
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Cetus: Releasing P4 Programmers
from the Chore of Trial and Error Compiling

Yifan Li, Tsinghua University and Alibaba Group; Jiaqi Gao, Ennan Zhai, Mengqi Liu,
Kun Liu, and Hongqiang Harry Liu, Alibaba Group

https://www.usenix.org/conference/nsdi22/presentation/li-yifan

Cetus: Releasing P4 Programmers from the Chore of Trial and Error Compiling

Yifan Li‡,†, Jiaqi Gao†, Ennan Zhai†, Mengqi Liu†, Kun Liu†, Hongqiang Harry Liu†

‡Tsinghua University †Alibaba Group

Abstract

Programmable switches are widely deployed in Alibaba’s

edge networks. To enable the processing of packets at line

rate, our programmers use P4 language to offload network

functions onto these switches. As we were developing in-

creasingly more complex offloaded network functions, we

realized that our development needs to follow a certain set

of constraints in order to fit the P4 programs into available

hardware resources. Not adhering to these constraints results

in fitting issues, making the program uncompilable. Therefore,

we decide to build a system (called Cetus) that automatically

converts an uncompilable P4 program into a functionally

identical but compilable P4 program. In this paper, we share

our experience in the building and using of Cetus at Alibaba.

Our design insights for this system come from our investiga-

tion of the past fitting issues of our production P4 programs.

We found that the long dependency chains between actions

in our production P4 programs are creating difficulties for

the programs to comply with the hardware resources of pro-

grammable switching ASICs, resulting in the majority of our

fitting issues. Guided by this finding, we designed the core

approach of Cetus to efficiently synthesize a compilable pro-

gram by shortening the lengthy dependency chains. We have

been using Cetus in our production P4 program development

for one year, and it has effectively decreased our P4 develop-

ment workload by two orders of magnitude (from O(day) to

O(min)). In this paper we share several real cases addressed

by Cetus, along with its performance evaluation.

1 Introduction

Programmable switches allow network programmers to use

P4 language to offload network functions to data planes, en-

abling these functions to process packets at line rate. As one

of the largest global service providers, Alibaba has widely de-

ployed programmable switches in its edge networks [20, 27].

By Jan 2021, we have built O(100) PoP (point of presence)

nodes and O(1000) edge sites in total, and the majority of

them have employed programmable switches to implement a

group of network functions, including firewall, DDoS defense,

and load balancer. Figure 1 shows an example of the archi-

tecture of network functions within a single programmable

switch in our edge networks. In this architecture, our pro-

grammers offload multiple network functions to a single pro-

grammable switch, enabling these network functions to pro-

cess packets at Tbps speeds and saving CPU resources on the

end-servers in edge networks.

While our business significantly benefits from the deploy-

Traffic
Manager

Pipeline 0

Pipeline 1

Pipeline 2

Pipeline 3

DDoS.p4 switch.p4

Ingress Egress

Ingress

Ingress

Ingress

Egress

Egress

Egress

LB.p4

scheduler.p4

firewall.p4 switch.p4 NAT.p4

LB.p4

DDoS.p4 switch.p4

scheduler.p4

firewall.p4

Incoming Traffic Outgoing Traffic

Figure 1: A gateway P4 program example deployed in Al-

ibaba’s edge network. In our edge network scenario, our pro-

grammers put various network functions in a single switch.

ment of programmable switches, nevertheless, we still en-

counter a tough problem. Our P4 program development—e.g.,

implementation of new network functions and update of the

existing network functions via P4—needs to take into account

the various constraints of programmable switching ASICs;

neglecting these constraints often results in programs that

cannot fit on the hardware and hence cannot compile. We call

this problem as fitting issue.

Fitting a P4 program is hard to our programmers, because

(1) programmable switching ASICs have various hardware

resources, each with unique size and constraints, and (2) re-

sources are sometimes correlated, reducing the resource A

usage of a program coming at the cost of increasing the usage

of resource B. Our programmers, therefore, usually fall into

time consuming trial and error program “reshaping” cycles,

significantly delaying their development time. On the other

hand, it is impractical to require our programmers to learn all

hardware constraints.

Alibaba therefore decided to build a system (called Cetus)

that automatically converts an uncompilable P4 program P

into a functionally identical but compilable P4 program P′.

State of the art. Existing work falls into two categories. On

the one hand are systems that compile a high-level abstraction

to generate optimized P4 programs [10, 13, 14, 25, 30]. Al-

though they offer good resource optimizations, we found these

solutions may not be effective in our specific scenario. For

example, P4All [13, 14] optimizes the resource usage among

network functions by explicitly leveraging reusable data struc-

tures (e.g., bloom filters and key-value stores); however, the

network functions within our production P4 programs do not

share these data structures, invalidating this optimization in

our case. In addition, our programmers are reluctant to use

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 371

an extension of P4 such as explicitly specifying some data

structure to optimize via objective in P4All. Another state-

of-the-art system, Lyra [10], merges the tables that have no

dependencies with each other in order to optimize the re-

source usage; however, we found that merging tables while

keeping the original dependencies is not enough to enable our

production P4 programs to fit into the programmable ASICs.

On the other hand, existing efforts like Chipmunk [11, 12]

and Domino [24] improve P4 compiler to synthesize opti-

mized switch binary code, which is different from our goal of

generating optimized P4 programs.

Our approach: Cetus. This paper shares our experience in

the building and using of Cetus at Alibaba. We first inves-

tigated our production P4 programs and their past fitting is-

sues, in order to derive insight for our solution design. We

found that the long dependency chains between actions in

our production P4 programs were creating difficulties for

the programs to comply with the hardware resources of pro-

grammable switching ASICs, resulting in the majority of

fitting issues.

Guided by the above finding, we designed Cetus. For a

given P4 program P, Cetus automatically merges tables to fit

into fewer stages by removing dependencies between tables,

thus shortening the long dependency chains (§5). Because

such a method may generate many table merging options

(called candidates), we propose an approach, called constraint-

based filter & optimizer (§6), to drop the candidates that do

not satisfy hardware resources (including memory size, PHV,

and crossbar) or constraints, and then select the best one as P′.

Designing such a filter & optimizer approach is non-trivial

due to two challenges: (1) the large formula encoding each

candidate may result in state explosion, and (2) large solution

searching space in each candidate will cause long solving

time. We propose PHV sharing encoding (§6.1) and two-step

solving (§6.2) to address the above two challenges, respec-

tively. With P′ in hand, Cetus automatically generates a set of

control plane APIs for P′ to enable P′ to be deployed seam-

lessly (§7).

Finally, we share several representative real cases addressed

by Cetus (§8), along with its performance evaluation (§9). We

have been using Cetus in production for one year, and it has

effectively decreased our P4 development workload by two

orders of magnitude (from O(day) to O(min)).

2 Preliminary: Programmable Data Plane

We use ϒ to denote the name of programmable switching

ASICs of Vendor A.1 Our programmers compile P4 programs

via ϒ compiler. ϒ chip is a physical implementation of Pro-

tocol Independent Switch Architecture (or PISA). ϒ chip’s

ingress and egress consist of 12 stages, respectively. All of

these stages are identical, in terms of compute units, memory

types, and memory capacities.

1We omit the vendor name and ASIC name for the confidentiality.

2.1 Hardware & Constraints of ϒ Chip

Hardware resource. ϒ chip contains various hardware re-

sources, and each of them has unique size and characteristic.

We are mainly focused on the following hardware resources:

• Pipeline stages. The packet processing pipeline consists

of a fixed number of individual stages. A P4 program does

not compile if it takes more than 12 stages in an ingress or

egress pipeline in ϒ chip.

• Packet header vector (PHV). The PHV is a “bus” that

carries information (from packet fields and per-packet meta-

data) between stages. PHV cannot carry more data than its

total width. See §6.1 for more PHV details.

• Memory. Memory resources mainly contain SRAM and

TCAM. SRAM and TCAM are around tens of Megabytes

in capacity. The memory resources are equally split and

attached to each stage so that each stage can only access

its local memory resources.

• Crossbar. In each stage, the crossbar extracts fields from

the PHV and sends them to the match and action units for

computation. Crossbar has a size limit, so the total number

of bytes assigned to a stage’s crossbar should not exceed

this limit.

Hardware constraints. The hardware constraints, in this pa-

per, refer to both the hardware resource characteristics (e.g., in

ϒ chip, memories are stage local, and memory can be accessed

no more than once per packet), and the mappings between the

P4 program elements and hardware resources (e.g., a P4 ta-

ble’s keys should be stored in SRAM or TCAM memory, and

a packet header field should be mapped into one or multiple

cells in the PHV). Understanding these hardware constraints

is crucial to programming on the ϒ chip.

To successfully compile a P4 program via ϒ compiler, this

program must not exceed the size of each hardware resource

and comply with all constraints of ϒ chip.

Fitting a P4 program in our practice. Our production P4

programs typically pack as many functions and modules as

possible, which may overuse hardware resources or violate the

hardware constraints, resulting in the fitting issues. When this

happens, our programmers have to ‘reshape’ the programs to

fit into the programmable ASIC. Such a reshaping process is

program specific. Our programmers often spend a significant

amount of time reshaping our P4 programs in order to comply

with the hardware resources and constraints.

2.2 Dependencies between Tables

A P4 program is a collection of match-action tables chained

together by branching conditions. In each table, at most one

action can be applied according to the match result. For a

given group of actions, if there is no read-write or write-write

dependency among these actions, they could be placed within

the same stage. On the contrary, for example, if action i1 uses

(reads or writes) a value generated by action i2, then i1 must

372 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

control read_after_write() {
action tbl1_actn() { b = c + 1; }
table tbl1 {

key = { a: exact; }
actions = { tbl1_actn; }

}

action tbl2_actn() { d = 1; }
table tbl2 {

key = { b: exact; }
actions = { tbl2_actn; }

}

apply {
tbl1.apply();
tbl2.apply();

}
}

control write_after_write() {
action tbl1_actn() { b = c + 1; }
table tbl1 {

key = { a: exact; }
actions = { tbl1_actn; }

}

action tbl2_actn { b = 1; }
table tbl2 {

key = { a: exact; }
actions = { tbl2_actn; }

}

apply {
tbl1.apply();
tbl2.apply();

}
}

control write_after_read() {
action tbl1_actn() { b = c + 1; }
table tbl1 {

key = { a: exact; }
actions = { tbl1_actn; }

}

action tbl2_actn { a = 1; }
table tbl2 {

key = { d: exact; }
actions = { tbl2_actn; }

}

apply {
tbl1.apply();
tbl2.apply();

}
}

(a) Read after write (b) Write after write (c) Write after read

match action

a b = c + 1

match action

b d = 1

match action

a b = c + 1

match action

a b = 1

match action

a b = c + 1

match action

d a = 1

Figure 2: Three types of dependencies between actions in our production P4 programs.

(a) The match-action DAG for the original P4 program

(b) The match-action DAG for P4 program after optimization

match action

a b = c + 1

match action

d a = 1

match action

a b = c + 1

match action

a b = 1

match action

a b = c + 1

b = 1

match action

a_0 b = c + 1

match action

d a = 1

Figure 3: Examples for match-action DAGs. Rectangles repre-

sent tables. The blue dashed frame represents the architecture

of ϒ chip. The blue dashed frame’s length and width repre-

sent the usages of stage and memory, respectively, in ϒ chip.

(a) shows a match-action DAG representing a given P4 pro-

gram P. P does not fit in ϒ chip. (b) is a match-action DAG

representing P′ that tweaked from P, which is compilable.

be placed in a stage after the stage of i2 in the PISA architec-

ture. In our production P4 programs, we are mainly focused

on three types of dependencies: read after write, write after

write and write after read2. Figure 2 shows their examples.

The tables, in Figure 2(a), (b), and (c), are not allowed to be di-

rectly placed within the same stage; otherwise, the programs’

function logic is changed.

Match-action DAG. By tracking dependencies between ac-

tions, we can represent a P4 program in the form of a match-

action directed acyclic graph or match-action DAG. Fig-

ure 3(a) presents such a match-action DAG.

Diameter of a match-action DAG. The total number of

stages occupied by a P4 program P cannot be less than the

diameter of the match-action DAG representing P. The di-

ameter of a match-action DAG G is: the number of tables

in the longest dependency chain (i.e., the dependency chain

containing the highest number of tables) in G. For example

2We explain why write after write dependency is necessary in §5.1

P4 Programs
Network
Functions

Diameter
Head, Tail

Memory PercentageIngress
Pipeline

Egress
Pipeline

Edge vSwitch

VXLAN encapsulation

9 3 14.73%, 3.32%

VXLAN decapsulation

Controlling the flow between
CPU and data plane

Traffic statistic

IP packet forwarding

ACL

CDN

Load balancing

10 5 0.87%, 5.04%

Controlling the flow between
CPU and data plane

Scheduling

IP packet forwarding

DDoS defense

ACL

Edge Gateway

VXLAN packet forwarding

8 7 0.01%, 0.86%
Traffic limit

Load balancing

ACL

Figure 4: Our production P4 programs and their involved

network functions as well as their diameters. These three

programs have been deployed on almost all the programmable

switches in our edge networks.

in Figure 3(a), the diameter is 7, because there are 7 tables

in the longest dependency chain of the DAG. The diameter

in Figure 3(b) is 5. Thus, we can say that the diameter of a

match-action DAG (representing P) must be ≤ the number of

stages, if P compiles.

3 Key Findings & Solution Intuition

In order to release our programmers from trial and error

program-reshaping cycles, we need to understand the root

causes resulting in fitting issues during the development of

our production programs, thus exploring insights for our so-

lution design. Specifically, we selected three mainstream P4

programs (listed in Figure 4) in our production, which were

deployed in almost all the edge switches in Alibaba edge

networks. We then selected all fitting issues (of these three

programs) that took our programmers more than one hour to

resolve, and manually analyzed how they were fixed.

We classified our analysis results into two groups. (1)

Group A: About 80% of fitting issues were resolved by elim-

inating or reducing dependencies between tables (e.g. by re-

ordering or merging them) that allowed us to take advantage

of the parallel nature of the switch architecture. (2) Group B:

20% issues were resolved by fixing hardware resources and

constraints that programmers were not aware of such as PHV

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 373

 0

 0.25

 0.5

 0.75

 1

 0 1 2 3 4 5 6 7 8 9 10 11

S
R

A
M

 O
c
c
u

p
a
ti

o
n

 R
a
ti

o

Stage Number

Figure 5: SRAM usage of Edge Gateway program.

allocation and stateful ALUs. We now analyze the principles

behind Group A (§3.1) and Group B (§3.2).

3.1 Key Findings from Group A

We investigated why rearranging tables can resolve the fitting

issues in this group. We found that all of these efforts (e.g.,

reordering and merging tables) implicitly shortened the P4

programs’ diameters. For example, in one of the cases, our

programmer unwittingly merged two tables by changing de-

pendencies between their actions (as shown in Figure 7(a)

example), and then found that the program compiled. While

this programmer did not know the fundamental reason (i.e.,

shortening the diameter), he succeeded after multiple reshap-

ing cycles.

Observation 1: Diameter is long in our production. Why

shortening the diameter can resolve the fitting issue? We

found that the match-action DAG representing each of these

three P4 programs had long diameters. Given that ϒ chip

provides 12 stages of match-action units, a long diameter

should be reduced in order to make programs fit on ϒ chip.

As shown in Figure 3(a), blue dashed frame’s length and width

represent the usages of stage and memory, respectively, in ϒ

chip. The program’s diameter in Figure 3(a) is too long to

comply with the stage resource size.

The long diameter results from the large number of packet

processing operations required by our diverse edge services.

In particular, each of our P4 programs not only needs to insert

various metadata into the different types of packet headers,

but also filters or forwards them according to a number of ser-

vice needs. For example, an input packet is first encapsulated

with VXLAN, then forwarded based on some condition, next

mirrored for traffic statistics and finally checked by ACL as

well as distributed by the ECMP. Figure 4 details these three

P4 programs’ diameters and their involved network functions.

All programs shown in Figure 4 have at least a diameter of 8

in ingress, which means they occupy at least 8 stages in the

ingress pipeline. It is therefore highly possible to result in

fitting issues in ϒ chip when new tables are added.

Observation 2: Many available memory resources. We

also found that shortening the diameter by tweaking tables,

in principle, increases the usage of memory within individual

stages, as shown in Figure 3(b). Why did this memory-for-

stage method work in our production? We found that both

ends of the match-action DAG (tables with 0 in-degree or

out-degree) use much less memory, offering flexibility for

table tweaking.

At the beginning of the pipeline, our programs need to per-

form checking and pre-computations such as packet valida-

tion, link aggregation group checking, pre-computing hashes,

and setting flag based on header’s validity; at the end of the

pipeline, our programs finalize the packet processing based

on the previous matching results, including marking header

fields, dropping packets, and encapsulations. All these oper-

ations can be easily done in parallel, while at the same time

they do not require a lot of table entries; thus, much available

memory remains. Figure 4 shows the percentage of memory

that both ends of DAG occupy compared with the entire pro-

gram. If the memory is distributed evenly across the DAG,

both ends of the DAG should occupy around 10% of memory

each. Figure 5 shows the SRAM occupation ratio per stage of

Edge Gateway program (i.e., the third program in Figure 4).

We observed that stage 0 and 11 only used less than 10%

of memory. The other two programs also follow the same

phenomena.

We also observed much available memory in the middle

of the pipeline. Figure 5 shows tables at stage 8 and 9 take

only 25% of memory. Similar phenomena also occurred in

the rest of the two P4 programs listed in Figure 4. This is

because, in a network function chain, we typically have a few

tables that are small but critical such as a table inserting a

mainstream service-shared DSCP value into the packet header

as metadata. Such a table (called T) must have (read-write or

write-write) dependency relationships with the tables before

and after T .

Summary. We now understand that our programmers unwit-

tingly shortened the diameter of their programs by trial and

error table (dependency) tweaking, luckily making their pro-

grams compile. Examples in Figure 3(a) and (b) illustrate such

an intuition. We therefore derive the following key finding.

Finding 1: Long dependency chains between actions

in our production P4 programs make the developed

programs hard to fit into the programmable ASIC.

We thus need to remove dependencies on the “longest

path” of DAG to change the original “long, narrow”

DAG to a “short, fat” DAG, as shown in Figure 3, in

order to enable our developed programs to compile.

3.2 Key Findings from Group B

Fitting issues in Group B were caused by the violation of chip-

specific resource size and hardware constraints. For example,

because our programmers ignored the size of an individual

stage, the program they wrote required the compiler to assign

more DRAM within one stage than allowed (otherwise the

dependency constraint is violated), resulting in a fitting issue;

the same issue also happened for other resources such as

hash units. There is no pattern to follow among these root

causes. But we noticed that some of the issues in Group B

were caused by same constraint violation. This means that our

374 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

P4 Program P

Table Merging

(§5)

Basic Constraints

+
Dependency

Graph Building

… ...

Optimization Candidates

V2V1 Vn

Constraint-based Filter & Optimizer

(§6)

Compilable

P4 Program P'

Control Plane
APIs Converter

(§7)

New Control Plane
Interfaces

Cetus

Figure 6: Cetus’s workflow overview.

programmers failed to learn or remember the fitting issues that

they have ever fixed. We thus derive the following finding.

Finding 2: Although it might be hard for our program-

mers to learn all chip-specific resource size and con-

straints, we should avoid the fitting issues—resulting

from the unfamiliarity with the resource size and

constraints—that we have encountered before.

3.3 Our Solution Idea

Based upon our above two findings, we design the core ap-

proach of our solution, which includes the following three

steps. First, for a given P4 program P, we automatically merge

tables to fit into fewer stages by removing dependencies be-

tween actions, in order to shorten the long diameter of DAG

representing P (driven by Finding 1). Such an approach would

generate many candidate results. Second, we encode hard-

ware resource size and hardware constraints as many as we

know in our system’s backend DB to ensure that the synthe-

sized program complies with all already-known resource size

and constraints (driven by Finding 2). Finally, we check each

candidate with the encoded constraints, selecting the most

optimal one.

Why the state of the art does not help? Existing systems

(e.g., Lyra [10] and P4All [13, 14]) are unable to offer such

a level of program optimization. Specifically, Lyra can only

merge tables without dependencies. In other words, Lyra can-

not merge two tables by removing dependencies between the

tables; thus, Lyra is unable to shorten the diameter of the

given DAG. P4All optimizes programs by reusing common

data structures. In our programs (shown in Figure 4), how-

ever, the tables on the diameter do not share any data structure,

invalidating P4All’s assumption.

4 Cetus’s Workflow Overview

We build Cetus, a synthesis system that automatically converts

an uncompilable P4 program P into a functionally identical

but compilable P4 program P′.

Figure 6 presents Cetus’s workflow that consists of the

following main phases.

• First, given a P4 program P, Cetus generates a match-action

DAG by analyzing read-write and write-write dependencies

in P. Then, Cetus introduces a table merging approach (§5)

to shorten the diameter of the generated DAG by removing

dependencies between tables. There could be many poten-

tial table merging cases. We drop the cases that violate

basic hardware constraints (e.g., memory size), obtaining a

group of candidate programs.

• Second, we propose a constraint-based filter and optimizer

(§6) to check each candidate individually with already-

known constraints, selecting the most optimal one as P′.

• Finally, Cetus automatically generates a set of control plane

APIs for P′ to enable P′ to be deployed seamlessly (§7).

5 Table Merging by Dependency Removal

Cetus proposes a table merging approach to shorten the di-

ameter by removing dependencies. Intuitively, the purpose of

the table merging module is to tweak P to fit into the architec-

ture of ϒ chip. This approach includes several primitives to

merge tables for different types of dependencies. This section

first introduces these primitives (§5.1), and then describes the

entire solution (§5.2).

5.1 Dependency Removal Primitives

We design several dependency removal primitives in terms

of dependency types, including write-after-write, write-after-

read and read-after-write dependencies (shown in Figure 2).

Each of the primitives takes two tables as input and returns

one or two tables that can be put within one single stage. The

purpose of these primitives is to reduce the number of used

stages by increasing other resources’ overhead such as PHV

and memory.

Symbols. We define the following notations: table t has nm

match fields {mt1, ...,mtnm}, each field mti has wti bits in width

and its match type is pti, which can be exact, ternary, etc. It

also has na actions {at1, ...,atna}. If one table has no default

action, we add an empty action as the default. Table t has lt
entries. Let Pt be the action parameters’ total bit width, then

table t’s total memory usage is lt(∑
nm
i=0 wti +Pt).

Write-after-write (WAW) dependency. WAW dependency

happens when one table t1 contains an action that writes the

value written by another table t2. For example, in Figure 2(b),

table tbl2’s action tbl2_actn writes variable b, which is pre-

viously modified by table tbl13. Since two actions are not

allowed to write to the same data in a PHV word concurrently,

one cannot place them in the same stage. It is also impossible

to reorder them since the program’s correctness is violated.

This primitive removes WAW dependency by merging the

two tables into a new table t ′. The merged table t ′ enumerates

both tables’ all action combinations. The primitive works as

follows, and Figure 7(a) shows an example.

3We cannot remove tbl1 because a packet can hit tbl1 but miss tbl2.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 375

(a) (b) (c) (d)

match action

c a = p_a (param)

match action

e b = a

match action

c a = p_a (param)

match action

e, c
b = p_a (param)

b = a_0

match action

d a = 0

match action

d
a = 0

a_0 = 0

match action

a b = c + 1

match action

a b = 1

match action

a
b = c + 1

b = 1

match action

a b = c + 1

match action

d a = 1

match action

a_0 b = c + 1

match action

d a = 1

match action

c a = 0

match action

c
a = 0

a_0 = 0

match action

c a = 1

match action

a b = 1

match action

c a = 1

match action

a_0, c b = 1

match action

d a = 0

match action

d
a = 0

a_0 = 0

Figure 7: Examples for different dependency removal primitives. (a) WAW (b) WAR (c) RAW-match (d) RAW-action

• Merge the match fields of the two tables and generate new

match fields {mt11, ...,mt1n1
,mt21, ...,mt2n2

}.

• Generate all possible combinations of the two tables’ ac-

tions {(at11,at21),(at12,at21), ...,(at1n,at2n)}

• Merge each pair of actions into one by appending the state-

ments in the second action after the first one.

• When a merged action has two statements that write the

same value, one from t1, one from t2, we keep the latter

one.

Memory usage. Since the two tables hit and miss indepen-

dently, the merged table should include all four possibili-

ties. Thus, unless two tables have identical match fields, ta-

ble t ′ uses ternary match field types and is deployed in the

TCAM memory. In total, there are (lt1 +1)(lt2 +1)−1 entries.

The total memory usage of table t ′ is lt1 lt2(∑
nt1m

i=0 wt1i +Pt1 +

∑
nt2m

i=0 wt2i +Pt2).

Write-after-read (WAR) dependency. When one table t2
writes the variable read by t1, WAR dependency happens. For

example, in Figure 2(c), the table tbl2’s action tbl2_actn

writes variable a, which is table tbl1’s match fields. Again,

we cannot reorder these two tables; however, PISA architec-

ture allows t2 to be deployed alongside t1. When t1 occupies

multiple stages, t2 can only share t1’s last stage and not earlier.

WAR dependency does not necessarily increase the total num-

ber of stages of a program directly, but it sets a “barrier” and

pushes other tables to later stages. For example, in Figure 2(c),

if we have a third table tbl3 that reads variable a after table

tbl2, then it has to be deployed after table tbl1, even though

there is no dependency between tbl1 and tbl3.

For WAR dependency, let x be the shared variable. We

have table t1 reads x and table t2 writes it. To remove WAR

dependency, we create a new copy of the shared variable x′

and modify t1 so that it reads x′ instead of x. The primitive

works as follows, and Figure 7(b) shows the example.

• Find the table where x is last written. If such a table exists,

copy the action that writes x and modifies it to write x′. If

no such table exists, such as x is a header, then we assign

the value of x′ in the parser.

• Modify table t1’s match and action list so that it reads x′.

Memory usage. This primitive does not create a new table and

the memory usage is kept the same. It may introduce PHV

overhead since it creates a new variable.

Read-after-write (RAW) dependency. Read-after-write de-

pendency happens when one table (t2) reads the value created

by another one (t1). For example, in Figure 2(a), table tbl2’s

match fields read the value written by table tbl1’s action.

The dependency can also happen when the value is read in

the action field. Same as the WAW dependency, two tables

with RAW dependency between them have to be placed in

different stages and cannot be reordered.

This primitive removes the RAW dependency by summa-

rizing the primitives used in WAW and WAR dependency: we

first create a new table t ′ that summarizes the match fields of

both tables and replace t2, and then we adopt WAR depen-

dency removal primitive to remove the dependency between

t1 and t ′.

Let x = f (vvv111) be action in t1 that modifies shared variable

x. In Figure 2(a), vvv111 is {c,1}. Assume the action is executed

when table t1 matches value vvv222, then after applying table t1,

x’s value is:

x =

{

f (vvv111) if (mt11,mt12, ...,mt1n) = vvv222

x0 otherwise
(1)

where x0 is the value of x before applying table t1. The key

of the dependency removal primitive is to encode enough

information in a new table t ′ to compute variable x without

using the result in t1. Equation 1 shows that x depends on

three sets of variables vvv111,vvv222,x0. We can learn vvv222 from entries

in table t1. x0 is created before t1, so we borrow the primitive

used in WAR dependency removal and create a new copy of

variable x. So our challenge is reduced to understanding vvv111.

Theoretically, since variables in vvv111 have fixed lengths, we

can enumerate all possibilities. However, this would lead to

too much memory overhead. As a result, we only remove

RAW dependency when we can infer values in vvv111 easily, such

as when all of them are numbers or assigned to numbers

directly. In Figure 2(a), vvv111 = {c,1}. If we can infer the value

of c, then we can merge tbl1 and tbl2, otherwise, we cannot.

Cetus removes dependency differently depending on whether

table t2 reads variable x in match or action part. If table t2
reads x in the match fields, the primitive works as follows,

and Figure 7(c) shows the example tables and merged result.

• Create a copy of variable x through the method introduced

in the WAR dependency removal primitive, let the copy be

x0.

• Merge the match fields of the two tables, remove x, and

generate new match fields {mt11, ...,mt1n1
,mt21, ...,mt2n2

}−
{x}+ vvv111 +{x0}.

• Remove constants from the match field. For example when

vvv111 or x0 is fixed.

376 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RAW WAW WAR

Direct stateful objects N N Y

Normal & not directly involved Y Y Y

Normal & directly involved N Y Y

Table 1: Cetus applies primitives to different cases.

• Generate a new table t ′ with the new match fields. Copy

table t2’s action field to the table t ′.

If the table t2 reads x in the action field, we need to encode

both branches in Equation 1 and duplicate actions that read

x. The primitive works as follows, Figure 7(d) shows the

example tables and merged results.

• Create a copy of variable x through the method introduced

in the WAR dependency removal primitive, let the copy be

x0.

• Merge the match fields of the two tables and generate new

match field {mt11, ...,mt1n1
,mt21, ...,mt2n2

}+ vvv111.

• Remove constants from the match fields.

• For each action at2i that reads x, replace x with new copy x0.

Create a new copy a′t2i and add x0 into its parameter. Action

a′t2i is triggered when Equation 1’s first condition is trig-

gered, Action at2i is triggered when the second condition

is triggered.

• New table t ′ has the new match fields, all actions from table

t2, and newly generated actions a′t2i.

Memory usage. Memory usage varies depending on how

many constants we can infer. Assume we can infer the value

of x0 and vvv111, then the newly generated table t ′ takes up

lt2(∑
nt1m

i=0 wt1i+∑
nt2m

i=0 wt2i+Pt2) memory. The newly generated

table’s match fields stays the same.

Multiple dependencies between two tables. Two tables can

have more than one dependency and may not be limited to

the same type. For example, they can have WAW and WAR

dependency at the same time, or have two RAW dependencies.

When dependencies have the same type, we can apply the pre-

mentioned primitives directly (WAW) or recursively (RAW,

WAR) to remove dependencies. For different dependency

types, we choose not to remove them since the result table

usually incurs too much memory overhead.

Counters, meters, and registers. In ASIC, stateful objects

such as counters have two modes: direct and indirect. Direct

counters have one-to-one mapping with table entries, while in-

direct ones have user-defined sizes. Depending on their mode

and whether they are involved in the dependency directly (i.e.

they write to variables read or written by another table), Cetus

chose whether apply different primitives differently, and it is

summarized in Table 1.

5.2 Table Merging Approach

Given a P4 program with n dependencies, there could be 2n

different table merging strategies at most. Different strate-

gies produce different resource-usage trade-offs among stage,

PHV, and memory. Rather than sending all of them to the

constraint-based filter & optimizer module, we propose a

heuristic algorithm that filters out strategies that violate basic

constraints such as memory and stage.

In this approach, we only focus on comparing two metrics:

stage saving and memory overhead. §6 would take more re-

sources into account. If a strategy’s memory overhead takes

more stages than it can save by removing dependencies, it

must end up occupying more stages than the original program,

which conflicts with our goal. To sum up, given a P4 program,

our heuristic algorithm runs as follows:

• Given a P4 program P, we generate its match-action DAG,

DP, and find all pairs of tables that potentially could be

merged according to any of our primitives (mentioned in

§5.1). Suppose we find n pairs.

• We build a binary decision tree T with n layers. Each layer

represents one pair of tables, and each branch presents

whether we remove the dependency of this pair of tables or

not. Thus, a path from the root node of T to some leaf node

of T represents a combination of table merging strategies.

• We thus run a deep-first search on T . During the searching

process, we cut off the branches that violate basic mem-

ory and stage constraints. For each leaf node, we compute

Ssave ∗m > M, where Ssave is the number of stages this strat-

egy saves, m is the memory space of a single stage, and M

is the memory overhead this strategy actually introduces.

Note that Ssave and M are computed by our primitives. If

Ssave ∗m > M, we keep this leaf node as one of our candi-

dates used as the input of constraint-based filter & optimizer

module (§6); otherwise, we drop this strategy.

6 Constraint-Based Filter & Optimizer

This module takes as input all candidates generated by §5,

and then encodes each candidate program with all hardware

resource size and constraints (stored in Cetus’s backend DB)

into an SMT formula. Then, we call an SMT solver (e.g.,

Z3 [7]) to synthesize a table location plan that uses the least

memory and stage resources. Finally, we realize this plan in a

P4 program that specifies the locations of tables via pragma

instructions.

The key challenge is how to efficiently solve these SMT for-

mulas (each representing a candidate with all constraints). We

found that the existing encoding approaches (e.g., Lyra [10])

may result in state explosion, because a great number of di-

verse hardware resources create a huge search space that

exceeds the SMT solver’s searching capability.

To address the above challenge, we introduce a new ap-

proach that contributes two novel designs: (1) a new PHV

encoding approach that significantly reduces the size of SMT

formulas to avoid state explosion problem (§6.1); and (2) a

two-step solving algorithm that decouples the solving pro-

cess into table-related resource and variable-related resource

solving to speed up the solving process (§6.2).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 377

a

a is valid b is valid

Word 0

Word 1

Word 2

Word 3

b
a

b

a

b

c c

Stage 1 2 1 2

x = a b = 1
c = d - 10

(a) (b)

Figure 8: PHV sharing (a) across stages, (b) in one stage.

6.1 PHV Sharing Encoding

Packet Header Vector (PHV) serves as the bus between stages.

The basic component of PHV is called word. There are tens of

words with 8, 16, and 32-bit width respectively. One field can

occupy one or multiple words. For example, a 48-bit source

MAC field can take one 32b and one 16b word or three 16b

words.

PHV is a scarce resource and needs careful planning, espe-

cially when the program is large and involves lots of headers

and metadata. Simply adopting encoding approaches (e.g.,

Lyra [10]) would waste the precious PHV spaces and fail to

find a feasible solution. This is because Lyra’s encoding as-

sumes each word is dedicated to one variable; however, PHV

words can be shared across variables in the PISA architecture,

both across stages and within the same stage.

PHV sharing across stages. Different variables can occupy

the same word at different stages. As shown in Figure 8(a),

after stage 2, variable a is no longer used and another variable

b can take over the same word. This allows us to use only one

PHV container to store two independent variables that would

otherwise require two containers. This sharing requires the

variables have non-overlapping lifetimes, i.e. from the stage

they are created till the last stage they are used. Note that all

packet header fields’ lifetime is the entire pipeline since they

are created by the parser and consumed by the deparser. So

the cross-stage sharing only applies to the metadata.

PHV sharing within one stage. Variables can also share the

same word in the same stage as long as this sharing does not

affect the correctness. Shown in Figure 8(b), variable a is read

in stage 1 and variable b is assigned to a new value in stage

2. These two variables can share the same word. But variable

c can not share with a at stage 1 because it was written by

a subtract instruction. This is constrained by the fact that

the Arithmetic Logic Unit (ALU) can perform at most one

instruction to one word in one stage. The same-stage sharing

applies to both header fields and metadata.

Cross-stage and same-stage sharing pack more variables

into PHV, and it poses great pressure on PHV encoding. Be-

cause of the cross-stage sharing, we have to encode each

stage’s PHV allocation separately. The same-stage sharing

further complicates the problem since we need to consider

whether each pair of variables could share the same word.

(a) (b)

w
0

w
1

w
3

w
2

g
1

g
0

a

b

c

a

b

c

Figure 9: PHV encoding for 3 variables and 4 PHV words.

(a) Strawman solution introduces 12 mapping variables and 4

rules. (b) Our solution reduces it to 6 mapping variables and

2 rules.

A strawman solution. A strawman solution is to encode the

mapping mv,w,s between the variable v and each PHV word w

at stage s. It encodes the cross-stage sharing by treating each

stage separately. As for same-stage sharing, when two vari-

ables v1 and v2 cannot share the same word, we can add the

constraint mv1,w,s & mv2,w,s = 0. Next, we encode constraints

such as each word has its own size limit, each variable should

reserve enough bits in the PHV, etc. However, shown in Fig-

ure 9(a), because there are tens of stages and hundreds of

PHV words, this solution introduces too many such mapping

variables and the search space is huge.

Our encoding. Our PHV sharing encoding method addresses

the scalability challenge. We observe that the total number

of independent mappings in the encoded formula is the key

complexity contributor. Thus, our focus is to reduce the inde-

pendent mappings.

For same-stage sharing, we remove the boundary between

PHV words and focus on whether variables can share with

each other. We noticed that at each stage, there are only a

few “shareable groups”, the set of variables that can share

with each other. Note that one variable can belong to multiple

groups since the shareability is not transitive, i.e. variable v1

can share with v2 and v3 cannot conclude v2 can share with

v3. Then we can maintain the mapping between variables

and these groups instead of the PHV words and restore PHV

mapping afterward.

We also observe that in the encoded formula, all groups

are symmetric: it does not affect the correctness when we

reorder the groups. This is also another slow-down factor

since it gives the SMT solver more freedom. To break the

symmetry, we give preference to the groups with lower ID,

the SMT solver can only use a new group until all the groups

with lower ID are already assigned.

To summarize, the PHV encoding works as follows:

• (1) Given the input program P , we count total number of

non-assignment instructions I in each pipeline. This is the

upper bound of the number of groups.

378 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• (2) (Cross-stage sharing) For each variable v, we maintain:

i) the mapping mv,g,s, which denotes the number of bits v

assign to group g at stage s, ii) the lifecycle lv and rv, which

denotes the start and end stage of v.

• (4) (Same-stage sharing) If v1 cannot share with v2, then

(mv1,g,s > 0) & (mv2,g,s > 0) is always false.

• (5) (Variable width) For each variable, if stage s is within

the its lifecycle, the total number of bits in each group

equals variable width bv: ls ≤ s ≤ rs → ∑i mv,gi,s = bv.

Otherwise the summation is 0.

• (6) (PHV size) The summation of total number of

bytes in each group should be less than PHV size.

∑i⌈∑ j mv j ,gi,s/8⌉ ≤ NPHV .

• (7) (Break symmetry) We prioritize groups with lower ID:

(∑ j mv j ,gi+1,s)> 0 → (∑ j mv j ,gi,s)> 0.

In Figure 9(b), because only a cannot share with c, there

are at most 2 shareable groups. We introduce 2 groups g0 and

g1. Through this encoding, we can reduce the total mapping

from 12 to 6. In reality, there is at least one order of magnitude

fewer groups than the PHV words. This can greatly reduce

the encoded formula’s complexity.

6.2 Two-Step Solving

The PHV sharing encoding optimization can greatly reduce

the encoded formula’s complexity, but the SMT solver still

struggles when dealing with large-scale production programs.

Due to their scale, the encoded formula is still too complex.

Additionally, PISA architecture’s table-related resources (i.e.

memory, table stage) and variable-related resources (i.e. PHV,

crossbar) are orthogonal to each other: how much memory

the table allocates per stage does not affect where the variable

is located in the PHV. This loose coupling relationship forms

a huge search space and exceeds SMT solver’s searching

capability under large scale programs.

While this loose coupling is the culprit, it offers us an opti-

mization opportunity. We can safely ignore their correlation

and split the SMT solving problem into two smaller problems.

The two-step solving works as follows:

• Given a P4 program (i.e., one of the candidates), we en-

code all table-related resources and constraints and find a

feasible plan Pt meeting dependency and constraints.

• Upon Pt , we encode variable-related resources and con-

straints, and call the SMT solver to find a solution Pv ca-

pable of meeting resources (e.g., PHV and crossbar) and

constraints.

• If yes, with Pt and Pv, we have P = Pt +Pv as a resource

allocation plan for the input P4 program, returning plan P.

• If not, we return to step 1, find another feasible plan P′
t ,P

′
v.

• We repeat the above process until we find a valid plan P;

otherwise, there is no valid plan for the input program.

This two-step approach can greatly improve the efficiency

of our SMT solving. This aligns with our previous findings

in §3.1 that the allocation of stages and table is our major

concern. Other resources still remain and are more flexible.

6.3 The Best Result Selection

At the end of our workflow, the constraint-based filter & op-

timizer module may output one or more results that meet

all already-known resource size and constraints. We select

the most optimal one based on our internally-defined metric

calculator. However, our experience shows that the constraint-

based filter & optimizer module returns only one result in

most cases.

7 Control Plane APIs Converter

After P′ is obtained, our last task is to synthesize a control

plane converter, making sure that the control plane APIs gen-

erated from the original program P are compatible with P′

without any modification. Although different dependency re-

moval primitives require different converting strategies, they

follow the same underlying principle: generate new table

entries that replace the previous tables’ dependencies.

Due to limited space, we briefly describe the API converter

for a concrete case shown in Figure 7(d) when installing new

table entries. The rest of cases are detailed in Appendix A.

Let t1, t2 be the tables match c and e in program P, and t ′1, t ′2
be the tables after processing. In this example, t ′1 is the same

as t1. In the runtime, the converter keeps a record of existing

entries in table t1 and t2 installed from the control plane.

When inserting an entry e1 to table t1, we first insert e1 into

table t ′1 unmodified. Next, for each existing entry e2i in table

t2, create two new entries, one hits both e2i and e1, action is

b = p_a; one matches e2i but misses e1, action is b = a_0.

Insert all of them into table t ′2.

When inserting an entry e2 to table t2, for each existing

entry e1i in table t1, we create two new entries as well. If table

t1 is empty, only create one rule that matches e2 and other

fields left wildcard. Other operations such as modifying or

deleting an entry follow the same principle.

8 Deployment Experience

Cetus has been used to facilitate the development of P4 pro-

grams at Alibaba for one year. It has effectively decreased

our P4 development workload by two orders of magnitude

(from O(day) to O(min)) This section presents several real

cases addressed by Cetus.

Case 1: Parallelizing network functions. A common prob-

lem our programmers frequently encountered is that implicit

dependencies between actions or hardware constraints may

prevent two or multiple network functions from occupying

the same stages. If one of the functions contains a large table

and another function consists of multiple small tables form-

ing a long dependency chain, the total number of occupied

stages could exceed the number of stages available, and our

programmers had no clue on how to fix such a problem.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 379

A

B1 B2 B3

……

A1

B1

……
B2 B3

A2 A3

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6 stage 7

(a) The original layout

(b) The layout when A is divided up

Figure 10: Parallelizing network functions via Cetus.

Figure 10 shows a real case in our edge gateway program.

In the original P4 program, network function A only has one

table A, which is a large table for load balancing. Function B

consists of multiple tables like B1, B2, B3, etc. formulating

a chain of small tables, each of which being responsible for

inserting customized metadata for diverse services. However,

if the program places network functions A and B as shown

in Figure 10(a), a fitting issue occurs because their resource

usage exceeds total stages available. From the view of our

programmers, they can only do trial and error.

Through the dependency removal algorithm introduced in

Section 5, Cetus can automatically address this problem by

parallelizing network functions within few minutes. As shown

in Figure 10(b), Cetus detected there is a deep dependency

between actions of A1 and B1, thus dividing function A into a

few tables and maximizing the parallelization of table place-

ment. We used the solution in [23] to guarantee the split tables

act the same as the original one.

Case 2: Optimizing write-after-write dependency. Us-

ing global data is common in many programming languages

and software systems. However, such practice comes with

pitfalls in P4 programs. For instance, because the physical

pipeline offers control registers, our programmers are allowed

to explicitly drop a packet in packet validation, access con-

trol, and error handling. However, write operations to a com-

mon field issued by different modules may constitute write-

after-write dependencies, which cause the number of required

stages to exceed the actual stage number.

Figure 11 shows a real case. Figure 11(a) is the original P4

program. Two tables are invoked consecutively, which may

call the same action to explicitly drop the packet. Because of

write-after-write dependency, they must occupy two stages.

Due to the “lengthy diameter” feature in our production pro-

grams, a fitting issue happened because stage resources are

overly used. We therefore called Cetus to solve our fitting

issue. Cetus automatically generates a program shown in Fig-

ure 11(b). We can observe that the two tables in the original

program are merged into one, saving one stage to enable the

program to compile. More interestingly, Cetus can also care-

action drop_packet(){
eg_dprsr_md.drop_ctl = 1;

}

table color_drop(){
key = { meta.pkt_color: exact; }
actions = { drop_packet; NoAction; }

}

table mirror_drop(){

key = { meta.pkt_color: exact;
meta.mirror: exact }

actions = { drop_packet; NoAction; }
}

control(){
color_drop();

mirror_drop();
}

action drop_packet(){
eg_dprsr_md.drop_ctl = 1;

}

table color_mirror_drop(){
key = { meta.pkt_color: exact;

meta.mirror: ternary }

actions = { drop_packet; NoAction; }
}

control(){
color_mirror_drop();

}

(a) write-after-write dependency that requires two stages (b) merged tables that require only one stage

Figure 11: Write-after-write optimization
action set_flow_tag(bit<16> tag){

meta.tag = tag;

}

table color_flow(){
key = { meta.ingress_port: exact; }
actions = { set_flow_tag; NoAction; }

}

action set_sample_rate(bit<16> rate){

meta.rate = rate;
}

table sample_rate(){
key = { meta.tag: exact; }

actions = { set_sample_rate;
NoAction; }

}

control(){

color_flow();
sample_rate();

}

action set_tag_rate(bit<16> tag,
bit<16> rate){

meta.tag = tag;
meta.rate = rate;

}

table generated_tbl(){

key = { meta.ingress_port: exact; }
actions = { set_tag_rate; NoAction; }

}

control(){

generated_tbl();
}

(a) read-after-write dependency that requires 2 stages (b) merged tables that require only one stage

Figure 12: Read-after-write optimization

fully merge the match keys from the two tables. Because

the color_drop table does not match meta.mirror so the

merged table used ternary to match meta.mirror.

Case 3: Optimizing read-after-write dependency. Mod-

ularization is another common paradigm in program develop-

ment. By clearly defining interfaces and decoupling modules,

it allows the independent design and development of indi-

vidual pieces of code. However, the modularization of P4

programs often comes at the expense of RAW dependencies.

In our production P4 programs, it is common for one mod-

ule to set a particular field, which is later read by another

module. Figure 12(a) shows a real program example where

the table color_flow tags each packet depending on which

port it comes from. Then, another sample_rate table sets

the sampling rate based on a packet’s tag. This constitutes

read-after-write dependency; thus, sample_rate has to be

placed at least one stage later than color_flow, resulting in

at least two stages occupied. We found such read-after-write

dependencies are quite annoying in our programs because

many fitting issues were caused by this type of dependency.

With Cetus in hand, we directly applied Cetus in this sce-

nario. Cetus automatically analyzes whether it is better to

trade-off modularization for more efficient and compact code,

given the limited number of physical stages in each pipeline.

In particular, Cetus checks whether meta.tag is solely de-

termined by color_flow, and whether they are applied con-

secutively. If so, it merges the two tables so that the first and

second lookup are performed simultaneously within one stage,

as shown in Figure 12(b). As a side effect, merging these two

380 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Program LoC
Table Num

(Ig/Eg)

Before After Dependency Removed
Time

Diameter (Ig/Eg) Stage Num Diameter (Ig/Eg) Stage Num WAW RAW WAR

PINT [3] 380 13 / 0 6 / 0 7 6 / 0 6 0 2 0 19s

RTT [16] 408 12 / 0 9 / 0 9 8 / 0 8 0 3 0 25s

Bier [18] 703 26 / 4 7 / 2 11 5 / 2 7 2 8 2 41s

P4_protect [17] 576 12 / 1 5 / 1 6 4 / 1 4 0 6 0 25s

Conquest [5] 847 1 / 19 1 / 7 9 1 / 6 6 0 8 0 2m51s

Beaucoup [6] 1677 25 / 0 10 / 0 12 10 / 0 11 0 1 0 6m58s

P4_switch 4701 34 / 25 8 / 5 12 8 / 5 11 0 2 0 11m30s

CDN 6342 19 / 2 10 / 2 11 10 / 1 10 0 3 0 1m27s

Edge vSwitch 2733 32 / 6 9 / 3 11 8 / 2 8 2 3 0 1m21s

Edge Gateway 4417 32 / 37 8 / 7 12 8 / 7 11 2 1 1 7m21s

Table 2: Experimental results conducted on a workstation with Intel Xeon 2.5GHZ CPU and 128GiB RAM

tables may cause the new table to occupy more memory;

however, as designed in §6, Cetus is able to take both factors

(i.e., memory and stage) into account and produces a feasible

solution if such optimization is indeed worthwhile.

Case 4: SDE upgrade. As the programs keep evolving, we

also upgrade the runtime and development-time infrastructure,

including the versions of switch OS and the P4 compiler, to

enjoy the latest performance optimizations and fixes provided

by the vendors. In such an upgrading case, the program must

be re-fit. We can consult Cetus to pinpoint the problem and

search for a feasible table layout. After being automatically

annotated with pragmas, the existing P4 program was suc-

cessfully compiled while keeping its code structure intact.

In this way, Cetus cleared the most challenging obstacle and

enabled the upgrade of the whole system.

9 Evaluation

Our evaluation aims to answer whether Cetus can reduce

different program’s stage usage (§9.1) and how effective the

optimization algorithms are (§9.2). All experiments were

performed on a server with 2.5GHz CPU and 768GiB RAM.

9.1 Optimization

We chose 10 P4 programs, 6 open-sourced and 4 private ones,

to evaluate whether Cetus can optimize and reduce their stage

usage. In this evaluation, we mainly show Cetus’s stage oc-

cupation reduction capability. For each program, we record

its DAG’s diameter and the number of stages it occupies in ϒ

chip before and after optimization. We further listed which

types of dependencies Cetus removed and the time it took for

each program. Table 2 shows the result.

First, Cetus removed 1 to 12 table dependencies, reduced

the program’s diameter by 1 to 2 and 1 to 4 stages. This

shows the effectiveness of the primitives used by Cetus and

our findings in §3.1 also apply to open source programs.

Second, Cetus can successfully find the best candidate at

a decent speed. For simple programs, Cetus can find a plan

in under a minute. For complicated ones, Cetus still managed

to finish the search in minutes. Compared with the days of

efforts developers spent optimizing the program manually,

this is way faster and saves a lot of deployment efforts.

Third, we can see that most of the dependencies removed

100

101

102

103

OOT

P4
Switch

Edge
Gateway

Conquest Edge
vSwitch

Pint

ti
m

e
/s

No optimization
PHV share(w/o sym)

PHV share(w/ sym)
PHV share+2-step

Figure 13: Time for a solution under different optimizations.

were RAW dependencies. This is because of two reasons: (1)

RAW dependency is common in programs. (2) RAW depen-

dency is hard to find and also hard to remove. For example,

below is a code snippet from Beaucoup [6]:

i f (ig_md . c f_key_matched ==1) {

exec_regcoupon_merge () ; / / w r i t e s coupon_merge_check

}

i f (ig_md . c f _ d e c a y _ h a s _ e x p i r e d ==1) {

e x e c _ c o u n t e r _ s e t _ t o _ o n e () ;

} e l s e {

i f (ig_md . c f_key_matched ==1 && ig_md . coupon_merge_check ==0) {

e x e c _ c o u n t e r _ i n c r () ;

}}

In the above code, the action exec_regcoupon_merge()

writes variable coupon_merge_check, which is later read

by the condition of action exec_counter_incr(). Cetus

removes their dependency through the RAW dependency re-

moval primitive, and it reduces one stage occupation. But for

developers, it is hard to notice because it is spread across two

different condition branches far away.

9.2 Performance

To further evaluate the effectiveness of the optimization tech-

niques introduced in §6, we chose several typical programs

with different scales and run experiments with different opti-

mization techniques enabled. Starting from the naive solution

with no optimization, we add vanilla PHV sharing encoding,

symmetry breaking encoding, and finally two-step solving to

Cetus sequentially. We set 1 hour as the timeout threshold.

The result is shown in Figure 13.

Without any optimization, all programs timed out, which

means it is necessary to introduce optimizations. For small-

scaled programs, such as Conquest, Edge vSwitch, and Pint,

adopting PHV sharing encoding can greatly improve the per-

formance, indicates that the bottleneck lines in the complexity

of the encoded SMT formula. However, for large-scale pro-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 381

grams, such as P4 Switch and Edge Gateway, we only met

the deadline after adding all three optimizations. This shows

that for large scale programs, encoding optimization is not

enough, the search space is still too large for the SMT solver

to handle. It is necessary to leverage the key findings in §3.1

and bring in two-step solving to give a hint to the SMT solver.

10 Discussion and Lessons

This section discusses our lessons and limitations.

Is P′ functionally identical to P? In principle, Cetus’s ap-

proaches, including table merging and constraint-based filter

& optimizer, can only change and optimize the location of

tables, rather than the function logic of programs; thus, P′

should be functionally the same as P. While we have not

manually proved our approach on this property, in Alibaba,

we employ a P4 verification tool, Aquila [27], to check the

consistency between P and P′ when Cetus generates P′. If

Aquila returns “yes”, that means we can use P′ to replace P.

So far, we have not seen any inconsistency case.

Can Cetus capture all hardware constraints within ϒ

chip? We encode constraints as many as we can; thus, we

can only make sure that P′ will not violate any constraints we

have encountered before. With the accumulation of more and

more hardware constraints, we believe the capability of Cetus

will become stronger. However, we cannot guarantee every

P′ can compile to ϒ chip. We did experience few cases that

P′ does not compile due to unknown constraints.

Can lengthy diameter always hold? We cannot guarantee

the lengthy diameter can always exist in our production pro-

grams in the future; however, based on our experience with Ce-

tus so far, the stage shortage issue resulting from the lengthy

diameter is still the highest priority barrier in our scenario.

We thus suggest the ASIC vendor consider releasing a chip

with double the number of stages and less memory.

Cetus’s limitations. We have the following main limitations.

First, Cetus can only remove dependencies like WAW, RAW,

and WAR. Cetus cannot handle more tricky cases such as

removing dependency via modifying program semantic. Both

RAW dependency removal algorithms require a third table in

front to parallelize the latter two tables. For programs such

as Syncookies [22], Cheetah [29], because they have long,

chained sequential computations, the requirement of RAW

dependency removal is not met, Cetus cannot perform opti-

mizations. Second, Cetus cannot optimize a program when it

occupies too many resources, since the dependency removal

algorithms come at the cost of additional resources in the

switch, such as PHV and memory. Third, we cannot guaran-

tee Cetus’s implementation is bug-free although we spent a

lot of time checking our implementation bugs; thus, some-

times the output P′ may not be the best one. Finally, if a new

programmable ASIC architecture is introduced, Cetus cannot

be directly used to generate compilable programs for this new

ASIC. Cetus has to encode all constraints of this new ASIC.

11 Related Work

P4 program optimizers and compilers. This type of sys-

tems optimize resource usage in programmable ASICs or sim-

plify programmers’ tasks on expressing their coding intent.

P4All [13, 14] aims to optimize resource usage by leveraging

reusable data structures, such as bloom filters and key-value

stores; however, our production P4 programs do not share

these data structures. P4visor [31, 32] optimizes resources by

merging redundant code fragments (e.g., header parser and

tables). P4visor is a good complementary to Cetus. Before

Cetus was developed, we already built an internal system (sim-

ilar to P4visor) to merge redundant code fragment. µP4 [26]

proposes a modular way to write P4 code. Jose et al. [15] com-

piles P4 programs to architectures such as the RMT and Flex-

Pipe. Domino [24] and Lyra [10] simplify data plane program-

ming by specifying C-like new languages. Chipmunk [11,12]

leverages slicing, a domain-specific synthesis technique, to

remove unnecessary resources cost by Domino. P2GO [30]

proposes an idea that reduces the allocated resources of a P4

program based on traffic trace profiling. However, it might be

hard for us to deploy it in our environment, because if unex-

pected traffic turns up after the profiling, some function might

be already pruned. Different from the state of the art (that

keeps the original dependencies), Cetus optimizes resource

usage by removing dependencies in P4 programs.

Network-wide configuration synthesis. Configuration syn-

thesis work [4,8,9,19,21,28] offers the operator network-wide

abstractions for configuration synthesis. SyNET [8] and Con-

figAssure [19] offer general abstractions to synthesize the

protocol configuration. Recent work [9]indicates that none

of the above systems is scalable to cloud-scale networks.

Propane [1, 2], Snowcap [21], and Jinjing [28] synthesize

BGP, updating, and ACL configurations, respectively.

12 Conclusion

We have presented Cetus, the first system that releases the P4

programmers from frustrating trial and error compiling. Cetus

can automatically convert an uncompilable P4 program into a

functionally identical but compilable P4 program. We have

been using Cetus in our production P4 program development

for one year, and it has effectively decreased our P4 develop-

ment workload by two orders of magnitude (from O(day) to

O(min)).

This work does not raise any ethical issues.

Acknowledgments

We thank our shepherd, Dejan Kostic, and NSDI’22 review-

ers for their insightful comments. We also thank Vladimir

Gurevich for his valuable feedback on both the technical part

and the presentation of this paper. This work is supported

by Alibaba Group through Alibaba Research Intern Program.

Yifan Li is supported in part by the National Natural Science

Foundation of China under Grant Number 61872212.

382 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra

Padhye, and David Walker. Don’t mind the gap: Bridg-

ing network-wide objectives and device-level configu-

rations. In Proceedings of the 2016 ACM SIGCOMM

Conference, pages 328–341, 2016.

[2] Ryan Beckett, Ratul Mahajan, Todd D. Milstein, Jiten-

dra Padhye, and David Walker. Network configuration

synthesis with abstract topologies. In 38th ACM SIG-

PLAN Conference on Programming Language Design

and Implementation (PLDI), 2017.

[3] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang

Li, Gianni Antichi, Minian Yu, and Michael Mitzen-

macher. Pint: Probabilistic in-band network telemetry.

In Proceedings of the 2020 ACM SIGCOMM Confer-

ence, pages 662–680, 2020.

[4] Eric Hayden Campbell, William T. Hallahan, Priya

Srikumar, Carmelo Cascone, Jed Liu, Vignesh Rama-

murthy, Hossein Hojjat, Ruzica Piskac, Robert Soulé,

and Nate Foster. Avenir: Managing data plane diversity

with control plane synthesis. In 18th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI), 2021.

[5] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jen-

nifer Rexford, Ori Rottenstreich, Steven A Monetti, and

Tzuu-Yi Wang. Fine-grained queue measurement in the

data plane. In Proceedings of the 15th International

Conference on Emerging Networking Experiments And

Technologies, pages 15–29, 2019.

[6] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman,

and Jennifer Rexford. Beaucoup: Answering many net-

work traffic queries, one memory update at a time. In

Proceedings of the 2020 ACM SIGCOMM Conference,

pages 226–239, 2020.

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3:

An efficient SMT solver. In 14th Tools and Algorithms

for the Construction and Analysis of Systems (TACAS),

2008.

[8] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,

and Martin T. Vechev. Network-wide configuration syn-

thesis. In 29th International Conference on Computer

Aided Verification (CAV), 2017.

[9] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,

and Martin T. Vechev. NetComplete: Practical network-

wide configuration synthesis with autocmpleteion. In

15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2018.

[10] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,

Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming

Zhang, and Minlan Yu. Lyra: A cross-platform lan-

guage and compiler for data plane programming on het-

erogeneous asics. In Proceedings of the 2020 ACM

SIGCOMM Conference, pages 435–450, 2020.

[11] Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma,

Anirudh Sivaraman, and Srinivas Narayana. Autogener-

ating fast packet-processing code using program synthe-

sis. In 18th ACM Workshop on Hot Topics in Networks

(HotNets), 2019.

[12] Xiangyu Gao, Taegyun Kim, Michael D Wong, Divya

Raghunathan, Aatish Kishan Varma, Pravein Govindan

Kannan, Anirudh Sivaraman, Srinivas Narayana, and

Aarti Gupta. Switch code generation using program

synthesis. In Proceedings of the 2020 ACM SIGCOMM

Conference, pages 44–61, 2020.

[13] Mary Hogan, Shir Landau Feibish, Mina Tahmasbi

Arashloo, Jennifer Rexford, and David Walker. Modular

switch programming under resource constraints. In 19th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2022.

[14] Mary Hogan, Shir Landau Feibish, Mina Tahmasbi

Arashloo, Jennifer Rexford, David Walker, and Rob Har-

rison. Elastic switch programming with P4All. In 19th

ACM Workshop on Hot Topics in Networks (HotNets),

2020.

[15] Lavanya Jose, Lisa Yan, George Varghese, and Nick

McKeown. Compiling packet programs to reconfig-

urable switches. In 12th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI),

2015.

[16] Elie Kfoury, Jorge Crichigno, Elias Bou-Harb, and Gau-

tam Srivastava. Dynamic router’s buffer sizing using

passive measurements and p4 programmable switches.

[17] Steffen Lindner, Daniel Merling, Marco Häberle, and

Michael Menth. P4-protect: 1+ 1 path protection for

p4. In Proceedings of the 3rd P4 Workshop in Europe,

pages 21–27, 2020.

[18] Daniel Merling, Steffen Lindner, and Michael Menth.

Hardware-based evaluation of scalable and resilient mul-

ticast with bier in p4. IEEE Access, 9:34500–34514,

2021.

[19] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram

Kaul. Declarative infrastructure configuration synthesis

and debugging. J. Network Syst. Manage., 16(3):235–

258, 2008.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 383

[20] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang

Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan

Lu, et al. Sailfish: accelerating cloud-scale multi-tenant

multi-service gateways with programmable switches. In

Proceedings of the 2021 ACM SIGCOMM Conference,

pages 194–206, 2021.

[21] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever.

Snowcap: synthesizing network-wide configuration up-

dates. In Proceedings of the 2021 ACM SIGCOMM

Conference, pages 33–49, 2021.

[22] Dominik Scholz, Sebastian Gallenmüller, Henning

Stubbe, Bassam Jaber, Minoo Rouhi, and Georg

Carle. Me love (syn-) cookies: Syn flood mitiga-

tion in programmable data planes. arXiv preprint

arXiv:2003.03221, 2020.

[23] Devavrat Shah and Pankaj Gupta. Fast updating algo-

rithms for tcam. IEEE Micro, 21(1):36–47, 2001.

[24] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,

Changhoon Kim, Mohammad Alizadeh, Hari Balakr-

ishnan, George Varghese, Nick McKeown, and Steve

Licking. Packet transactions: High-level programming

for line-rate switches. In Proceedings of the 2016 ACM

SIGCOMM Conference, pages 15–28, 2016.

[25] John Sonchack, Devon Loehr, Jennifer Rexford, and

David Walker. Lucid: A language for control in the data

plane. In Proceedings of the 2021 ACM SIGCOMM

Conference, pages 731–747, 2021.

[26] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Do-

enges, and Nate Foster. Composing dataplane programs

with µp4. In Proceedings of the 2020 ACM SIGCOMM

Conference, pages 329–343, 2020.

[27] Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai,

Yanqing Chen, Yu Zhou, Li Dai, Feng Yan, Mengjing

Ma, Ming Tang, et al. Aquila: a practically usable veri-

fication system for production-scale programmable data

planes. In Proceedings of the 2021 ACM SIGCOMM

Conference, pages 17–32, 2021.

[28] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,

Hongqiang Harry Liu, Qiaobo Ye, Chunsheng

Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang,

et al. Safely and automatically updating in-network acl

configurations with intent language. In Proceedings of

the 2019 ACM SIGCOMM Conference, pages 214–226.

2019.

[29] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and

Minlan Yu. Cheetah: Accelerating database queries

with switch pruning. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’20, page 2407–2422, New York, NY,

USA, 2020. Association for Computing Machinery.

[30] Patrick Wintermeyer, Maria Apostolaki, Alexander Diet-

müller, and Laurent Vanbever. P2GO: P4 profile-guided

optimizations. In The 19th ACM Workshop on Hot Top-

ics in Networks (HotNets), 2020.

[31] Peng Zheng, Theophilus Benson, and Chengchen Hu.

P4visor: Lightweight virtualization and composition

primitives for building and testing modular programs. In

14th International Conference on emerging Networking

EXperiments and Technologies (CoNEXT), 2018.

[32] Peng Zheng, Theophilus A. Benson, and Chengchen

Hu. Building and testing modular programs for pro-

grammable data planes. IEEE J. Sel. Areas Commun.,

38(7):1432–1447, 2020.

384 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a)

(b)

(c)

match action

a b = c + 1

match action

a b = 1

match action

a
b = c + 1

b = 1

match action

a b = c + 1

match action

d a = 1

match action

a_0 b = c + 1

match action

d a = 1

match action

c a = 0

match action

c
a = 0

a_0 = 0

match action

c a = 1

match action

a b = 1

match action

c a = 1

match action

a_0, c b = 1

match action

d a = 0

match action

d
a = 0

a_0 = 0

Figure 14: Examples for control plane APIs converter: (a)

WAW (b) WAR (c) RAW-match.

APPENDIX

Appendices are supporting material that has not been peer-

reviewed.

A Control Plane APIs Converter

This section details how Cetus’s control plane API converter

bridges the inconsistency between the original program P and

the optimized one P′. We labeled the tables in Figure 7 and

show the example tables in Figure 14.

Write-after-write dependency. Since two tables ta1 and ta2

in Figure 14(a) share the same match field, the entries for both

tables are inserted to the merged table t ′a directly. However,

when two entries e1, e2 for ta1 and ta2 respectively overlaps

their match field (e.g. e1 matches 10.0.0.0/8 while e2 matches

10.0.0.0/16), entry e2 has higher priority than e1 because table

ta2 applies later than ta1.

Write-after-read dependency. The match field of table tb2 is

renamed. For an entry e2 inserted to table tb2, Cetus renames

the match fields’ name and inserts it to table t ′b2. For example,

in Figure 14(b), the match field a in e2 is renamed to a_0.

Entries for table tb3 are inserted to table t ′b3 directly.

Read-after-write-match dependency. In this case, Cetus

records all the entries inserted to table tc2 and tc3 in a ‘logical

table’ stored in memory. When a control plane application

inserts an entry e2 to table tc2 with match value ce2
, Cetus first

inserts e2 to table t ′c2 unmodified. Next, if there exists an entry

recorded in logical table tc3 that matches the result of action

in table tc2, which is a = 1 in Figure 14(c), then Cetus creates

a new entry e′2 that matches c with value ce2
and ignores value

of a_0 and inserts it to table t ′c3. When an entry e3 is inserted

to table tc3, there are two cases. If e3 matches the result of

the action in table tc2, record it in the ‘logical table’ and do

not insert it anywhere. Otherwise, rename the match field

name of e3 from a to a_0, add another match field c in e3 but

ignores the value. The ‘ignore’ can be expressed by using the

wildcard if t ′c3 uses TCAM memory, or by enumerating all

possible values if it uses SRAM memory.

Read-after-write-action dependency. This part has been de-

tailed in §7.

The entry removal operation is the reverse of the above

actions.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 385

	Introduction
	Preliminary: Programmable Data Plane
	Hardware & Constraints of Chip
	Dependencies between Tables

	Key Findings & Solution Intuition
	Key Findings from Group A
	Key Findings from Group B
	Our Solution Idea

	Cetus's Workflow Overview
	Table Merging by Dependency Removal
	Dependency Removal Primitives
	Table Merging Approach

	Constraint-Based Filter & Optimizer
	PHV Sharing Encoding
	Two-Step Solving
	The Best Result Selection

	Control Plane APIs Converter
	Deployment Experience
	Evaluation
	Optimization
	Performance

	Discussion and Lessons
	Related Work
	Conclusion
	Control Plane APIs Converter

