pkt sent by src

Table 4: Feature extraction additional counters

Here, we notice that the False Negative Rate (FNR) is
not reported in the results, since it is computed as FNR =
1 — Recall, and we already report Recall for all the cases.

For each metric we report the average and standard devia-
tion resulting from a 5-fold cross-validation. In the IoT case
we are dealing with a 10-classes classification problem, thus,
we used a one-vs-rest strategy to evaluate the False Positive
and True Positive Rates. Following the description of Sec-
tion 3, we focused on 3 representative configurations for each
type of model. Specifically, for the Decision Tree (DT) and
Random Forest (RF) models we considered tree depths val-
ues of 3, 6, and 9, and always 5 trees for the RF. The BNN
models use a Multi-layer Perceptron architecture, with 256
input binary features and three fully-connected layers. The
three models differ by the number of neurons in the hidden
layers: [32, 16, n]; [64; 32; n]; [128, 64, n] where n = 10 for
the IoT use case and n = 2 for the Security use case.

We also include two additional columns (TCAM and
SRAM) reporting the memory consumption for the TCAM-
based and SRAM-based implementations. In the case of
BNNS, there is only an SRAM-based implementation, as re-

ported in the paper in Section 3.2.
The results for the IoT use cases are reported in Table 5,
while Table 6 reports the results for the Security use case.

A.2.2 Security Anomaly Detection without host features

For the Security use case, as mentioned earlier, we also run
the classifier tests to check that the implications of removing
the three additional non-flow level features is minimal for
the BNN accuracy: the three BNN models described in the
paper (32,16,2; 64,32,2; 128,64,2) achieve accuracy [0.9114,
0.9162, 0.9198] when including the 3 extra features, and
[0.9106, 0.9164, 0.9201] when not including them (a differ-
ence of at most 0.1% point). The results for Decision Trees
and Random Forests are instead more impacted, as shown in
Table 7.

A.2.3 Confusion Matrices

Figures 19 and 20 report the confusion matrices for the [oT
Traffic Classification and Security Anomaly Detection (with
all features) use cases, respectively. The matrices have been
normalized by dividing the counts by the sum of each row.
For each use case we selected a single fold for each of the 9
representative models. In the 3x3 grid, each row contains a
different type of model, i.e. Decision Trees (DT), Random
Forests (RF) and Binary Neural Networks (BNN). For a given
row, different columns contain an increasingly more complex
model of a same type, e.g. a more deep tree-based model or a
MLP with a larger number of neurons in the hidden layers.

The confusion matrices in the IoT use case confirm that
small DTs and RFs fail to properly classify samples belonging
to some classes. This is also a byproduct of using binary-
decision trees, which fail to identify all of the 10 classes when
so shallow. Performance improves as the complexity of the
model increases. BNNs are instead able to classify almost all
the classes even in the smallest configuration.

A.3 In-NIC Feature Extraction

As mentioned in the Section 6 of the paper, we implement two
different features extraction strategies in both the Netronome
NIC and NetFPGA. We give more details about these imple-
mentations in this subsection.

In both cases, we leverage the modern NIC’s ability to
host a large number of flow entries (several 10ks) in memory.
For instance, both the Netronome and the NetFPGA are also
equipped with relatively large DRAMs that can be leveraged
to host very large flow tables.

A.3.1 Feature Extraction without connection tracking

The simpler feature extraction strategy keeps a hashtable with
the active flows, and performs the following operations, on
packet reception: (i) packet parsing to extract the needed
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Figure 19: Confusion Matrices for the IoT use case

information, including the 5-tuple used as lookup key; (ii)
lookup in the hashtable to retrieve the corresponding flow
counters; (iii) update of the values to account for the new
packet reception.

To keep the implementation as simple as possible, we do
not perform any TCP connection tracking for TCP flows. To

measure the flow features that we need for traffic analysis,
in fact, in this simpler implementation it is enough to track
the initial TCP handshake (e.g., to extract SYN-ACK RTTs).
To measure flow duration, instead, we store the timestamp of
the first packet of a flow (recognized by the absence of a flow
entry in the flow hashtable) and check the timestamp of the
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Figure 20: Confusion Matrices for the Security Anomaly Detection use case
last received flow’s packet. last packet timestamp > timeout value, then the ex-
Flow entries are removed from the hashtable if no packets isting entry is discarded and the flow is considered as a new
match them for a given amount of time. This is implemented flow, and the received packet as the first packet of this flow.
as a lightweight task that can be performed lazily. For in- The timeout value should be configured depending on the
stance, when a new packet is received, if there is already deployment environment, taking into account the properties
an entry for the corresponding flow, but current time - of the monitored traffic. For instance, in telecom operators
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Element 1 Registers: * r3=Aseq Element 2
* r0=IPsrc * r4=Bseq
Flow Key: * rl=Aackdseq ¢ r5=Awin Flow Key:

biflow(IPsrc/dst, PORTsrc/dst) * r2=Back’dseq ¢ r6=B win

Conditions: CO >r0==IPsrc C1->ACK==r1 C2->ACK==r2
C3>ACK<r3 C4>ACK<r4

Registers: Conditions:
* r0=IPsrc CO0>r0 ==IPsrc
* rl=Aexp ACK CI1>ACK>=rl C2->ACK>=r2

biflow(IPsrc/dst, PORTsrc/dst) o (2= exp ACK C3-4->Lwin<=SEQ && Rwin>=SEQ

C5->SEQ<=r1
C6>SEQ<=r2

{[CO && C3-4 &&
cs], */[1,[7x]y {[!CO&&C3-4] FIN/[r2=SEQ], [TX]} */

{[*1, SYN)/ [rO=IPsrc, r1=SEQ+1, {[!CO && ACK == r1], (SYN,ACK)/ (C3-4], FIN/
r3=SEQ+1, r5=WIN], [TX [r2=SEQ+1, r4=SEQ+1, r6=WIN], [TX]} ’

{[CO, ACK ==r2 ], ACK /
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Figure 21: TCP Connection Tracking state machine, reported from [36]

networks that deploy Carrier-grade NATS, the timeout value
can be set strictly smaller than the CG-NAT (address,port)
re-use timeout, to avoid potential flow entries collision issues.
For the NFP, we implemented this functionality as part of
our micro-C programs. For FPGA NICs, this is a feature usu-
ally provided by the device vendor, i.e., collecting a small
set of flow statistics is usually a built-in function of the pro-
vided FPGA firmware. For our NetFPGA implementation, we
implemented this basic feature ourselves, using Verilog.

A.3.2 Feature Extraction with connection tracking

The simpler implementation presented earlier is not safe in
presence of misbehaving packets. For instance, an attacker
may forge packets to impact the measured flow’s features.
This is possible, since the flow counters are only retrieved
using the packet’s 5-tuple, which in a general case may be
e.g., forged. To avoid this class of issues, for TCP flows it is
possible to perform TCP Connection Tracking. Connection
tracking verifies that the flow’s behavior is consistent with the
TCP’s state machine, and it includes fine granular per-packet
checks, e.g., reading sequence and ack numbers.

We implement TCP connection tracking using the imple-
mentation presented in FlowBlaze [36], and the state machine
is reported in Figure 21. Here, it should be noted that the
state machine is in fact a sequential composition of two state
machines. This is a by-product of using the FlowBlaze ab-
straction, which implements state machines in a sequence of
stages that resemble a match-action pipeline similar to that of
devices supporting the P4 language.

The two state machines are always executed in sequence,
for each packet of an established connection. However, it is
possible to identify different responsibilities of each of the

two state machines. The first one tracks connection estab-
lishment, and computes the allowed sequence numbers (e.g.,
computing Rwin and Lwin). These values are forwarded to
the second state machine that performs the actual checks, and
which also implements the transitions to check the connection
termination.

We implemented this connection tracking solution both in
the NetFPGA and in the Netronome NIC. For the NetFPGA,
we add two FlowBlaze stages in front of the N3IC design.
These two stages are used to then to implement the state
machine of Figure 2 1. For the Netronome, we implement the
state machine of Figure 21 using micro-C, and extending the
N3IC’s Netronome firmware.
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Performance Memory
Accuracy | Precision Recall FNR FPR Fl-score | ROC-AUC TCAM SRAM
DT(3) 73.1+0.1 | 61.0£00 | 73.1+0.1 | 26.9+0.1 | 3.0+00 | 658+0.1 | 85.1+0.0 119B 40.2 kB
DT(6) 97.0+£0.1 | 970£00 | 97.0+0.1 | 3.0+£0.1 | 0.3£0.0 | 97.0+0.1 | 98.3+0.0 1.3kB | 161.9kB
DT(9) 99.4+0.0 | 994+£00 | 994+0.0 | 0600 | 0.1£0.0 | 99.4+0.0 | 99.7+0.0 72kB | 170.2kB
RF(3,5) 81.5+03 | 83.4+02 | 81.5+03 | 185+03 | 2.1+0.0 | 77.5+0.6 | 89.7+£0.2 595 B 200.8 kB
RF(6,5) 969+0.2 | 970+£0.1 | 969+02 | 3.1+x02 | 03+£0.0 | 96.9+0.2 | 983 +0.1 6.4kB | 809.3kB
RF(9,5) 99.4+0.1 | 994+0.1 | 994+0.1 | 06+x0.1 | 0.1£00 | 99.4+0.1 | 99.7+0.0 359kB | 851.0kB
BNN [32,16,10] 924402 | 924+£03 | 924+02 | 7.6+x02 | 0.8+0.0 | 924+0.2 | 95.8+0.1 - 1.2kB
BNN [64,32,10] 96.0+0.1 | 96.0+0.1 | 96.0+0.1 | 40+0.1 | 0.4+£0.0 | 96.0+0.1 | 97.8+0.1 - 2.5kB
BNN [128,64,10] || 97.4+0.2 | 97.5+0.2 | 974+02 | 26+0.2 | 03+0.0 | 974+£0.2 | 98.6+0.1 - 5.5kB
Table 5: IoT dataset
Performance Memory
Accuracy | Precision Recall FNR FPR Fl-score | ROC-AUC || TCAM SRAM
DT(@3) 88.0+£02 | 853+02 | 982+0.0 | 1.8+0.0 | 30.1£04 | 86.0+0.2 | 84.1+0.2 102B 173.3 kB
DT(6) 903+0.1 | 96.3+£0.1 | 882+0.2 | 11.8+02 | 59+0.1 | 89.8+0.1 | 91.1+0.1 677 B 18.9 MB
DT(9) 925+0.2 | 950+£0.1 | 93.2+02 | 6.8+£0.2 87+£03 | 919+0.2 | 922+0.2 3.4kB 19.9 MB
RF(3,5) 873+02 | 834+03 | 999+0.0 | 0.1+0.0 | 352+06 | 848+03 | 824+03 512B 866.4 kB
RF(6,5) 90.5+0.5 | 886+13 | 97.7+09 | 23+£09 | 222+29 | 89.2+£0.7 | 87.7+1.0 34kB | 94.7MB
RF(9,5) 923+03 | 92713 | 955+x1.1 | 45+1.1 133£2.7 | 91.6+£04 | 91.1+0.8 16.9kB | 99.3 MB
BNN [32,16,2] 91.1£0.1 | 914£06 | 95106 | 49+£06 | 159+1.2 | 90.2+£02 | 89.6+0.4 - 1.2 kB
BNN [64,32,2] 91.6+0.1 | 92406 | 94706 | 5306 | 13.8+£1.2 | 90.8+0.1 | 90.4+0.3 - 2.5kB
BNN [128,64,2] || 92.0+0.1 | 928+04 | 948+04 | 5204 | 13.0+0.8 | 91.2+0.1 | 90.9+0.2 - 5.4 kB
Table 6: Security dataset
Performance Memory
Accuracy | Precision Recall FNR FPR Fl-score | ROC-AUC || TCAM SRAM
DT(3) 88.0+£02 | 85302 | 982+00 | 1.8+0.0 | 30.1£04 | 86.0+x0.2 | 84.1+0.2 102 B 173.3 kB
DT(6) 8909+05 | 87.6+x14 | 982+12 | 1.8+12 | 247+£35 | 885+0.7 | 86.8+1.1 677 B 18.9 MB
DT(9) 912+0.1 | 90.6+£0.5 | 96.2+0.8 | 3.8+08 | 17.7+1.1 | 90.2+£0.1 | 89.2+0.2 3.4kB 19.9 MB
RF(3,5) 873+02 | 83.4+0.2 | 100.0+0.0 | 0.0£0.0 | 352+0.6 | 848+03 | 824+03 512B 866.4 kB
RF(6,5) 89.6+04 | 86.7+0.8 | 989+0.8 | 1.1+£0.8 | 269+22 | 88.0+0.5 | 86.0+0.7 34kB | 947MB
RF(9,5) 914+03 | 90.3+£0.7 | 97.0+0.6 | 3.0+0.6 | 18515 | 90404 | 89.3+0.5 16.9kB | 99.3 MB
BNN [32,16,2] 91.1£0.2 | 91.3£06 | 95.1+0.7 | 49+0.7 | 16.1£1.3 | 90.1£0.2 | 89.5+0.3 - 1.2kB
BNN [64,32,2] 91.6+0.1 | 92702 | 944+03 | 5.6+03 | 133+0.5 | 909+0.1 | 90.6+0.1 - 2.5kB
BNN [128,64,2] || 92.0+0.2 | 93.0+0.5 | 94.6+04 | 54+04 | 126+09 | 91.3+02 | 91.0+0.3 - 5.4 kB

Table 7: Security dataset when not including the three host features
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