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Abstract – This paper presents ISLA, a system that enables

low power IoT nodes to self-localize using ambient 5G signals

without any coordination with the base stations. ISLA operates

by simply overhearing transmitted 5G packets and leverages

the large bandwidth used in 5G to compute high-resolution

time of flight of the signals. Capturing large 5G bandwidth

consumes a lot of power. To address this, ISLA leverages

recent advances in MEMS acoustic resonators to design a RF

filter that can stretch the effective localization bandwidth to

100 MHz while using 6.25 MHz receivers, improving ranging

resolution by 16×. We implement and evaluate ISLA in three

large outdoors testbeds and show high localization accuracy

that is comparable with having the full 100 MHz bandwidth.

1 Introduction

Recent years have witnessed a tremendous growth in the num-

ber of connected IoT devices, with surveys projecting up to

31 billion deployed IoT nodes by 2030 [38]. With such ubiq-

uitous deployment of IoT nodes, the ability to localize and

track these nodes with high accuracy is essential for many

applications. For example, in data driven agriculture, it can

enable real time micro-climate monitoring and livestock track-

ing [39]. In smart cities, IoT sensors are deployed throughout

the city for tasks such as air quality monitoring, tracking buses,

trains, and cars, and monitoring the structural health of infras-

tructure [22]. In the era of Industry 4.0, it can also enable wide

area inventory tracking and facilitate factory automation [24].

Today, the most prevalent outdoors localization technol-

ogy is GPS which is mainly used in cars and mobile phones.

However, off-the-self GPS chips can consume about the same

power as the entire IoT device, thus reducing the battery life

to half in addition to the extra hardware costs [5]. Due to

this, past work has proposed the use of cellular networks or

dedicated IoT base stations for localization [9, 27]. These

solutions, however, either achieve very low resolution of 100s

of meters [9, 18] or require active participation of the base

stations to jointly compute the location or tightly synchronize

the base stations [27,40,45]. Realizing such solutions in prac-

tice requires the cooperation of cellular providers to bear the

additional cost of modifying the base stations and a back end

server to support the localization feature.

In this paper, we ask whether an IoT device can accurately

localize itself simply by listening to ambient 5G cellular sig-

nals, without any coordination with the 5G base stations?

Doing so would allow us to easily deploy self-localizing IoT

nodes is wide areas without the need to modify the cellular

base stations or deploy new base stations for localization.

5G cellular networks present unique opportunities for en-

abling accurate localization. First, the small cell architecture

in 5G networks will lead to a very high density of 5G base

stations, with up to 40 to 50 base stations deployed per square

km [15], thereby allowing us to leverage more anchor points

in the network for increased localization accuracy. Second,

the 5G standard is designed to support very high data rates

and can have OFDM signals spanning up to 100 MHz in band-

width in the sub-6 GHz frequency range, and up to 400 MHz

bandwidth in the mmWave frequency range [37]. Such large

bandwidth can be used for accurate localization. To see how,

consider the 5G OFDM signal shown in Fig. 1(a) where data

bits are encoded in N frequency subcarriers. We can use the

preamble which contains known bits to compute the channel

impulse response (CIR) by taking an inverse FFT. The CIR in

Fig. 1(a) shows the Time-of-Flight (ToF) of different signal

paths. Estimating the ToF from few base stations allows us to

localize the device. The larger the bandwidth of the signal, the

higher the resolution. In fact, we can achieve a resolution of 3

meters for 100 MHz and 0.75 meters for 400 MHz signals.1

Leveraging these opportunities, however, is challenging

since power-constrained and low-cost IoT nodes cannot cap-

ture the large bandwidth of the 5G signals. They are equipped

with low-power and low-speed Analog-to-Digital Converters

(ADCs) that can only capture a narrow bandwidth. In fact,

while IoT has been one of the cornerstone applications in

the design of 5G, it is only supported in narrowband chunks

for low data rate applications [2, 3]. Therefore, while the 5G

standard does allocate higher bandwidth (up to 400 MHz)

for mobile broadband and high data rate applications, IoT

nodes can capture only a very small fraction of this band-

width (∼ 20× smaller [37]). As a result, they significantly

lose out on the ToF resolution that was made possible by the

high bandwidth 5G signals as shown in Fig. 1(b). Moreover,

it is infeasible to measure the absolute time-of-flight without

any coordination or synchronization with the base stations.

In this paper, we present ISLA, a system that enables IoT

Self-Localization using Ambient 5G signals. ISLA does not

require any coordination with or modifications to the base

stations. The key enabler of ISLA is the use of MEMS (micro-

electro-mechanical-system) acoustic resonators. Past work

[11, 12] has demonstrated that we can use such MEMS res-

onators to design new kinds of RF filters that look like a

spike-train in the frequency domain, as shown in Fig. 1(c).

To understand how we can leverage such MEMS spike-train

filters, consider the 5G OFDM signal shown in Fig. 1(a).

1The resolution is computed as c/B where c is the speed of light and B is

the bandwidth of the signal.
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approach with several baselines [9, 21, 43] and show up to

4−11× higher localization accuracy. Finally, we show that

ISLA achieves a comparable performance to having a full 100

MHz receiver while using a 16× lower sampling rate.

Contributions: We make the following contributions:

• We present, to the best of our knowledge, the first system

that allows IoT nodes to localize themselves using ambient

5G signals without any coordination with the base stations.

• We demonstrate the ability to reduce the sampling rate by

16× while retaining the benefits of high bandwidth 5G

signals by leveraging recent advances in MEMS RF filters.

• We implement and evaluate ISLA to demonstrate accurate

localization in 3 outdoor settings.

2 Related Work

Localization has been extensively studied in cellular, WiFi,

and IoT networks. Our work differs from past research in

that it is the first to enable self-localization using ambient 5G

signals without requiring coordination with the base stations.

A. Cellular Based Localization: Several studies [9, 17, 18,

29,33] have proposed to use nearby cell tower information and

statistics in order to localize a mobile device. These methods,

however, have a median accuracy of around 100 to 500 meters,

and are mostly useful for very coarse localization. To improve

localization accuracy, [4, 35] propose to combine WiFi APs

with cellular base stations. Despite their relatively higher ac-

curacy, these methods require fingerprinting the surroundings

and as such require extensive training and do not generalize to

new locations. More recent work exploits massive MIMO and

millimeter wave for localization in 5G [30, 31, 42]. However,

all of this work requires coordination with base stations and

assumes the devices can capture the entire bandwidth of the

5G signals which does not work for IoT devices.

B. IoT Based Localization: [5] leverages TV whitespaces

to achieve high localization accuracy for LoRA IoT devices.

However, it requires all base stations to be tightly synchro-

nized at the physical layer (time and phase) in order to mea-

sure TDoA (Time Difference of Arrival). Recent work [27]

designs low power backscatter devices that leverage LoRa for

localization to achieve high accuracy. However, the system

mainly targets indoor applications where software radios can

be deployed as base stations to sample the I/Q of the signal

and localize the IoT node. Moreover, its current system de-

sign [27] supports only a single node. The authors of [34]

propose an outdoors localization technique for SigFox IoT

devices based on fingerprinting. However, as mentioned ear-

lier, fingerprinting requires constant training and cannot scale

to new environments. Finally, there is a lot of work on using

UWB or RFID nodes for localization [10,13, 41]. However,

these works focus on indoors and short range as the range of

UWB and RFIDs is limited to 10-30 meters [7, 14].

C. IoT Self-Localization: LivingIoT [19] enables self-

localization on IoT nodes. It designs a miniaturized device

that can be carried by a bumblebee and uses backscatter for

communication. The node localizes itself by extracting the

angle to the Access Point from the amplitude measurements

using an envelop detector. The technique, however, requires

the APs to switch the phase across two antennas to change the

received amplitude at the IoT node, and hence, cannot be ap-

plied to 5G without modifying the base stations. [26] enables

self-localization by placing a camera on a WISP RFID but

only operates within a range of 3.6 m from the RFID reader.

D. WiFi Based Localization: There has been a lot of work on

indoor localization using WiFi [6,21,25,32,40,43,44,46,47].

The closest to our work are [21, 40, 43] which estimate the

channel impulse response (CIR) and time of flight (ToF)

from the WiFi access point (AP). Chronos [40] hops be-

tween WiFi channels to compute the CIR at high resolution.

However, it requires tight timing coordination with the AP

to compensate for carrier frequency offset (CFO) and ensure

phase coherence across the measurements. ISLA, on the other

hand, captures measurements from many frequencies across

a wideband without hopping by using the MEMS filter, and

hence, does not require any coordination with the base sta-

tions. SpotFi [21] combines measurements across antennas

with large WiFi bandwidth to separate Line of Sight (LoS)

path from multipath reflections in the CIR using MUSIC

along two dimensions: ToF and Angle of Arrival (AoA). mD-

Track [43] also incorporates Doppler shifts and Angle of

Departure (AoD) in addition to ToF and AoA and iteratively

refines the CIR to achieve a better estimate of the LoS path.

In section 10, we adapt SpotFi’s and mD-Track’s CIR esti-

mation algorithms to our setting and demonstrate that ISLA’s

algorithm achieves 4−11× higher accuracy. It is worth not-

ing, however, that for our application, these past works cannot

benefit from the doppler or AoA/AoD dimensions.

E. MEMS Filter: Recent work has used MEMS spike-train

filters for the application of wideband spectrum sensing [12].

However, [12] can only detect signal power at different fre-

quencies and cannot recover complex I and Q samples needed

for estimating the CIR. Furthermore, [12] deals with collisions

resulting from aliasing by using co-prime sub-sampling rates.

Such approach does not apply in the context of 5G OFDM

signals, since, as we show in section 5 the sub-sampling factor

can only be a power of 2. ISLA instead co-designs the hard-

ware filter together with sampling rate to avoid collisions.

3 Background

A. Spike-Train MEMS Filters: Our work builds on recent

advances in MEMS RF filters. MEMS filters can work be-

tween a few MHz and 30 GHz and can be integrated with ICs

to form a chip-scale RF front-end solution for IoT devices.

Past work on MEMS RF filters optimize for filters with a

single passband [36, 48], however, the MEMS filter used by
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the Channel Impulse Response CIR(τ). Since the preamble

bits cn are known, we can compensate for cn and compute the

CIR(τ) by taking an IFFT of the channel values hn. However,

this requires capturing the entire bandwidth of the 5G OFDM

signal. Our goal is to recover the CIR using a narrowbandwith.

To do so, we leverage the MEMS spike-train filter.

The spike-train filter response is made up of uniformly

spaced passbands as shown in Fig. 2(b). The spike-train

filter serves to sparsify the OFDM symbol by selectively

passing subcarriers that fall inside the MEMS passbands,

while suppressing all other frequencies. Let the set of fre-

quencies passed by the spike-train be indexed by M. Then,

the frequency domain of the signal X̃( f ) (x̃(t) in the time

domain) after passing through the spike-train filter will be

X̃( f ) = ∑i∈M cihiδ( f − fi).
This sparse spectrum is shown in Fig. 2(b). Next, the IoT

receiver subsamples the signal x̃(t) using a low-speed ADC

that samples at a rate R = B/P, where B is the bandwidth of

the transmitted symbol and P is an integer corresponding to

the subsampling factor. Let y(t) be the subsampled signal,

that is, y(t) = x̃(P× t), and let Y ( f ) be its frequency domain

representation. Then Y ( f ) is an aliased version of X̃( f ):

Y ( f ) =
P−1

∑
i=0

X̃( f + iR) (2)

Y ( f ) will cover a narrow bandwidth equal to R MHz as

depicted in Fig. 2(c). The process of aliasing is as follows.

Any frequency f j, j ∈ M, that falls outside the narrowband

of the IoT device, will alias onto the frequency bin f̃ j inside

the narrowband after subsampling, such that f j − f̃ j = z×R,

where z is some integer. Note that for every f j, we have a

unique f̃ j. So given the measurement at the aliased frequency

f̃ j, we can potentially recover the channel value h j at the

corresponding unaliased frequency f j.

However, recovering these channel values from the aliased

spectrum is non-trivial because multiple of the frequency sub-

carriers passed by the spike-train filter may collide by aliasing

on top of each other and summing up. This is unfavorable

since now we are unable to extract the channel values for any

of the colliding frequencies. Past work addresses this by lever-

aging multiple co-prime subsampling factors, which ensures

that the same frequencies don’t collide repeatedly.

Unfortunately, we do not have such flexibility to choose any

sub-sampling factor here. This is because in order to recover

the channel value h j from the aliased frequency f̃ j, we need

to ensure that the complex scaling factor c j ×h j encoded on

subcarrier f j remains preserved upon aliasing. This is crucial

because the wireless channel information is contained inside

this scaling factor. The following lemma states the condition

that ensures this:

Lemma 5.1. For a sub-sampling factor P and N OFDM

subcarriers, the complex valued scaling factors for each sub-

carrier will be preserved upon aliasing if N = z×P, for some

integer z, given the aliasing results in no collisions.

The proof for the above lemma is in Appendix A. Thus,

to be able to recover channel values, we are restricted to

subsample the signal by an integer factor of N. Further, since

the OFDM subcarriers in the 5G standard are set to powers

of 2, we can only subsample the wideband signal by powers

of 2.

Due to this lack of choice in subsampling factors, we in-

stead shift our focus on designing the spike-train filter such

that the frequencies passed by the filter do not collide upon

aliasing. We achieve this by leveraging the structured periodic

sparsity of the spike-train, and design a filter that ensures no

collisions for the given subsampling factor P.

Doing so significantly simplifies our recovery algorithm. In

particular, given that (1) the frequency response of the spike-

train filter and its collision-free aliasing patterns are known,

and that (2) the scaling factors at the frequency subcarriers

remain preserved upon aliasing, we can now simply rearrange

the frequencies in Y(f) to their corresponding unaliased fre-

quency positions as shown in Fig. 2(d). Further, we can extract

the channel values at these unaliased frequencies by dividing

the complex scaling factor c j ×h j by the known preamble bit

c j. Thus, by leveraging the spike-train filter, ISLA is able to

extract wideband channel values on a narrow band IoT device.

Next, we discuss the design parameters of the spike-train filter

that ensures no collisions.

Spike-Train Filter Design: We explain the spike-train fil-

ter design with a specific example, shown in Fig. 3(a). Let

the wideband transmitted OFDM signal (B MHz bandwidth)

be comprised of 32 frequency subcarriers, indexed from -

16 to 15, with 0 denoting the carrier frequency bin. From

Lemma 5.1, we want the subsampling factor P to divide

N = 32. So we choose P = 4, that is, the IoT receiver subsam-

ples the signal by 4×. This implies that the IoT receiver is

only able to capture N
P
= 8 frequency bins centered around the

carrier frequency as shown by the shaded region in Fig. 3(a).

Let this narrow band set of frequencies be denoted as fNB.

Recall that when you subsample a B MHz signal by P×,

then all frequency subcarriers spaced by R = B
P

MHz will

alias onto the same frequency bin in the narrow band spec-

trum. Here, this translates into all frequencies spaced by 8

subcarriers aliasing onto the same narrowband bin. This is

depicted in Fig. 3(a) through the color coding scheme. For

instance, the subcarriers at {−9,−1,7,15} (represented as

purple colored) would all appear at frequency bin -1 in the

narrow band spectrum upon aliasing. For a given subcarrier k

in the narrow band spectrum, that is, k ∈ {−4, . . . ,3}, let us

denote the set of subcarriers that would alias into k as Ik. So

we have I−1 = {−9,−1,7,15}.

The spike-train filter will selectively pass frequency sub-

carriers in the wideband OFDM signal, which after aliasing

can be recovered from the narrow band signal at the receiver.

Let the set of frequency subcarriers passed by the spike-train

filter be denoted by fM , where M ∈ [−15, . . . ,16]. We want

the following conditions to hold:
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Figure 8: ISLA’s localization accuracy compared against baselines across different testbeds: (a) Campus (b) Parking lot (c) Farm.

station is equipped with a single antenna and the IoT device

does not have high mobility relative to the base station.

Note that, systems like Spot-Fi and mD-Track were not de-

signed for ambient localization, and thus need to be adapted

here. Specifically, we leverage the ToF estimates provided by

these baselines for the LoS path, and in turn self-localize the

client by computing the relative ToF, as described in Section 7.

(3) RSSI: Past work leverages RSSI measurements to localize

clients in outdoor cellular networks, by either using approxi-

mate path loss models for trilateration, or by using the known

locations of nearby cells as coarse estimates. We implemented

one recent RSSI baseline [9].

(4) Spike-train filter-adapted baselines: To provide a fair com-

parison against ISLA, we modify Spot-Fi and mD-Track to

leverage the spike-train filter and utilize the wideband chan-

nel measurements for localization. It is non-trivial to adapt

Spot-Fi for the spike-train filter since the spatial smoothing

technique used in Spot-Fi requires uniformly spaced channel

measurements across frequency, whereas the spike-train filter

samples the OFDM frequency bins non-uniformly. To address

this, we restructure the spatial smoothing subarray from [21]

that allows Spot-Fi to be applied across the non-uniform fre-

quencies sampled by the spike-train filter.

10.2 Results

Unless otherwise specified, for all results, we utilize 5 ran-

domly chosen base stations as the anchor points.

A. Localization Accuracy Comparison against Baselines:

We compare ISLA’s localization against the baselines in Fig. 8.

Note that, while ISLA is designed specifically to leverage the

wideband channel sensed by the MEMS filter, the baselines

are implemented without modification and thus utilize only

the narrowband channel for localization.

From Fig. 8, ISLA achieves a median localization accuracy

of 1.58 meters in the campus testbed, 17.6 meters in the park-

ing lot testbed, and 37.8 meters in the farm testbed. Across

the same three testbeds, Spot-Fi achieves median accuracies

of 17.05 meters, 61.2 meters and 156.6 meters, whereas mD-

Track achieves 18.11 meters, 71.8 meters, and 183.1 meters

respectively. Thus, ISLA improves the localization accuracy

over Spot-Fi and mD-track by ∼ 11× in the campus testbed,

and by ∼ 4× in the parking lot and farm. ISLA is able to

achieve such high gains since it leverages the spike-train filter

to sense wideband channel on the narrowband device, which

allows for much higher resolution compared to the baselines

operating solely in the narrowband. Further, the localization

improvement over the narrowband baselines is most signif-

icant in the campus testbed, since it has the most multipath

from surrounding buildings, and thus ToF resolution is critical

to separate out the LoS path from reflections.

Lastly, the RSSI baseline achieves median accuracies of

64.54 meters, 120.7 meters, and 260.8 meters respectively

across the three testbeds. RSSI based methods generally have

poor performance, as they tend to oversimplify path loss mod-

els that map RSSI values to distance, which does not hold for

real world multipath channels.

B. Comparison against Spike-train-adapted Baselines:

Next, we evaluate how leveraging the spike-train filter would

benefit the performance of our narrowband baselines. Fig. 9

shows the CDF of localization accuracy comparing ISLA

against the modified baselines that utilize the wideband chan-

nel from the spike-train filter. The RSSI baseline is not in-

cluded here since its localization performance does not de-

pend on bandwidth. Compared to its narrowband implemen-

tation, Spot-Fi’s median accuracy improves to 11.08 meters

in the Campus testbed, 49.07 meters in the Parking Lot, and

137.76 meters in the farm. Similarly, mD-Track’s median per-

formance improves to 15.48 meters, 51.45 meters and 103.78

meters in the three testbeds respectively. Thus, Spot-Fi and

mD-Track see improvements in localization accuracy by up

to 54% and 76% respectively. This shows that other localiza-

tion techniques can also benefit from the wide-band channel

sensing capabilities enabled by the spike-train filter.

Additionally, Fig. 9 shows that given the same channel in-

formation, ISLA’s off-grid CIR estimation algorithm is able

to better resolve and estimate the relative ToF compared to

Spot-Fi and mD-Track. This is because these baselines were

designed to leverage multiple information dimensions to sep-

arate out the multipath components, with both baselines lever-

aging 3 or more antennas for separation in the AoA domain,

and mD-Track further using the additional dimensions of

Doppler and AoD as well. In contrast, here the IoT device

has to separate out multipath in the ToF domain alone, and

ISLA is able to achieve very accurate localization owing to its

off-grid estimation algorithm.

C. ISLA Leveraging Different Amounts of Spectrum: In

this experiment, we compare ISLA’s localization algorithm

applied across three different amounts of spectrum utilization

— (1) ISLA applied only to the wideband sparse channel sensed

by the spike-train filter (without combining with narrowband

channel), (2) ISLA applied only to the narrowband channel of

1020    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



0 10 20 30 40 50 60

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

�✁✂

       ISLA

       MEMS-adapted Md-Track

       MEMS-adapted Spot-Fi

0 50 100 150 200 250

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

✄☎✆

       ISLA

       MEMS-adapted Md-Track

       MEMS-adapted Spot-Fi

0 50 100 150 200 250 300 350 400 450

Localization Error (in meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

✝✞✟

       ISLA

       MEMS-adapted Md-Track

       MEMS-adapted Spot-Fi

Figure 9: ISLA’s localization accuracy compared against MEMS filter adapted baselines at: (a) Campus (b) Parking lot (c) Farm.
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Figure 10: (a-c) Comparison of ISLA’s localization accuracy when leveraging different amounts of spectrum across all three testbeds. (d)

ISLA’s localization error with different number of visible base stations.

IoT device, and (3) ISLA applied across the entire 100 MHz

bandwidth of the received 5G signal. Fig. 10 plots the CDF

of localization accuracy achieved across the three testbeds.

ISLA applied on the narrowband channel performs the

poorest, achieving median accuracies of 7.9 meters, 58.9 me-

ters and 142.52 meters in the campus, parking lot and farm

testbeds. In contrast, ISLA along with the spike-train filter

can achieve corresponding median accuracies of 1.68 meters,

18.8 meters and 45.04 meters. Thus, ISLA along with spike-

train achieves an improvement in localization accuracy of

3.16×−4.7× compared to ISLA applied in the narrowband

spectrum, despite both baselines capturing the same amount

of channel measurements. The advantage of spike-train stems

from the fact that it enables the narrowband receiver to capture

channel measurements that span a much larger bandwidth,

which results in much higher ToF resolution.

On the other hand, ISLA’s localization algorithm applied

on the full 100 MHz spectrum achieves median accuracies of

1.38 meters, 11.44 meters and 25.8 meters respectively on the

three testbeds. Thus, ISLA with the spike-train filter reduces

the localization accuracy by only 1.21×, 1.64×, and 1.74×
respectively compared to this upper bound. This demonstrates

that the spike-train filter can enable a narrowband device to

achieve localization accuracy within a factor of 2× compared

to a broadband receiver, despite the fact that it subsamples the

signal by 16× below Nyquist.

D. Localization with Number of Anchor Base Stations:

In Fig. 10(d), we compare ISLA’s localization performance

with 5, 15 and 25 base stations used as anchor points respec-

tively, in the parking lot testbed. With 5 base stations, ISLA

achieves a median accuracy of 17.6 meters, which improves

to 9.27 meters with 15 base stations, and 4.26 meters with 25

base stations. This improvement becomes even more signifi-

cant at the tail, with ISLA achieving 90th percentile accuracy

of 73.16 meters with 5 base stations, which improves to 10.9

meters accuracy with 25 base stations at 90th percentile. Thus,

leveraging more base stations can significantly improve the

localization accuracy achieved by ISLA.

E. Tracking Objects: We move the IoT device across an

L-shaped trajectory (160 meters in length and 85 meters in

width) in the parking lot testbed, and collect packet trans-

missions from the base stations at different points along this

trajectory. In this experiment, we pick 7 fixed base stations

to utilize as anchor points, and we show the ground truth

trajectory and corresponding estimated trajectory by ISLA

in Fig. 11(a). As can be observed, ISLA’s high localization

accuracy allows to faithfully capture the shape of the ground

truth trajectory.

10.3 Microbenchmarks

A. CIR Estimation using Fabricated MEMS Spike-train

Filter: To verify the equivalence between our outdoor imple-

mentation and using the prototype with the fabricated MEMS

spike-train filter at 400 MHz, we conduct indoor experiments

at 400 MHz. Specifically, we evaluate the error in recon-

structed CIR and estimated ToF values between the prototype

with the fabricated filter and ISLA with the digital filter im-

plementation. In Fig. 11(b), we show the CDF of the errors

in ToF values (converted to distance (meters)) recovered by

the two approaches, for both LoS and NLoS paths. We can

see that the position of the LoS path in the CIR estimated

from both approaches are very close, with the median error

between their estimates being 0.075 meters. The error in the

NLoS paths is higher, with a median error of 1.05 meters.

However, this will not affect the localization performance

between the two since localization only uses the LoS path.

This microbenchmark demonstrates that ISLA’s approach of

applying the filter and subsampling in digital is equivalent

to using the fabricated filter from a localization perspective,

and that the results shown in this paper are representative of a

fully implemented system.
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A Proofs

Here we re-state the lemmas and provide proofs.

Lemma 5.1 For a sub-sampling factor P and N OFDM sub-

carriers, the complex valued scaling factors for each subcar-

rier will be preserved upon aliasing if N = z×P, for some

integer z, given the aliasing results in no collisions.

Proof of lemma 5.1: Assume that x[n] is a discrete signal

from 0 to N −1, and we are sub-sampling (or decimating) it

by a factor of P, meaning y[n] = X [n×P] for some integer P.

Then the Discrete Fourier Transform of y[n], denoted by Ŷ [k]

is

Ŷ [k] =
⌊N/P⌋−1

∑
n=0

x[nP]e
− j2 2π

⌊N/P⌋
kn

=
1

P

N−1

∑
n=0

x[n]
P−1

∑
m=0

e j 2π
P mne

− j2 2π
⌊N/P⌋

kn
P

=
1

P

P−1

∑
m=0

(

N−1

∑
n=0

x[n]e
− j( 2π

N n)(k
N/P

⌊N/P⌋
−N

P m))
.

Now if P divides N, in other words N = Pz for some integer

z, the above simplifies to

Ŷ [k] =
1

P

P−1

∑
m=0

(

N−1

∑
n=0

x[n]e− j( 2π
N n)(k−zm)

)

=
1

P

P−1

∑
m=0

X̂ [k− zm],

where X̂ is the DFT of x[n]. This proves that, as long as there

is no collision, meaning that there is at most one index m in

the above equation for which X̂ [k−zm] 6= 0, then the complex

values of X̂ [k] will be fully preserved upon sub-sampling. This

proves the lemma.

We also point out that if P does not divide N, then the

complex values are not preserved. Specifically, if N/P is not

a proper integer, Ŷ [k] will be in terms of X̂ [k N/P

⌊N/P⌋ −
N
P

m]

where inside the argument, k
N/P

⌊N/P⌋ −
N
P

m, is not necessarily

an integer. As a result, the original information of X̂ [k] is never

repeated in any of the Ŷ indices. In fact, Ŷ would closely relate

to an interpolated version of X̂ with the Dirichlet kernel.

Lemma 5.2 Consider an OFDM symbol with N frequency

subcarriers, indexed as { f −N
2
, . . . ,0, . . . , f N

2 −1} with inter-

frequency spacing of ∆ f , and a narrowband receiver that

subsamples by P×. If P2 divides N, then the ideal filter param-

eters that meet all three requirements are: (1) f 0
M = f −N

2
, (2)

(

N
P2 −1

)

×∆ f < ∆S < N
P2 ×∆ f , and (3) ∆F = N

P
(1+ 1

P
)×∆ f .

Proof of Lemma 5.2: First, we show that no two frequencies

collide after aliasing. Let q = N
P

, and assume that two frequen-

cies fα and fβ collide. Let fα be k-th subcarrier (for 0≤ k <P)

covered at the i-th passband (0 ≤ i <
⌈

∆S
∆ f

⌉

), and let fβ have

k′ and i′ as corresponding indices. To collide after aliasing,

fα − fβ = (k− k′)∆F +(i− i′)∆ f must be an integer multi-

ple of q∆ f . However, |k− k′| ≤ P−1 and |i− i′|< N
P2 . Thus

| fα− fβ|

∆ f
< (P−1

P
+ 1

P
)q= q, meaning we must have fα− fβ = 0,

proving the first design requirement. Second, we note that

P passbands that do not overlap (since ∆S < ∆F), and each

passband covers exactly N
P2 subcarriers. We therefore have
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