é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Spectrum: High-bandwidth Anonymous Broadcast
Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas, MIT CSAIL

https://www.usenix.org/conference/nsdi22/presentation/newman

This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4-6, 2022 » Renton, WA, USA
978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc Ellall deala

.% King Abdullah University of

Science and Technology

+ ——



Spectrum: High-bandwidth Anonymous Broadcast

Zachary Newman
MIT CSAIL
zjn@mit.edu

Abstract

We present Spectrum, a high-bandwidth, metadata-private
file broadcasting system. In Spectrum, a small number of
broadcasters share a file with many subscribers via two or
more non-colluding broadcast servers. Subscribers generate
cover traffic by sending dummy files, hiding which users are
broadcasters and which users are only consumers.

Spectrum optimizes for a setting with few broadcasters
and many subscribers—as is common to many real-world
applications—to drastically improve throughput over prior
work. Malicious clients are prevented from disrupting broad-
casts using a novel blind access control technique that allows
servers to reject malformed requests. Spectrum also prevents
deanonymization of broadcasters by malicious servers devi-
ating from protocol. Our techniques for providing malicious
security are applicable to other systems for anonymous broad-
cast and may be of independent interest.

We implement and evaluate Spectrum. Compared to the
state-of-the-art in cryptographic anonymous communication
systems, Spectrum’s peak throughput is 4—120,000x faster
(and commensurately cheaper) in a broadcast setting. De-
ployed on two commodity servers, Spectrum allows broad-
casters to share 1 GB (two full-length 720p documentary
movies) in 13h 20m with an anonymity set of 10,000 (for
a total cost of about $6.84). These costs scale roughly linearly
in the size of the file and total number of users, and Spectrum
parallelizes trivially with more hardware.

1 Introduction

An informed public often depends on whistleblowers, who ex-
pose misdeeds and corruption. Over the last century, whistle-
blowers have exposed financial crimes, government corrup-
tion [61, 69, 75], risks to public health [43, 52], Russian
interference in the 2016 U.S. presidential election [61, 70],
presidential misconduct [17, 45, 67, 79], war and human
rights crimes [5, 38, 87], and digital mass surveillance by U.S.
government agencies [18]. Philosophers debate whistleblow-
ing ethics [3, 35], but agree it often has positive effects.

Sacha Servan-Schreiber
MIT CSAIL
3s@mit.edu

Srinivas Devadas
MIT CSAIL
devadas @csail.mit.edu

Motivation for this work. Whistleblowers take on great
personal risks in bringing misdeeds to light. The luckiest
enjoy legal protections [88] or financial reward [§9]. But
many face exile [18], incarceration [50, 70, 74], or risk their
lives [87]. More recently, political activist Alexei Navalny
was detained and sentenced to prison following the release
of documents accusing Russian president Vladimir Putin of
corruption and embezzlement [80].

To mitigate these risks, many whistleblowers turn to tech-
nology to protect themselves [47]. Secure messaging apps
Signal [26] and SecureDrop [8] have proven to be an im-
portant resource to whistleblowers and journalists [44, 84].
Encryption does its job, even against the NSA [92]—but it
may not be enough to protect from powerful adversaries.

Since the Snowden revelations, governments and the press
have focused on metadata. The source, destination, and tim-
ing of encrypted data can leak information about its contents.
For instance, prosecutors used SFTP metadata in the case
against Chelsea Manning [96]. Newer technology is still vul-
nerable: a federal judge found Natalie Edwards guilty on the
evidence of metadata from an encrypted messaging app [50].
To protect whistleblowers and protect against powerful ad-
versaries (e.g., corrupted internet service providers), systems
must be designed with metadata privacy in mind.

Many academic and practical metadata-hiding systems pro-
vide solutions to this problem for some applications. Tor [37]
boasts a distributed network of 6,000 nodes and 2 million
daily active users (the only such system with wide usage).
Tor is fast enough for web browsing, but deanonymization at-
tacks identify users with a high success rate based on observed
traffic [9, 14, 42, 48, 53, 65, 68]. Moreover, the effectiveness
of deanonymization attacks increases with the size of the traf-
fic pattern. Whistleblowers using Tor to upload large files can
be more easily deanonymized for this reason.

Some recent academic research systems [2, 30, 41, 54—
56, 58, 86, 90] address the problem of hiding metadata in
anonymous communication, providing precise security guar-
antees for both direct messaging and “Twitter”-like broadcast
applications. However, a limitation of all existing systems is

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 229



that they are designed for low-bandwidth content, incurring
impractical latencies with large messages (see Section 8).

Contributions. Motivated by the lack of anonymous broad-
cast systems suitable for high-throughput data dumps, we
design and build Spectrum: a system for high-bandwidth
metadata-private anonymous broadcasting. Spectrum is the
first anonymous broadcast system supporting high-bandwidth,
many-user settings. It optimizes for the many-subscriber and
few-broadcaster setting, which reflects the real-world usage
of broadcast platforms. Per-request, Spectrum’s server-side
processing costs grow with the number of broadcasters rather
than the total number of users, significantly improving perfor-
mance over prior work when only a subset are broadcasting.

This paper contributes:

1. Design and security analysis of Spectrum, a system for
high-bandwidth broadcasting with strong robustness and
privacy guarantees against malicious adversaries,

2. A notion of blind access control for anonymous communi-
cation, along with a construction and a black-box transfor-
mation to efficiently support large (1 GB) messages,

3. Identification of an “audit attack” that allows malicious
servers to deanonymize users, and BlameGame, a black-
box blame protocol to “upgrade” Spectrum and similar
systems to defend against this attack.

4. An open-source implementation of Spectrum, evaluated
in comparison to other anonymous communication sys-
tems. We show that Spectrum supports high-bandwidth,
latency-sensitive applications such as real-time anony-
mous podcasting, video streaming, and large file leaks.

Limitations. Like other metadata-private systems, Spectrum
provides anonymity among honest online users and requires
all users to contribute cover messages to a broadcast (to
perfectly hide network metadata). Additionally, Spectrum
achieves peak performance with exactly two servers (simi-
larly to Riposte and Express [30, 41]). Instantiating with more
than two servers requires using a less (concretely) efficient
cryptographic primitive: a seed-homomorphic pseudoran-
dom generator [12]. Finally, Spectrum requires a one-time
“bootstrapping” process at setup time (similar to other sys-
tems [4, 29, 41, 58, 90, 95]); see Section 2.3.

2 Anonymous broadcast

In this section, we describe anonymous broadcast and its
challenges, along with our system design and techniques.

Setting and terminology. In anonymous broadcast, one or
more users/clients (broadcasters) share a message (e.g., file)
while preventing network observers from learning its source.
In Spectrum, passive users generate cover traffic (dummy
messages) to increase the size of the anonymity set (the set of
users who could have plausibly sent the broadcast message).

These passive users are subscribers, consuming broadcasts.
Because the message sources are anonymous, the servers
publish distinct messages to different channels or slots. Every
broadcaster has exactly one channel, which they anonymously
publish to in every iteration of the protocol. The servers
cannot distinguish between a subscriber sending cover traffic
and a broadcaster writing to a channel.

The primary challenge in anonymous broadcasting is pre-
venting disruption by malicious clients: in simple broadcast-
ing systems, users can clobber other users’ messages via
undetectable deviations from the protocol [2, 30, 41]. We first
begin by explaining the standard building-block for achieving
anonymous broadcasting [2, 30]. In subsequent sections, we
build off of this basic scheme to achieve disruption resistance.

2.1 DC-nets

Chaum [23] presents DC-nets, which enable a rudimentary
form of anonymous broadcast. DC-nets use secret-sharing to
obscure the source of data in the network. Like prior work [2,
30, 41, 95], we instantiate a DC-net with two or more servers
and many clients. One client (the broadcaster) wishes to share
a file; all other clients (subscribers) provide cover traffic. In a
two-server DC-net, the ith client samples a random bit string
r; and sends r; @ m; to ServerA and r; to ServerB. Servers
can recover m; by combining their respective shares:

mi=(m;®r;) & (r;).

If exactly one of N clients shares a message m; = im while all
other clients share m; = 0, the servers can recover m (without
learning which client sent m; = m) by first locally aggregating
all received shares as agg, = P, (r; ®m;) and aggp = P, i
and then revealing the aggregation to the other server.

Because all subscribers send shares of zero, combining the
local aggregations recovers the broadcaster’s message:

m =agg, ®agyp-

The above scheme protects client anonymity, as each server
sees a uniformly random share from each client.

DC-net challenges. While DC-nets allow fast anonymous
broadcast, users can undetectably disrupt the broadcast by
sending non-zero shares. Preventing such disruptions is a
major challenge and primary source of latency in prior DC-
net-based systems [2, 29, 30, 41, 54, 55, 95] (see related work;
Section 8). Also, while DC-nets enable one broadcaster to
transmit a message, many clients may wish to broadcast. Re-
peating the protocol in parallel is inefficient, requiring band-
width linear in the number of broadcasters. Even prior works
which overcome the linear (in the number of broadcasters)
bandwidth overhead of naive protocol repetition suffer from
linear server-side work per client, regardless of whether or
not all clients are broadcasters. In Spectrum, the bandwidth

230 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



B- B

Server A [ (oa(ot Server B Server A
jun| )
Broadcaster
Aggregation

(o + (6= )(@A + @k -B)

@ Subscribers send secret shares of zero as cover traffic.
Broadcasters send secret shares shares of their files.

—vU= B

—_— —

Blind access control (]
verification

@ Servers blindly verify broadcasting permission for each
received share and locally aggregate all valid shares.

S| CEh EE
o (]
Server B ServerA Server B
0 ‘i
s

Aggregation
@ Servers reveal their aggregated secret shares
to recover the public broadcast.

Figure 1: High-level overview of Spectrum when instantiated with two servers (and one broadcaster).

overhead grows logarithmically in the number of broadcast-
ers. Additionally, the server-side work only grows linearly
in the number of broadcasters, rather than the total number
of clients. We compare this work and other DC-net-based
anonymous broadcasting systems in Table 1.

2.2 Main ideas in realizing Spectrum

Spectrum builds on top of DC-nets, improving efficiency and
preventing disruption by malicious clients.

Practical efficiency. Spectrum capitalizes on the asymmetry
of real-world broadcasting: there are typically fewer broad-
casters than there are subscribers. While some prior works
repeat many executions of the DC-net protocol more effi-
ciently than the naive scheme, they still reserve space (i.e.,
channels) for every client [2, 30]. As a consequence, the per-
request computation on each server is linear in the number of
clients, leading to high latency and “wasted” work. Spectrum
derives anonymity from all clients, but only the total num-
ber of broadcasters influences the per-request work on each
server (rather than the total number of clients in the system).

Preventing disruption. In Spectrum, we prevent broadcast
disruption by developing a new idea: anonymous access con-
trol (Section 3.1), which we realize from the Carter-Wegman
MAC [94]. We check access to each “channel” to ensure that
only a user with a “broadcast key” can write to that channel.

Preventing ‘“‘audit” attacks. Anonymous broadcast servers
can covertly exclude a client in order to deanonymize the
corresponding user. While vanilla DC-nets do not have this
problem, prior anonymous broadcast systems leave out a
client’s share if they are found to be ill-formed. This is done to
defend against disruption. However, it also makes it possible
for a malicious server to exclude a user by framing them
as malicious. In the broadcast setting, excluding a user can
effectively deanonymize them. Abraham et al. [2] make the
same observation and defend against the attack by requiring
an honest-majority out of five or more servers. In Dissent [29],
deanonymization is prevented with an expensive, after-the-
fact blame protocol. Other systems [30, 41] are vulnerable
to this attack (see Appendix A for details). Spectrum is the
first system to efficiently defend against this attack while still
preventing disruption per request (rather than assigning blame

after-the-fact). We achieve this by introducing BlameGame
(Section 4.3), a lightweight blame protocol which can also be
applied to other systems (e.g., Riposte [30] and Express [41]).

2.3 System overview

Spectrum is built using two or more broadcast servers (only
one must be honest to guarantee anonymity; see Section 2.4)
and many clients consisting of broadcasters and subscribers.
One or more broadcaster(s) wish to share a message (as in
the DC-net example). The subscribers generate cover traffic
to increase the anonymity set. Each broadcaster has a private
channel—or slot—for their message. Subscribers do not have
channels. At the end of each round, Spectrum publishes the
contents of each channel, hiding which client wrote to which
channel (if any). Spectrum has three phases.

Setup. During setup, all broadcasters register with the servers.
All users perform a setup-free anonymous broadcast protocol
to establish a channel in Spectrum. Specifically, each broad-
caster shares a public authentication key with the servers,
which will be used to enforce anonymous access to write to
a channel. At the end of the setup phase, the servers pub-
lish all parameters, including the number of channels and the
maximum size of each broadcast message per round.

Main protocol. The protocol proceeds in one or more rounds
(overview in Figure 1; details in Section 4.2). In each round,
every client sends request shares to each server. The broad-
casters send shares of their messages while the subscribers
send empty shares. To enforce access control, the servers
perform an efficient audit over the received shares: they obliv-
iously check that each writer to a channel knows the secret
channel broadcast key, or their message is zero. If the mes-
sage shares pass the audit, the servers aggregate them as in a
DC-net (Section 2.1). Otherwise, the servers perform a blame
protocol (see BlameGame, summarized below). Finally, the
servers combine aggregated shares to recover the messages.

BlameGame. If any client’s request fails the audit, the servers
perform BlameGame, a simple blame protocol (detailed in
Section 4.3). BlameGame determines whether a client failed
the access control check or if a server tampered with the client
request in an attempt to frame a client as malicious. If the
client is blamed, the servers drop the client’s request and

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 231



proceed with the main Spectrum protocol. Otherwise, if a
server is blamed, the honest server(s) abort. This protocol
is much faster than fully aggregating a client’s request, so a
malicious client cannot use this to cause significant delays.

2.4 Threat model and security guarantees

Spectrum is instantiated with two (or more) broadcast servers
and many clients (broadcasters and subscribers). Clients send
shares of a message to the servers for aggregation.

Threat model
* No client is trusted by any honest server.

¢ Clients may deviate from the protocol, collude with other
clients, or collude with a subset of malicious servers.

* At least one server must be honest to guarantee anonymity
for clients (it does not matter which server is honest).

* Any subset of servers may deviate from the protocol and
collude with malicious clients or the network adversary.

Assumptions. We make black-box use of public key infras-
tructure (e.g., TLS [73]) to encrypt data between clients and
servers. We make the following cryptographic assumptions:
(1) the hardness of the discrete logarithm problem [11], (2)
the hardness of the decision Diffie-Hellman problem [10, 40]
(when instantiated with more than two servers), and (3)
the existence of hash functions and pseudorandom gener-
ators. We also assume a setup-free anonymous broadcast
system [2, 30, 55, 95] for bootstrapping. As with prior
work [2, 29, 30, 41, 55], we assume all communication be-
tween parties is observed by the network adversary.

Guarantees. Under the above threat model and assumptions,
we obtain the following guarantees.

* Anonymity. An adversary controlling the network and a
strict subset of servers and clients cannot distinguish be-
tween honest clients: broadcasters and subscribers are cryp-
tographically indistinguishable in Spectrum. That is, no
adversary observing the network and controlling a subset
of servers and clients can distinguish between an honest
subscriber and an honest broadcaster.

* Availability. If all servers follow the protocol, the system re-
mains available (even if many clients are malicious). If any
server halts or deviates from the protocol, then availability
is not guaranteed and the protocol may abort.

Non-goals. We do not protect against denial-of-service at-
tacks by a large number of clients (but we note that standard
techniques, such as CAPTCHA [91], anonymous one-time-use
tokens [33], or proof-of-work [39, 51] apply). Like all anony-
mous broadcast systems, intersection attacks on participation
in the protocol can identify users, so Spectrum requires that
users stay online for the duration of the protocol.

3 Spectrum with one channel

In this section, we introduce Spectrum with a single broad-
caster (and therefore a single channel), two servers, and many
subscribers. Figure 1 depicts an example. This setup mirrors
the simplest DC-net protocol of Section 2.1. In Section 4, we
extend Spectrum to many broadcasters and many servers.

3.1 Preventing disruption

We denote by F any finite field of prime order (e.g., integers
mod p). We assume that all messages are elements in F.
(Section 5.1 shows how to efficiently support large binary
messages in F,¢.) Each server receives secret-shares of a mes-
sage m;, where m; =0 € F for subscribers and m; = in € F for
the broadcaster. To prevent disruption, we enforce the follow-
ing rule: for each channel, the broadcaster (with knowledge of
a pre-established broadcast key) can send a non-zero message;
all subscribers (who do not have the broadcast key) can only
share a zero message. We give a new technique enabling the
servers to verify the rule efficiently without learning anything
except for the validity of the provided secret-shares.

New tool: anonymous access control. We adapt the Carter-
Wegman MAC [21, 94] to provide a secret-shared “access
proof” accompanying the message shares. Each client sends
a secret-shared proof that it is either: (1) sending a share of a
broadcast message with knowledge of the broadcast key; or
(2) sending a cover message (i.e., m; = 0) that does not affect
the final aggregate computed by the servers.

Carter-Wegman MAC. Let F be any finite field of suffi-
ciently large size for security. Sample a random authentication
key (a,y) € FxF and define MAC(,,,)(m) =a-m+vy € F.
Observe that MAC (4y) is a linear function of the message,
which makes it possible to verify a secret-shared tag for a
secret-shared message. We demonstrate this with two servers
ServerA and ServerB. Let t = MAC(q,,)(m). If m is addi-
tively secret-shared as m =m 4 +mp € F, and ¢ is secret shared
ast=tp+tp €T, the servers (knowing a and ) can verify
that the tag corresponds to the secret-shared message:

* ServerA computes 84 « (@ -myg—ta) €F.
* ServerB computes Bp < (a@-mp—tp) € F.
 Servers swap 84 and Sp and check if B4+ 5 =7y € F.

The final condition only holds for a valid tag. Neither server
learns anything about the message m in the process (apart
from the tag validity) since both the message and tag remain
secret-shared between servers.

If both the servers and the broadcaster know the key (a,y),
the broadcaster can compute a tag ¢ which the servers can
check for correctness as above. However, there are two imme-
diate problems to resolve. First, subscribers cannot generate
valid tags on zero messages without knowledge of (a,7).
Second, an honest-but-curious (or compromised) server can
share («,y) with a malicious client who can then covertly

232 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



Request  Audit Audit Server Malicious Disruption Blame
Size Size Rounds Work  Security  Handling Protocol Comments

Blinder [2] |m|- VN A-lm|  logN  N-|m]| v Prevent N/A Requires 5+ servers and MPC
Dissent [29] |m|-L+N N/A N/A L-|m| v Detect Expensive Blame quadratic in N
PriFi [6] |m|-L+N N/A N/A L-|m| v Detect Expensive Similar to Dissent
Riposte [30]  |m|+VN VN 1 N -|m]| X Prevent None Requires a separate audit server
Express [41] |m|+logL A 1 L-|m| X Prevent None Exactly 2 servers
Two-Server  |m|+logL P 1 L-|m| v Prevent Lightweight With tree-based DPF [15]
Multi-Server  |m|+VL A 1 L-|m| v Prevent Lightweight ~With seed-homomorphic DPF [12, 30]

Table 1: Per-request asymptotic efficiency of Spectrum (highlighted) and prior anonymous broadcasting systems for L broadcasters, N total
users, |m|-sized messages, and global security parameter 1. O(-) notation suppressed for clarity. Spectrum’s advantages include: a request
size that is sublinear in L (Section 5.1) and independent of N (Section 3.3), a protocol for lightweight auditing of client requests to prevent
disruption (Section 3.1), and a fast blame protocol for security against malicious servers (Section 4.3).

disrupt a broadcast. (A malicious server can always overtly
disrupt the broadcast by refusing to participate in Spectrum.)

Allowing forgeries on zero messages. To allow subscribers
to send the zero message without knowing the secret MAC
key, we leverage the following insight from the SPDZ [31]
multi-party computation protocol. The y value acts solely
as a “nonce” to prevent forgeries on the message 0 € F [93].
Because of this, we can eliminate y while still having the
desired unforgeability property of the original MAC for
all non-zero messages. When evaluated over secret shares,
MAC, (m) = @ - m € F maintains security for all m # 0. This
satisfies our requirement: Subscribers can send m =0 and a
valid tag = 0 without knowing « (i.e., subscribers can “forge”
a valid tag but only for m = 0).

Preventing client-server collusion. To prevent an honest-
but-curious server from collaborating with a malicious client
to disrupt a broadcast, we must prevent the servers from
knowing the broadcast key a while still allowing them to
check the MAC tag. To achieve this, we shift the entire
verification procedure “to the exponent” of a group G of
prime order p (so that the exponent constitutes a field Fj,). For
security, we also require that the discrete logarithm problem is
computationally intractable in the group G [85]. Then, instead
of a, the servers obtain a public verification key g¢ (here g
is a generator of G) from each broadcaster. All verification
proceeds as before. Each client generates secret-shares (4,
tp) of a tag t and shares (m4,mp) of the message m, which
are distributed to the servers.

* ServerA computes gh4 « (g®)™a/g'A.
* ServerB computes Sp «— (g%)™5 /g'5.
* Servers swap g5 and g8 and check if gf4 - P8 = g0 = 1.

Security. The unforgeability properties are inherited from
the Carter-Wegman MAC. Client anonymity (i.e., secrecy
of the message m;) follows from the additive secret-sharing.

Client-server collusion is prevented by only the broadcaster
knowing the broadcast key @. See Section 6 for full analysis.

3.2 Putting things together

In this section, we combine DC-nets for broadcast with anony-
mous access control to realize Spectrum with a single channel,
generalizing to multiple channels in Section 4.

Setup: broadcast key distribution. The setup in Spectrum
involves the broadcaster anonymously “registering” with the
servers by giving them the authentication public key g¢. The
servers must not learn the identity of the broadcaster when
receiving this key, which leads us to a somewhat circular
problem: broadcasters need to anonymously broadcast a key
in order to broadcast anonymously. We solve this one-time
setup problem as follows. All clients use a slower anony-
mous broadcast system suitable for low-bandwidth content
at system setup time [2, 30, 55, 95]. The broadcaster shares
an authentication key while subscribers share nothing. Keys
are small (e.g., 64 bytes) and therefore practical to share with
existing anonymity systems. Moreover, once the keys for the
broadcaster are established, they may be used indefinitely.
This process is similar to a “bootstrapping” setup found in
related work [4, 29, 41, 58, 90, 95]. Spectrum is agnostic
to how this setup takes place: one possibility is to use Ri-
poste [27, 30], which shares a similar threat model.

Step 1: Sharing a message. As in the DC-net scheme, the
broadcaster generates secret-shares of the broadcast message
m in the field F. All other clients (subscribers) generate
secret-shares of the message 0. The only difference is that in
Spectrum, the broadcaster knows the broadcast key o while
subscribers do not. Let y = a, if the client is the broadcaster
and y = 0 otherwise. Each client proceeds as follows.

1.1: Sample random m 4,mp € F such that m =m4s+mp € F.
// MAC tag (Section 3.1)
1.3: Sample random t4,fp € Fsuchthatt =t4 +tp € F.

1.2: Compute t < y-m €F.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation

233



1.4: Send (ma,t4) to ServerA and (mp,tpg) to ServerB.

The above amounts to secret-sharing the message and access
control MAC tag between both servers.

Step 2: Auditing shares. Servers collectively verify access
control using the shares of the message and tag.

2.1: ServerA computes gP4 « (g@)™a/g'A.

2.2: ServerB computes gfB « (g®)™B [g'B.

2.3: The servers swap audit tokens g#4 and g## and verify

that g#1 . gPB = g0 = 1.

The above follows the access control verification (Section 3.1).
All shares that fail the audit are discarded by both servers.
In Section 4, we discuss how we prevent “audit attacks” in
which a server tampers with a client request so the check fails.

Step 3: Recovering the broadcast. Servers collectively
recover the broadcast message by aggregating all received
shares that pass the audit.

3.1: ServerA computes agg, < >,;(mali]) € F.
3.2: ServerB computes aggg « >,;(mpli]) € F.
3.3: Servers swap agg, and aggp.

3.4: Servers compute m «— agg, +aggp € F.

This recovers the broadcast message as in the vanilla DC-net
scheme. The recovered message is then made public to all
clients (e.g., via a public bulletin board [7, 25]).

3.3 Towards the full protocol

The single-channel scheme presented in Section 3.2 achieves
anonymous broadcast while also preventing broadcast dis-
ruption by malicious clients. Two problems remain how-
ever. First, while the single-channel scheme is fast and robust
against malicious clients, it does not efficiently extend to mul-
tiple broadcasters. Second, a malicious server can tamper with
the audit to make it fail for one or more clients—and learn
whether one of them was a broadcaster (see Appendix A).

Supporting multiple channels. To support multiple chan-
nels, we use distributed point functions (DPFs) [15, 16, 46]
to “compress” secret-shares across multiple instances of the
DC-net scheme. DPFs avoid the linear bandwidth over-
head of repeating DC-nets for each broadcaster and have
been successfully used for anonymous broadcast in other
systems [2, 30, 41]. However, without access control, the
DPFs must expand to a large space to prevent collisions. We
show that our construction for single-channel access control
extends to the multi-channel setting, where each broadcaster
has a key associated with their allocated channel.

Preventing audit attacks. At a high level, our approach is
to commit each server to the shares they receive from a client.
In the case of an audit failure, each server efficiently proves
that it adhered to protocol to blame the client; if it can’t, any
honest server aborts Spectrum.

4 Many channels and malicious servers

In this section, we extend the single-channel protocol of Sec-
tion 3.2 to the multi-channel setting. We first show how to use
a DPF to support many broadcast channels with little increase
in bandwidth overhead (compared to the one-channel setting),
an idea introduced in Riposte [30]. We prevent disruption by
augmenting DPFs with the anonymous access control tech-
nique from Section 3.1. Prior works [13, 16, 30, 34, 41]
describe techniques to verify that a DPF is well-formed, but
do not allow for access control. Spectrum does both.

4.1 Tool: distributed point functions

A point function P is a function that evaluates to a message
m on a single input j in its domain {1,...,L} and evalu-
ates to zero on all other inputs i # j (equivalently, a vector
(0,0,...,m,...,0)). We define a distributed point function: a
point function encoded and secret-shared among n keys:

Definition 1 (Distributed Point Function (DPF) [30, 46]).
Fix integers L, n > 2, a security parameter A, and a message
space M. Let e € {0, 1}E be the jth row of the LX L identity
matrix. An n-DPF consists of (randomized) algorithms:

s Gen(1'me M,je{l,....L}) — (ky,...,kp),
e BEval(k;) —» (my,my,...,mp).
These algorithms must satisfy the following properties:

- Correctness. A DPF is correct if expanding the output
of Gen into the space of L messages ME and combining
gives the corresponding point function:

(ki,..., k) « Gen(1%,m, )

Prl st 3 Eval(k) =m-e

=1,

where the probability is over the randomness of Gen

- Privacy. A DPF is private if any subset of evaluation keys
reveals nothing about the inputs. That is, there exists an
efficient simulator Sim which generates output computa-
tionally indistinguishable from strict subsets of the keys
output by Gen.

We use a DPF with domain {1,...,L}, where each broad-
caster/channel has an index j € {1,...,L}. Each broadcaster
must write a message m to channel j, but not elsewhere: we
can think of this as a point function P with P(j) = m. Then,
we can encode secret-shares of P using a DPF more efficiently
than secret-sharing its vector representation (as in repeated
DC-nets). Evaluated DPF shares can still be aggregated lo-
cally, and our access control protocol supports DPFs with a
slight modification (Section 4.2).

DPFs are concretely efficient. The key size for state-of-
the-art 2-DPFs [16] is O(log L +|m|) (assuming PRGs); for
the general case [15], when n > 2, the key size is O(\/Z+
|m|) under the decisional Diffie-Hellman assumption [10].

234  19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



DPF.Eval( &, ) < :

@ Each server expands the DPF
key to obtain a secret share n
to write to each channel.

@ Each server uses the expanded
secret shares and channel keys
to compute an audit of the MAC tag.

@ All servers swap audit
shares and locally check
write permission.

Channels Channels

i=1
@ Servers combine their
aggregated channel shares
to recover the broadcasts.

@ Each server aggregates
valid write requests into
the shared channels.

Figure 2: Overview of the server-side pipeline when processing a client’s request. Steps @, @ and ® are computed over the field F. Steps @ and
® are computed “in the exponent” of the group G when using the technique described in “Preventing client-server collusion” of Section 3.1.

Server-side work to expand each DPF uses fast symmetric-
key operations in the two-server case [15, 16] and group
operations in the multi-server case [30]. With L = 2%, the
DPF key size for the two-server construction is 325 B and for
the n > 2 construction 64 kB (excluding the message size).

4.2 Spectrum with many channels

In this section, we present the full Spectrum protocol with L
channels and n > 2 servers. Broadcasters reserve a channel in
the setup phase. Clients encode their message at their channel
(if any) using a DPF; the servers anonymously audit access to
all channels before recovering messages.

Setup. The setup in this setting is similar to the setup de-
scribed in Section 3.2. Each broadcaster anonymously pro-
vides a public verification key g% to the servers, to be as-
sociated with a channel. In addition to their key, any user
with content to broadcast might upload a brief description or
“teaser” of their content; the servers can choose which to pub-
lish, or users could perform a privacy-preserving vote [28].
We leave detailed exploration of the fair allocation of broad-
cast slots to users to future work. Post-setup, all servers
hold a vector of L verification keys (g, ...,g*"). Each key
corresponds to one channel.

Step 1: Sharing a message. Let y = and j’ = j if the
client is a broadcaster for the jth channel (y=0and j' =0
otherwise). Only broadcasters have m # 0. Each client runs:

1.1: (ki,...,k,) < DPF.Gen(14,m,j’). // gen DPF keys
1.2: Compute t <—m-y e F.

1.3: Sample (11,....1,) & F such that ¥, 1; =1 € F.

1.4: Send share (k;,t;) to the ith server, fori € {1,...,n}.
Step 2: Auditing shares. Upon receiving a request share
(k;,t;) from a client, each server computes:

2.1: m; « DPF.Eval(k;) € FL.
220 A1k (g ymlil,

2.3: ghi— A/gh.

2.4: Send g# to all other servers.

/) A :g<mi,(m ..... ar))

All servers check that [/ g5 = g" = 1. If this condition does
not hold, then the client’s request is dropped by all servers.
In Section 4.3, we show how to detect a malicious server that
tampers with a client’s request so that it fails this audit.

Step 3: Recovering the broadcast. Each server keeps an
accumulator m; of L entries (i.e., the channels), initialized
to 0 € FE. Let S = {(kj,t;) | j < N} be the set of all valid
requests that pass the audit of Step 2. Each server:

3.1: Computes m; < Y, s DPF.Eval(k) € F-.

3.2: Publicly reveals m;. // shares of the aggregate.

Using the publicly revealed shares, anyone can recover the L
broadcast messages as ift = Y./’ m; € FL.

4.3 BlameGame: preventing audit attacks

BlameGame is a network overlay protocol that verifies who
received what during protocol execution.

We use a verifiable encryption scheme [11, 20] where a
party with a secret key can prove that a ciphertext decrypts
to a certain message (DecProof makes a proof, and VerProof
verifies it; see definition in Appendix C.1). Verifiable en-
cryption reveals the plaintext request shares of a client to all
servers if the client or the server is malicious (a malicious
server may do this once, but will be immediately eliminated).
BlameGame also uses a Byzantine broadcast protocol [19] so
that all servers get the (encrypted) shares of all other servers.

BlameGame. BlameGame commits clients and servers to
specific requests used in the audit. If the audit fails, honest
servers reveal (with a publicly verifiable proof) the share they
were given, which allows other servers to verify the results of
the audit locally, which indicts the client. Dishonest servers
cannot give valid proofs for their shares.

Setup. All servers make a key pair (pk;,sk;) and publish pk;.

Step 1: Generating commitments. Let 7; be the client’s
request secret-share for server i. The client runs:

1.1: C; « Enc(pk;, ;).
1.2: Byzantine broadcast all C; to all servers.

// Encryption under pk;.

Server i recovers 1; < Dec(sk;, C;); clients may go offline at
this point. All servers are committed to the encryption of their
secret-shares. We describe an optimization in Section 5.1 that
makes the size of each C; constant.

Step 2: Proving innocence. Each server publishes their
share of the request 7; and a proof of correct decryption:
2.1: (m;,7;) < DecProof(sk;,C;).

2.2: Send (7;,7;) to all servers.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 235



Step 3: Assigning blame. Using the posted shares and
proofs, each server assigns blame:
3.1: Collect (x;,7;) from serversi € {1,...,n} and all C;.
3.2: Check that VerProof(pk;,7;,C;,7;) = yes, for 1 <i <n.
3.3: Check the audit using all the shares (7y,...,7,).
3.4: Assign blame:
if 3.2 fails for any i: abort;
else if 3.3 passes: abort; // bad server
else if 3.3 fails: drop the client request. // bad client

// bad server

S Optimizations and extensions

Here, we describe extensions and optimizations to Spectrum.
We show how to (1) broadcast large messages efficiently and
(2) privately fetch published broadcasts as a subscriber.

5.1 Handling large messages efficiently

We described Spectrum in Section 4.2 with messages as ele-
ments of a field FF, which we check to perform access control.
While a 16 B field suffices for audit security, large messages
require much larger fields (or repeating the protocol many
times). These approaches require proportionally greater band-
width and computation to audit. Instead, we give a black-box
transformation from a 2-server DPF over F to a DPF over
£-bit strings, preserving security (see Section 6.2). We use a
pseudorandom generator (PRG). Clients create DPF keys en-
coding a short PRG seed, rather than a message. The servers
efficiently audit this seed as before to enforce access control.
Then, they expand it to a much longer message with the guar-
antee that the DPF is still non-zero at an index for which the
client knows the broadcast key (if the message is non-zero).

The transformation. Let DPF be a DPF over the field F and
let DPFY be a DPF over {0,1}. Let G : F — {0,1}¢ be a
PRG. To write to channel j, a user computes:

EJS-F. // random nonzero PRG seed
(kA, kB) — DPF.Gen(E,j).

s < DPF.Eval(ka)[/], s « DPF.Eval(kp)[/].

m e« G(s) ®G(sy) dm.

(K5, K5y — DPFM.Gen(1, ).

Send (i, k o, k5") to ServerA, (m, kg, k%") to ServerB.
Every server evaluates the DPF keys to a vector s, of PRG
seeds, and a vector b of bits. Each seed and bit other than the
jth is identical on both servers (a secret-share of zero); at j,
we get 57 # 5. Servers evaluate the DPF by expanding each
s[7] to an ¢-bit string and XORing 7 only when b[j] = 1. If
we define multiplication of a binary string by abitas 1 -m =m
and 0 -m = 0, ServerA computes:

SAN L o

my :=(G(sa[l])®ba[l] -m,...,G(sa[L])®ba[L] -m).

ServerB does the same. Then, we get that:

. 1_ GGl @Gs[i)=0"  i#j
mA[z]eamB[z]={G(* N
s)OG(sp)em=m i=j.
Servers perform the audit (in F) over the expanded PRG seeds
and bits as in Section 3.2. Observe that the final output is
non-zero only if: (1) some PRG seed, (2) some bit, or (3)
the masked message m is different on each server. The s and
b audit checks (1) and (2); servers check (3) by comparing
hashes of 7. As before, the 0 MAC tag passes the audit for an
empty message, and broadcasters can provide a correct tag.

Many servers. The above transformation generalizes to the
n-server setting. The intuition is the same: only “non-zero”
PRG seeds should expand to write non-zero messages. How-
ever, we need a PRG with special properties for this to hold
with n > 2. We give the full transformation in Appendix B.
Applying this transformation to a square-root DPF yields the
n-server DPF of Corrigan-Gibbs et al. [30], but now with
access control.

BlameGame optimization. The masked message 7, given
to all servers, constitutes the bulk of data in each DPF key, so
clients can omit it in their request commitments (Section 4.3)
when using the above transformation because servers do not
need it to verify access control. (The verification performed
by the servers only depends on the DPF seeds and checking
equality of the masked message .)

5.2 Private broadcast downloads

Content published using an anonymous broadcast system is
likely to be sensitive and subscribers might want to have
plausible deniability when it comes to which broadcasts they
are interested in. In a setting with many channels, we might
allow the subscribers to download one channel while hiding
which channel they download: the exact setting of private in-
formation retrieval (PIR) [24]. In (multi-server) PIR, a client
submits gueries to two or more servers, receiving responses
which they combine to recover one document in a “database.”
The queries hide which document was requested. In Spec-
trum, clients can use any PIR protocol to hide which channel
they download. Modern PIR schemes based on DPFs have
minimal bandwidth overhead for queries [15, 16]. However,
the processing time on each server is always linear [24]. We
evaluate the overhead of using PIR for subscriber anonymity
in Section 7.1.

6 Security and efficiency analysis

In this section, we analyze the theoretical efficiency and secu-
rity of Spectrum with respect to the threat model and required
guarantees outlined in Section 2.4.

236 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



6.1 Efficiency analysis

We briefly analyze the efficiency of Spectrum (Section 4.2)
and BlameGame (Section 4.3) with the above optimizations.

Communication efficiency in Spectrum. Spectrum can use
any DPF construction with outputs in a finite field using the
transformation of Section 5.1 to support £-bit messages with
only an additive O(¢) overhead to the DPF key size. Using
optimized two-server DPF constructions [15, 16], clients send
requests of size O(log L + |m|) (for L channels). With more

than two servers, the communication is O(\/Z + |m|) using

the seed-homomorphic PRG based DPF construction [30].
For the audit, inter-server communication is constant.

Computational efficiency in Spectrum. Each server per-
forms O(L - |m|) work per client when aggregating the shares
and performing the audit (O(N - L - |m|) total for N clients).
The work on each client is O(log L + |m|) when using two-
server DPFs and O (VL +|m|) otherwise [15].

6.2 Security of Spectrum

We first describe the ideal functionality of the anonymous
broadcast system which Spectrum instantiates.

Ideal functionality. Ideal Spectrum is defined as follows:
* Receive message m = 0 from each subscriber, m = in from
the broadcaster, and no input from the servers.
* OQutput 7 to both the clients and servers.

Client anonymity. We argue that Spectrum provides client
anonymity by constructing a simulator for the view of a net-
work adversary corrupting any strict subset of servers.

Claim 1. If at least one server is honest, then no probabilistic
polynomial time (PPT) adversary ‘A observing the entire
network and corrupting any strict subset of the servers and
an arbitrary subset of clients, can distinguish between an
honest broadcaster and an honest subscriber.

Proof. We construct a simulator Sim for the view of A when
interacting with an honest client. Let Sim be the DPF simula-
tor (see Definition 1). Sim proceeds as follows:

1. Take as input (G, g), (g*1,...,g%), F, and subset of cor-
rupted server indices I C {1,...,n}.

2. Sample t; EFforie {1,...,n} such that }};#; = 0.

3. {k; |i€ I} —Sim(I).

4. Output View = ({(t/,k;) |i € I},{g" | j € {1,....,n}\I}).

Analysis. The view includes:

// see Definition 1

» Each DPF key k; for corrupted server i.
* Each MAC tag share ¢/ for corrupted server i.
 Audit shares g% from every honest server ;.

The DPF keys are computationally indistinguishable from real
DPF keys by the security of the DPF simulator. Therefore, it
remains to argue that the tag and audit shares are distributed
identically to the real view. Recall that during an audit, server
i publishes gfi = g(mi-(@1,aL))~ti where m; is the output
of DPF.Eval(k;) and ¢; is a secret-share of the MAC tag .
For a subscriber, (m;, (a,...,ar)) (the inner product) gives
a random secret share of 0 and ¢; is a secret share of 0, so
gP is a random (multiplicative) secret share of g°. For a
broadcaster publishing to channel j, (m;, (a1,...,ar)) is a
random secret share of m - a; =1, so gfi as computed by the
ith server is a random multiplicative secret share of g® as well.
Therefore, the distribution of the audit and tag shares (g and
t;, respectively) is identical to the real view. Finally, because
the connection between clients and servers is encrypted (and
of fixed-size), we can efficiently simulate network traffic as
random encrypted data. O

Disruption resistance in Spectrum. We prove that a client
cannot disrupt a broadcast on the jth channel without know-
ing the channel broadcast key «;.

Claim 2. Assuming the hardness of the discrete logarithm
problem [11, 40] in G, no probabilistic polynomial time (PPT)
client can write to channel j and pass the audit performed by
the servers without knowledge of «;.

Proof. Assume towards contradiction that some adversarial
client can generate (potentially ill-formed) DPF keys that
result in a non-zero vector (WLOG, assume that index L is
non-zero) and pass the audit for a given access tag with non-
negligible probability. We can use the client to extract the
discrete logarithm for any element of G as follows. Given g,
choose random «; € F fori € {1,...,L—1}. Give the client
(g"‘,...,g“L*‘,g“*) and get in return DPF keys (ky,...k,)
and MAC tag t. Given these DPF keys, we can compute
m = (my,...,my) by evaluating the DPF. If the shares pass
the audit, it must be that (m, @) = t. However, a includes a*
so we can solve for o (¢ and all a; except for a* are known).
We conclude that the client has knowledge of o*. O

Security of the DPF transformation. The construction
from Section 5.1 maintains security. This construction trans-
forms a DPF DPF into a DPF DPF’ over £-bit messages.

Claim 3. If Spectrum with DPF preserves client anonymity,
Spectrum with DPF’ preserves client anonymity.

Proof. We build a simulator Sim’ for DPF” from the simulator
Sim for DPF. Sim’ simply runs Sim twice (once to generate
the seed-DPF keys and once for the bit-DPF keys) and picks
an {-bit message uniformly at random for m. The simula-
tor’s m is computationally indistinguishable from the real m
(otherwise, the PRG used to mask the message is not secure).
Therefore, if there exists an efficient distinguisher, it can also

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 237



distinguish between the keys output by Sim and the real DPF
keys, a contradiction. O

Claim 4. If Spectrum with DPF has disruption resistance,
Spectrum with DPF’ has disruption resistance.

Proof. Assume, towards contradiction, that there exists a
computationally bounded adversary A which does not obtain
the broadcast key « as input, and outputs a set of DPF’ keys
along with MAC tag shares. If the set of DPF’ keys write to
at least one channel and the tag shares output by A pass the
server MAC audit, then we can produce a non-zero message
and tag for DPF as follows. WLOG, we fix the number of
servers to n = 2. Run A to get two DPF’ keys k|, k] and tag
t = (t1,1,). By construction, k] = (k;, k", m’), where k; and
kP are DPF keys with range F;, and F, respectively, and
m’ € Fye is a masked message (identical in each DPF’ key).
If these keys and tags pass the audit, the masked message
in each key is the same (by the collision resistance of the
audit hash function). Then, because the key for DPF’ writes a
non-zero message, at least one of the two DPF keys (either
k or k') must write a non-zero message (otherwise the keys
would be writing zero). If follows that (ki k2) or (K, k51
encode a non-zero message, which contradicts Claim 2. O

6.3 Security of BlameGame

We must show that in BlameGame: (1) an honest client will
never be blamed, (2) a malicious client will always be blamed,
(3) an honest server will never be blamed, and (4) a malicious
server will always be blamed. Incorrect blame attribution
indicates a failure of the verifiable encryption scheme or audit
security; see Appendix C.2 for full proof.

Overhead of BlameGame. BlameGame requires some ex-
tra bandwidth and computation time. Clients send a shared
message mask once to each server; DPF keys add about 100
bytes per client request (details in Section 5.1). The servers
must run BlameGame for each malicious client. However,
verifying decryption takes tens of microseconds, and running
the audit is similarly quick (see Section 7.1). Because the
servers delay the work of aggregating messages until after
the audit, a malicious client often requires fewer cycles than
an honest one (but extra network communication).

7 Evaluation

We build and evaluate Spectrum, comparing it to state-of-
the-art anonymous broadcasting works: Riposte, Blinder,
Express, and Dissent (see related work; Section 8).

Riposte [30] is designed for anonymous broadcasting where
all users broadcast at all times. Riposte uses three servers
(one trusted for audits) but generalizes to many servers (one
honest). Riposte was designed for smaller messages and the
source code fails to run with messages of size 5 kB or greater.

Blinder [2] builds on Riposte but requires an honest majority
of at least 5 servers. Like Riposte, Blinder also assumes that
all users are broadcasting. Blinder supports using a server-
side GPU to increase throughput.

Express [41] is an anonymous communication system de-
signed for anonymous “dropbox”-like applications. It does
not support broadcast as-is, but can be easily modified to do
so. We include Express in our comparison as a recent, high-
performance system decoupling broadcasters and subscribers.

Dissent [29, 95] has a setup phase (like Spectrum’s), a DC-
net phase, and a blame protocol. We give measurements
both with and without the blame protocol and exclude the
setup phase. Without the blame protocol, the system runs a
plain DC-net without any disruption resistance and is quite
fast. If any user sends an invalid message, Dissent runs the
(expensive) blame protocol (up to once per malicious user).

We use data from the Blinder paper [2, Fig. 4] as the source
did not compile. The Dissent code (last modified in 2014)
ran with up to 1000 users and 10 kB messages, but hung in-
definitely after increasing either (though the authors report
128 kB messages with 5000 users). Linearly scaling our mea-
surements, we find them broadly consistent (3% faster) with
the authors’ reported measurements for 128 kB messages with
the same number of users in a similar setting [95, Fig. 7].

Implementation. We build Spectrum in ~8000 lines of open-
source [1] Rust code, using AES-128 (CTR) as a PRG and
BLAKE3 [66] as a hash. Because our DPF has relatively
few “channels” L, a DPF with O(L)-sized keys (adapted
from Corrigan-Gibbs et al. [30]) gives the best concrete per-
formance. For the multi-server extension (Section 5.1 and
Appendix B), we use a seed-homomorphic PRG [12] with the
Jubjub [49] curve. We encrypt traffic with TLS 1.3 [73].

Environment. We run VMs on Amazon EC2 to simulate
a WAN deployment. Each c5. 4x1large 8-core instance has
32 GiB RAM [76], running Ubuntu 20.04 ($0.68 per hour
in September 2021). We run clients in us-east-2 (Ohio)
and servers in us-east-1 (Virginia) and us-west-1 (Cali-
fornia). Network round trip times (RTTs) were 11 ms between
Virginia and Ohio, 50 ms between Ohio and California, and
61 ms between Virginia and California. Inter-region band-
width was 524 Mbit/s (shared between many clients simu-
lated on the same machine).

7.1 Results

In our experiments, we find Spectrum is 4-7x faster than
Express for 5 MB to 100 kB messages, 2x / 13—17x slower
than Blinder (CPU/GPU, resp.) in unfavorable settings, 500—
7500x / 250-520x faster than Blinder (CPU/GPU) in favor-
able settings, and 16-12,500x faster than Riposte. We run 5
trials per setting, shading the 95% confidence interval (occa-
sionally too small to be seen).

238 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



. --e-  Spectrum
-»%- Express

Throughput
(clients per sec)
!
¢
I
1

Message Size (MB)

Figure 3: Throughput (client requests per second; higher is better) for
a one channel deployment (one broadcaster and many subscribers).

1 kB messages

fuy

o
w
1

fury

o
—
1

Throughput
(clients per sec)

10° 10! 102 103 104 10°

5 kB messages

Throughput
(clients per sec)

10° 10! 102 103 104 10°

10 kB messages

> mm g —————— -

Throughput
(clients per sec)

10° 10! 102 103 104 10°
Channels

-e- Spectrum (sk) -%- Express -+ Blinder (CPU)

—e— Spectrum Riposte Blinder (GPU)

Figure 4: Throughput (requests per second; higher is better) for
broadcasts with 100,000 users with varying numbers of broadcast-
ing users (“channels”): Express and Spectrum benefit from fewer
channels. (Blinder numbers as reported by the authors [2].)

One channel. In Figure 3, we report the throughput (client
requests per second) for both Spectrum and Express in the
one-channel setting. As expected, performance is worse with
larger messages for both systems. However, we find that
Spectrum, compared to Express, is 4—7x faster on messages
between 100kB and 5MB. Riposte and Blinder have no
analog for the single-channel setting. (Dissent does support a
one-channel setting, but did not run with large messages.)

Many channels. Unlike Riposte and Blinder, Spectrum is
faster with fewer broadcasters. To compare, we fix 100,000
users and vary the number of channels from 1 (best-case for
Spectrum) to 100,000 (worst-case). We evaluate Spectrum
with and without the change described in “Preventing client-
server collusion” (Section 3.1). Without the change, which
we call “Spectrum (sk)”, servers obtain the MAC secret key
for each channel. This mirrors the threat model of e.g., Ex-

Request Size Request Audit Aggregation
per client per client once per server

|m|+ 70 bytes 70 bytes |m|+ 3 bytes

BlameGame Backup Request Audit Decryption
(per failed audit) per client per client once per client
140 bytes 200 bytes 10 ps

Table 2: Upper bound on request size for one channel and |m|-bit
messages. BlameGame only runs if the first request audit fails.

mmm Spectrum (2-server)
7 Spectrum (n-server)

2 4 6 8 10
Number of Servers

Throughput
(clients per sec)
N
o
o

o

Figure 5: Spectrum can generalize to n > 2 servers (shown for 10kB
messages). This uses an expensive PRG and is therefore slower, but
adding more servers causes no additional slowdown.

press [41]. With the change, servers only get MAC public
keys which prevents covert client-server collusion. However,
there is a modest price in terms of performance due to the
elliptic curve operations (see Figure 4). We find that Spec-
trum (both variants) outperform all other systems with 10 kB
messages for relatively few channels (up to hundreds), but
performs relatively worse with smaller messages or more
channels. For “Twitter-like” settings, another system (e.g.,
Blinder or Riposte) may be appropriate.

Overhead. In any anonymous broadcast scheme, every
client (even subscribers) must upload data corresponding to
the message length |m| to ensure privacy. For DC-net based
schemes, the client sends a size-|m| request to each server.
We measure the concrete request sizes of Spectrum and com-
pare to this baseline in Table 2. Client request overhead
is small: about 70 B, roughly 75X smaller than in Express.
Moreover, in Spectrum, request audits are under 16 B, a 120x
improvement over Express [41]. BlameGame imposes little
overhead (both in terms of bandwidth and computation). Be-
cause BlameGame runs only when a request audit fails, these
overheads occur for few requests in most settings.

Many servers. In Section 5.1 and Appendix B, we note that
our construction of Spectrum generalizes from 2 to n servers
(with one honest) in a manner similar to Riposte [30]. The n-
server construction uses a seed-homomorphic pseudorandom
generator (PRG) [12]. On one core of an AMD Ryzen 4650G
CPU, we measured the maximum throughput of our seed-
homomorphic PRG at 300kB/s, 20,000 times slower than
an AES-based PRG. For 10,000 kB messages, Spectrum was
5x slower with the seed-homomorphic PRG (Figure 5); with

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 239



7504 =" Spectrum =277
---- Linear scaling

Throughput
(clients per sec)
w1
o
1S)
\

2 4 6 8 10
Virtual Machines per Logical Server

Figure 6: Spectrum is highly parallelizable: for 500 channels of
100 kB messages, 10 VMs per “server” gives a 10x speedup.

larger messages, the relative difference increases. We find no
additional slowdown between 2 to 10 servers. An interesting
direction for future work would to evaluate Spectrum with
LWE-based seed-homomorphic PRG constructions [12], as
they are likely to have better concrete performance.

Scalability. We may trust machines administered by the
same organization equally, viewing several worker servers as
one logical server. Client requests trivially parallelize across
such workers: running 10 workers per logical server leads to
a 10x increase in overall throughput (Figure 6). In a cloud
deployment, Spectrum handles the same workload in less time
for negligible additional cost by parallelizing the servers.

Latency. In Figure 7, we measure the time to broadcast a
single document for these systems with varying numbers of
users. For Spectrum, we use a 1 MB message. For Blinder, we
use numbers reported by the authors [2, Fig. 4], multiplied
to the same message size (the authors explicitly state that
repeating the scheme many times is the most efficient way
to send large messages). We benchmark Dissent both with
and without the blame protocol invoked during a round. The
former (blame) is the performance of Dissent if any client
misbehaves. The latter (no blame) assumes that no client
misbehaves. Express doesn’t have a notion of “rounds” so we
omit it here. We find that for one channel of large messages,
Spectrum is much faster than other systems (except Dissent
with no blame protocol; i.e., when all clients are honest).

Client privacy. In Section 5.2, we outlined how private
information retrieval (PIR) [24] techniques provide client
privacy for multiple channels. Figure 8 shows the server-side
CPU capacity to process these requests for 1 kB, 10kB, and
100 kB messages and 1-100,000 channels. We measure one
core of an AMD Ryzen 4650G CPU for a simple 2-server
PIR construction [24], finding good concrete performance.

7.2 Discussion

Our evaluations showcase the use of Spectrum for a real-
world anonymous broadcasting deployment using commodity
servers. Compared to the state-of-the-art in anonymous broad-
casting, Spectrum achieves speedups in settings with a large
ratio of passive subscribers to broadcasters. Based on our
evaluation, with 10,000 users, Spectrum could publish: a

106 A ~ s
10* 1 e
@
Q
g AA .—""
[ 2 | il H .
10 Y A ——"__,
——
i
0 r—"’"**.‘
10° 4
| Fe—— v VY
103 104 10°
Clients
-+- Spectrum 1 MB -+ Blinder (CPU) 1 MB

¥ Dissent (honest) 10 kB
--A- Dissent (blame) 10 kB

Blinder (GPU) 1 MB
Riposte 1 kB

Figure 7: Latency for uploading a single document with varying
numbers of users. Blinder numbers as reported by the authors [2,
Fig. 4] and linearly scaled to 1 MB messages.

L up down Jé_% 105 - ~. Me;ssai;e;(;ize
10!  1.25B m| 58 S~ 10 kB
10> 125B  |m| 2L 02 — 100kB
c 5 ~
103 125B m| £.2 N
104 1.25kB  |m| = ; ;
10! 103 10°

100 12.5kB  |m| Channels

Figure 8: Left: Bandwidth usage of a PIR query with varying
number of channels L. Right: Server capacity (one core) to answer
PIR queries for private client downloads. For L channels, the client
requests one out of L documents, where channels have size |m]|.

PDF document (1 MB) in 50s, a podcast (50 MB) in 40m, or
a documentary movie (500 MB, the size of Alexei Navalny’s
documentary on Putin’s Palace at 720p [80]) in 6h40m.

Operational costs. We estimate costs for a cloud deployment
of Spectrum using current Amazon EC2 prices, reported in
US dollars. Servers upload about 100 bytes per query (in
the above settings, at most 1 GB per day) and inbound traffic
is free on EC2. We focus on compute costs: $6.84 per GB
published through Spectrum (with 10,000 users). Table 3
compares costs to publish 1 GB among 10,000 users.

8 Related work

Existing systems for anonymous broadcast are suitable for
140 B to 40kB [2, 30, 41] broadcasts, orders of magnitude
smaller than large data dumps [69, 75, 77] common today.

Mix Networks and Onion Routing. In a mix net [22], users
send an encrypted message to a proxy server, which collects
and forwards these messages to their destinations in a random
order. Chaining several such hops protects users from com-
promised proxy servers and a passive network adversary. Mix

240 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



System Cost (USD)
Blinder (GPU) $2,000,000.00
Blinder (CPU) $250,000.00
Riposte $218,000.00
Dissent (with blame protocol; one round)* $76,000.00
Dissent (honest clients) $134.00
Express $30.22
Spectrum $6.84

Table 3: Cost to upload one 1 GB document anonymously with
10,000 users, based on the best observed rate for each system with
that many users (that is, the maximum throughput over all settings
we measured; for Blinder, we use the best reported rate). We multiply
the total time at the maximum throughput by hourly rate to get the
cost. *Extrapolated from 1000 users.

nets and their variations [32, 56, 57, 59, 60, 63, 64, 71,72, 81,
82, 90] scale to many servers. However, because messages are
exchanged and shuffled between many servers, mix nets are
poorly suited to high-bandwidth applications. Atom [55] uses
mix nets with zero-knowledge proofs to horizontally scale
anonymous broadcast to millions of users (Spectrum achieves
about 12,500x the throughput [55, Fig. 9]). Riffle [54] uses
a hybrid verifiable shuffle; in the broadcast setting, it shares
a 300 MB file with 500 users in 3 hours (Spectrum supports
about 10,000 users in that time).

Some systems use onion routing for better performance
than a mix net. In onion routing, users encrypt their mes-
sages several times (in onion-like layers) and send them to
a chain of servers. Tor [37], the most popular onion routing
system, has millions of daily users [83]. Tor provides secu-
rity in many real-world settings, but is vulnerable to traffic
analysis [53, 62, 78]. If only one user sends large volumes of
data, an adversary can identify them—Tor discourages high
bandwidth applications for this and other reasons [36].

DC-nets. Another group of anonymous communications
systems use dining cryptographer networks (DC-nets) [23]
(Section 2). DC-nets are vulnerable to disruption: any mali-
cious participant can clobber a broadcast by sending a “bad”
share. Dissent [29, 95] augments the DC-nets technique with
a system for accountability. Like Spectrum, Dissent performs
best if relatively few users are broadcasting. The core data
sharing protocol is a standard DC-net, which is very fast and
supports larger messages. Further, it supports many servers
at little additional cost. However, Dissent is not suitable for
many-user applications where disruption is a concern. If any
user misbehaves, Dissent must undergo an expensive blame
protocol (quadratic in the total number of users). This ap-
proach detects, rather than prevents, disruption. The user is
evicted after this protocol, but an adversary controlling many
users can cause many iterations of the blame protocol.

PriFi [6] builds on the techniques in Dissent to create in-
distinguishability among clients in a LAN. Outside servers

help disguise traffic using low-latency, precomputed DC-nets.
Like Dissent, PriFi catches disruption after-the-fact using a
blame protocol (as often as once per malicious user). The
PriFi blame algorithm is much faster, but still scales with all
users in the system (in Spectrum, each malicious user incurs
constant server-side work).

Riposte [30] enables anonymous Twitter-style broadcast
with many users using a DC-net based on DPFs and an audit-
ing server to prevent disruptors. We find that Riposte is 16X
slower than Spectrum with 10,000 users. Further, Riposte
assumes that all users are broadcasting and therefore gets
quadratically slower in the total number of users.

A more recent work, Blinder [2] uses multi-party compu-
tation to prevent disruption. Blinder’s threat model requires
at least five servers with an honest majority. Like Spectrum,
Blinder is resilient to active attacks by a malicious server. It
is fast for small messages when most users have messages to
share, but much slower for large messages. Blinder allows
trading money for speed with a GPU.

Express [41] is a system for “mailbox” anonymous com-
munication (writing anonymously to a designated mailbox).
Express also uses DPFs for efficient write requests. How-
ever, it only runs in a two-server deployment. Express is
not a broadcasting system, and while it is possible to adapt
it to work in a broadcast setting, it is not designed to with-
stand active attacks by the servers and is insecure for such an
application (see Appendix A for details).

9 Conclusions

Spectrum supports high-bandwidth, low-latency broadcasts
from a small set of broadcasters to a large number of sub-
scribers by applying new tools to the classic DC-net archi-
tecture. We prevent disruption by malicious clients with an
efficient blind access control mechanism that prevents clients
from writing to a channel they do not have access to.
Additionally, we introduce optimizations to decouple
server-side overhead from the message size, which allows
Spectrum to scale to large messages and many broadcasters.
To prevent malicious servers from deanonymizing clients, we
develop a lightweight blame protocol to abort Spectrum if a
server deviates from the protocol. Our experimental results
show that Spectrum can be used for uploading gigabyte-sized
documents anonymously among 10,000 users in 14 hours.

10 Acknowledgments

We thank Henry Corrigan-Gibbs, Kyle Hogan, Albert Kwon,
and Derek Leung, for helpful feedback and discussion on
early drafts of this paper. We would also like to thank our
shepherd Alan Liu and the anonymous NSDI reviewers for
their insightful feedback and many suggestions that helped to
significantly improve this paper.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 241



References

(1]

(2]

[3

—_

[4

—_

[5

—_

[6

[}

(71

[8

—_

[9

—

[10]

Spectrum implementation.  https://www.github.
com/znewman01/spectrum-impl, 2021.

Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blin-
der: Scalable, robust anonymous committed broad-
cast. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS 20, pages 1233-1252, New York, NY, USA,
2020. Association for Computing Machinery. ISBN
9781450370899. doi: 10.1145/3372297.3417261. URL
https://doi.org/10.1145/3372297.3417261.

C. Fred Alford. Whistleblowers and the narrative of
ethics. Journal of social philosophy, 32(3):402-418,
2001.

Sebastian Angel and Srinath Setty. Unobservable com-
munication over fully untrusted infrastructure. In /2th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 551-569, 2016.

Raymond Walter Apple Jr. 25 years later; lessons
from the Pentagon Papers. The New York Times, 23
June 1996. URL https://www.nytimes.com/1996/
06/23/weekinreview/25-years-later-lessons-
from-the-pentagon-papers.html. Accessed March
2022.

Ludovic Barman, Italo Dacosta, Mahdi Zamani, En-
nan Zhai, Apostolos Pyrgelis, Bryan Ford, Joan Feigen-
baum, and Jean-Pierre Hubaux. Prifi: Low-latency
anonymity for organizational networks. Proc. Priv.
Enhancing Technol., 2020(4):24-47, 2020. doi: 10.
2478/popets-2020-0061. URL https://doi.org/10.
2478 /popets-2020-0061.

Josh Daniel Cohen Benaloh. Verifiable secret-ballot
elections. PhD thesis, Yale University, 1987.

Charles Berret. Guide to SecureDrop, 2016. URL
https://www.cjr.org/tow_center_reports/
guide_to_securedrop.php.

Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. Var-CNN: A data-efficient website fingerprinting
attack based on deep learning. Proceedings on Privacy
Enhancing Technologies, 2019(4):292-310, 2019.

Dan Boneh. The decision Diffie-Hellman problem.
In Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June
21-25, 1998, Proceedings, pages 48—63, 1998. doi:
10.1007/BFb0054851. URL https://doi.org/10.
1007/BFb0054851.

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

Dan Boneh and Victor Shoup. A graduate course in
applied cryptography. Recuperado de https://crypto.
stanford. edu/” dabo/cryptobook/BonehShoup_0_4. pdf,
2017.

Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth
Raghunathan. Key homomorphic PRFs and their ap-
plications. In Annual Cryptology Conference, pages
410-428. Springer, 2013.

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Lightweight techniques for
private heavy hitters. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 762-776. IEEE, 2021.

Nikita Borisov, George Danezis, Prateek Mittal, and
Parisa Tabriz. Denial of service or denial of security? In
Proceedings of the 14th ACM Conference on Computer
and Communications Security, pages 92—102, 2007.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology — EUROCRYPT 2015,
pages 337-367, Berlin, Heidelberg, 2015. Springer.
ISBN 978-3-662-46803-6.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function se-
cret sharing: Improvements and extensions. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1292-1303, 2016.

Russ Buettner, Susanne Craig, and Mike Mclntire.
Long-concealed records show Trump’s chronic losses
and years of tax avoidance. The New York Times, 2020.
URL  https://www.nytimes.com/interactive/
2020/09/27/us/donald-trump-taxes.html. Ac-
cessed March 2022.

Bryan Burrough, Sarah Ellison, and Suzanna
Andrews. The Snowden saga: A shadowland
of secrets and light.  Vanity Fair, 2014. URL
https://www.vanityfair.com/news/politics/

2014/05/edward-snowden-politics-interview.

Accessed March 2022.

Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Joe Kilian, editor, Advances in Cryp-
tology - CRYPTO 2001, 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, volume 2139 of
Lecture Notes in Computer Science, pages 524-541.
Springer, 2001. doi: 10.1007/3-540-44647-8\_31. URL
https://doi.org/10.1007/3-540-44647-8_31.

Jan Camenisch and Victor Shoup. Practical verifiable
encryption and decryption of discrete logarithms. In

242

19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association


https://www.github.com/znewman01/spectrum-impl
https://www.github.com/znewman01/spectrum-impl
https://doi.org/10.1145/3372297.3417261
https://www.nytimes.com/1996/06/23/weekinreview/25-years-later-lessons-from-the-pentagon-papers.html
https://www.nytimes.com/1996/06/23/weekinreview/25-years-later-lessons-from-the-pentagon-papers.html
https://www.nytimes.com/1996/06/23/weekinreview/25-years-later-lessons-from-the-pentagon-papers.html
https://doi.org/10.2478/popets-2020-0061
https://doi.org/10.2478/popets-2020-0061
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://www.nytimes.com/interactive/2020/09/27/us/donald-trump-taxes.html
https://www.nytimes.com/interactive/2020/09/27/us/donald-trump-taxes.html
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview
https://doi.org/10.1007/3-540-44647-8_31

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, volume 2729 of Lecture Notes in
Computer Science, pages 126—144. Springer, 2003.
doi: 10.1007/978-3-540-45146-4\_8. URL https:
//doi.org/10.1007/978-3-540-45146-4_8.

J Lawrence Carter and Mark N Wegman. Universal
classes of hash functions. Journal of Computer and
System Sciences, 18(2):143—-154, 1979.

David Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of
the ACM, 24(2):84-90, 1981.

David Chaum. The dining cryptographers problem: Un-
conditional sender and recipient untraceability. Journal
of Cryptology, 1(1):65-75, 1988.

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In Pro-
ceedings of IEEE 36th Annual Foundations of Computer
Science, pages 41-50. IEEE, 1995.

Arka Rai Choudhuri, Matthew Green, Abhishek Jain,
Gabriel Kaptchuk, and Ian Miers. Fairness in an unfair
world: Fair multiparty computation from public bul-
letin boards. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 719-728, 2017.

Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the Signal messaging protocol. In 2017
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 451-466. IEEE, 2017.

Henry Corrigan-Gibbs. Protecting Privacy by Splitting
Trust. PhD thesis, Stanford University, 2019.

Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17), pages 259-282,
2017.

Henry Corrigan-Gibbs and Bryan Ford. Dissent: Ac-
countable anonymous group messaging. In Proceedings
of the 17th ACM Conference on Computer and Commu-
nications Security, pages 340-350. ACM, 2010.

Henry Corrigan-Gibbs, Dan Boneh, and David Mazieres.
Riposte: An anonymous messaging system handling
millions of users. In 2015 IEEE Symposium on Security
and Privacy, pages 321-338. IEEE, 2015.

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Annual Cryptology Confer-
ence, pages 643-662. Springer, 2012.

George Danezis, Roger Dingledine, and Nick Math-
ewson. Mixminion: Design of a Type III anonymous
remailer protocol. In 2003 Symposium on Security and
Privacy, 2003., pages 2—-15. IEEE, 2003.

Alex Davidson, Ian Goldberg, Nick Sullivan, George
Tankersley, and Filippo Valsorda. Privacy Pass: By-
passing internet challenges anonymously. Proc. Priv.
Enhancing Technol., 2018(3):164-180, 2018.

Leo de Castro and Antigoni Polychroniadou.
Lightweight, maliciously secure verifiable func-
tion secret sharing. Cryptology ePrint Archive,
2021.

Candice Delmas. The ethics of government whistle-
blowing. Social Theory and Practice, pages 77105,
2015.

Roger Dingledine. BitTorrent over Tor isn’t a good
idea, Apr 2010. URL https://blog.torproject.
org/bittorrent-over-tor-isnt-good-idea.

Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. Technical
report, Naval Research Lab Washington DC, 2004.

Emily Dreyfuss.
into a world she helped transform, 2017.
https://www.wired.com/2017/05/chelsea-
manning-free-leaks-changed/.

Chelsea Manning walks back
URL

Cynthia Dwork and Moni Naor. Pricing via processing
or combatting junk mail. In Advances in Cryptology
- CRYPTO °92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August
16-20, 1992, Proceedings, pages 139-147, 1992. doi:
10.1007/3-540-48071-4\_10. URL https://doi.org/
10.1007/3-540-48071-4_10.

Taher ElGamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory, 31(4):469—472, 1985.

Saba Eskandarian, Henry Corrigan-Gibbs, Matei
Zaharia, and Dan Boneh. Express:  Lower-
ing the cost of metadata-hiding communication
with cryptographic privacy. In 30th USENIX
Security Symposium (USENIX Security 21), Van-
couver, B.C., August 2021. USENIX Associa-
tion. URL https://www.usenix.org/conference/
usenixsecurity2l/presentation/eskandarian.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation

243


https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-540-45146-4_8
https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea
https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea
https://www.wired.com/2017/05/chelsea-manning-free-leaks-changed/
https://www.wired.com/2017/05/chelsea-manning-free-leaks-changed/
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-48071-4_10
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Nathan S Evans, Roger Dingledine, and Christian
Grothoff. A practical congestion attack on Tor using
long paths. In USENIX Security Symposium, pages 33—
50, 2009.

famous
URL

Cassi  Feldman. 60 Minutes’ most
whistleblower. CBS News, 2016.
https://www.theguardian.com/world/2010/
nov/28/how-us-embassy-cables-leaked.
cessed March 2022.

Ac-

Lorenzo Franceschi-Bicchierai. Snowden’s favorite
chat app is coming to your computer. Vice, 2015.
URL https://www.vice.com/en/article/signal-
snowdens-favorite-chat-app-is-coming-to-
your-computer. Accessed March 2022.

Anita Gates and Katharine Q. Seelye.
Tripp, key figure in Clinton impeachment,
dies. The New York Times, 2020. URL
https://www.nytimes.com/2020/04/08/us/
politics/linda-tripp-dead.html. Accessed
March 2022.

Linda

Niv Gilboa and Yuval Ishai. Distributed point func-
tions and their applications. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology —
EUROCRYPT 2014, pages 640-658, Berlin, Heidelberg,
2014. Springer. ISBN 978-3-642-55220-5.

Robert D’A Henderson. Operation Vula against
apartheid. International Journal of Intelligence and
Counter Intelligence, 10(4):418-455, 1997.

Nicholas Hopper, Eugene Y Vasserman, and Eric Chan-
Tin. How much anonymity does network latency leak?
ACM Transactions on Information and System Security
(TISSEC), 13(2):1-28, 2010.

Daira Hopwood. Jubjub supporting evidence. https://
github.com/daira/jubjub, 2017. Accessed March
2022.

Bastien Inzaurralde. The Cybersecurity 202: Leak
charges against Treasury official show encrypted apps
only as secure as you make them. The Washington Post,
2018.

Markus Jakobsson and Ari Juels. Proofs of work and
bread pudding protocols. In Secure Information Net-
works: Communications and Multimedia Security, IFIP
TC6/TC11 Joint Working Conference on Communica-
tions and Multimedia Security (CMS ’99), September
20-21, 1999, Leuven, Belgium, pages 258-272, 1999.

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

Albert Kwon, Mashael AlSabah, David Lazar, Marc
Dacier, and Srinivas Devadas. Circuit fingerprinting
attacks: Passive deanonymization of Tor hidden services.
In 24th USENIX Security Symposium (USENIX Security
15), pages 287-302, 2015.

Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle. Proceedings on Privacy Enhancing Tech-
nologies, 2016(2):115-134, 2016.

Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas,
and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 406—422. ACM,
2017.

Albert Kwon, David Lu, and Srinivas Devadas.
XRD: Scalable messaging system with cryptographic
privacy. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
20), pages 759-776, Santa Clara, CA, February
2020. USENIX Association. ISBN 978-1-939133-
13-7. URL https://www.usenix.org/conference/
nsdi20/presentation/kwon.

David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In /3th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 711-725, 2018.

David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: strong metadata security for voice calls. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, pages 211-224, 2019.

Stevens Le Blond, David Choffnes, Wenxuan Zhou, Pe-
ter Druschel, Hitesh Ballani, and Paul Francis. Towards
efficient traffic-analysis resistant anonymity networks.
ACM SIGCOMM Computer Communication Review, 43
(4):303-314, 2013.

Stevens Le Blond, David Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A scal-
able, traffic analysis resistant anonymity network for
VoIP systems. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
pages 639-652, 2015.

Jason Leopold, Anthony Cormier, John Templon,
Tom Warren, Jeremy Singer-Vine, Scott Pham,
Richard Holmes, Azeen Ghorayshi, Michael Sal-
lah, Tanya Kozyreva, and Emma Loop. The
FinCEN Files. BuzzFeed News, 2020. URL
https://www.buzzfeednews.com/article/

[52] Laurie Kazan-Allen. In memory of Henri Pez- jasonleopold/fincen-files-financial-
erat. http://ibasecretariat.org/mem_henri_ scandal-criminal-networks. Accessed March
pezerat.php, 2009. Accessed March 2022. 2022.

244 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association


https://www.theguardian.com/world/2010/nov/28/how-us-embassy-cables-leaked
https://www.theguardian.com/world/2010/nov/28/how-us-embassy-cables-leaked
https://www.vice.com/en/article/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://www.vice.com/en/article/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://www.vice.com/en/article/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://www.nytimes.com/2020/04/08/us/politics/linda-tripp-dead.html
https://www.nytimes.com/2020/04/08/us/politics/linda-tripp-dead.html
https://github.com/daira/jubjub
https://github.com/daira/jubjub
http://ibasecretariat.org/mem_henri_pezerat.php
http://ibasecretariat.org/mem_henri_pezerat.php
https://www.usenix.org/conference/nsdi20/presentation/kwon
https://www.usenix.org/conference/nsdi20/presentation/kwon
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring
information leakage in website fingerprinting attacks
and defenses. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,

pages 1977-1992, 2018.

Donghang Lu, Thomas Yurek, Samarth Kulshreshtha,
Rahul Govind, Aniket Kate, and Andrew Miller. Honey-
BadgerMPC and AsynchroMix: Practical asynchronous
MPC and its application to anonymous communication.
In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 887—

903, 2019.

Prateek Mittal and Nikita Borisov. ShadowWalker: Peer-
to-peer anonymous communication using redundant
structured topologies. In Proceedings of the 16th ACM
conference on Computer and communications security,
pages 161-172, 2009.

Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew
Caesar, and Nikita Borisov. Stealthy traffic analysis of
low-latency anonymous communication using through-
put fingerprinting. In Proceedings of the 18th ACM
conference on Computer and communications security,
pages 215-226, 2011.

Jack O’Connor, Samuel Neves, Jean-Philippe Au-
masson, and Zooko Wilcox-O’Hearn. BLAKE3:
One function, fast everywhere, 2020. URL
https://github.com/BLAKE3-team/BLAKE3-
specs/blob/master/blake3.pdf. Accessed March
2022.

John O’Connor. “I’m the guy they called Deep Throat™.
Vanity Fair, 2006. URL https://www.vanityfair.
com/news/politics/2005/07/deepthroat200507.
Accessed March 2022.

Lasse Overlier and Paul Syverson. Locating hidden
servers. In 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 15-114. IEEE, 2006.

Paradise Papers reporting team. Paradise Papers: Tax
haven secrets of ultra-rich exposed. BBC News, 2017.
Accessed March 2022.

D. Phillips. Reality Winner, former NSA translator, gets
more than 5 years in leak of Russian hacking report. The
New York Times, 8, 2019.

Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian
Meiser, and George Danezis. The Loopix anonymity
system. In 26th USENIX Security Symposium USENIX
Security 17), pages 1199-1216, 2017.

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Michael K Reiter and Aviel D Rubin. Crowds:
Anonymity for web transactions. ACM transactions on
information and system security (TISSEC), 1(1):66-92,
1998.

Eric Rescorla and Tim Dierks. The Transport Layer
Security (TLS) protocol version 1.3. RFC 1654, RFC
Editor, July 1995. URL https://www.rfc-editor.
org/rfc/rfcleb4.txt.

Charlie Savage. Chelsea Manning to be released early
as Obama commutes sentence. The New York Times, 17,
2017.

Michael S Schmidt and LM Steven. Panama law firm’s
leaked files detail offshore accounts tied to world leaders.
The New York Times, 3, 2016.

Amazon Web Services. Amazon EC2 instance
types. https://aws.amazon.com/ec2/instance-
types/, 2022. Accessed March 2022.

Scott Shane. WikiLeaks leaves names of diplomatic
sources in cables. The New York Times, 29:2011, 2011.

Payap Sirinam, Mohsen Imani, Marc Juarez, and
Matthew Wright. Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1928—
1943, 2018.

David Smith. Trump condemned for tweets pointing to
name of Ukraine whistleblower. The Guardian, 2019.
URL  https://www.theguardian.com/us-news/
2019/dec/27/trump-ukraine-whistleblower-
president. Accessed March 2022.

The BBC. Putin critic Navalny jailed in Russia despite
protests. URL https://www.bbc.com/news/world-
europe-55910974. Accessed March 2022.

The Freenet Project. Freenet, 2020. URL https://
freenetproject.org/.

The Invisible Internet Project. I2P anonymous network,
2020. URL https://geti2p.net/en/.

The Tor Project. Tor metrics, 2019. URL https://
metrics.torproject.org/.

The Wall Street Journal. Got a tip? https://www.ws 7.
com/tips, 2020. Accessed March 2022.

Yiannis Tsiounis and Moti Yung. On the security of
ElGamal based encryption. In International Workshop
on Public Key Cryptography, pages 117-134. Springer,
1998.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation

245


https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://www.vanityfair.com/news/politics/2005/07/deepthroat200507
https://www.vanityfair.com/news/politics/2005/07/deepthroat200507
https://www.rfc-editor.org/rfc/rfc1654.txt
https://www.rfc-editor.org/rfc/rfc1654.txt
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.theguardian.com/us-news/2019/dec/27/trump-ukraine-whistleblower-president
https://www.theguardian.com/us-news/2019/dec/27/trump-ukraine-whistleblower-president
https://www.theguardian.com/us-news/2019/dec/27/trump-ukraine-whistleblower-president
https://www.bbc.com/news/world-europe-55910974
https://www.bbc.com/news/world-europe-55910974
https://freenetproject.org/
https://freenetproject.org/
https://geti2p.net/en/
https://metrics.torproject.org/
https://metrics.torproject.org/
https://www.wsj.com/tips
https://www.wsj.com/tips

[86] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proceedings of

the 26th Symposium on Operating Systems Principles,
pages 423-440, 2017.

[87] US Holocaust Memorial Museum. Rohm
purge. Holocaust Encyclopedia, 2020. URL
https://encyclopedia.ushmm.org/content/en/
article/roehm-purge. Accessed March 2022.

[88] US Occupational Safety and Health Administration.
The whistleblower protection program. https://www.
whistleblowers.gov/, 2020. Accessed March 2022.

[89] US Securities and Exchange Commission. Of-
fice of the whistleblower. https://www.sec.gov/
whistleblower, 2020. Accessed March 2022.

[90] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private mes-
saging resistant to traffic analysis. In Proceedings of

the 25th Symposium on Operating Systems Principles,
pages 137-152. ACM, 2015.

[91] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and
John Langford. CAPTCHA: using hard Al problems
for security. In Advances in Cryptology - EURO-
CRYPT 2003, International Conference on the Theory
and Applications of Cryptographic Techniques, War-
saw, Poland, May 4-8, 2003, Proceedings, pages 294—
311, 2003. doi: 10.1007/3-540-39200-9\_18. URL
https://doi.org/10.1007/3-540-39200-9_18.

[92] Von Spiegel Staff. Inside the NSA’s war on internet secu-
rity. Der Spiegel, 2014. URL https://www.spiegel.
de/international/germany/inside-the-nsa-
s-war-on-internet-security-a-1010361.html.
Accessed March 2022.

[93] Lei Wang, Kazuo Ohta, and Noboru Kunihiro. New key-
recovery attacks on HMAC/NMAC-MD4 and NMAC-
MDS5. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 237-253. Springer, 2008.

[94] Mark N Wegman and J Lawrence Carter. New hash
functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265—
279, 1981.

[95] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 179-182, 2012.

[96] Kim Zetter. Jolt in WikiLeaks case: Feds found
Manning-Assange chat logs on laptop. Wired, 19 De-
cember 2011. URL https://www.wired.com/2011/
12/manning-assange-laptop/. Accessed March
2022.

A The audit attack

While many broadcast systems claim privacy with a malicious
server, they trade robustness to do so. When a message is
expected, a server can act as if a user was malicious to prevent
aggregation of their request, learning whether that user was
responsible for the expected message. If a system aborts in
such circumstances, it no longer has the claimed disruption-
resistance property. Some systems such as Atom [55] and
Blinder [2] solve this by using verifiable secret-sharing in
an honest-majority setting; however, this can be costly in
practice; others do not prevent this attack.

Express. Express is designed for private readers, but it can be
trivially adapted for broadcast (see Sections 7 and 8). How-
ever, a malicious server can then exploit the verification pro-
cedure [41, Section 4.1] to exclude a user, changing their
request to an invalid distributed point function. This excludes
the message from the final aggregation, deanonymizing a
broadcaster with probability at least m per round (where
€ is the fraction of corrupted clients). Even with a few rounds,
this can lead to a successful deanonymization of a broadcaster
without detection (honest servers cannot tell if a server is
cheating and therefore cannot abort the protocol).

Riposte. The threat model of Riposte does not consider at-
tacks in which servers deny a write request. As a result, a
malicious server can eliminate clients undetectably by simply
computing a bad input to the audit protocol which causes the
request to be discarded by both servers. While this attack
can be mitigated by using multiple servers and assuming an
honest majority (as in Blinder [2]), this weakens the threat
model and reduces performance.

Application of BlameGame. The BlameGame protocol ap-
plies immediately to both Riposte and Express to address this
audit attack by allowing (honest) servers to assign blame to
either a client or a server if an audit fails. The only cost (as
in Spectrum) is a slight increase in communication overhead
which, importantly, is independent of the encoded message in
the request (see Section 5.1).

B Large message optimization (multi-server)

In Section 5.1, we give a transformation from a 2-server DPF
over a field F to a 2-server DPF over £-bit bitstrings that pre-
serves the auditability of the first DPF without increasing the
bandwidth overhead proportionally. Here, we show a more

246 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association


https://encyclopedia.ushmm.org/content/en/article/roehm-purge
https://encyclopedia.ushmm.org/content/en/article/roehm-purge
https://www.whistleblowers.gov/
https://www.whistleblowers.gov/
https://www.sec.gov/whistleblower
https://www.sec.gov/whistleblower
https://doi.org/10.1007/3-540-39200-9_18
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.wired.com/2011/12/manning-assange-laptop/
https://www.wired.com/2011/12/manning-assange-laptop/

general transformation from n-server DPFs over a field F to
n-server DPFs over a group G, of a polynomially larger order.
Our transformation uses a seed-homomorphic pseudorandom
generator (PRG) [12].

Definition 2 (Seed-homomorphic Pseudorandom Generator).
Fix groups Gy, G, with respective operations o, and oy. A
seed-homomorphic pseudorandom generator is a polynomial-
time algorithm G : Gy — G, with the following properties:

- Pseudorandom. G is a PRG: |G| < |Gy|, with output
computationally indistinguishable from random.

- Seed-homomorphic. For all sy, s2 € Gy, we have G (s o
52) = G(s1) oy G(s2).

Let G be a group over a field F and in which the decisional
Diffie-Hellman (DDH) problem [10, 11, 40] is assumed to
be hard. Fix some DPF with messages in F. We saw in
Section 4.2 how to implement anonymous access control for
such DPFs. Let G : F — G, be a seed homomorphic PRG
where Gy, is over F. Boneh et al. [12] give a construction of
such a PRG for G, = (G)T from the DDH assumption in G.

Then, the larger DPF key for a message m is a DPF key
k1 for a random value s € F, a DPF key k; for 1 € F, and a
“correction message” i =moy, G (s)~! (each key has the same
correction message). For a zero message, the larger DPF key
is two DPF keys ki, k, for O € F and a random correction
message m.

To evaluate the DPF key, the server computes s «
DPF.Eval(ki), b « DPF.Eval(k,), and (in)? oy G(s). If
s =0, then combining the DPF keys gives (11)° 0y, G(0) =1g,.
Otherwise, we get (1)! o, G(s) =m.

To perform access control for the larger DPF, perform
access control for k; and k, and then also check for the
equality of the hashes of 7. We note this construction does
not yield a new DPF, but does add authorization to a large
class of existing DPFs.

C BlameGame

C.1 Verifiable Encryption

BlameGame (Section 4.3) uses a verifiable encryption
scheme [20], which allows a prover to decrypt a ciphertext ¢
and create a proof that c is an encryption of a message m. We
formalize these schemes below:

Definition 3 (Verifiable Encryption). A verifiable public-
key encryption scheme & consists of (possibly random-
ized) algorithms Gen, Enc, Dec, DecProof, VerProof where
Gen,Enc,Dec satisfy IND-CPA security and DecProof,
VerProof satisfy the following properties:

- Completeness. For all messages m € M,

(pk, sk) «— Gen(11);
pel €€ Enc(pk,m); -1
(m,m) « DecProof(sk,c); |

VerProof(pk, ,c,m) = yes

where the probability is over the randomness of Enc.

- Soundness. For all PPT adversaries ‘A and for all mes-
sages m € M,

(pk, sk) «— Gen(14);

¢ «— Enc(pk,m);

(m,m") — A1, pk,sk,c);
VerProof(pk,r,c,m’) = yes

Pr < negl(1)

for negligible function negl(1), where the probability is
over the randomness of Enc and A.

We note that many public key encryption schemes (e.g., El-
Gamal [40]) satisfy Definition 3 out-of-the-box and can be
used to instantiate BlameGame.

C.2 BlameGame security

The BlameGame protocol must be sound and private.
Soundness. BlameGame is sound if no honest client or
server will ever be blamed:

1. For all honest commitments C;, no probabilistic
polynomial-time (PPT) adversary can create a request
share 7; and proof of decryption n; such that the
BlameGame “Assigning blame” step (Section 4.3) blames
the client when run with (7;,7;, C;).

2. No PPT adversary can create commitments C; such that
an honestly-created request share 7; and proof of decryp-
tion mr; will result in blaming the server after running the
BlameGame “Assigning blame” step.

Privacy. The privacy requirement of BlameGame is similar
to that of Spectrum. Specifically, the commitments C; must
not reveal any information about the request to any subset
of servers. Formally: for randomly sampled pairs of keys
pk; and sk; (for i € {1,...,n}), and all proper subsets I C
{1,...,n}, the following distributions are computationally
indistinguishable:

{(pk;,sk;) Viel, C; Vie{l,...,n}} =~
{(pk;,ski) Yiel, C; Vie{l,...,n}}
where the C; are created by honestly encrypting request shares
corresponding to a cover request by a subscriber and the C;

are created by honestly encrypting shares corresponding to
any valid write generated by a broadcaster.

We note that BlameGame does not require any privacy prop-
erties during blame assignment, as it may reveal the request
for the purpose of assigning blame.

We now show that BlameGame achieves these properties:

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 247



Proof. We prove each property in turn.

Soundness (honest client). Suppose, toward contradic-
tion, that there exists a PPT adversary A that generates
some request shares 7; and proof of decryption x; such that
BlameGame blames the client. This means that (1) the de-
cryption proof verification succeeds, and (2) running the audit
with the request shares failed. By property (1), we can as-
sume that 7; is a correct decryption of C; and x; is a valid
proof of decryption; otherwise, A breaks the soundness prop-
erty of the verifiable encryption scheme. However, we know
that running the audit with the given request shares will pass,
because (by assumption) they were created honestly by the
client. This is a contradiction.

Soundness (honest server). Let 7; be a set of request tokens
such that the Spectrum audit fails when run with 7;. Suppose,
toward contradiction, that some client creates commitments
Ci,...,Cy for 11,...7, such that the BlameGame “Assigning
blame” step blames some server (instead of the client, as
required). Then, it holds that either (1) the proof of decryp-
tion failed, or (2) the audit performed by the servers over
the decrypted requests passes. However, if (1) is true (the
proof of decryption failed), then the completeness property
of the verifiable encryption scheme does not hold (because
the request share and proof of decryption are generated hon-
estly by the server). Therefore, we are left with (2); the audit
performed by the servers over the decrypted request shares

passes. However, this isn’t true (by assumption) if the client
is malicious. Hence, we have a contradiction.

Privacy. For all honest broadcasters, privacy is guaranteed
with probability m where € is the fraction of corrupted
clients. If the first audit fails but the second audit (generated
from the decrypted requests) passes, then privacy follows
from the analysis of Spectrum and privacy of the audit therein.
If the second audit fails, then the request is revealed to both
servers for inspection (in order to adequately assign blame).
However, predicated on the revealed request being generated
correctly (since we are interested in when an honest broad-
caster gets deanonymized), the protocol aborts if the second
audit fails (an honest broadcaster would have encrypted the re-
quest correctly). In this case, all servers see the request which
deanonymizes the client. Thus, for a fraction of corrupted
clients €, the probability that the malicious server chooses
the correct request to tamper with before being aborted is
ﬁ . [m}

Spectrum (with BlameGame) achieves our desired security
properties: a malicious client cannot cause disruption, and a
malicious server cannot deanonymize a broadcaster. Because
BlameGame is sound, if all servers are honest then Spectrum
does not abort (because either the audit passes, or BlameGame
blames the client); this prevents disruption due to audit failure.
The second property follows from the privacy of BlameGame.

248 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



	Introduction
	Anonymous broadcast
	DC-nets
	Main ideas in realizing Spectrum
	System overview
	Threat model and security guarantees

	Spectrum with one channel
	Preventing disruption
	Putting things together
	Towards the full protocol

	Many channels and malicious servers
	Tool: distributed point functions
	Spectrum with many channels
	BlameGame: preventing audit attacks

	Optimizations and extensions
	Handling large messages efficiently
	Private broadcast downloads

	Security and efficiency analysis
	Efficiency analysis
	Security of Spectrum
	Security of BlameGame

	Evaluation
	Results
	Discussion

	Related work
	Conclusions
	Acknowledgments
	The audit attack
	Large message optimization (multi-server)
	BlameGame
	Verifiable Encryption
	BlameGame security




