
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Accelerating Collective Communication in Data
Parallel Training across Deep Learning Frameworks

Joshua Romero, NVIDIA, Inc.; Junqi Yin, Nouamane Laanait, Bing Xie,
and M. Todd Young, Oak Ridge National Laboratory; Sean Treichler, NVIDIA, Inc.;

Vitalii Starchenko and Albina Borisevich, Oak Ridge National Laboratory;
Alex Sergeev, Carbon Robotics; Michael Matheson, Oak Ridge National Laboratory

https://www.usenix.org/conference/nsdi22/presentation/romero

Accelerating Collective Communication in Data Parallel Training
across Deep Learning Frameworks

Joshua Romero1, Junqi Yin2, Nouamane Laanait2∗, Bing Xie2, M. Todd Young2, Sean Treichler1,
Vitalii Starchenko2, Albina Borisevich2, Alex Sergeev3†, Michael Matheson2

1NVIDIA, Inc. 2Oak Ridge National Laboratory 3Carbon Robotics

Abstract
This work develops new techniques within Horovod, a generic
communication library supporting data parallel training across
deep learning frameworks. In particular, we improve the
Horovod control plane by implementing a new coordina-
tion scheme that takes advantage of the characteristics of
the typical data parallel training paradigm, namely the re-
peated execution of collectives on the gradients of a fixed set
of tensors. Using a caching strategy, we execute Horovod’s
existing coordinator-worker logic only once during a typical
training run, replacing it with a more efficient decentralized
orchestration strategy using the cached data and a global
intersection of a bitvector for the remaining training dura-
tion. Next, we introduce a feature for end users to explicitly
group collective operations, enabling finer grained control
over the communication buffer sizes. To evaluate our pro-
posed strategies, we conduct experiments on a world-class
supercomputer — Summit. We compare our proposals to
Horovod’s original design and observe 2× performance im-
provement at a scale of 6000 GPUs; we also compare them
against tf.distribute and torch.DDP and achieve 12% better
and comparable performance, respectively, using up to 1536
GPUs; we compare our solution against BytePS in typical
HPC settings and achieve about 20% better performance on
a scale of 768 GPUs. Finally, we test our strategies on a sci-
entific application (STEMDL) using up to 27,600 GPUs (the
entire Summit) and show that we achieve a near-linear scaling
of 0.93 with a sustained performance of 1.54 exaflops (with
standard error +- 0.02) in FP16 precision.

1 Introduction

The recent successes of Deep Neural Networks (DNNs) have
encouraged continued investment across industries and do-
main sciences. Ranging from the traditional AI (e.g., im-
age processing, speech recognition), to pharmaceutical and
∗Nouamane Laanait conducted this research when he was with Oak Ridge

National Laboratory.
†Alex Sergeev conducted this research when he was with Uber, Inc.

biomedical sciences (e.g., drug discovery), and to fusion, com-
bustion and nuclear energy (e.g., disruption predictor, nuclear
power plant) [29–34], more and more applications are actively
exploiting ever-larger DNNs for production use.

With the growing applications of ever-larger DNNs, data
parallelism in DNN training faces unprecedented challenges
when synchronizing gradients1 throughout distributed train-
ing runs. Deep learning (DL) frameworks, such as PyTorch [5]
and TensorFlow [7], can exploit data parallelism for DNN
training. In such a training run, an application creates multi-
ple replicas of a model and distributes the replicas among a
group of accelerators (e.g., CPUs, GPUs, TPUs, etc). Each
accelerator executes on a different portion of training data
across a number of iterations; at each iteration, it performs
forward/backward pass computations independently, but syn-
chronizes gradients (typically via global averaging) among
the accelerators before applying weight updates (§2.1). In par-
ticular, accelerators synchronize tensors (multi-dimensional
arrays) of gradients for the same set of parameters to ensure a
globally consistent state for the model replicas.

This work advances collective communication in data par-
allel training. We propose several enhancements to Horovod
[3] [25], a generic communication library designed to be in-
dependent to the framework runtimes, enabling its use across
numerous popular DL frameworks with the same underlying
backend implementation. Our ideas were motivated by two
observations on Horovod. First, we observed that Horovod’s
core design is not scalable (see Figure 3) as it relies on a
coordinator-worker control plane to orchestrate collective op-
erations. At larger scales, this design choice leads to the single
coordinator becoming overwhelmed and leaves the applica-
tion runtime dominated by the orchestration process. Second,
we found that Horovod’s buffering mechanism (Tensor Fu-
sion) fails to reliably generate optimal buffer sizes for efficient
network bandwidth utilization (§2.2).

1Centralized training (also called synchronous training) synchronizes
gradients among accelerators; decentralized training (asynchronous training)
synchronizes parameters [13] [14] [21]. This work optimizes centralized
training and discusses gradient synchronization accordingly.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1027

To address these inefficiencies, we improve the control
plane with a new coordination scheme that takes advantage
of characteristics of a typical data parallel training paradigm,
namely the repeated execution of collectives on a fixed set
of gradients (§2.1). Using a caching strategy, we execute
Horovod’s existing coordinator-worker logic only once during
a training run, replacing it with a more efficient decentralized
orchestration strategy using a globally intersected bitvector
for the remaining training duration (§3.1). Moreover, we in-
troduce a feature for end users to explicitly group collective
operations within Horovod, enabling finer grained control
over the communication buffer sizes used for reductions.

While the implementation details vary, most DL-based com-
munication libraries use similar design principles to optimize
the performance of gradient synchronization. First, these li-
braries will employ mechanisms to facilitate overlapping of
gradient synchronization and backward pass. That is, rather
than waiting for gradients of all parameters to be computed
and then synchronizing them across accelerators altogether at
once, gradients will be synchronized actively as they are com-
puted during the backward pass. Second, rather than launching
a synchronization operator (e.g., AllReduce) for each gradient
individually, the libraries employ bucketing/packing/fusion
strategies (e.g., torch.DDP [18], tf.distribute [6], Horovod)
to aggregate the gradients of multiple parameters and execute
AllReduce on larger communication buffers for improved
bandwidth utilization.

The contributions described in this work are mainly en-
hancements specific to Horovod, overcoming inefficiencies
in its framework-agnostic design and original coordinator-
worker strategy. The framework native communication li-
braries, like tf.distribute and torch.DDP, are closely integrated
within their respective frameworks with access to internal
details. With access to these details, the implementation of
well-organized and performant communication and similar
advanced features like grouping are simpler in these libraries.
While the implementation details in this paper are Horovod
specific, the proposed grouping technique is generally appli-
cable to any other collective communication libraries.
In particular, we summarize our contributions as follows:
1. We implement a light weight decentralized coordination
strategy by utilizing a response cache to enable Horovod to
reuse coordination-related information collected at applica-
tion runtime, accelerating the orchestration process.
2. We enable grouping to provide end users with explicit
controls over tensor fusion in Horovod.
3. Our developments are incorporated in Horovod and pub-
licly available in Horovod v0.21.0.
4. We conduct experiments to evaluate our solution on a world-
class supercomputer — Summit. The results show that: 1)
our solution outperforms Horovod’s existing strategies across
scales consistently. 2) Compared to the framework native com-
munication libraries such like tf.distribute and torch.DDP, we
achieve comparable and/or better performance across scales

consistently. Compared to a PS (parameter server)-based com-
munication library BytePS [24], we achieve 20% better per-
formance using up to 768 GPUs. 3) we further evaluate our
solution on a scale up to 27,600 GPUs (the entire Summit)
and show that we achieve near-linear scaling of 0.93 with a
sustained performance of 1.54 exaflops (with standard error
+- 0.02) in FP16 precision.

2 Background and Motivation

2.1 Data Parallelism in DNN Training
For data parallelism in distributed DNN training, a typical ap-
plication run usually executes an iterative learning algorithm
(e.g., SGD) among a number of GPUs; each GPU works on
an identical replica and the same set of parameters of a DNN
model. Here, a parameter is the bias or weight of a DNN
layer; the value of a parameter or the value of a parameter’s
gradient is a multi-dimensional array, referred to as a tensor.
In the run, a training dataset is partitioned into one or more
equal-sized batches; each batch is processed on a different
GPU. After a run starts, the model replicas, parameters, and
the data structures of tensors are all fixed and determined.

During an iteration, each GPU updates parameters of a
model replica by the following computational procedure:
1. the forward pass to compute loss. 2. the backward pass
to compute gradients of the parameters. 3. the optimization
step to update the parameters. In order to ensure model repli-
cas are updated identically and remain in a globally consistent
state, the gradients between GPUs are synchronized via av-
eraging before updating parameters; this is referred to as
centralized learning. Decentralized learning [13] [14] [21]
maintains local consistency based on communication graphs 2

and synchronizes parameters. Moreover, for both centralized
and decentralized learning, GPUs synchronize the same set of
parameters/gradients across iterations. In this work, we focus
on centralized learning and discuss collective communication
in gradient synchronization/reduction.
Observation 1 . For a DNN training run on a DL frame-
work, the model replicas and parameters are all fixed. Across
iterations in the run, GPUs repeatedly synchronize the same
set of tensors for parameters/gradients.

2.2 Communication Libraries for Gradient
Synchronization

2.2.1 Framework-native Libraries

For data parallel training, the key communication operations
that occurs are AllReduce operations which average gradients
among GPUs. Within an iteration, the framework processes

2In decentralized learning, GPUs are structured into a communication
graph (e.g., ring or torus); each GPU only synchronizes among its local
neighbors on the graph.

1028 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

on GPUs each generate a set of gradients during the backward
pass that must be globally reduced before being used to update
the model parameters.

DL frameworks typically use dependency graphs to sched-
ule compute operations, the use of which may result in non-
deterministic ordering of operations. This is because in gen-
eral, the order of operations through the compute graph that
satisfies all dependencies is not unique. As a result, the or-
der of operations executed can vary across framework pro-
cesses within a single iteration, or even between iterations on
a single process. This leads to problems in handling gradient
communication between processes, as the operations generat-
ing gradients may occur in varied orders across processes. If
each framework process naively executes a blocking AllRe-
duce on the gradients in the order they are produced locally,
mismatches may arise leading to either deadlock or data cor-
ruption. A communication library for DL must be able to
manage these non-deterministic ordering issues to ensure that
AllReduce operations are executed between processes in a
globally consistent order.

The framework-native communication libraries (e.g.,
tf.distribute and torch.DDP) are designed to be closely inte-
grated within the framework and have direct access to internal
details, such as the model definition and expected set of gradi-
ents to be produced each iteration. Access to this information
enables these libraries to directly discern the communication
required during an iteration and more easily implement a per-
formant communication schedule. For example, torch.DDP is
a wrapper around a model in PyTorch, and utilizes the informa-
tion contained in the model about gradients to determine how
to schedule AllReduce operations during an iteration. While
access to this information can simplify the implementation of
these communication libraries, it ties their implementations
strictly to the frameworks they were designed to support.

2.2.2 Framework-agnostic Libraries

In contrast to the framework-native communication libraries,
a framework-agnostic library avoids any reliance on internal
framework details and makes communication scheduling de-
cisions based on information deduced during runtime. This
design choice enables the library to operate across numerous
frameworks, but the lack of access to internal information
presents unique challenges. This section discusses the design
of Horovod, a framework-agnostic communication library.

Horovod is a generic communication library developed to
execute collective communication in data parallel training
on GPUs, CPUs and TPUs, and with support for various DL
frameworks. It serves as a high-level communication library
that leaves network routing details (e.g., network reordering)
handled by lower-level libraries, such as MPI, etc. Without
loss of generality, this section discusses how Horovod inte-
grates with MPI and TensorFlow on GPUs. Assuming this
scenario, a distributed training run has N identical model repli-

Coordinator

1

2

3 3 3 3

Control flow from workers to coordinator
Control flow from coordinator to workers

1 2 3 Steps to enforce a globally consistent order
for the computed gradients across workers

Tensor queue Fusion buffer

Worker Worker Worker Worker

Figure 1: Coordinator-worker control model in Horovod’s
original design. The coordination progresses in three steps
(see details in §2.2.2): First, the coordinator gathers the lists of
requests from all workers; Second, the coordinator processes
the request lists, and then generates and broadcasts a response
list when observing one or more common requests from all
workers; Third, after receiving the response list, each worker
proceeds to execute collective operations.

cas, and is executed on N GPUs managed by Horovod with
MPI and TensorFlow. In the run, each GPU serves as both an
MPI rank and a TensorFlow process3, which conducts com-
putations for a model replica across iterations, with Horovod
providing communication routines to synchronize gradients
across TensorFlow processes.

This work introduces new techniques to Horovod after
v0.15.2. In this section, we summarize the existing strategies
based on v0.15.2. We use the terms rank, process, and GPU
to refer to MPI rank, TensorFlow process, and their hosting
GPU in turn, and use the terms coordinator and worker to
refer to the Horovod threads spawned from the processes.

Similar to the framework-native libraries, Horovod must
deal with the non-deterministic ordering of computations (dis-
cussed in §2.2.1). As it is agnostic to frameworks and lacking
the knowledge of framework internal details, Horovod’s de-
sign uses a control plane to resolve the non-deterministic
ordering issue, where a coordinator-worker communication
model is adopted to orchestrate collective communication and
ensure a globally consistent order of execution.

Figure 1 presents a simple diagram of Horovod’s control
plane, with four threads each launched in a DL framework
process. Particularly, the thread in Rank 0 serves as both
the coordinator and a worker, and the other threads each
serve as a different worker on a different GPU. During the
course of a training run, the coordinator and workers execute
the control logic periodically, with each execution referred

3For Horovod with TensorFlow, it is possible to use multi-GPUs per
rank. But in production use, most users let each rank use a different GPU.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1029

to as a cycle. In Horovod, the time between two sequential
cycles is a configurable parameter with a default setting of 1
ms. To ensure synchronous cycles across Horovod threads,
the communication operations in control plane (e.g., gather,
broadcast) are blocking.

When a cycle starts, the coordinator first gathers lists of
requests from all workers. Each request contains the metadata
(e.g., tensor name, operation) that defines a specific collective
operation on a specific tensor requested to be executed by
the framework. The requests are collected from the worker’s
local tensor queue and are structured as a request list.

Next, the coordinator processes the request lists and counts
the submissions of each request (identified by tensor name)
from workers. When the coordinator observes that a common
request has been submitted by all workers, it prepares that
request for execution by generating a corresponding response.
The coordinator generates a list of responses and broadcasts
the list to all workers. Here, each response contains the meta-
data (e.g., tensor names, data type, collective operation) that is
used by the Horovod backend to execute a collective operation
(e.g., AllReduce). Optionally, before broadcasting, the coordi-
nator will preprocess the response list, aggregating multiple
compatible responses into larger fused responses, a process
referred to as Tensor Fusion in Horovod documentation.

After receiving the response list, each worker proceeds to
execute collective operations, one operation per response in
the received response list. The portion of the Horovod back-
end executing collective operations is referred to as the data
plane. For each response, a worker will access required in-
put tensor data from the framework, execute the requested
collective operation, and populate the output tensors for the
framework’s continued use. A key characteristic of this de-
sign is that the order of execution for collective operations
is defined by the order of responses in the list produced by
the coordinator. As such, a globally consistent ordering of
collective operation execution is achieved across workers.

At a high-level, Horovod’s design can be described as a
set of mailboxes, where each worker is free to submit request
for collectives in any order to their assigned mailbox, and
eventually retrieve the desired output. The control plane is
responsible for coordinating these requests across mailboxes,
ensuring that only requests submitted by all workers are ex-
ecuted and are executed in a globally consistent order. One
observation from this analogy is that Horovod’s design is in-
herently unaware of any aspects of DL training, in particular
that in typical DL workloads, a fixed set of gradient tensors
will be repeatedly AllReduced during the course of a train-
ing run (discussed in §2.1). As a result, Horovod’s design
unnecessarily communicates redundant information to the
coordinator at every iteration, leading to poor scalability.

Beyond coordination alone, tensor fusion may cause ineffi-
ciency in the data plane. Ideally, the tensor fusion process will
generate well balanced fused responses throughout training,
yielding larger sized communication buffers for improved

Figure 2: Histogram of AllReduce message size in Horovod’s
original design of Tensor Fusion. We present the results of a
training run of ResNet50 with 96 GPUs on Summit (§4.1).

network utilization. In practice, as the tensor fusion is closely
tied to cycle that runs at an arbitrary user-defined tic rate, the
resulting communication buffer sizes can be highly dynamic
and varied, even when comparing iteration to iteration in a
run. Figure 2 presents the fused AllReduce message sizes
on ResNet50 as an example to illustrate the performance of
tensor fusion. In summary, it is possible to have the Horovod
cycles occur at favorable times during the training iteration,
where the collective responses are well distributed across
the Horovod cycles running during the iteration, resulting
in correspondingly well-balanced fused communication mes-
sage sizes. On the other hand, the Horovod cycles can occur
at unfavorable times during the iteration, with some cycles
completing with a few or even just one available collective
response, yielding less efficient communication on smaller
buffers. In the worst case, a single trailing gradient tensor
for the iteration can be missed by all previous cycles run
during the iteration, inducing additional latency equal to the
user-defined cycle time, just to reduce a single gradient tensor.

We report the detailed information about the original de-
sign of Horovod’s control plane in the supplementary materi-
als (Section 1), including pseudo code listings for Horovod
coordinator-worker coordination logic and Horovod cycle,
and the data structures for request list and response list.
Observation 2 . The dynamic nature of tensor fusion can fail
to generate buffer sizes for efficient network utilization. Thus,
we are motivated to introduce a more explicit and strict control
mechanism for tensor fusion that can improve performance.

2.2.3 Hierarchical Approach in Horovod

Kurth et al. [15] were the first to observe the scaling issue
in Horovod’s control plane. In particular, the coordinator-
worker coordination strategy was found to be highly ineffi-
cient. When increasing the number of workers, the time cost
of the communication and processing grows linearly since
the coordinator needs to communicate/process the request list

1030 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

from each worker. Especially at large scale, the cost of this co-
ordination strategy was found to quickly dominate the training
runtime. Their proposed solution was to introduce a hierar-
chical tree-based variant of the original coordinator-worker
control model, using a hierarchy of coordinators splitting up
the coordination tasks. It is clear that this hierarchical con-
trol strategy outperforms the original control plane with a
logarithmic complexity, but at the same time, it suffers from
the same issue as the original strategy does: the hierarchical
coordination strategy redundantly communicates metadata
for repeated operations across iterations in a training run.

Beyond the hierarchical coordination strategy, the authors
also introduced a hybrid/hierarchical AllReduce in Horovod’s
data plane. Even with these improvements, their approach was
not able to achieve efficient scaling with Horovod, requiring
the introduction of a gradient lag. With gradient lag enabled,
the gradients of a previous iteration are used to update weights
in the current step, providing a longer window for overlapping
the slower communication at scale with computation.

We present the hierarchical control plane in detail in the
supplemental materials (Section 1) and discuss the perfor-
mance of the hierarchical approach in Section 2.3.
Observation 3 . Although existing Horovod solutions adopt
different coordination strategies, they both fail to take ad-
vantage of characteristics of DL workloads and repeat the
same metadata communications in the control plane across
iterations in a training run.

2.3 Discussions on Horovod Performance

We focus on understanding the performance of ex-
isting Horovod solutions, including Horovod_MPI,
Horovod_NCCL, and the hierarchical AllReduce
(Hierarchical_AllReduce). Here, Horovod_MPI refers
to the Horovod implementation with MPI for both the
coordinator-worker communication in the control plane and
AllReduce in the data plane. Horovod_NCCL refers to the im-
plementation that uses MPI for control plane communication
and NCCL for AllReduce in the data plane. In particular,
NCCL v2.4.0 was used in this experiment, with tree-based
communication algorithm options available along with
existing systolic ring algorithm. Hierarchical_AllReduce
represents the solution using MPI for the control plane
communication and MPI+NCCL for the AllReduce in the
data plane. In all three solutions, the coordinator-worker
communication uses the control plane as shown in Figure 1.
Moreover, all these solutions are available in Horovod [3].

We conducted experiments on STEMDL (See supplemen-
tary materials Section 3), a scientific application developed
to solve a long-standing inverse problem on scanning trans-
mission electron micro-scopic (STEM) data by employing
deep learning. The DNN model in STEMDL is a fully-
convolutional dense neural network with 220 million parame-
ters; each GPU generates/reduces 880MB of gradients at an

iteration. We ran the experiments on Summit supercomputer
(§4.1), where each Summit node contains 6 GPUs.

We first consider the scalability results, shown in the left
subfigure of Figure 3. It is clear that, after introducing the
tree-based communication algorithms, Horovod_NCCL is able
to deliver the best performance for all scales. When we in-
crease the number of GPUs, Horovod_NCCL expands its lead
in system throughput. For example, when using 6000 GPUs, it
outperforms Hierarchical_AllReduce and Horovod_MPI
by 3.2× and 5.4×, respectively.

Figure 3 (right subfigure) also reports the GPU utilization
of the Horovod solutions across scales. The results show that,
across all tested configurations, the GPU utilization is below
55%. When increasing the number of GPUs, the GPU uti-
lization decreases progressively. We observed a much lower
GPU utilization with 6000 GPUs (see Figure 6). This in-
dicates that, although the NCCL-based AllReduce delivers
good performance, the entire gradient reduction procedure in
Horovod (e.g., coordination and execution) is highly ineffi-
cient. It leaves GPU resources underutilized and compromises
system throughput. In this work, we argue that the inefficiency
originates from both the control plane and AllReduce and in-
troduce techniques (discussed in §3) to overcome these issues.

We limit the evaluation on Horovod_MPI to 1536 GPUs as
we see noticeably poor performance. We skip the evaluations
of the hierarchical tree-based coordinator-worker communi-
cation (Figure 1 in supplementary materials) and the gradient
lag proposed in the hierarchical approach (§2.2.3), as they
are currently neither included as part of Horovod nor publicly
available. To summarize, Kurth et al. reported in [15] that, the
entire hierarchical approach obtained the parallel efficiencies
of ∼ 60% when using fully synchronous gradient reduction,
only achieving above 90% on the Summit supercomputer
with gradient lag enabled. In particular, researchers showed
that gradient lag sometimes yields low training accuracy, and
concluded that, without carefully tuning the related hyperpa-
rameters, this type of techniques is not generally applicable to
DNN training [9,10,20]. Moreover, we show that our solution
obtains up to 93% of parallel efficiency on Summit using
a fully synchronous gradient reduction (discussed in §4.4),
1.5× better than the performance of the hierarchical approach
without gradient lag reported in [15].

3 Boosting Collective Communication in DNN
Training with Caching and Grouping

This work proposes to advance collective communication
in centralized learning across various DL frameworks. We
introduce new techniques to Horovod to improve its scala-
bility and efficiency in both the control plane and the data
plane. For the control plane, we develop a strategy to record
the coordination information on the repeated requests for the
same collective operations on the same parameters across

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1031

Figure 3: Performance and GPU utilization of existing
Horovod strategies on STEMDL workload.

iterations in a training run (discussed in §2.1). In particular,
we develop a light weight decentralized coordination strat-
egy by utilizing a response cache. This cache introduces a
means for Horovod to store the metadata about the repeated
collective requests at each worker locally and bypass the re-
dundant coordinator-worker communication entirely after the
cache is populated. Moreover, we introduce grouping as a
feature to Horovod’s data plane. With grouping enabled, a
user can request grouped collective operations for specific
tensor groups, enforcing explicit control over Horovod’s ten-
sor fusion. We later show in experiments (§4) that, these two
techniques can lead to significant performance improvement
and obtain near-linear scaling in the production runs on a
world-class supercomputer. Our techniques are adopted by
Horovod and are publicly accessible in v.0.21.0.

In general, our proposals are built within Horovod’s ex-
isting control logic (discussed in §2.2.2): we execute cycles
to coordinate collective communication in DNN training;
in our system, blocking communications are used to ensure
synchronous cycles across workers and the network routing
details (e.g., network reordering) are managed by lower-level
communication libraries, such as MPI. Additionally, our mod-
ifications support both MPI and Gloo [2] libraries for control
plane communication. We discuss the performance evaluation
using MPI for control plane communication and either MPI
or NCCL for data plane communication in Section 4.

3.1 Orchestrating Collective Communication
with Caching

In contrast to the framework-native communication libraries
like tf.distribute or torch.DDP, Horovod is designed to be
generic. It utilizes lightweight bindings into frameworks to
allow the Horovod runtime to process gradient reduction, and
has no access to any data associated with the framework run-
times (e.g., iteration, parameters, models, etc.). In particular,
Horovod interacts with DL frameworks via custom framework
operations that enable the frameworks to pass a tensor and
requested collective operation to the Horovod backend, and re-
ceive the output tensor after the collective is executed. These

custom operations are defined for each supported framework,
as the mechanisms to share tensor data can vary between
frameworks, but otherwise the remainder of the code base is
generic. This design choice enables Horovod to work across
numerous DL frameworks using the same underlying code,
but at the same time, this generic design leads to the ineffi-
ciency at scale with its centralized coordinator-worker control
plane.

As is summarized in Observation 1 , in a typical data
parallel training run, there is a fixed set of gradients that
needs to be AllReduced across iterations. Horovod’s existing
coordinator-worker design does not take advantage of this
aspect of the workload, and will redundantly process the same
collective communication requests through the coordinator at
each iteration (Observation 3). Although this design choice
allows Horovod to be dynamic and service any collective
request submitted from workers, it is unnecessarily inefficient
for the typical use case with a fixed set of repeated collective
operations.

This section introduces a caching strategy that enables
Horovod to capture and register repeated collective operations
at runtime. With the cached metadata, we build a decentralized
coordination among workers, replacing the existing strategy
with significant performance improvement.

3.1.1 Response Cache

As Horovod does not have direct access to the framework-
runtime metadata (e.g., iteration, tensors), any pattern of col-
lective operations launched during a training run must be de-
duced at runtime based on prior collective requests observed.
In order to capture the metadata about repeated collective
operations, we introduce a response cache to Horovod. This
cache can be used to identify repeated operations, as well as
store associated response data structures generated by the co-
ordinator to be reused without a repeated processing through
the coordinator-worker process.

Each worker maintains a response cache locally. To con-
struct the cache, Horovod threads will use the existing
coordinator-worker control plane implementation. Specifi-
cally, workers send requests to the coordinator and receive a
list of responses from the coordinator to execute. Instead of
executing the collective operations immediately and destroy-
ing the response objects, the workers first store the response
objects in a local cache, where each unique response is added
to a linked-list structure. Additional tables are kept mapping
tensor names to response objects in the cache as well as in-
teger position indices in the linked list. A key characteristic
of the cache design is that its structure is fully determinis-
tic based on the order that response entries are added to the
cache. In this design, the cache is populated using the list
of responses received by the coordinator when a collective
request is first processed. As the coordinator design already
enforces a global ordering of responses, responses are added

1032 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Rank 0

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

C B

Rank 1
B

Rank 2 Rank 3
B C

1 0 0 1 0 0 1 0 0 1 0 0

A A A A

AllReduce

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Rank 0

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

A C B

Rank 1
AB

Rank 2 Rank 3
A B A C

1 0 0 1 0 0 1 0 0 1 0 0

AllReduce

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Rank 0

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

A C B

Control Plane

Data Plane

Rank 1
AB

Rank 2 Rank 3
A B A C

1 1 1 1 0 1 1 0 1 1 1 0

Bitvector

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

Cache
A : (0, R

A
)

B : (2, R
B
)

C : (1, R
C
)

1 2 3

Figure 4: Illustration of AllReduce with Caching. We depict an example with 4 workers (0, 1, 2, 3) reducing 3 tensors (A, B, C).
The strategy works in three steps: 1. Each worker populates a bitvector, setting bits according to entries in the response cache and
the pending tensors in their local queues. 2. Workers synchronize the bitvectors via a global set intersection to identify common
pending tensors. In this example, the bit associated with tensor A is shown as common across the workers. 3. Tensor A is sent to
the data plane for AllReduce. When the AllReduce operation is done, Tensor A is removed from the queues on all workers.

to the cache on each worker in a globally consistent order
which in turn ensures caches on each worker remain identical
across workers. The data structure for each entry in the cache
is the same as a response list discussed in Section 2.1. The
cache implemented has a user-configurable capacity, with a
default size of 1024 unique responses.

Using a combination of the cached responses and the glob-
ally consistent structure of the caches, a lightweight decentral-
ized coordination scheme is enabled, as illustrated in Figure 4.

3.1.2 Cache-based Coordination with Response Cache
and Bitvector

Once the response cache is created, it is utilized together with
a bitvector to implement a lightweight decentralized coordi-
nation scheme. To achieve this, we take advantage of the fact
that the response cache is constructed in a way that guarantees
global consistency across workers. As a result, the structure of
the response cache, in particular the index position of cached
response entries, can be used to maintain a global indexing
scheme of requests that are repeated that can be leveraged
for coordination. We present the strategy in Figure 4, report
the corresponding pseudo code in Algorithms 1 and 2, and
summarize its procedure below.
1. At the start of a cycle, each worker performs the same oper-
ations as it does in the original design: it retrieves the pending
requests from its local tensor queue, yielding a RequestList.
2. Each request in RequestList is checked against the response
cache. If the request has an associated entry in the cache, the
position of the cached entry is added to a set, CacheBits. Oth-
erwise, this request does not have an associated cached entry
and a flag is set to indicate that an uncached (i.e. previously
unobserved) request is pending.

Algorithm 1 Horovod cycle with caching
1: procedure RUNCYCLEONCE
2: RequestList← PopMessagesFromQueue()

3: CacheBitsg,UncachedInQueueg← CacheCoordination(RequestList)

4: UncachedRequestList← []
5: for M in RequestList do
6: cached← ResponseCache.cached(M)
7: if cached then
8: bit← ResponseCache.GetCacheBit(M)
9: if bit 6∈CacheBitsg then

10: PushMessageToQueue(M) . Replace messages correspond-
ing to uncommon bit positions
to framework queue for next cy-
cle

11: end if
12: else
13: UncachedRequestList.append(M) . Collect any uncached messages
14: end if
15: end for

16: ResponseList← ResponseCache.GetResponses(CacheBitsg) . Retrieve
cached responses corresponding to common bit positions

17: if not UncachedInQueueg then . All messages cached, skip
master-worker coordination
phase

18: FusedResponseList← FuseResponses(ResponseList) . Tensor Fusion
19: else . Use master-worker coordination

to handle uncached messages
20: FusedResponseList←MasterWorkerCoordination(UncachedRequestList,

ResponseList)
21: end if

22: for R in FusedReponseList do
23: ResponseCache.put(R) . Add response to cache
24: PerformOperation(R) . Perform collective operation
25: end for
26: end procedure

3. Each worker populates a bit vector, BitVector, setting bits
corresponding to values in CacheBits. It also sets a bit to
indicate whether it has uncached requests in its queue. The
bit vectors across workers are globally intersected using an

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1033

Algorithm 2 Decentralized coordination with response cache
and bitvector

1: procedure CACHECOORDINATION(RequestList)
2: CacheBits←{}, UncachedInQueue← False

3: for M in RequestList do . Check for cached messages
4: cached← ResponseCache.cached(M)
5: if cached then
6: bit← ResponseCache.GetCacheBit(M)
7: CacheBits.insert(bit) . Collect bit positions for

cached entries
8: else
9: UncachedInQueue← True . Record uncached message

exists
10: end if
11: end for

12: BitVector← SetBitvector(CacheBits, UncachedInQueue) . Set bits in local
bitvector

13: BitVectorg← Intersect(BitVector) . AllReduce using binary
AND op to get global
bitvector

14: CacheBitsg,UncachedInQueueg← DecodeBitVector(BitVectorg) . Get
common bit positions and flag

15: return CacheBitsg,UncachedInQueueg
16: end procedure

AllReduce with the binary AND operation, resulting in a
globally reduced bitvector, BitVectorg. Through this opera-
tion, only bits corresponding to requests that are pending on
all workers remain set, while others are zero.
4. Each worker decodes BitVectorg, collecting indices of any
remaining set bits to form CacheBitsg, the set of cache indices
corresponding to requests currently pending on all workers.
Additionally, it extracts whether any worker has pending un-
cached requests in queue.
5. Each request in RequestList is checked against the entries
in CacheBitsg. If the request has an associated cache entry
but has a position not in CacheBitsg, this means that only
a subset of workers have this cached request pending. This
request is pushed back into the internal tensor queue to be
checked again on a subsequent cycle. If the request has an
associated cache entry with a position in CacheBitsg, this
means that the request is pending on all workers and is ready
for communication. The associated response is retrieved from
the cache and added to the ResponseList. If the request is not
cached, it is added to a list of uncached requests that needs to
be handled via the coordinator-worker process.
6. If there are no uncached requests pending on any worker,
the coordinator-worker process is completely skipped and
workers proceed to process locally generated ResponseLists
composed of response entries from the cache. Otherwise,
uncached requests are handled via the coordinator-worker
process, with the coordinator rank generating a ResponseList
containing the cached response entries along with new re-
sponses corresponding to the uncached requests.

It is worth highlighting that with this cache-based con-
trol, the coordinator-worker logic is only executed during
cycles where previously unobserved requests are submitted
to Horovod. In cycles where all requests are cached (i.e. re-
peated), the coordinator-worker control plane is never exe-

Cycle 0

Cycle 1

Cycle 2

T0

T1T2 T3

T4T5

T6

Default:

Cycle 0 : {T0, T2, T3, T5}
Cycle 1 : {T1, T4}
Cycle 2 : {T6}

Cycle 0 : {}
Cycle 1 : {T0, T1, T2, T3}
Cycle 2 : {T4, T5, T6}

With Grouping:

Figure 5: Illustration of Grouping. A task graph with nodes
that generate requests Tn is depicted on the left, with the
dashed boxes indicating requests visible to Horovod at 3 sub-
sequent cycles. The nodes are colored to depict assignment
to two groups (blue/solid borders and green/dashed borders).
By default, a worker will submit all requests observed in a
cycle to be processed/executed which can yield unbalanced
sets of requests. With grouping enforced, requests are only
submitted when complete groups are available.

cuted. For a typical DL workload with a fixed set of gradients
to reduce every iteration, the response cache will eventually
contain entries corresponding to this entire set. As a result, the
poorly scaling coordinator-worker process will be skipped for
all training iterations, except the first one, where all requests
are initially observed and placed into the cache.

3.2 Grouping

The response cache described in the previous section ad-
dresses inefficiencies in the Horovod control plane. In this
section, we describe a method to improve the data plane per-
formance of Horovod through explicit grouping of AllReduce
operations. In particular, we introduce a feature to Horovod
that enables users to submit grouped collective operations, al-
lowing explicit control over Horovod’s tensor fusion (§2.2.2).

As is shown in Figure 5, in place of submitting individual
collective requests per tensor, a user can submit a grouped
collective (e.g. hvd.grouped_allreduce) for multiple ten-
sors. Collective requests submitted within a group are treated
as a single request in Horovod’s control plane; that is, no
request in the group is considered ready for the data plane
until all requests in the group are submitted. As a result, the
tensors within a group are guaranteed to be processed by the
data plane during the same cycle and fused, along with any
other responses ready for execution during the cycle.

This new grouping mechanism can be used to control how
gradient AllReduces are scheduled during an iteration. In
particular, the gradient AllReduce requests for a single iter-
ation can be assigned to one or more groups to explicitly
control the fused communication buffer sizes that Horovod

1034 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

generates for gradient reduction, avoiding issues that can arise
using the default dynamic fusing strategy as described in Sec-
tion 2.2.2. To ease use, this functionality is exposed to users
via a new argument, num_groups to Horovod’s high-level
DistributedOptimizer wrapper. By setting this argument,
the set of gradient tensors to be AllReduced within the itera-
tion are evenly distributed into the number of groups specified.
In the implementation described here, the gradients lists are
split into groups of equal number of tensors, without consid-
eration of buffer size.

Beyond this basic splitting, advanced users can achieve
more optimal data plane communication performance by man-
ually tuning the distribution of gradient tensors across the
groups, to target fusion buffer sizes for improved network
efficiency and/or achieving better overlap of communication
and computation. We discuss the performance with different
grouping configurations in Section 4.

We note that the framework native communication libraries
like torch.DDP also support gradient fusion/bucketing and ex-
pose options to split gradient reduction into groups of approx-
imately fixed message size. These native implementations
generally leverage access to framework-level details, like in-
formation about the constructed model, to form these groups.
As Horovod does not have access to these framework-level
details directly, this grouping mechanism provides a means
to provide such information via associating sets of tensors
coming from the model to groups.

4 Experiment

4.1 Environment Setup
Hardware. We performed all experiments on Summit super-
computer [27] at the Oak Ridge Leadership Computing Facil-
ity. As the 2nd fastest supercomputer in the world, Summit is
a 148.6 petaFLOPS (double precision) IBM-built supercom-
puter, consisting of 4,608 AC922 compute nodes with each
node equipped with 2 IBM POWER9 CPUs and 6 NVIDIA
V100 GPUs. Summit is considered as ideally suited for Deep
Learning workloads, due to its node-local NVMe (called burst
buffer) and Tensor Cores on V100 for faster low-precision
operations. Moreover, its NVLink 2.0 and EDR InfiniBand
interconnect provides 50 GB/s and 23 GB/s peak network
bandwidths for intra-node and inter-node communication.

Software. The techniques proposed in this work are imple-
mented based off Horovod v0.15.2 and have been incorpo-
rated in v0.21.0. We measured the performance with two com-
munication backends, including NCCL v2.7.8 and Spectrum
MPI (a variant of OpenMPI) v10.3.1.2. To evaluate the perfor-
mance of our proposals across DL frameworks and to compare
against the state-of-the-art communication libraries, we inte-
grated our solutions in Horovod with TensorFlow (v2.3.1) and
PyTorch (v1.6.0). We compared our solutions to tf.distribute
in TensorFlow v2.4 (TensorFlow supports grouping since

Figure 6: Performance and GPU utilization of Horovod’s
strategies. We compare our new techniques to the existing
Horovod implementations using STEMDL (see Figure 3).

v2.4), torch.DDP in PyTorch v1.6.0, and BytePS (v0.2.5). In
particular, BytePS is a deep learning framework that adopts
PS (parameter server) as its communication model. BytePS
is considered as an alternative to Horovod in a cloud envi-
ronment. For tf.distribute and torch.DDP, we conducted the
experiments with both NCCL and MPI; for BytePS, we con-
ducted experiments simply with NCCL as BytePS does not
support MPI. We configure BytePS in co-locate mode with
one server and one worker per Summit node. We choose
this configuration because it is recommended by the BytePS
team as the best practice for high-performance computing
(HPC) [1]. Moreover, we evaluated the scalability of our tech-
niques with STEMDL, where the results are from an earlier
incarnation of this work based on Horovod v0.15.2 built with
NCCL v2.4, but the conclusions are similar.

Workloads. We evaluated our solution on GPU-based work-
loads. Starting with the STEMDL workload (message size
880MB per GPU), we compared our new techniques to the
existing Horovod strategies (see Figures 3 and 6) with Tensor-
Flow. We then broadened the experiments to compare with
tf.distribute, torch.DDP, and BytePS on Resnet50 (102MB per
GPU). Finally, we demonstrated our approach on ResNet50
and two more popular networks: EfficientNet-B0 (21MB per
GPU) and VGG19 (574MB per GPU). We limit our interest in
communication and use random synthetic data (of dimension
(224, 224, 3)) as input to avoid impacts of I/O performance
on the results. The training is in single precision with batch
size of 64. We conducted the scalability experiments on the
production code STEMDL using TensorFlow. We briefly dis-
cuss STEMDL in Section 2.3, report its source code in a
GitHub repository (listed in Availability) and leave detailed
documentation in Section 3 of the supplementary materials.

4.2 Evaluations on Horovod’s Strategies

This section evaluates the performance of various strategies
in Horovod. We compare the performance of caching and
grouping to the existing strategies across scales. Figure 6 re-
ports the results, in which we follow the definitions about the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1035

Figure 7: Performance of caching on ResNet50. We evaluate
Horovod with caching enabled and disabled with both NCCL
(left) and MPI (right) backends, and also compare the results
to the performance of BytePS with NCCL (left).

existing strategies given in Section 2.3 and name the results
of our techniques as Caching (cached-based coordination
enabled) and Caching+Grouping (both caching and group-
ing enabled), respectively. Similar to Figure 3, we focus on
analyzing performance (left subfigure) and GPU utilization
(right subfigure). Here, performance refers to the the floating-
point operations performed per second (FLOPs). It is clear
that our solutions outperform the existing strategies across
scales consistently. When increasing the number of GPUs in
use, the performance advantage grows rapidly. In particular,
at the scale of 6000 GPUs, Caching+Grouping and Caching
obtain 1.97× and 1.64× GPU performance improvement,
and equally 1.48× utilization improvement, over the Horovod
baseline in NCCL-AllReduce. Accelerated by our techniques,
175 petaFLOPS in FP16 precision (more detailed discussion
can be seen in supplementary materials Section 2) can be
delivered with less than a quarter of Summit.

We conclude that our techniques achieve better perfor-
mance than the existing strategies, especially at scale.

4.3 Evaluations across Frameworks and Com-
munication Libraries

Next, we evaluate caching and grouping with both Tensor-
Flow and Pytorch, and compare our techniques to tf.distribute,
torch.DDP, and BytePS.

4.3.1 Caching and Grouping across Frameworks

We first analyze the caching performance on Horovod with
TensorFlow and Pytorch. Figure 7 presents the results. It
suggests that, for the results with both NCCL and MPI,
the caching-enabled Horovod (TF-Caching:on and PyTorch
Caching:on) first delivers equally good performance; and
when increasing the number of GPUs to 384 and more, the
caching-enabled Horovod delivers better performance consis-
tently with both TensorFlow and Pytorch. In particular, com-
pared to the caching-disabled Horovod (TF-Caching:off
and PyTorch Caching:off) with NCCL on 768 GPUs, the

Figure 8: Performance of grouping on ResNet50. We evaluate
Horovod with varied grouping configurations on 768 GPUs
with caching enabled (top) and disabled (bottom) and with
NCCL (left) and MPI (right) backends.

caching strategy achieves 2.5× (TF-Caching:on) and 1.6×
(PyTorch Caching:on) performance improvement, respec-
tively. Compared to the caching-disabled Horovod with MPI
on 768 GPUs, the caching strategy achieves 1.53× and 1.15×
performance improvement, respectively.

Figure 7 also presents the performance of BytePS (BytePS).
It is shown clearly that BytePS delivers better performance
than the cache-disabled Horovod consistently, and delivers
equally good performance as the caching strategy does on the
range of 6 GPUs — 384 GPUs, and delivers 20% lower per-
formance than the caching strategy does on 768 GPUs. This
suggests that, at larger scales, BytePS exhibits the scalability
issue in typical HPC settings such as Summit. We leave the
further study on the performance of BytePS on HPC clusters
as future work.

Next, we report the grouping benefit in Figure 8. In the case
with caching enabled (Caching:on) , comparing to the case
without grouping (# groups = 0), the training throughput on
768 GPUs with Horovod (NCCL backend) obtains a decent
5% boost with 5 or 10 tensor groups for TensorFlow, although
the gain for PyTorch is less significant. For the much slower
MPI backend, the improvement becomes marginal or negative.
When the caching is turned off (Caching:off) , there is a
performance boost for PyTorch with the optimal group size,
while for TensorFlow, it benefits mostly from grouping on
the MPI backend. This indicates complicated interactions
between the grouping and caching optimization.

To obtain a better understanding on the grouping behav-
ior under different frameworks and communication fabrics,
we plot the timing breakdown in Horovod for a 768-GPU
training in Figure 9. For each iteration, the timing consists
of two parts: coordination (control plane) and AllReduce
(data plane). The timing for the AllReduce portion is further

1036 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: The inner timing breakdown in Horovod (NCCL
backend) for a 768-GPU training with caching enabled and
disabled (left) and grouping (# groups = 5) (right), respec-
tively, during the training of ResNet50.

Figure 10: Scaling comparisons among Horovod, tf.distribute,
and torch.DDP for the training of EfficientNet-B0, ResNet50,
and VGG19. Training throughput (images/s) of ResNet50
(left). Scaling efficiency using up to 1536 GPUs (right).

split into wait (denoted [3] in Horovod as WAIT_FOR_DATA
and WAIT_FOR_OTHER_TENSOR_DATA for time on waiting for
framework to deliver gradient data and other data in the
same fused collective, respectively) and actual communica-
tion (NCCL AllReduce). The case is slightly complicated for
grouping. On one hand, the NCCL AllReduce time is almost
cut in half because the grouped messages (orders of 10 MB)
can better utilize network bandwidth; on the other hand, the
wait time increases due to the coordination of groups. The
overall performance of grouping depends on the trade-off
between the aforementioned 2 factors. Too small number of
groups (larger message and longer wait time) or too slow
communication fabric (smaller or no gain in larger message
communication) may result in worse performance with group-
ing, as indicated in Figure 8.

4.3.2 Evaluations across Communication Libraries

With both caching and grouping enabled, we compare the scal-
ing efficiency of Horovod with tf.distribute and torch.DDP.
To conduct a fair comparison, we ran all three libraries us-
ing a NCCL backend, and configure tf.distribute to use its

AllReduce mode (MultiWorkerMirroredStrategy), simi-
lar to Horovod and torch.DDP. In contrast to the experiments
with TensorFlow v2.3.1 reported in the previous sections,
this section contains experiments run using tf.distribute in
TensorFlow v2.4 as it supports a comparable grouping fea-
ture and is a more recent release. Moreover, we disabled
the broadcast_buffers option in torch.DDP to ensure
that no additional collective operations outside the gradient
AllReduces are performed during testing. We set the bucket
size/pack size for grouping in torch.DDP and tf.distribute to
25MB as it is the default configuration for torch.DDP.

We present the results in Figure 10. As is shown clearly in
the left subfigure, using up to 1536 GPUs, Horovod delivers
93% and 96% of scaling efficiencies with TensorFlow and
PyTorch, respectively, while tf.distribute and DDP achieve
81% and 97% of the efficiencies, respectively. To further
illustrate the scaling on different communication volumes, we
plot the scaling efficiency for EfficientNet-B0, ResNet50, and
VGG19 (right subfigure). Our approach shows an average
of 12% better scaling than tf.distribute and a comparable
performance to DDP, across model sizes, and the advantage
becomes bigger as communication volume increases.

To obtain a better understanding of the performance of
the three libraries, we profiled the training of ResNet50 with
the libraries using Nsight Systems [4] (an NVIDIA profiling
tool) and observed how well the AllReduce operations overlap
with computation within a training iteration for each library.
The results (see details in supplementary materials Section
4) show that all three libraries group tensors for AllReduce
to a similar number of large buffers per iteration (4 or 5). In
particular, we observed >95% of AllReduce overlapped with
computation when using Horovod and torch.DDP, and the
number dropped to ∼75% when using tf.distribute.

We conclude that our solution performs well with both
TensorFlow and PyTorch. Moreover, it delivers comparable
and/or better performance than tf.distribute and torch.DDP,
especially for large communication volumes.

4.4 Scaling Analysis on Production Code

This section evaluates the scaling efficiency of our solutions
using a scientific DNN training code, STEMDL. The purpose
of the section is to demonstrate a use case that stresses the
communication layer of DL training at extreme scales (e.g.
27k GPUs). Our expectation is that if a communication im-
plementation can scale well in this scenario, it should be well
suited to many other workloads operating with far fewer tasks.
Beyond scaling efficiency, we also evaluate the power con-
sumption and overall performance of the production runs of
STEMDL on the fully-scaled Summit, and leave the detailed
documentation (e.g., the metrics and evaluations) to Section
2 in the supplementary materials, due to space limitations.

Figure 11 presents the scaling results. With both caching
and grouping enabled, Horovod achieves a scaling efficiency

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1037

Figure 11: Scaling efficiency of STEMDL using up to 27,600
GPUs, the entire Summit.

of 0.93 at 27,600 GPUs and reach a sustained performance
of 1.54 exaflops (with standard error +- 0.02) and a peak
performance of 2.15 exaflops (with standard error +-0.02) in
FP16 precision. Moreover, on a single GPU, our proposals
attain 59.67 and 83.92 teraflops as the sustained and peak
performance, respectively. It suggests that each GPU achieves
49.7% and 70% of the theoretical peak performance of a V100
(120 teraflops) as its sustained and peak performance. To the
best of our knowledge, it exceeds the single GPU performance
of all other DNN trained on the same system to date.

We conclude that our techniques can attain near-linear scal-
ing on up to 27,600 GPUs.

5 Related Work

Other than collective AllReduce, another popular scheme for
data parallelism is parameter server. Incorporated with many
acceleration techniques such as hierarchical strategy, priority-
based scheduling, etc, BytePS [12, 24] has shown better scal-
ing performance than Horovod in a cloud environment where
parameter servers run on CPU-only nodes, because the net-
work bandwidth can be more efficiently utilized4. We com-
pared our solutions with BytePS on a typical HPC setting and
the results (see Figure 7) show that our techniques perform
better in such settings.

One promising direction is to further reduce the commu-
nication volume via compression [8, 11, 26, 35, 36], decen-
tralized learning [13, 14, 19], or staled/asynchronized com-
munication [9, 10,20]. The compression techniques include
quantization, sparsification, sketching, etc, and the combined

4In current ring-based AllReduce (as implemented in NCCL), each
model replica sends and receives 2(N−1)/N times gradients (N being num-
ber of GPUs), so the total message volume transferred in network per model
is 2x of the gradient volume for large N.

method [22] has shown 2 orders of magnitude in communi-
cation volume reduction without loss of accuracy. For decen-
tralized learning, depending on the communication graphs for
model replicas, the communication complexity is reduced to
O(Deg(graph)) independent of scale. Staled/asynchronized
communication can boost the communication performance
by relaxing the synchronization requirement across model
replicas, which usually comes with some cost in model con-
vergence. These developments are orthogonal to our approach,
and in principle, our techniques can apply on top of them.

Beyond proposals for improving collective communication
in DNN training. Kungfu [23] is proposed to auto-tune the
parameters in both DNN models and DL frameworks based
on runtime monitoring data. This effort is complementary to
ours: we propose techniques in Horovod with introduction
of parameters that may benefit tremendously from appropri-
ate tuning. Another significant recent study [28] proposed
Drizzle to improve large scale streaming systems with group
scheduling and pre-scheduling shuffles. Similar to our ap-
proach, Drizzle reused scheduling decisions to reduce coor-
dination overhead across micro-batches. But different to our
decentralized coordination proposal, Drizzle amortized the
overhead of centralized scheduling.

6 Conclusion

We have shown that by introducing a new coordination strat-
egy and a grouping strategy we exceed the state of the art
in scaling efficiency. This opens up, in particular, opportuni-
ties in exploiting the different levels of parallelism present in
many systems (e.g. intra-node vs inter-node) such as Summit
to train even larger DNN models.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Shivaram Venkataraman, for their invaluable com-
ments that improved this paper. This research was partially
funded by a Lab Directed Research and Development project
at Oak Ridge National Laboratory, a U.S. Department of En-
ergy facility managed by UT-Battelle, LLC. An award of
computer time was provided by the INCITE program. This
research also used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

Availability

The proposed techniques have been upstreamed to the
Horovod main distribution [3]. The code for full Summit
distributed training and the software for data generation are
made public [16, 17].

1038 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] BytePS Best Practice. https://github.
com/bytedance/byteps/blob/master/docs/
best-practice.md.

[2] Gloo. https://github.com/facebookincubator/
gloo.

[3] Horovod. https://github.com/horovod/horovod.

[4] Nvidia Nsight. https://developer.nvidia.com/
nsight-systems.

[5] PyTorch. https://pytorch.org/.

[6] tf.distribute in TensorFlow. https://www.
tensorflow.org/api_docs/python/tf/
distribute.

[7] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16), 2016.

[8] Naman Agarwal, Ananda Theertha Suresh, Felix Yu,
Sanjiv Kumar, and H. Brendan McMahan. cpSGD:
Communication-efficient and differentially-private dis-
tributed SGD. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems
(NIPS’18), 2018.

[9] Suyog Gupta, Wei Zhang, and Fei Wang. Model ac-
curacy and runtime tradeoff in distributed deep learn-
ing: A systematic study. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence
(IJCAI’17), 2017.

[10] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim,
Seunghak Lee, Phillip B. Gibbons, Garth A. Gibson,
Gregory R. Ganger, and Eric P. Xing. More effective
distributed ML via a stale synchronous parallel param-
eter server. In Proceedings of the 26th International
Conference on Neural Information Processing Systems
(NIPS’13), 2013.

[11] Nikita Ivkin, Daniel Rothchild, Enayat Ullah,
Vladimir braverman, Ion Stoica, and Raman Arora.
Communication-efficient distributed SGD with sketch-
ing. In Advances in Neural Information Processing
Systems (NIPS’19), 2019.

[12] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI’20), 2020.

[13] Anastasia Koloskova*, Tao Lin*, Sebastian U Stich, and
Martin Jaggi. Decentralized deep learning with arbitrary
communication compression. In Proceedings of the
International Conference on Learning Representations
(ICLR’20), 2020.

[14] Anastasia Koloskova, Sebastian U Stich, and Martin
Jaggi. Decentralized stochastic optimization and gos-
sip algorithms with compressed communication. In
Proceedings of the 36th International Conference on
Machine Learning (ICML’19), 2019.

[15] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur
Mudigonda, Nathan Luehr, Everett Phillips, Ankur Ma-
hesh, Michael Matheson, Jack Deslippe, Massimiliano
Fatica, Prabhat, and Michael Houston. Exascale deep
learning for climate analytics. In Proceedings of the In-
ternational Conference for High Performance Comput-
ing, Networking, Storage, and Analysis (SC’18), 2018.

[16] Nouamane Laanait, Michael A Matheson, Suhas Som-
nath, Junqi Yin, and USDOE. STEMDL. https://
www.osti.gov//servlets/purl/1630730, 9 2019.

[17] Nouamane Laanait, Junqi Yin, and USDOE.
NAMSA. https://www.osti.gov//servlets/
purl/1631694, 8 2019.

[18] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, and Soumith Chintala.
PyTorch distributed: Experiences on accelerating data
parallel training. Very Large Data Bases Conference
(VLDB’20), 2020.

[19] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr,
Nam Sung Kim, and Alexander Schwing. Pipe-SGD: A
decentralized pipelined SGD framework for distributed
deep net training. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing
Systems (NIPS’18), 2018.

[20] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
Asynchronous parallel stochastic gradient for nonconvex
optimization. In Proceedings of the 28th International
Conference on Neural Information Processing Systems
(NIPS’15), 2015.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1039

https://github.com/bytedance/byteps/blob/master/docs/best-practice.md
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://github.com/horovod/horovod
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://pytorch.org/
https://www.tensorflow.org/api_docs/python/tf/distribute
https://www.tensorflow.org/api_docs/python/tf/distribute
https://www.tensorflow.org/api_docs/python/tf/distribute
https://www.osti.gov//servlets/purl/1630730
https://www.osti.gov//servlets/purl/1630730
https://www.osti.gov//servlets/purl/1631694
https://www.osti.gov//servlets/purl/1631694

[21] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asyn-
chronous decentralized parallel stochastic gradient de-
scent. In Proceedings of the 35th International Confer-
ence on Machine Learning (ICML’18), 2018.

[22] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. Deep gradient compression: Reducing the com-
munication bandwidth for distributed training. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR’18), 2018.

[23] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos
Fertakis, Andrei-Octavian Brabete, and Peter Pietzuch.
Kungfu: Making training in distributed machine learn-
ing adaptive. In Proceedings of the 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’20), 2020.

[24] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed DNN
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP’19),
2019.

[25] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018.

[26] Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and
Anshumali Shrivastava. Compressing gradient optimiz-
ers via count-sketches. In Proceedings of the 36th Inter-
national Conference on Machine Learning (ICML’19),
2019.

[27] Sudharshan S. Vazhkudai, Bronis R. de Supinski,
Arthur S. Bland, Al Geist, James Sexton, Jim Kahle,
Christopher J. Zimmer, Scott Atchley, Sarp Oral, Don E.
Maxwell, Veronica G. Vergara Larrea, Adam Bertsch,
Robin Goldstone, Wayne Joubert, Chris Chambreau,
David Appelhans, Robert Blackmore, Ben Casses,
George Chochia, Gene Davison, Matthew A. Ezell, Tom
Gooding, Elsa Gonsiorowski, Leopold Grinberg, Bill
Hanson, Bill Hartner, Ian Karlin, Matthew L. Leininger,
Dustin Leverman, Chris Marroquin, Adam Moody, Mar-
tin Ohmacht, Ramesh Pankajakshan, Fernando Pizzano,
James H. Rogers, Bryan Rosenburg, Drew Schmidt,
Mallikarjun Shankar, Feiyi Wang, Py Watson, Bob
Walkup, Lance D. Weems, and Junqi Yin. The design,
deployment, and evaluation of the coral pre-exascale
systems. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis
(SC’18), 2018.

[28] Shivaram Venkataraman, Aurojit Panda, Kay Ouster-
hout, Michael Armbrust, Ali Ghodsi, Michael J Franklin,
Benjamin Recht, and Ion Stoica. Drizzle: Fast and

adaptable stream processing at scale. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP’17), 2017.

[29] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin,
Scott Klasky, Sarp Oral, and Norbert Podhorszki. Char-
acterizing output bottlenecks in a supercomputer. In Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage, and Analy-
sis (SC’12), 2012.

[30] Bing Xie, Jeffrey Chase, David Dillow, Scott Klasky, Jay
Lofstead, Sarp Oral, and Norbert Podhorszki. Output
performance study on a production petascale filesys-
tem. In HPC I/O in the Data Center Workshop (HPC-
IODC’17), 2017.

[31] Bing Xie, Yezhou Huang, Jeffrey Chase, Jong Youl Choi,
Scott Klasky, Jay Lofstead, and Sarp Oral. Predicting
output performance of a petascale supercomputer. In
Proceedings of the International ACM Symposium on
High-Performance Parallel and Distributed Computing
(HPDC’17), 2017.

[32] Bing Xie, Sarp Oral, Christopher Zimmer, Jong Youl
Choi, David Dillow, Scott Klasky, Jay Lofstead, Nor-
bert Podhorszki, and Jeffrey S Chase. Characterizing
output bottlenecks of a production supercomputer: Anal-
ysis and implications. ACM Transactions on Storage
(TOS’20), 2020.

[33] Bing Xie, Zilong Tan, Phil Carns, Jeff Chase, Kevin
Harms, Jay Lofstead, Sarp Oral, Sudharshan Vazhkudai,
and Feiyi Wang. Applying machine learning to under-
stand write performance of large-scale parallel filesys-
tems. In the 4TH International Parallel Data Systems
Workshop (PDSW’19), 2019.

[34] Bing Xie, Zilong Tan, Phil Carns, Jeff Chase, Kevin
Harms, Jay Lofstead, Sarp Oral, Sudharshan S Vazhku-
dai, and Feiyi Wang. Interpreting write performance of
supercomputer I/O systems with regression models. In
Proceedings of the 36th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’21), 2021.

[35] Min Ye and Emmanuel Abbe. Communication-
computation efficient gradient coding. In Proceedings of
the 35th International Conference on Machine Learning
(ICML’18), 2018.

[36] Yue Yu, Jiaxiang Wu, and Longbo Huang. Double
quantization for communication-efficient distributed op-
timization. In Advances in Neural Information Process-
ing Systems (NIPS’19), 2019.

1040 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	Data Parallelism in DNN Training
	Communication Libraries for Gradient Synchronization
	Framework-native Libraries
	Framework-agnostic Libraries
	Hierarchical Approach in Horovod

	Discussions on Horovod Performance

	Boosting Collective Communication in DNN Training with Caching and Grouping
	Orchestrating Collective Communication with Caching
	Response Cache
	Cache-based Coordination with Response Cache and Bitvector

	Grouping

	Experiment
	Environment Setup
	Evaluations on Horovod's Strategies
	Evaluations across Frameworks and Communication Libraries
	Caching and Grouping across Frameworks
	Evaluations across Communication Libraries

	Scaling Analysis on Production Code

	Related Work
	Conclusion

