
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Decentralized cloud wide-area network traffic
engineering with Blastshield

Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj, Microsoft

https://www.usenix.org/conference/nsdi22/presentation/krishnaswamy

Decentralized cloud wide-area network traffic engineering with BLASTSHIELD

Umesh Krishnaswamy Rachee Singh Nikolaj Bjørner Himanshu Raj

Microsoft

Abstract

Cloud networks are increasingly managed by centralized
software defined controllers. Centralized traffic engineering
controllers achieve higher network throughput than decen-
tralized implementations, but are a single point of failure
in the network. Large scale networks require controllers
with isolated fault domains to contain the blast radius of
faults. In this work, we present BLASTSHIELD, Microsoft’s
software-defined decentralized WAN traffic engineering sys-
tem. BLASTSHIELD slices the WAN into smaller fault do-
mains, each managed by its own slice controller. Slice con-
trollers independently engineer traffic in their slices to maxi-
mize global network throughput without relying on hierarchi-
cal or central coordination. BLASTSHIELD is fully deployed
in Microsoft’s WAN and carries a majority of the backbone
traffic. BLASTSHIELD achieves similar network throughput
as the previous generation centralized controller and reduces
traffic loss from controller failures by 60%.

1 Introduction

Cloud wide-area networks (WANs) enable low-latency and
high bandwidth cloud applications like live-video, geo-
replication, and other business critical workloads. Cloud
WANs are billion-dollar assets, and annually cost a hundred
million dollars to maintain. To efficiently utilize their in-
frastructure investment, cloud providers employ centralized,
software-defined traffic engineering (TE) systems. Central-
ized TE leverages global views of the topology and demands
to maximize the network throughput.

Maximum throughput, but at what cost? The paradigm
shift in WAN TE from fully decentralized switch-native pro-
tocols (e.g., RSVP-TE [4]) to centralized TE controllers was
driven by the throughput gains made possible by centraliza-
tion [16]. After a decade of operating the software-defined
WAN (SWAN) in Microsoft’s backbone network, we claim
that it is more important that the centralized TE controller
does not become a single point of failure in the system. The
impact of a TE controller fault needs to be lowered along with
achieving high throughput.

Controller replication does not guarantee availability. Our
operational experience with SWAN has taught us that regard-
less of good engineering practices (e.g., code reviews, safe de-
ployment, testing and verification), software systems will fail

in production in unforeseen ways, often due to complex inter-
actions of multiple faults. While it is hard to eliminate faults,
it is crucial to contain the damage when faults inevitably
occur. Despite fault-tolerant components of the SWAN TE
system and replication of the centralized TE controller, an
unforeseen cascade of faults led to an outage of global scope
in the SWAN TE system.

In this work, we first describe the operational experiences
that led us to migrate away from SWAN, the fully centralized
TE system in the Microsoft cloud network (§ 2). Second, to
reason about the availability of large-scale wide-area TE sys-
tems, we define blast radius of a TE controller as the fraction
of customer or tier-0 traffic at risk due to its failure. We de-
veloped BLASTSHIELD, a WAN TE system that reduces the
blast radius by slicing the global cloud WAN into smaller fault
domains or slices (§ 3). BLASTSHIELD dials back from fully
centralized to slice-decentralized TE by striking a balance
between the centralized vs. distributed design principles.

BLASTSHIELD slices are independent, and do not rely on
hierarchical or central coordination. Multiple WAN slices
and controllers raise unique implementation challenges for
BLASTSHIELD. In SWAN, a centralized controller with global
view of the network, programmed TE routes in all WAN
routers. In contrast, BLASTSHIELD slice controllers work
independently — each with its own version of code, configu-
ration, and view of the global network topology. Inconsistent
views of the network topology can cause routing loops for
inter-slice traffic in the cloud WAN. The failure of a slice
controller on the path could blackhole traffic. BLASTSHIELD
solves these challenges by developing a robust inter-slice
routing mechanism that falls back on switch-native protocol
routes in case of slice controller failures (§ 4 and § 5).

We have been operating Microsoft’s backbone with BLAST-
SHIELD since 2020. We find that BLASTSHIELD allows us
to deploy changes to the network safely without the risk of
global impact. While any change in network configuration or
software is accompanied by risk, the ability to deploy changes
without global risk is a significant advantage. Quantitatively,
BLASTSHIELD reduces the risk of traffic loss due to failure
of a TE controller by 60%, compared to SWAN (§ 6).

2 Background and Motivation

In this section, we describe an outage in the SWAN network
that motivated the design of BLASTSHIELD. This outage was
caused by a cascade of several independent failures and its

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 325

ripple effects persisted long after the root cause was resolved.
The experience of resolving this incident urged us to survey
the components at risk in SWAN and mechanisms to mitigate
the risks. We define metrics to quantify the availability of
TE controllers and design a TE system robust to global-scale
outages like the one SWAN experienced.

2.1 Bad luck comes in threes

Prior to the development of BLASTSHIELD, a series of three
unfortunate events occurred causing a SWAN outage of global
scope. Global SWAN outages lasting more than a few minutes
result in loss of several terabytes of network traffic, and are
instantly observed by a global audience.

Controller removes all routes. A partially failed web re-
quest triggered the first bug that led the SWAN controller to
remove all its TE routes from WAN routers. In the absence
of controller routes, the traffic gets routed over shortest paths
computed by the IGP [18]. This type of fallback is acceptable
at a small scale, but not as a network-wide replacement.

Incorrect IGP shortest paths. Second, there were two links
with misconfigured IGP link weights. The misconfiguration
was inconsequential while the controller routes were present.
When the controller removed its routes, these links incorrectly
became a part of many shortest paths, consequently attracting
more traffic than their capacity.

Delayed controller response time. An automatic recovery
process could have restored the controller routes in 3 minutes,
but a second controller bug incorrectly assumed that the re-
covering routers were undergoing maintenance, and held back
programming routes on them. The longer recovery caused
some internal workloads to dynamically change their traffic
class to a higher tier, worsening the load and congestion in
the network. The combination of these three cascading faults
amplified the amount of traffic affected by the outage.

With the luxury of hindsight, we extract three key lessons
from the SWAN incident:

1. All changes have risk. Global changes are antithetical to
the availability of large-scale systems. We need an ability
to gradually deploy changes, starting with staging which
are production-like but without real customers, to low im-
pact, and finally high impact regions. Global centralized
TE precludes piece-wise rollout of changes.

2. Configuration and software bugs are inevitable. The
outage occurred due to configuration and software bugs
that escaped sandbox validation. While validation can be
effective, it remains inherently best effort. In a nutshell,
critical infrastructure like SWAN should not presume per-
fect pre-deployment validation.

3. Global optimization does not preclude multiple con-
trollers. In the scenario, non-leader replicas of the con-
troller had an accurate view of the network, and could have

optimized traffic correctly. By partitioning the scope of
TE controllers, a faulty leader in one region of the WAN
would not impact controllers in other regions.

2.2 Blast Radius, Ripple and Shielding
While faults and small-scale outages occur and get rectified
rapidly in our network, what stood out about the SWAN outage
incident was its global scope. We define the following terms
to quantify the scope of wide-area traffic engineering outages.
In later sections, we use these terms to evaluate the reduction
in the scope of potential outages when we deploy the new TE
system, BLASTSHIELD.

Definition 1 (Blast Radius) is the fraction of customer or
tier-0 traffic at risk by a TE controller failure.

The service level objective (SLO) is the daily average of the
hourly percentage of successfully transmitted bytes. Customer
or tier-0 traffic has the highest SLO of 99.999%. Discretionary
traffic tiers, tier-1 and tier-2, have a lower SLO of 99.9%. Half
the traffic in our network is tier-0. The TE controller routes
traffic on engineered paths to optimize for congestion, latency,
and diversity. When a TE controller fails by withdrawing its
routes or programming incorrect routes or stops programming
the network, the ensuing tier-0 loss is the blast radius of the
controller.

Definition 2 (Blast Ripple) of a controller failure is the ser-
vice level degradation experienced by components that are
not governed by the failing TE controller.

The blast or failure of a TE controller can cause ripples
and impact traffic not managed by the failing controller. The
impact of the ripple is proportional to the amount of tier-0
traffic affected that is not managed by the failing controller.

Definition 3 (Blast Shielding) is the engineering practice
that minimizes the blast radius of failing components while
meeting operational constraints like cost and complexity.

We note that blast shielding does not ensure that the overall
system is fault tolerant in achieving the service level objective.
Fault tolerance allows the system to operate even if its com-
ponents fail [3]. Table 1 covers mitigation in Microsoft’s TE
deployment to achieve fault tolerance and blast shielding. We
highlight faults that were not addressed in SWAN’s original
design and are a focus of this work with �.

3 Slicing the cloud WAN

The global scope of the SWAN outage inspired the design of
BLASTSHIELD, the WAN traffic engineering system that has
replaced SWAN in Microsoft’s backbone network. BLAST-
SHIELD views the WAN as a collection of sites. Each site

326 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fault Mitigation
Controller hardware, cluster, or site failure. Automatic migration to geo-redundant cluster.
Network fault, e.g., link failure, forwarding fault,
router reboot.

Per-router agents perform local repair autonomously without controller
intervention. Controller does global repair in the next TE iteration.

Network device disconnects or is unreachable by
controller.

Router agents retain last programming. Controller reconnects via
router management plane. Router is treated as down if failure persists.
Rollback routes if disconnection is during new route programming.

Invalid, inconsistent, outdated programming by
controller.

Router agents perform data plane verification. Controller programs
agents with latest inputs every 3 minutes.

TE optimization failure e.g., a controller withdraws
its routes, or programs incorrect routes. �

Divide the WAN into subgraphs with a controller per subgraph
managing a small fault domain.

Malicious router agent e.g., agent stalls the
controller from programming other routers. �

Decrease agent-controller interaction to defined subgraphs of the
network.

Byzantine controller fault, e.g., a controller
sabotages other controllers. �

Controllers acquire network inputs independently.

Zero-day fault in multiple controllers. � Diverge configurations in TE controllers.
Table 1: Fault types and their mitigation. New fault types handled by this paper are marked with �.

Slice 1
controller

Slice 2
controller

Slice 3
controller

A

B
C

DE F

G H

slice 1 slice 1slice 2

router
site

slice 3

Figure 1: The WAN is divided into slices. Each slice is managed by
a dedicated slice controller. Slice 1 consists of routers in sites A–D,
slices 2 and 3 have routers in sites E–F and G–H.

consists of multiple WAN routers. WAN routers connect to
other routers in the network like the datacenter fabric with a
high bandwidth interconnect. WAN routers also transit traffic
that is not from a directly connected datacenter. WAN sites at
submarine landing terminals and optical transit sites do not
have datacenters attached to them.

WAN Slices. BLASTSHIELD divides the WAN into slices
or subgraphs of routers, each controlled by a dedicated slice
controller. A slice is a logical partitioning of the WAN into
disjoint sets of routers where each router belongs to exactly
one slice. A slice can consist of a single router or all routers,
or anything in between. Routers do not have any slice-specific
configuration. In Fig. 1, slice 1 consists of routers in sites A–
D. A slice can have multiple strongly connected components
of routers. Slice 1 has two strongly connected components,
the routers in sites A–C and D, respectively. Controllers 2
and 3 manage routers in sites E–F and G–H, respectively. The
count and composition of slices is not limited by the design
but dictated by operational choice.

Enforcing slice isolation. Only the slice’s owning controller

programs routers in the slice. All traffic from slice routers
to any destination is engineered by the slice controller. This
includes traffic that originates in datacenters directly con-
nected to slice routers and the traffic originating in upstream
slice routers. Each slice is a separate deployment and can be
patched independently. Slices can inherit common configura-
tion but BLASTSHIELD applies slice-specific configuration
independently. Slice controllers do not communicate with
another slice controller. This further isolates faults and pre-
vents byzantine controllers bringing the entire system down.
Slice controllers operate with a global view of the network
by acquiring global topology and demand inputs. Each slice
controller makes traffic engineering decisions based on ex-
pected conditions in local and remote slices. Controllers antic-
ipate what other controllers do given the same inputs. While
deviations between flow allocations computed by different
controllers are possible, they are not disruptive to BLAST-
SHIELD’s operation.

How many slices? The number of BLASTSHIELD WAN
slices decide the system’s operating point on an important
tradeoff between network throughput and blast radius. A sin-
gle slice enables the TE formulation to achieve maximum
network throughput through centralization, but exposes the
network to the risk of global blast radius. In contrast, several
BLASTSHIELD slices reduce the blast radius of slice con-
trollers but may also reduce the achievable network through-
put. Additionally, several WAN slices increase the operational
overhead of configuring and maintaining slice controllers.
There is a sweet spot for the number of slices that limits the
risk of changes and keeps operational overhead manageable.
We empirically derive the number of BLASTSHIELD slices
for Microsoft’s network and strike a balance between blast
radius and network throughput (§ 6).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 327

4 BLASTSHIELD System Design

In this section we present the design of BLASTSHIELD and
describe the design choices that motivated our design.

4.1 System overview

Each BLASTSHIELD slice controller is a collection of four
services: topology service, demand predictor, traffic engineer-
ing scheduler, and route programmer (Fig. 2). In addition to
the controller services that run on off-router compute nodes,
a router agent runs on all WAN routers.

Topology
service

Demand
predictor

Traffic
engineering
scheduler

Route
programmer

Router
agent

feeds

feeds

globaltopology

global

demands

slice

TE FIB

TE routes

Figure 2: The slice controller consists of topology service, demand
predictor, traffic engineering scheduler, and route programmer. To-
gether, they compute traffic engineering routes and program slice
routers through router agents.

FIB
generator

slice
configuration

constraints
global

topology

global
demands

Path computer

MaxFlow

Penalizing

paths

TE solver

Priority fairness

Max-min
fairness

tier-0

Max-min
fairness

tier-1/2

Min cost
+ diverse

Min max
utilization

slice
TE FIB

Figure 3: Traffic engineering scheduler computes routes that opti-
mize paths for flows by traffic tier. Each controller performs global
optimization based on its view of the entire network, but only pro-
grams routers belonging to its slice.

Topology Service synthesizes the global network topology
using graph metadata, link state, and router agent input feeds.
Graph metadata consists of routers, links, and sites. BGP-
LS [15] is the primary source of dynamic link state informa-
tion e.g., link bandwidths, interface addresses, and segment
identifiers [11]. The router agent feed is only used to acquire
the health of the router agent; a router must have a functioning
agent to be used for traffic engineering.

Demand Predictor predicts upcoming global network
demands using a real-time traffic matrices measured by

sFlow [26] and host-level packet counters. Each network de-
mand is identified by the tuple: source router, destination site,
and traffic class. Traffic class is a differentiated service queue
name e.g., voice, interactive, best-effort, or scavenger [5].
Tier-0 traffic uses best-effort or higher traffic classes. Tier-1
and tier-2 use the scavenger traffic class. The data feeds of
the demand predictor are independently scaled out and not
part of the controller.

Traffic Engineering Scheduler forms the core of the BLAST-
SHIELD system (Fig. 3). It ingests global network topology
and global demands from topology service and demand pre-
dictor respectively. The path computer calculates paths using
the dynamic topology for the source-destination pairs in the
global demands. MaxFlow path computer uses maximum
flow algorithms [14], and penalizing path computer computes
risk diverse shortest paths using Dijkstra. Path constraints,
described later in §§ 5.1 and 5.2, limit allowed paths in order
to support the routing in BLASTSHIELD.

TE solver consists of a chain of linear programming op-
timization steps that place demands on multiple paths with
unequal weights between demand source and destination pairs.
It places tier-0 demands on paths with diversity protection that
minimize latency subject to approximate max-min fairness.
Lower priority demands in tier-1 and tier-2 classes are placed
on paths that minimize the maximum link utilization. For
brevity, we exclude the optimization problem formulations,
which are previously described in [6, 16, 21, 25].

The FIB generator mechanically converts the output of the
TE solver, called the solver result, into TE routes. The slice
configuration specifies the subset of routers for which routes
are generated. The FIB generator transforms the solver result
based on the slice configuration, and produces routes only for
the routers in the slice. The network is re-optimized every
3 minutes, or on topology change, whichever occurs first.

Route Programmer programs traffic engineering routes in
the router agent which in turn installs them in the router. It
periodically receives the full set of routes for all slice routers
from the traffic engineering scheduler. This is called the traffic
engineering forwarding information base (TE FIB). The FIB
is organized into per-router flow and group tables (see Fig. 4).
The route programmer updates all slice router agents in paral-
lel using an update procedure, called make-before-break. The
principle is to make all new traffic engineered paths before
placing traffic on them. Intermediate FIBs build new paths,
transfer traffic to the new paths, and tear down unused paths.

Router Agent runs on all WAN routers. It installs TE
routes, monitors the end-to-end liveness of TE paths (tunnels),
and modifies ingress routes based on liveness information.
Route installation on the router requires translating the FIB
into router platform-specific API calls. Router agents have
a platform-dependent module to handle this translation. The
router agent verifies tunnels within the slice using probes gen-
erated natively or with BFD [22] from tunnel ingress points.

328 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Flows are unequally hashed to live paths based on the path
weight, flow 5-tuple, and traffic class. If a path goes down, the
agent proportionally distributes the weight of the down path
to remaining up paths. If no path is up, then the ingress route
is withdrawn, and packets are forwarded using switch-native
protocol routes. This is called local repair.

4.2 Design considerations

Global solution at local instances. Each BLASTSHIELD
slice controller consumes global network topology and de-
mands. The solver of each controller computes flow alloca-
tions for the entire network. Therefore, each slice controller
produces the same solver result if its inputs and solver soft-
ware versions are the same. In practice, inputs and software
versions can differ, and we study the impact of these differ-
ences in § 6.2. Although a slice controller only programs
the WAN routers in its slice, it optimizes flow with a global
view. Slice controllers do not communicate with each other
but gather inputs from the network. Performing global opti-
mization at each slice controller is beneficial while deploying
changes to the network. Some faults involve complex inter-
actions that only occur in unique parts of the WAN. Global
inputs increase the coverage of code paths while new software
or configuration changes are being deployed in small blast
radius slices.

Slices as isolated routing domains. In centralized TE sys-
tems, a single controller is responsible for programming all
WAN routers with the TE routes. BLASTSHIELD replaces
the centralized controller with multiple slice controllers that
can only program the routers within their slice. By preventing
slice controllers from programming routers outside their slice,
we enforce fault isolation between slices. In addition, the
routing mechanisms described in § 5 ensure that the failure
of one controller does not impede other controllers e.g., the
failure of a downstream slice controller on an inter-slice route
in the WAN does not lead to blackholing of traffic. Similarly,
slice controllers with inconsistent views of the network, route
packets to their destination without centralized control.

Fault tolerant design. All services run on multiple machines
in at least two geographically separate clusters. Topology
service instances are fully active, but elect a leader to avoid
oscillations if two instances report different topologies due
to faults or transients. The traffic engineering scheduler and
route programmer elect leaders, and switchover in case of fail-
ure. The route programmer handles all the faults and incon-
sistencies that can happen during programming, e.g., router
agents are unresponsive or have faults before, during, or after
route programming. Reliable controller-agent communication
is achieved by using network control traffic class, and redun-
dant data and management plane connections. The router
agent can react to network faults even when it is disconnected
from the router programmer.

Decoupling TE scalability from blast shielding. BLAST-
SHIELD employs slice controllers to reduce the blast radius
of faults in our network. We handle scale along several dimen-
sions, unrelated to blast shielding. But slices also provide the
following scaling benefits. The total number of tunnels in the
network decreases because an inter-slice path is a sequence
of intra-slice tunnels in BLASTSHIELD, whereas in SWAN
it required its own tunnel. Second, shorter tunnels decrease
tunnel probe round-trip times and speed up local repair.

5 Routing and forwarding in BLASTSHIELD

The routing of intra-slice flows in BLASTSHIELD is the same
as SWAN. In this section, we describe BLASTSHIELD’s ex-
tensions to enable routing and forwarding of inter-slice flows
i.e., flows whose traffic engineered paths span multiple slices.
§ 5.1 describes inter-slice routing, the approach we deployed,
and § 5.2 describes a source routing approach that was evalu-
ated but not deployed.

5.1 Inter-slice routing

In SWAN, packets are routed using a combination of switch-
native protocols and the TE controller. WAN routers con-
nected to the datacenter fabric advertise datacenter routes with
themselves as the BGP [27] next hop. BGP receivers recur-
sively lookup the route for this BGP next hop and find multiple
available routes: the shortest path route computed by the IGP,
or the route programmed by the TE controller which leverages
traffic engineered paths. TE routes have higher precedence
than the IGP routes. The TE route encapsulates packets using
Multiprotocol Label Switching (MPLS) [28] path labels from
a label range reserved for the TE controller.

BLASTSHIELD routes inter-slice flows i.e., flows whose
traffic engineered paths span multiple slices, using slice-local
encapsulation till the slice boundary. Slice controllers add
encapsulation headers while the packet is within the slice but
ensure that the packets arrive at the next slice in their native
encapsulation i.e., the encapsulation in which the packets
entered the WAN. Each slice controller is only responsible for
routing traffic to the ingress router of the next slice. Packets
are encapsulated with an MPLS path label at the time of BGP
route lookup on the WAN ingress router or the intermediate
slice ingress routers. In both scenarios, transit routers forward
the packet using the MPLS path label, and the label is popped
by the penultimate router — either at a slice boundary or at
the destination. Intra-slice traffic is split across TE paths only
once at the WAN ingress router. Inter-slice traffic can also be
split at the ingress router of an intermediate slice.

Inter-slice forwarding In Fig. 4, all four slice controllers de-
termine that the demand from a to z should be placed on paths
abeg juwxz, acdmoqstyz, and acdmonikvyz with weights 0.3,
0.42, and 0.28 respectively. Slice 1 programs abe with weight

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 329

Slice 1 routes to z
Device Prefix Wt Action Out
a z 0.3 push 151 ab

0.7 push 157 ac
b 151 - pop be
c 157 - swap 157 cd
d 157 - pop dm

Slice 2 routes to z
Device Prefix Wt Action Out
e z 1 push 223 eg
i z 1 push 227 ik
g 223 - swap 223 gj
j 223 - pop ju
k 227 - pop kv

Slice 3 routes to z
Device Prefix Wt Action Out
m z 0.6 push 331 mo

0.4 push 337 mo
o 331 - swap 331 oq
q 331 - swap 331 qs
s 331 - swap 331 st
t 331 - pop ty
o 337 - swap 337 on
n 337 - pop ni

Slice 4 routes to z
Device Prefix Wt Action Out
u z 1 push 443 uw
v z 1 push 447 vy
y z 1 - yz
w 443 - swap 443 wx
x 443 - pop xz
y 447 - pop yz

Slice 1

a

b

c

d

Slice 2
e

f

g

h

i

j

k

Slice 3

l

m

n

o

p

q

r

s

t

Slice 4
u

v

w
x

y
z

Figure 4: Inter-slice routing using an example router-level network graph divided into four slices. The tables represent TE FIBs programmed by
slice controllers using inter-slice routing. Each slice controller programs the path segment within its slice. For the path abeg juwxz, slice 1
programs abe, slice 2 programs eg ju, and slice 3 programs uwxz. Traffic arriving at slice ingress routers get encapsulated and split over different
paths. Transit routers guide the packet along the path specified by the MPLS label. Packets return to native encapsulation at the next slice and
the WAN exit.

0.3, and acdm with weight 0.7. Slice 2 programs eg ju and
ikv. Slice 3 programs moqsty with weight 0.6, and moni with
weight 0.4, and slice 4 programs uwxz, vyz, and yz. Controllers
only need to install routes in their slice routers.

If any downstream slice controller fails to program routes
to the destination, packets are forwarded using protocol routes
along the shortest paths to the destination. Since we enable
segment routing [11] with the IGP, the IGP route changes the
packet encapsulation and routes the packet to the destination.
For example, if the slice 2 controller withdraws all routes due
to a failure, the inter-slice traffic uses shortest paths to the
destination, z. This is the blast ripple of a down controller.
In § 6.1, we will discuss how to define slice boundaries to
decrease the blast ripple. Downstream slice controllers may
have slightly inconsistent views due to network events like
link flaps. Inter-slice traffic will be forwarded on shortest
paths while the controllers converge. We show results on the
alignment of multiple controllers in § 6.2.

Preventing routing loops. Unlike the TE controller in
SWAN, a BLASTSHIELD slice controller is only responsible
for routing packets within the slice and not until the packets’
destination. Since each slice is its own routing domain, incon-
sistent views of the global network graph in different slice
controllers can lead to routing loops.

BLASTSHIELD avoids routing loops by enforcing enter-
leave constraints on inter-slice next hops. These constraints
define the set of inter-slice next hops for all source-destination
pairs in the network. The constraints ensure loop-free paths
and are calculated offline using a static network graph. The
path computer calculates paths on the dynamic network graph,
and only allow paths that satisfy the enter-leave constraints.
However, enter-leave constraints should not be overly restric-
tive. For example, a potential approach to preventing routing
loops can limit inter-slice next hops to be on the minimum

spanning tree from the source router to the destination. But
this approach restricts inter-slice paths to go through a few
links and causes bottlenecks.

s2

s1 s4

s3

slice graph

s4

s3

s2

s1 dag s1
s3

s1s4

s2 dag s2

s4

s2

s1

s3 dag s3

s1

s3

s2

s4 dag s4
Figure 5: Enter-leave constraints restrict paths to achieve loop-free
routing. Slice graph is a component level graph of Fig. 4. Slice
DAGs are constructed from shortest path distances in the slice graph.
Router-level paths must follow DAG edges when crossing slice
boundaries. Path acdmonikvyz is allowed for TE because s1 → s3 →
s2 → s4 is a path in DAG s4. Path ab f hinprvyz is not allowed for
TE because s2 → s3 is not present in DAG s4.

Computing enter-leave constraints. An offline generator
computes enter-leave constraints from the static router-level
network graph to prevent inter-slice routing loops. It first
constructs a slice graph from the network graph, where each
slice node represents a strongly connected component (SCC)
after removing all inter-slice links. Figure 5 is the slice graph
of Fig. 4, formed by removing inter-slice links be, b f , dl,
dm, f l, in, ju, kv, rv, and ty, and calculating SCCs. A slice
can contribute one or more SCCs as nodes to the slice graph.
A link between the slice graph nodes aggregates all links
between SCCs in the network graph. Link weights in the slice
graph are computed from link weights in the network graph.

330 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The enter-leave constraint generator then constructs per-
destination slice DAGs based on the shortest path distances in
the slice graph. The enter-leave constraints come out directly
from the slice DAGs. In Fig. 5, the slice DAG for s4 says
that paths from any node in s1 to any node in s4 can only
have inter-slice transitions: s1 → s2 → s4, s1 → s3 → s4, and
s1 → s3 → s2 → s4. No controller, no matter its topology, can
use any other inter-slice transition.

The path computer blacklists edges excluded by enter-leave
constraints in the dynamic network graph before computing
TE paths. Since the slice DAG is loop-free, paths computed by
any slice controller are also loop-free. This ensures that even
if slice controllers have inconsistent views of the dynamic
network graph, they will arrive at loop free routes. Enter-
leave constraints place restrictions on TE paths, and reduce
the number of paths available to place demands. We evaluate
the percentage of allowed paths vs. computed paths without
constraints in § 6.1.
Verifying enter-leave constraints. Due to the negative im-
pact of routing loops in production, and because they are
global configuration, enter-leave constraints are verified of-
fline before deployment. Enter-leave constraints are updated
when there are newly provisioned routers or inter-slice links
in the network. They do not need to be updated for newly
provisioned intra-slice links.

We use the following formalism to define correct inter-slice
routing. Let R be the set of defined route keys, where route
key is a tuple of (router, destination prefix), end be the termi-
nating route key, null be the undefined route key, and ttl be
the packet time to live. Let f : R → R , where f (null) = null,
f (end) = end. Routing is a repeated application of f (), till
f n(x) = end where n ranges over 1 ≤ n ≤ ttl. The collection
of TE, BGP, and the IGP routes, and their union are examples
of routing functions. The routing function is complete, loops,
or blackholes, if:

∀x,∃n : f n(x) = end (complete)
∃x,n : f n(x) = x (routing loop)
∃x,n : f n(x) = null (blackhole)

where x ranges over R \{end,null} and n ranges over [1..ttl].
Enter-leave constraints are verified using this formalism to
detect routing loops.

5.2 Why not source routing?
In this section, we describe an alternate approach that lever-
ages the capabilities of segment routing (SR) [11], and why
we did not adopt this approach.
Loose source routing with SR. SR is a source-based routing
technique that allows senders to specify the packets’ route
through the network by leveraging the MPLS forwarding plane.
An SR router subjects arriving packets to a policy and encap-
sulates the matching packets in an MPLS label stack, each
label represents a segment in the SR-path. A node segment
causes the packet to be routed on least-cost paths computed

by the IGP to the router identified by the node segment. An
adjacency segment causes the packet to use a specified link
for its next hop.

An IGP path computer models the modified Dijkstra short-
est path first algorithm [18]. Coupled with segment identifiers
from topology service (§ 4.1), it implements loose source
routing. In place of explicitly listing adjacency segments of
hop-by-hop links of a path, loose source routing uses a node
segment when it exactly represents the sequence of the hop-
by-hop links of the path. Figure 6 shows an example of loose
source routing for the same paths shown in Fig. 4. The path
beg juwxz is composed of two shortest path segments beg ju
and uwxz. Hence a encapsulates with label stack of [n(u) n(z)]
to route to z, where n() is the node segment identifier of a
router.

Packet encapsulations reduce hashing entropy. To achieve
balanced utilizations across links in the WAN, the cloud net-
work employs two load balancing mechanisms. Link aggre-
gation group hashing sprays packets on member links of a
port-channel. Equal cost multi-path hashing sprays packets
on the next hops of a group of traffic engineering routes. The
packet processor uses fields from the packet headers to hash
the packet to different output ports with the goal of maximiz-
ing entropy in the hash calculation. To achieve high entropy,
the outermost IPv4/IPv6 source and destination addresses
under stack of MPLS header encapsulations should be used to
calculate the hash. A deep MPLS label stack can impair the
ability of the packet processor to extract the relevant fields in
the IP header.

The depth limit is the maximum number of MPLS encap-
sulations a packet can have while still allowing the packet
processor to extract the header fields of the original (i.e., prior
to MPLS encapsulations) packet. The depth limit is switch
platform-dependent [2, 8, 20]. We note that if the packets en-
tering the WAN are already encapsulated in MPLS, the depth
limit available to source routing is further reduced.

Why select inter-slice routing? Based on the current gener-
ation of platforms across different regions of our cloud WAN,
the depth limit is four labels. Paths that require more labels
cannot be used for TE. Figure 7 studies the label stack depth
needed to encode paths computed by the path computer for
current and future evolutions of the WAN. In source routing,
45% of computed paths can be used for TE. For compari-
son, 69% of computed paths can be used for TE in inter-slice
routing (see § 6.1).

Second, in source routing, a downstream slice can only
transit upstream flows. In inter-slice routing, the downstream
slice is free to rebalance the traffic to correct errors made
upstream or mitigate for local slice conditions. This kind of
control is not available with source routing.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 331

Source routes to z
Device Prefix Wt Action Out
a z 0.3 push n(u) n(z) ab

0.42 push n(o) n(z) ac

0.28 push n(o) n(k)
n(z) ac

Protocol routes for beg juwxz
Device Prefix Action Out
b n(u) swap n(u) be
e n(u) swap n(u) eg
g n(u) swap n(u) gj
j n(u) pop ju
u n(z) swap n(z) uw
w n(z) swap n(z) wx
x n(z) pop xz

Protocol routes for cdmoqstyz
Device Prefix Action Out
c n(o) swap n(o) cd
d n(o) swap n(o) dm
m n(o) pop mo
o n(z) swap n(z) oq
q n(z) swap n(z) qs
s n(z) swap n(z) st
t n(z) swap n(z) ty
y n(z) pop yz

Protocol routes for onikvyz
Device Prefix Action Out
o n(k) swap n(k) on
n n(k) swap n(k) ni
i n(k) pop ik
k n(z) swap n(z) kv
v n(z) swap n(z) vy
y n(z) pop yz

Slice 1

a

b

c

d

Slice 2
e

f

g

h

i

j

k

Slice 3

l

m

n

o

p

q

r

s

t

Slice 4
u

v

w
x

y
z

Figure 6: Source routing. Slice 1 controller programs ingress routes to z using loose source routing. The IGP with segment routing takes care of
transit routes. The path beg juwxz is composed of two shortest path segments beg ju and uwxz. Hence the label stack for the path is n(u) n(z),
where n() is the node segment identifier of a router. Weights of intra-slice links are 1 and inter-slice links are 5.

0 5 10

0.00

0.25

0.50

0.75

1.00
(a) Computed paths

A

B

0 5 10

0.2

0.4

0.6

0.8

1.0

(b) Total demand

A

B

Label stack depth

C
D

F

Figure 7: Cumulative distribution function of (a) computed paths
and (b) total demand, by label stack depth for inputs A and B of
increasing sizes. If depth limit is four, 45% of computed paths and
93% of the total demand map to allowed paths for input B.

6 Evaluating BLASTSHIELD in production

The incremental deployment of BLASTSHIELD began in 2020
and today BLASTSHIELD has replaced the legacy SWAN traf-
fic engineering system in Microsoft’s cloud network. In § 6.1,
we evaluate the benefits and costs of WAN slicing using de-
mands and topology inputs from the Microsoft backbone
network for the month of July 2021. The benefit of slice-
decentralized traffic engineering is the reduction in traffic loss
from a slice failure. Its cost is the reduction in TE throughput
due to enter-leave constraints. We quantify cost and benefit
as we incrementally divide the global network into ten slices.
In § 6.2, we evaluate the stochastic effects caused by multiple
and independent BLASTSHIELD controllers. We show that
despite the controllers having different configurations, soft-
ware versions and network topology snapshots, they arrive at
nearly similar flow allocations.

1 2 3 4

5 6 7 8

9 10
Table 2: Ten slice configurations of the global cloud network. In (1)
the entire network is one slice. Slices 2–6 are formed by grouping
routers in geographies. Slices 7–10 are created by further subdividing
the two largest geographies, Europe and North America.

6.1 Availability vs. throughput trade-offs
We incrementally carve out slices from the global cloud net-
work as shown in Table 2. We consider ten different slicing
configurations with increasing number of slices from 1 to
10. Slice configuration 1 represents centralized traffic engi-
neering as in SWAN. Slice configurations 2–6 are formed by
drawing slice boundaries around large geographical regions
like APAC, EMEA, India, North America, Oceania, and South
America. In Table 2, slice configuration 2 represents the net-
work divided into two slices: India and the rest of the world,
configuration 3 represents India, Oceania, and the rest of the
world, and so on. Slices 7–10 are formed by additionally divid-
ing the two largest geographies, Europe and North America,
into smaller slices. In our network, configurations 1–6 tend
to have higher intra-slice traffic in comparison to inter-slice
traffic. Slices have up to three strongly connected components,
arising from disconnected sites and router planes.

Availability gains from decentralized TE. The key benefit

332 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8 9 10

5

10

15

(a) Traffic loss on slice failure

Tier 0

Tier 1/2

1 2 3 4 5 6 7 8 9 10

0.125

0.150

0.175

0.200

0.225
(b) Unsatisfied demand

Tier 0

Tier 1/2

Slice count

P
er

ce
n
ta

g
e

Figure 8: Benefit of BLASTSHIELD compared to its cost as a function of slice count: (a) Traffic loss from worst case single slice failure as a
percentage of requested demand, (b) Unsatisfied demand due to enter-leave constraints as a percentage of requested demand.

1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1.0

(a) Path counts

Computed

Active

1 2 3 4 5 6 7 8 9 10

0.97

0.98

0.99

1.00

(b) Path latency

Tier 0

1 2 3 4 5 6 7 8 9 10

0.01

0.02

(c) Unsatisfied demand

Tier 0

Tier 1/2

Slice count

R
a
ti

o

Figure 9: Stress-testing BLASTSHIELD with worst-case failures and 2× demands. (a) Computed paths are the count of paths computed with
enter-leave constraints. Active paths are the count of paths used for traffic engineering. (b) Path latency is the traffic weighted average latency
of active paths for tier-0 demands. (c) Unsatisfied demand is the unallocated demand per traffic tier. All values, except unsatisfied demand, are
normalized to corresponding values for one slice; the latter is a ratio of unsatisfied to requested demand.

of BLASTSHIELD’s slicing is the reduction in blast radius
when a slice controller fails. We consider the failure where
the slice controller removes all programmed TE routes. This
causes the traffic to fall back on protocol routes and the ensu-
ing traffic loss is the impact of the slice failure. We measure
the traffic loss using a network simulator because the scenar-
ios we are testing cannot be replicated in production. The
inputs to the simulation are the production network demands,
topology, TE and the IGP routes, and the network simula-
tor models routing, forwarding, and queuing behavior. The
simulator is used internally for capacity planning and opera-
tional safety checks, and hence is a well-tested proxy for the
production network.

Figure 8 (a) shows the impact of the worst-case single slice
failure when BLASTSHIELD is operating with 1–10 slices. We
keep the demands and topology fixed in this experiment. For
each slice configuration, we fail the largest slice by demand.
The network uses the IGP routes of the failed slice and TE
routes of the remaining slices (if any) to allocate the remaining
demands. The traffic losses are caused by congestion due to
shortest path routing over IGP routes. There are no losses due
to traffic blackholes or routing loops. Figure 8 (a) shows that
with ten slices, tier-0 traffic loss due to slice failure, which is

the metric for blast radius, decreases by 60%, from 9.5% to
3.9%. Tier-1 and tier-2 traffic loss reduction is greater at 70%
(18.1% to 5.7%) because they map to scavenger traffic class
and experience more congestion losses when the failed slice
uses IGP routes. Slices 2–4 show little improvement because
the largest slice can still cause an overly large failure. The
improvements come at six and eight slices with the breakup
of Europe and North America into separate and smaller slices.

Throughput cost of decentralized TE. The key reason why
inter-slice routing in BLASTSHIELD can have lower through-
put than SWAN is due to the enter-leave constraints (§ 5.1).
These constraints decrease the choice of paths available for
placing demands, which in turn decreases the demands that
can be allocated. Figure 8 (b) shows unsatisfied demand from
enter-leave constraints as a percentage of requested demand.
We calculate worst case unallocated demand from 20 vari-
ations of the network topology, each variation has multiple
shared risk failures that reduce the available capacity. Without
constraints, the worst-case unsatisfied demand is 0.27% of the
requested demand, and with ten slices it increases to 0.42%.
The increase in unsatisfied demand of 0.15% is much smaller
than the 18% traffic loss reduction from slice failure. Addi-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 333

tional capacity can be provisioned to decrease the unsatisfied
demand.

Stress testing BLASTSHIELD. We oversubscribe the net-
work by doubling the bandwidth values in requested demands,
and test with variations of the production network with mul-
tiple shared risk group failures in hot spots of the topology.
The purpose of the stress test is to evaluate the performance
of enter-leave constraints in the presence of significant over-
subscription. Figure 9 shows the impact of slicing on paths
computed by the BLASTSHIELD path computer. Since the
constraints enforce a shortest path order when crossing slice
boundaries, they exclude paths that would otherwise be al-
lowed. At ten slices, computed paths decrease by 31% when
compared with one slice. The number of paths actively used
for carrying traffic decreases slightly — by < 1% due to some
demands remaining completely unsatisfied, or diverse paths
not getting found. Figure 9 shows that the traffic weighted
path latency of tier-0 demands decreases by 3% because the
computed paths are skewed towards shortest paths. Finally,
unsatisfied demands as a percentage of requested demands
increases 16% from 3.1% to 3.6%. Unsatisfied demand in-
creases at half the rate of computed path decrease which
is well controlled. In practice, the percentage of computed
paths allowed by enter-leave constraints are used to determine
whether a slice strategy is appropriate.

6.2 Stochastic effects of multiple controllers

Prior to the deployment of BLASTSHIELD, the centralized
SWAN controller programmed new TE routes for the entire
cloud network. BLASTSHIELD replaces the centralized con-
troller with multiple slice controllers that snapshot the net-
work topology and demands at different times. Moreover, the
controllers may re-run the TE optimization and program their
slice routers at different times. We study the impact of the
temporally staggered operation of slice controllers to ask:
can multiple slice controllers work harmoniously and not be
discordant?

We reserve 15% scratch capacity in order to support the
high SLO of tier-0 traffic. Transient traffic bursts and hashing
polarization can cause link utilization to differ significantly
from expected values. The scratch capacity is used to avoid
congestion losses in these conditions. BLASTSHIELD uses
this scratch capacity to deal with differences that arise with
multiple controllers.

Symphony or cacophony of controllers? Path weights de-
cide the split of traffic across paths and are the ultimate result
of TE optimization. The weight of a path is the fraction of
demand placed on it. BLASTSHIELD programs the newly com-
puted path weights every 3 minutes. Since all slice controllers
solve the TE problem for the entire network, we measure if
the path weights that different controllers compute diverge
from each other. We quantify the path weight difference as

the root mean squared error between path weight time se-
ries from two controllers. A path weight difference of zero
implies that the controllers are perfectly aligned. Non-zero
path weight difference implies that the controllers are setting
aside different link bandwidths for a flow which can cause
congestion.

We measure the path weight difference between six differ-
ent BLASTSHIELD controller pairs in the production network
over a 30-day period. There were days when the controllers
were operating with different configurations, different soft-
ware versions, in addition to network topology and demand
changes that happen throughput the day. Figure 10 shows that
only 2% of paths and 3% of total demand have path weight dif-
ference of ≥ 0.15. Inter-slice demands make up 48% of paths
but 10% of total demand because of the slicing strategy. Since
intra-slice traffic dominates, the impact of the path weight
difference is limited. The slicing strategy and scratch capacity
allow multiple controllers to operate without coordination.

Solver stability. Different path weights for slightly perturbed
inputs can create an operational challenge for BLASTSHIELD.
We constrain the solver models to make their solutions stable
— the tier-0 objective function minimizes demand weighted
latency after solving for max-min fairness. In practice, this
makes the solver results more stable when subjected to in-
put perturbations. We do not allow non-determinism in the
TE solver e.g., no parallel primal and dual simplex invoca-
tion in the linear programming solver to pick the first result,
since they will produce different solution vectors that result
in different path weights.

We evaluate the stability of the solver results using the
normalized autocorrelation function (ACF) ρ(τ). ACF is the
correlation of a time series to a delayed version of itself,
as a function of the delay, τ. In Fig. 11, we calculate ACF
for the hour-long path weight time series of all paths in the
production network over a 24-hour period. ACF values range
[−1,1], and 1 implies perfect correlation.

Demand and network topology changes also affect path
weight ACF. So perfect correlation is not possible in an op-
erational network. Figure 11 (a) is an example path weight
time series with ACF(30 minutes) of 0.65 showing steady
values of the same path weight interspersed by occasional gy-
rations. Figure 11 (b) shows that mean ACF is 0.75–0.63 for
lags of 3–30 minutes. This reaffirms the data in Fig. 10 that
path weights from independent BLASTSHIELD controllers
are predominantly the same.

7 Discussion

In this section, we discuss our operational experience with
BLASTSHIELD and describe safe deployment of software
and configuration in BLASTSHIELD slices. We consider the
implications of byzantine slice controllers, and the safeguards
in place to prevent damage from them.

334 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.00 0.15 0.30 0.45

0.25

0.50

0.75

1.00

(a) Paths

All

Inter-slice

0.00 0.15 0.30 0.45

(b) Total demand

All

Inter-slice

Path weight difference

C
D

F

Figure 10: Cumulative distribution function of (a) paths and (b) total demand, by path weight difference, for all demands and inter-slice
demands, measured for six controller pairs in the production network over a 30-day period. 98% of paths and 97% of total demand have path
weight difference ≤ 0.15. Inter-slice demands make up 48% of paths but 10% of total demand.

0 200 400 600 800

t (minutes)

0.3

0.4

0.5

P
a
th

w
ei

g
h
t

(a) ACF example

ACF(30)=0.65

0 3 6 9 12 15 18 21 24 27 30

Lag (minutes)

0.65

0.70

0.75

A
C

F

(b) Mean ACF of path weight time series

Tier 0

Tier 1/2

Figure 11: Autocorrelation function (ACF) measures self-similarity
with a delayed version, and ranges [−1,1] with 1 being perfect cor-
relation. (a) Example path weight time series with ACF(30 minutes)
of 0.65. (b) Mean ACF of path weight time series averaged over all
paths in the production network over a 24-hour period by traffic tier.

7.1 Operational experience

BLASTSHIELD has been in operation for two years. Migration
from SWAN to BLASTSHIELD was carried out over a number
of months. The first step was to deploy inter-slice routing
and forwarding functionality in the SWAN controller and
router agents. This was the riskiest step and preceded by many
months of testing in a virtualized emulation environment
of the production network with fault injection. Each slice
migration involved preparing a new BLASTSHIELD controller,
excluding a set of routers from the slice configuration of the
SWAN controller, and adding them to the new controller.

To support deployment of new software and configuration
changes, we define slices that range from low to high im-
pact. Safe deployment is a partial ordering of slices based on
their blast radius. BLASTSHIELD has two staging sites with

a staging controller, and new software and configuration is
first deployed here. The next slice has the smallest production
scope. We assign routers in geo-redundant site pairs to sep-
arate slices for additional safety. Deployment progresses to
the next slice in the sort order after a sufficient probationary
period. The process continues till either all slices receive the
new version of software or a failure happens in a slice, which
may trigger a rollback of this version from all slices.

Enter-leave constraints have been updated multiple times
to pick up newly provisioned routers and links. In one in-
stance, the constraints affected traffic engineering for an inter-
datacenter pair by excluding too many links. New constraint
configuration to correct the error and reverse an inter-slice
traffic flow was deployed without incident.

We have introduced new hardware platforms, router agents,
and controller services that would be considered high risk in
the SWAN paradigm. BLASTSHIELD allowed us to introduce
new implementations in isolated slices with very small blast
radius and no inter-slice traffic. Initially the slice only served
intra-slice traffic. Inter-slice traffic was introduced after the
slice had been in operation for many months. Outages caused
by failures in the new slices never had a global impact.

Slice controller environments are used by additional ser-
vices to decrease their blast radius. For example, discretionary
flows can be throttled at the sending host to control conges-
tion in the network. Bandwidth is allocated to discretionary
flows by global optimization but each controller only serves
bandwidth pools for a smaller fault domain.

7.2 Byzantine slice controllers
A byzantine controller is an unreliable controller that is dis-
seminating false information or sabotaging the operation of
other slices in the network [24]. A controller that only impacts
its own traffic is not considered byzantine in our analysis.

Resistance to byzantine slice controllers is baked into the
BLASTSHIELD design. BLASTSHIELD does not allow any
inter-controller interaction. Each controller uses its own ser-
vices to get demand and topology inputs. It calculates TE

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 335

routes by sensing the state of the network, and does not rely
on communication with other controllers. Route program-
mers of a WAN slice do not communicate with router agents
in other slices, and thus are unaffected by unreliable agents
in other slices. Access control lists on slice routers prevent
another slice controller from attempting to program them.

Despite these protections, a byzantine controller may route
traffic in a way that causes congestion in downstream slices.
A slice controller estimates the demands at the slice bound-
ary based on the assumption that all slices are well behaved
i.e., they use the same algorithm and configuration as itself.
Byzantine slice can violate this assumption. The impact of a
byzantine controller’s actions are limited to the remote traffic
from the byzantine slice. WAN traffic patterns inform the
creation of slices that minimize inter-slice traffic [30].

We note that non-byzantine controller faults are also possi-
ble. Faulty controller may withdraw all its routes and congest
links in its own or other slices. A faulty controller may loop
or blackhole packets. While we have safety checks and rout-
ing constraints that prevent such conditions, if a controller
manages to bypass the checks, human intervention is required.
We mitigate these failures by pausing the faulty controllers,
and restoring the network programming to last known good
FIB.

8 Related work

B4 [17, 19] and EBB [10] are two examples of operational
networks that use software-defined traffic engineering. [17]
states that site-level domain controllers were large blast radius
and faults caused widespread impact to traffic passing through
the affected site, which led them to divide a site into two or
four control domains, each managed by a separate domain
controller. Similarly, in BLASTSHIELD, we assign routers in
a site to separate slice controllers. [17] uses a central con-
troller to calculate tunnel split groups and the sequencing of
traffic engineering operations, and a large fleet of domain
controllers to do route calculation and programming. BLAST-
SHIELD does not use any central controllers and each slice
controller performs global traffic engineering calculation and
slice-local route programming. It should be noted that the
network architectures of BLASTSHIELD and B4 are quite dif-
ferent. [10] uses a centralized controller and segment routing,
which we evaluated but did not select because of label stack
depth and lack of control in intermediate slices.

Prior work on software-defined traffic engineering [1, 7,
23, 25, 29] focus on the optimization problem of maximiz-
ing utilization, guarantee fairness, preventing congestion un-
der faults, or dynamic pricing without considering how they
would be deployed. They all assume a centralized controller
will perform the optimization for the entire network without
considering what happens when the controller fails. BLAST-
SHIELD can be used in conjunction with these works to make
them deployable in operational networks.

Inter-slice routing is similar to pathlet routing [13] but
without any controller interaction or dissemination proto-
col. [9, 12] study consistent updates and loop avoidance with
a centralized controller, but not multiple controllers with in-
consistent views. BLASTSHIELD adopts a stricter approach of
not communicating with another controller to avoid additional
failure modes from faults in the communication, and because
the information a controller needs can be acquired from the
network.

9 Conclusion

In this work, we motivate the design of a decentralized traffic
engineering system for large-scale cloud WANs using our op-
erational experience with SWAN. We propose BLASTSHIELD,
Microsoft’s new global TE system that decentralizes the TE
controller with WAN slicing and implements loop-free inter-
slice routing. BLASTSHIELD achieves similar throughput as
fully centralized TE implementations while significantly re-
ducing the blast radius of faults in TE controllers. We have
been operating Microsoft’s WAN with BLASTSHIELD, and
it has substantially lowered the risk of configuration changes
causing large outages.
Acknowledgements. We thank our colleagues for their
significant contributions to BLASTSHIELD: Amin Ahmadi
Adl, Ashlesha Atrey, Jeff Cox, Shubhangi Gupta, Guruprasad
Hiriyannaiah, Luis Irun-Briz, Karthick Jayaraman, Srikanth
Kandula, Pranav Khanna, Sonal Kothari, Nishschay Kumar,
Erica Lan, Dave Maltz, Paul Mattes, Antra Mishra, Zahira
Nasrin, Paul Pal, Francesco De Paolis, Rohit Pujar, Rejimon
Radhakrishnan, Prabhakar Reddy, Newton Sanches, Anubha
Sewlani, Sailaja Vellanki, Wei Wang, and Li-Fen Wu. We
also thank our shepard, Stefan Schmid, and the anonymous
reviewers who gave us invaluable feedback.

References

[1] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai
Menache, Matei Zaharia, and Peter Bailis. Contracting
wide-area network topologies to solve flow problems
quickly. In Proceedings of USENIX NSDI, pages 175–
200, April 2021.

[2] Port channels and LACP load balancing hashing al-
gorithms. https://www.arista.com/en/um-eos/eos-port-
channels-and-lacp, accessed February 2022.

[3] Algirdas Avižienis. Fault-tolerant systems. IEEE Trans-
actions on Computers, 25(12):1304–1312, December
1976.

[4] Daniel O. Awduche, Lou Berger, Der-Hwa Gan, Tony
Li, Vijay Srinivasan, and George Swallow. RSVP-TE:
Extensions to RSVP for LSP tunnels. RFC 3209, De-
cember 2001.

336 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.arista.com/en/um-eos/eos-port-channels-and-lacp
https://www.arista.com/en/um-eos/eos-port-channels-and-lacp

[5] Steven Blake, David L. Black, Mark A. Carlson, Elwyn
Davies, Zheng Wang, and Walter Weiss. An architecture
for differentiated services. RFC 2475, December 1998.

[6] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai
Menache, Nikolaj Bjørner, Asaf Valadarsky, and
Michael Schapira. TEAVAR: striking the right
utilization-availability balance in WAN traffic engineer-
ing. In Proceedings of ACM SIGCOMM, pages 29–43,
August 2019.

[7] Yiyang Chang, Chuan Jiang, Ashish Chandra, Sanjay
Rao, and Mohit Tawarmalani. Lancet: Better network
resilience by designing for pruned failure sets. Proc.
ACM Meas. Anal. Comput. Syst., 3(3), December 2019.

[8] Implementing Cisco Express Forwarding. https:
//www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-
addresses/66x/b-ip-addresses-cg-ncs5500-
66x/m-implementing-cisco-express-forwarding-
ncs5500.html, accessed February 2022.

[9] Szymon Dudycz, Arne Ludwig, and Stefan Schmid.
Can’t touch this: Consistent network updates for mul-
tiple policies. In IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 133–143,
June 2016.

[10] Mikel Jimenez Fernandez and Henry Kwok. Building
express backbone: Facebook’s new long-haul network,
May 2017. https://engineering.fb.com/2017/05/01/data-
center-engineering/building-express-backbone-
facebook-s-new-long-haul-network/.

[11] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Brune
Decraene, Stephane Litkowski, and Rob Shakir. Seg-
ment routing architecture. RFC 8402, July 2018.

[12] Klaus-Tycho Forster, Ratul Mahajan, and Roger Watten-
hofer. Consistent updates in software defined networks:
On dependencies, loop freedom, and blackholes. In IFIP
Networking, May 2016.

[13] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and
Ion Stoica. Pathlet routing. In Proceedings of ACM
SIGCOMM, pages 111–122, August 2009.

[14] Andrew V. Goldberg, Éva Tardos, and Robert E. Tarjan.
Network flow algorithms. In Bernhard Korte, Lásló
Lovász, Hans Jürgen Prömel, and Alexander Schrijver,
editors, Paths, Flows, and VLSI Layout (Algorithms and
Combinatorics), volume 9, pages 101–164. Springer-
Verlag, 1990.

[15] Hannes Gredler, Jan Medved, Stefano Previdi, Adrian
Farrel, and Saikat Ray. North-bound distribution of
link-state and traffic engineering (TE) information using
BGP. RFC 7752, March 2016.

[16] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In Proceedings of ACM SIGCOMM, pages 15–26,
August 2013.

[17] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and
after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in Google’s software-defined
WAN. In Proceedings of ACM SIGCOMM, pages 74–87,
August 2018.

[18] Intermediate System to Intermediate System intra-
domain routeing information exchange protocol for
use in conjunction with the protocol for providing
the connectionless-mode network service (ISO 8473).
ISO/IEC 10589:2002, November 2002. https://www.iso.
org/standard/30932.html.

[19] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed software defined WAN.
In Proceedings of ACM SIGCOMM, pages 3–14, August
2013.

[20] Understanding the algorithm used to load balance
traffic on MX series routers. https://www.juniper.net/
documentation/us/en/software/junos/sampling-
forwarding-monitoring/topics/concept/hash-
computation-mpcs-understanding.html, accessed
February 2022.

[21] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna
Charny. Walking the tightrope: Responsive yet stable
traffic engineering. In Proceedings of ACM SIGCOMM,
pages 253–264, August 2005.

[22] Dave Katz and Dave Ward. Bidirectional Forwarding
Detection. RFC 5880, June 2010.

[23] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,
Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and
Robert Soulé. Semi-oblivious traffic engineering: The
road not taken. In Proceedings of USENIX NSDI, pages
157–170, April 2018.

[24] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401,
1982.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 337

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/ip-addresses/66x/b-ip-addresses-cg-ncs5500-66x/m-implementing-cisco-express-forwarding-ncs5500.html
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://www.iso.org/standard/30932.html
https://www.iso.org/standard/30932.html
https://www.juniper.net/documentation/us/en/software/junos/sampling-forwarding-monitoring/topics/concept/hash-computation-mpcs-understanding.html
https://www.juniper.net/documentation/us/en/software/junos/sampling-forwarding-monitoring/topics/concept/hash-computation-mpcs-understanding.html
https://www.juniper.net/documentation/us/en/software/junos/sampling-forwarding-monitoring/topics/concept/hash-computation-mpcs-understanding.html
https://www.juniper.net/documentation/us/en/software/junos/sampling-forwarding-monitoring/topics/concept/hash-computation-mpcs-understanding.html

[25] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, and David Gelernter. Traffic engineering
with forward fault correction. In Proceedings of ACM
SIGCOMM, pages 527–538, August 2014.

[26] Peter Phaal and Marc Levine. sFlow version 5, July
2004.

[27] Yakov Rekhter, Tony Li, and Susan Hares. A Border
Gateway Protocol 4 (BGP-4). RFC 4271, January 2006.

[28] Eric C. Rosen, Arun Viswanathan, and Ross Callon.
Multiprotocol label switching architecture. RFC 3031,
January 2001.

[29] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with Cascara. In Proceedings of USENIX
NSDI, pages 201–216, April 2021.

[30] Rachee Singh, Nikolaj Bjørner, Sharon Shoham, Yawei
Yin, John Arnold, and Jamie Gaudette. Cost-effective ca-
pacity provisioning in wide area networks with Shoofly.
In Proceedings of ACM SIGCOMM, pages 534–546,
August 2021.

338 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	Bad luck comes in threes
	Blast Radius, Ripple and Shielding

	Slicing the cloud WAN
	BlastShield System Design
	System overview
	Design considerations

	Routing and forwarding in BlastShield
	Inter-slice routing
	Why not source routing?

	Evaluating BlastShield in production
	Availability vs. throughput trade-offs
	Stochastic effects of multiple controllers

	Discussion
	Operational experience
	Byzantine slice controllers

	Related work
	Conclusion

