é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Backpressure Flow Control

Prateesh Goyal, MIT CSAIL; Preey Shah, /IT Bombay,; Kevin Zhao,
University of Washington,; Georgios Nikolaidis, Intel, Barefoot Switch Division;
Mohammad Alizadeh, MIT CSAIL; Thomas E. Anderson, University of Washington

https://www.usenix.org/conference/nsdi22/presentation/goyal

This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4-6, 2022 » Renton, WA, USA
978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc Ellall deala

.% King Abdullah University of

Science and Technology

+ B S————
b »

Backpressure Flow Control

Prateesh Goyall, Preey Shah?, Kevin Zhao?, Georgios Nikolaidis®,
Mohammad Alizadeh!, Thomas E. Anderson>

IMIT CSAIL, 2IIT Bombay, 3 University of Washington, “4Intel, Barefoot Switch Division

Abstract

Effective congestion control for data center networks is
becoming increasingly challenging with a growing amount
of latency-sensitive traffic, much fatter links, and extremely
bursty traffic. Widely deployed algorithms, such as DCTCP
and DCQCN, are still far from optimal in many plausible
scenarios, particularly for tail latency. Many operators
compensate by running their networks at low average
utilization, dramatically increasing costs.

In this paper, we argue that we have reached the practical
limits of end-to-end congestion control. Instead, we propose,
implement, and evaluate a new congestion control architec-
ture called Backpressure Flow Control (BFC). BFC provides
per-hop per-flow flow control, but with bounded state,
constant-time switch operations, and careful use of buffers
and queues. We demonstrate BFC’s feasibility by implement-
ing it on Tofino2, a state-of-the-art P4-based programmable
hardware switch. In simulation, we show that BFC achieves
near optimal throughput and tail latency behavior even under
challenging conditions such as high network load and incast
cross traffic. Compared to deployed end-to-end schemes,
BFC achieves 2.3 - 60x lower tail latency for short flows and
1.6 - 5x better average completion time for long flows.

1 INTRODUCTION

Single and multi-tenant data centers have become one of the
largest and fastest growing segments of the computer industry.
Data centers are increasingly dominating the market for all
types of high-end computing, including enterprise services,
parallel computing, large scale data analysis, fault-tolerant
middleboxes, and global distributed applications [10,27,47].
These workloads place enormous pressure on the data center
network to deliver, at low cost, ever faster throughput with
low tail latency even for highly bursty traffic [24,63].
Although details vary, almost all data center networks
today use a combination of endpoint congestion control, FIFO
queues at switches, and end-to-end feedback of congestion
signals like delay or explicit switch state to the endpoint
control loop.! As link speeds continue to increase, however,
the design of the control loop becomes more difficult. First,
more traffic fits within a single round trip, making it more

'We refer to schemes that rely on feedback signals delayed by an entire
round-trip-time as end-to-end schemes, to contrast them with hop-by-hop
mechanisms.

difficult to use feedback effectively. Second, traffic becomes
increasingly bursty, so that network load is not a stable
property except over very short time scales. And third, switch
buffer capacity is not keeping up with increasing link speeds
(Fig. 1), making it even more challenging to handle traffic
bursts. Most network operators run their networks at very
low average load, throttle long flows at far below network
capacity, and even then see significant congestion loss.

Instead, we propose a different approach. The key chal-
lenge for data center networks, in our view, is to efficiently
allocate buffer space at congested network switches. This
becomes easier and simpler when control actions are taken
per flow and per hop, rather than end-to-end. Despite its
advantages, per-hop per-flow flow control appears to require
per-flow state at each switch, even for quiescent flows [11,41],
something that is not practical at data center scale.

Our primary contribution is to show that per-hop per-flow
flow control can be approximated with a limited amount of
switch state and modest number of switch queues, using only
simple constant-time switch operations on a modern pro-
grammable switch. Instead of all flows, we only need state and
dedicated queues for active flows—those flows with queued
packets. We show that, with switch-level fair queueing or
shortest flow scheduling, the number of active flows is modest
for typical data center workloads, even in the tail of the dis-
tribution. The tradeoff is that performance can degrade when
the number of active flows exceeds the number of queues. In
practice, we advocate combining per-hop flow control with
end-to-end congestion control to avoid pathological behavior.
However, to better illustrate the benefits and limitations of
our approach, our description and experiments focus on
comparing pure per-hop control with pure end-to-end control.

‘We have implemented our approach, Backpressure Flow
Control (BFC), on Tofino2 a state-of-the-art P4-based
programmable switch ASIC supporting 12.8 Tbps of
switching capacity [33]. Tofino2 has 32-128 independently
pausable queues at each output port. Our implementation
uses less than 10% of the dedicated stateful memory on
Tofino2. All per-packet operations are implemented entirely
in the dataplane; BFC runs at full switch capacity.

To evaluate performance, we run large-scale ns-3 [4]
simulations using synthetic traces drawn to be consistent
with measured workloads from Google and Facebook data
centers [49] on an oversubscribed multi-level Clos network

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 779

topology. We synthetically add incast to these workloads
to represent a challenging scenario for both end-to-end and
per-hop approaches. We consider both throughput and tail
latency performance for short, medium, and long flows.

For our simulated workloads, BFC improves both latency
for short flows and throughput for long flows. Compared
to a wide set of deployed end-to-end systems, including
DCTCP [8], DCQCN [65], and HPCC [43], BFC achieves
2.3-60x better tail flow completion times (FCTs) for short
flows, and 1.6 - 5x better average performance for long flows.
ExpressPass [22] achieves 35% better short flow tail latency,
but 17x worse average case performance for long flows. We
also show that BFC performs close to an idealized fair queue-
ing system with unbounded buffers and switch queues, but
with limited queues and far smaller buffers. BFC can be com-
bined with other switch scheduling algorithms such as priority
scheduling among traffic classes. Unlike other receiver-driven
schemes like Homa [49], BFC does not assume knowledge
of flow sizes and does not rely on packet spraying (which is
difficult to deploy in practice). With packet spraying, Homa
outperforms BFC, but without it we show BFC outperforms
Homa and can enforce shortest remaining flow first schedul-
ing more accurately.

Our specific contributions are:

* A discussion of the fundamental limits of end-to-end con-

gestion control for high bandwidth data center networks.

* A practical protocol for per-hop per-flow flow control,
called BFC, that uses a small, constant amount of
state and limited number of switch queues to achieve
near-optimal tail-latency performance for typical data
center workloads.

* An implementation and proof-of-concept evaluation of
BFC on a commercial switch. To our knowledge, this
is the first implementation of a per-hop per-flow flow
control scheme for a multi-Tbps switch.

2 MOTIVATION

Over the last decade, researchers and data center operators
have proposed a variety of congestion control algorithms for
data centers, including DCTCP [8], Timely [48], Swift [40],
DCQCN [65], and HPCC [43]. The primary goals of
these protocols are to achieve high throughput, low tail
packet delay, and high resilience to bursts and incast traffic
patterns. Operationally, these protocols rely on end-to-end
feedback loops, with senders adjusting their rates based
on congestion feedback signals echoed by the receivers.
Irrespective of the type of signal (e.g., ECN marks, multi-bit
INT information [36,43], delay), the feedback delay for these
schemes is a network round-trip time (RTT). This delay has
an important role in the performance of end-to-end schemes.
In particular, senders require at least one RTT to obtain
feedback, and therefore face a hard tradeoff in deciding the
starting rate of a flow. They can either start at a high rate
and risk causing congestion, or start at a low rate and risk

\‘%100

2 go{ Trident2 (2012)

[%} °

©

< 60 Tomahawk (2014)

o hd e

~ 0 Tomahawk2 (2016) o
% Tomahawk3 (2018
(V2]

20

2

5

o 0

0 2 4 6 8 10 12
Switch Capacity (Tbps)

Figure 1: Hardware trends for top-of-the-line data center switches
from Broadcom. Switch capacity and link speed have been growing
rapidly, but buffer size is not keeping up with increases in switch
capacity.

under-utilizing the network. Moreover, even after receiving
feedback, senders can struggle to determine the right rate
if the state of the network (e.g., link utilization and queuing
delay) changes quickly compared to the RTT.

We argue that three trends are making these problems
worse over time, and will make it increasingly difficult to
achieve good performance with end-to-end protocols.

Trend 1: Rapidly increasing link speed. Fig. 1 shows
the switch capacity of top-of-the-line data center switches
manufactured by Broadcom [20, 50, 61]. Switch capacity and
link speeds have increased by a factor of 10 over the past six
years with no signs of stopping.

Trend 2: Most flows are short. Fig. 2 shows the byte-
weighted cumulative distribution of flow sizes for three
industry data center workloads [49]: (1) All applications in a
Google data center, (2) Hadoop cluster in a Facebook center,
and (3) a WebSearch workload. Each point is the fraction of
all bytes sent that belong to flows smaller than a threshold for
that workload. For example, for the Google workload, flows
that are shorter than 100 KB represent nearly half of all bytes.
As link speed increases, a growing fraction of traffic belongs
to flows that complete quickly relative to the RTT. For
example, most Facebook Hadoop traffic is likely to fit within
one round trip within the next decade. While some have
argued that data center flows are increasing in size [6], the
trend is arguably in the opposite direction with the growing
use of RDMA for fine-grained remote memory access.

Trend 3: Buffer size is not scaling with switch capacity.
Fig. 1 shows that the total switch buffer size relative to its
capacity has decreased by almost a factor of 2 (from 75 us to
40 us) over the past six years. With smaller buffers relative to
link speed, buffers now fill up more quickly, making it more
difficult for end-to-end congestion control to manage those
buffers.

2.1 Limits of End-to-End Congestion Control

This combination — very fast links, short flows, and inad-
equate buffers — creates the perfect storm for end-to-end
congestion control protocols. Flows that complete within
one or a few RTTs (which constitute an increasingly larger
fraction of traffic) either receive no feedback, or last for
so few feedback cycles that they cannot find the correct

780 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

—— Google —— Facebook_Hadoop ---- WebSearch
1.00
0.75
&
§ o050 -
0.25 P
__________ |
0.00
10° 104 10°

Flow Size (B)
Figure 2: Cumulative bytes contributed by different flow sizes for
three different industry workloads. The three vertical lines show the
BDP for a 10 Gbps, 40 Gbps, and 100 Gbps network, assuming a
12 us RTT.

. —e— 10Gbps —m— 40Gbps -4- 100Gbps
xX
-5 % 60 Googjg,t** 12.51 FB_Hadogpr‘ 3| WebSearch ,*
827 e t00 o~
8% 40 /_; 7.51 N O &
05 ; 50{ « _a=™ A ot
© B . / w3 Ve ="
=220 S oom 11 X =
o 2.5“3,.—“"""' K™
S5 ol oo | plgpseeeett
w 0 10 20 30 0 10 20 30 0 10 20 30

Time Interval (us)

Figure 3: Mean percent change in fair-share rate as a function of
workload, delay, and bandwidth.

Scheme [Throughput (%) [99% Queuing Delay (us)

BFC 37.3 1.2
HPCC 229 239
DCQCN 10.0 30.4

Table 1: For a shared 100 Gbps link, BFC achieves close to ideal
throughput (40%) for the long flow, with low tail queuing delay.

rate [34]. For longer flows, the rapid arrival and departure
of cross-traffic creates significant fluctuations in available
bandwidth at RTT timescales, making it difficult to find the
correct rate. The result is loss of throughput and large queue
buildup. Insufficient switch buffering further exacerbates
these problems, leading to packet drops or link-level pause
events (PFC [62]) that spread congestion upstream.

To understand these issues, we consider an experiment with
a long-lived flow competing on a single link against cross-
traffic derived from the Google, Facebook, and WebSearch
workloads. We repeat the experiment at 10, 40, and 100 Gbps,
with the average load of the cross-traffic flows set to be 60% of
the link capacity in each case. Fig. 3 plots the relative change
in the fair-share rate of the long-lived flow over different time
intervals.” Congestion control protocols struggle to track the
fair-share rate when it varies significantly over their feedback
delay (typically an RTT). As link speeds increase or flows be-
come shorter, the fair-share rate changes more rapidly (since
flows arrive and finish more quickly), and hence congestion
control becomes more difficult.

Table 1 considers one configuration in detail, with a single
long flow sharing a 100 Gbps link with cross-traffic drawn
from the Facebook distribution at 60% average load. The

2The fair-share rate (f(¢)) for a link of capacity C shared by N(z) flows
is C/N(t). The relative change in f(¢) over time interval / is given by
[f(“r;g*)f(f) [

minimum RTT (hence, feedback delay) is 8 us. We consider
both the single packet (99" percentile) queuing delay and
throughput for the long flow, for our approach (BFC) and two
end-to-end protocols (DCQCN and HPCC). BFC is able to
achieve close to the maximum possible throughput for the
long-lived flow (40%) with low tail delay, while the end-to-
end protocols fall short in both respects.

2.2 Existing Solutions are Insufficient

There are several existing solutions that go beyond end-to-end
congestion control. We briefly discuss the most prominent of
these approaches and why they are insufficient to deal with
the challenges described above.

Priority flow control (PFC). One approach to handling in-
creased buffer occupancy would be to use PFC, a hop-by-hop
flow control mechanism.?> With PFC, if the packets from a
particular input port start building up at a congested switch
(past a configurable threshold), the switch sends a “pause’
frame upstream, stopping that input from sending more traffic
until the switch has a chance to drain stored packets. This
prevents switch buffers from being overrun. Unfortunately,
PFC has a side effect: head-of-line (HoL) blocking [65]. For
example, incast traffic to a single server can cause PFC pause
frames to be sent one hop upstream towards the source of
the traffic. This stops all the traffic traversing the paused link,
even those flows that are destined to other uncongested egress
ports. These flows will be delayed until the packets at the
congested port can be drained. Worse, as packets queue up
behind a PFC, additional PFC pause frames can be triggered
at upstream hops, widening the scope of HoL blocking.

s

Switch scheduling. Several efforts use switch scheduling to
overcome the negative side-effects of elephant flows on the
latency of short flows. These proposals range from approx-
imations of fair queuing (e.g., Stochastic Fair Queuing [46],
Approximate Fair Queuing [53]) to scheduling policies
that prioritize short flows (e.g., pFabric [9], QJump [28],
Homa [49]). Our work is orthogonal to the choice of switch
scheduling policy, and we present results with priority
scheduling and shortest flow first. Scheduling by itself does
nothing to reduce buffer occupancy; buffers can fill, causing
packet drops or HoL blocking, regardless of scheduling.

Receiver-based congestion control. Because sender-based
congestion control schemes generally perform poorly on
incast workloads, some researchers have proposed shifting to
a scheme where the receiver prevents congestion by explicitly
allocating credits to senders for sending traffic. Three
examples are NDP [30], pHost [25] and Homa [49]. BFC
makes fewer assumptions than these approaches. Homa, for
example, assumes knowledge of the flow size distribution and
flow length, so that it can assign flows to near-optimal priority
queues; this is unavailable with today’s TCP socket interface

3For simplicity, we focus on the case where there is congestion among
the traffic at a particular priority level.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 781

and not all applications know flow lengths in advance [13,59].
Homa uses packet spraying to achieve better load balancing,
so that congestion primarily occurs at the last hop, where the
receiver has complete visibility. However, congestion-free op-
eration of the core is difficult to engineer for widely deployed
oversubscribed and asymmetric networks [54, 64, 66]. Packet
spraying can also cause packet reordering, which is incompat-
ible with high-speed end host software and hardware packet
handling [35,45]. Other proposals suggest collecting credits
generated by a flow’s receiver (congestion-controlled by all
switches on the flow’s path) before sending [22]; at high link
speeds, the network state changes rapidly over the feedback
delay, making it difficult for the receiver to determine the
right rate for credits, similar to sender-based protocols.

2.3 Revisiting Per-hop, Per-Flow Flow Control

Our approach is inspired by work in the early 90s on
hop-by-hop credit-based flow control for managing gigabit
ATM networks [11,41]. Credit-based flow control was also
introduced by multiprocessor hardware designs of the same
era [19,38,42]. In these systems, each switch methodically
tracks its buffer space, granting permission to send at an up-
stream switch if and only if there is room in its buffer. In ATM,
packets of different flows are buffered in separate queues and
are scheduled according to the flows’ service requirements.
The result is a network that has no congestion loss by design.

An ideal realization of such a per-hop, per-flow flow
control scheme has several desirable properties:

(1) Fast reaction: When a flow starts experiencing conges-
tion at a switch, the upstream switch can reduce its rate within
a 1-Hop RTT, instead of the end-to-end RTT that it takes for
standard congestion control schemes. Likewise, when capac-
ity becomes available at a switch, the upstream switch can
increase its rate within a 1-Hop RTT (provided the upstream
switch has packets from that flow). Assuming a hardware
implementation, the 1-hop RTT consists of the propagation
latency and the switch pipeline latency — typically 1-2 us.*
This is substantially smaller than the typical end-to-end RTT
in data centers (e.g., 10-20 us), which in addition to multiple
switch hops includes the latency at the endpoints.

(2) Buffer pooling: During traffic bursts, a per-hop per-flow
flow control mechanism throttles traffic upstream from the
bottleneck. This enables the bottleneck switch to tap into
the buffers of its upstream neighbors, thereby significantly
increasing the ability of the network to absorb bursts.

(3) No HoL blocking: Unlike PFC, there is no HoL blocking
or congestion spreading with per-hop per-flow flow control,
because switches isolate flows in different queues and
perform flow control for each of them separately.

(4) Simple control actions: Flow control decisions in a per-
hop per-flow flow control system are simpler to design and

4For example, a 100 m cable has a propagation latency of 500 ns, and a
typical data center switch has a pipeline latency around 500 ns [15,20].

reason about than end-to-end congestion control algorithms
because: (i) whether to send or pause a flow at a switch de-
pends only on feedback from the immediate next-hop switch
(as opposed to multiple potential points of congestion with
end-to-end schemes), (ii) concerns like fairness are dealt with
trivially by scheduling flows at each switch, and therefore
flow control can focus exclusively on the simpler task of
managing buffer occupancy and ensuring high utilization.

Despite these compelling properties, per-hop per-flow
flow control schemes have not been widely deployed, in
part because of their high implementation complexity and
resource requirements. ATM schemes require per-connection
state and large buffers, which are not feasible in today’s data
center switches. We observe, however, that per-connection
switch state is not actually required. Indeed, much of the time,
per-connection state is for flows that have no packets queued
at the switch, and therefore don’t need to be flow controlled.

We define an active flow to be a flow with one or more pack-
ets queued at the switch. A result of queuing theory is that the
number of active flows is surprisingly small for a switch using
fair queuing [37,39]. In particular, for an M/G/1-PS (Proces-
sor Sharing) queue with Poisson flow arrivals operating at
average load p < 1, the number of active flows has a geometric
distribution with mean 1% independent of the link speed or
the flow size distribution. Even at load p=0.9, the expected
number of active flows is only 9. The intuition behind this fact
is that a fair queued switch will tend to process short flows
quickly, completing them and keeping the number of active
flows small.

Data center network workloads are often more bursty than
Poisson, leading to longer queues and more active flows. How-
ever, the basic principle still holds. Fig. 4 shows the cumu-
lative distribution of the number of active flows for a single
bottleneck link operating at different loads and link speeds, us-
ing the Google flow size distribution and (bursty) log-normal
flow inter-arrival times. The upper graph assumes fair queuing
and includes a vertical bar for the number of queues per port
on Tofino2. At 100 Gbps, the number of active flows signif-
icantly exceeds the number of queues only for loads above
85%, and then only modestly; importantly, the distribution
is invariant to link speed, and the trend is for faster links to
have more queues. The result holds even more strongly with
shortest remaining flow first (SRF) scheduling. By contrast,
with FIFO queuing, even a single long flow can cause a large
number of small flows to back up behind it, and therefore the
number of active flows is much larger.

3 DESIGN

Our goal is to design a practical system for per-hop, per-flow
flow control for data center networks. We first describe the
constraints on our design (§3.1). We then sketch a plausible
strawman proposal that surprisingly turns out to not work
well at all (§3.2), and we use that as motivation for our design

(§3.3).

782 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

---- 45 —— 55 —— 65 —— 75 —=— 85 20

1.0 - = - ==
T i
w S i
0 0.9 it ey
) red A
Ty N
osl Liil 1006 VP2 400G
10° 10! 10° 103 10° 10! 10 10°

Active Flows at a Port
(a) Number of active flows vs. link speed, with fair queuing

-—-- 45 —— 55 —— 75 —— 85 90
1.0 o
i
w A f‘!’.(i/
goo AL i
S -—J./.ri(
ogl FIFO / . i’ SRF
10° 10! 10? 10° 10° 10! 102 10°

Active Flows at a Port

(b) Number of active flows vs. scheduling policy, 100G

Figure 4: Number of active flows for different load, link speed, and
scheduling policy. Lines correspond to different loads. Flow sizes
are from the Google distribution with lognormal (¢ =2) inter-arrival
times.

Physical queues

Incoming Packets Mapping to Outgoing Packets
(from upstream) physical queue: (to downstream)
) . == E 1]

—=» *

— —

+ |

Backpressure
feedback

H Update the

scheduler on

.....| Backpressure backpressure

Module feedback

Figure 5: Logical switch components in per-hop, per-flow flow
control.

3.1 Design Constraints

Fig. 5 shows the basic components of a per-hop, per-flow
flow control scheme (per port). (1) Mapping to physical
queues: When a packet arrives at the switch, the switch routes
the packet to an egress port and maps it to a FIFO queue
at that port. This assignment of flows to queues must be
consistent, that is, respect packet ordering. (2) Backpressure
module: Based on queue occupancy, the switch generates
backpressure feedback for some flows and sends it upstream.
(3) Scheduler: The scheduler at each egress port forwards
packets from queues while respecting backpressure feedback
from the downstream switch.

ATM per-hop per-flow flow control systems [11, 41]
roughly followed this architecture, but they would be imprac-
tical for modern data centers. First, they assumed per-flow
queues and state, but modern switches have a limited number
of queues per egress port [17,53] and modest amounts of table
memory [18,23]. In particular, it is not possible to maintain
switch state for all live connections. Second, earlier schemes
did not attempt to minimize buffer occupancy. Instead, they
sent backpressure feedback only when the switch was about to
run out of buffers. On a buffer-constrained switch, this can re-
sult in buffer exhaustion — buffers held by straggler flows can
prevent other flows from using those buffers at a later time.

Hardware assumptions. Modern data center switches have
made strides towards greater flexibility [12,56], but they are

not infinitely malleable and have real resource constraints.

We make the following assumptions based on the capabilities

of Tofino2.

1. We assume the switch is programmable and supports
stateful operations.Tofino2 can maintain millions of
register entries, and supports simple constant-time
per-packet operations to update the state at line rate [55].

2. The switch has a limited number of FIFO queues per egress
port, meaning that flows must be multiplexed onto queues.
Tofino2 has 32/128 queues per 100/400G port. The assign-
ment of flows to queues is programmable. The scheduler
can use deficit round-robin or priorities among queues,
but packets within a queue are forwarded in FIFO order.

3. Each queue can be independently paused and resumed
without slowing down forwarding from other queues.
When we pause a queue, that pauses all of the flows
assigned to that queue. The switch can pause/resume each
queue directly within the dataplane.

3.2 A Strawman Proposal

We originally thought stochastic fair queuing [46] with
per-queue backpressure might meet our goals: use a hash
function on the flow header to consistently assign the packets
of each flow to a randomly-chosen FIFO queue at its egress
port, and pause a queue whenever its buffer exceeds the
1-hop bandwidth-delay product (BDP). For simplicity, use
the same hash function at each switch.

This strawman needs only a small amount of state for gener-
ating the backpressure feedback and no state for queue assign-
ment. However, with even a modest number of active flows,
the birthday paradox implies that there is a significant chance
that any specific flow will land in an already-occupied FIFO
queue. These collisions hurt latency for two reasons: (1) The
packets for the flow will be delayed behind unrelated packets
from other flows; for example, a short flow may land behind a
long flow. (2) Queue sharing can cause HoL blocking. If a par-
ticular flow is paused (because it is congested downstream),
all flows sharing the same queue will be delayed. To prevent
collisions from affecting tail latency performance, the straw-
man requires significantly more queues than active flows. For
example, at an egress port with n active flows, to achieve fewer
than 1% collisions, we would need roughly 100n queues.

3.3 Backpressure Flow Control (BFC)

Our design achieves the following properties:

Minimal HoL blocking: We assign flows to queues dynam-
ically. As long as the number of active flows at an egress is
less than the number of queues, (with high probability) no
two flows share a queue and there is no HoL blocking. When
a new flow arrives at the switch, it is assigned to an empty
queue if one is available, sharing queues only if all are in use.

Low buffering and high utilization: BFC pauses a flow at
the upstream when the queue occupancy exceeds a small
threshold. BFC’s pause threshold is set aggressively to

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 783

reduce buffering. With coarse pausing like PFC, pausing
aggressively hurts utilization, but BFC only pauses those
flows causing congestion (except when collisions occur). The
remaining flows at the upstream can continue transmitting,
avoiding under-utilization.

Hardware feasibility: BFC does not require per-flow state,
and instead uses an amount of memory proportional to the
number of physical queues in the switch. To allow efficient
lookup of the state associated with a flow, the state is stored
in a flow table, an array indexed using a hash of the flow
identifier. The size of this array is set in proportion to the
number of physical queues. In our Tofino2 implementation,

it consumes less than 10% of the dedicated stateful memory.

Critically, the mechanism for generating backpressure and
reacting to it is simple and the associated operations can be
implemented entirely in the dataplane at line rate.

Generality: BFC does not make assumptions about the
network topology or where congestion can occur, and does

not require packet spraying like NDP [30] or Homa [49].

Furthermore, it does not assume knowledge of flow sizes or
deadlines. Such information can be incorporated into BFC’s
design to improve small flow performance (see App. A.2),
at a cost in deployability.

Idempotent state: Because fiber packets can be corrupted
in flight [66], BFC ensures that pause and resume state is

maintained idempotently, in a manner resilient to packet loss.

3.3.1 Assigning flows to queues

To minimize sharing of queues and HoL blocking, we
dynamically assign flows to empty queues. As long as the
flow is active (has packets queued at the switch), subsequent
packets for that flow will be placed into the same FIFO
queue. Each flow has a unique 5-tuple of the source and
destination addresses, port numbers, and protocol; we call
this the flow identifier (FID). BFC uses the hash of the FID
to track a flow’s queue assignment. To simplify locating an

empty queue, BFC maintains a bit map of empty queues.

When the last packet in a queue is scheduled, BFC resets the
corresponding bit for that queue.

With dynamic queue assignment, a flow can be assigned to
different queues at different switches. To pause a flow, BFC
pauses the queue the flow came from at the upstream switch
(called the upstream queue). The pause applies to all flows
sharing the same upstream queue with the paused flow. We
describe the pause mechanism in detail in §3.3.2. The packet
scheduler uses deficit round robin to implement fair queuing
among the queues that are not paused.

Since there is a limited number of queues, it is possible
that all queues have been allocated when a new flow arrives,
at which point HoL blocking is unavoidable. For hardware

simplicity, we assign the flow to a random queue in this case.

Packets assigned to the same queue are scheduled in FIFO
order. The number of active flows is usually small (§2.3), but
in certain settings, such as incast, it can exceed the number of

queues. BFC’s behavior is similar to stochastic fair queuing
in such scenarios in that it incurs HoL blocking. BFC still
outperforms existing protocols like DCQCN and HPCC
except in the most extreme cases (see App. A.1). Even during
a large scale incast, BFC can leverage the large number of
upstream queues feeding traffic to a bottleneck switch to
(1) absorb larger bursts, and (2) limit congestion spreading.
In particular, when flows involved in an incast are spread
among multiple upstream ports, BFC assigns these flows to
separate queues at those ports. As long as the total number
of flows does not exceed the total number of queues across
all of the upstream ports, BFC will not incur HoL blocking at
the upstream switches. As the size of the network increases
and the fan-in to each switch gets larger, there will be even
more queues at the upstream switches to absorb an incast,
further reducing congestion spreading.

Mechanism: To keep track of queue assignment, BFC
maintains an array indexed by the egress port of a flow and
the hash of the FID. All flows that map to the same index are
assigned to the same queue. We maintain the following state
per entry: the physical queue assignment (gAssignment), and
the number of packets in the queue from the flows mapped
to this entry (size). The pseudocode is as follows (we defer
switch-specific implementation issues to §6.1):

On Enqueue(packet):
key = <packet.egressPort, hash(packet.FID)>
if flowTable[key].size == 0:
reassignQueue = True:
flowTable[key].size += 1
if reassignQueue:
if empty q available at packet.egressPort:
gAssignment = emptyQ
else:
gAssignment = randomQ
flowTable[key]. qAssignment = qAssignment
packet.qAssignment = flowTable[key].qAssignment

On Dequeue(packet):
key = <packet.egressPort, hash(packet.FID)>
flowTable[key].size —= 1

In the flow table, if two flows map to the same index they
will use the same queue (collision). Since flows going through
different egress ports cannot use the same queue, the index
also includes the egress port. Index collisions in the flow table
can hurt performance. These collisions decrease with the size
of the table, but the flow table cannot be arbitrarily large as
the switch has a limited stateful memory. In our design, we set
the size of the flow table to 100 x the number of queues in the
switch. This ensures that if the number of flows at an egress
port is less than the number of queues, then the probability
of index collisions is less than 1%. If the number of flows
exceeds the number of queues, then the index collisions do
not matter as there will be collisions in the physical queues
regardless. Tofino2 has 4096 queues in aggregate, and hence
the size of the flow table is 409,600 entries, which is less
than 10% of the switch’s dedicated stateful memory.

784 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

While using an array is not memory efficient, accessing
state involves simple operations. Existing solutions for
maintaining flow state either involve slower control plane
operations, or are more complex [14, 51]. In the future, if
the number of queues increases substantially, we can use
these solutions for the flow table; however at the moment,
the additional complexity is unnecessary.

3.3.2 Backpressure mechanism

BFC pauses a flow if the occupancy of the queue assigned
to that flow exceeds the pause threshold 7. To pause/resume
a flow, the switch could signal the flow ID to the upstream
switch, which can then pause/resume the queue associated
with the flow. While this solution is possible in principle, it
is difficult to implement on today’s programmable switches.
The challenge is that, on receiving a pause, the upstream
switch needs to perform a lookup to find the queue assigned
to the flow and some additional bookkeeping to deal with
cases when a queue has packets from multiple flows (some
of which might be paused and some not).

We take a different approach. Switches directly signal to the
upstream device to pause/resume a specific queue. Each up-
stream switch/source NIC inserts its local queue number in a
special header field called upstreamQ. The downstream switch
uses this information to pause the queue at the upstream.

Mechanism: Recall that, in general, multiple flows can share
a queue in rare cases. This has two implications. First, we
track the queue length (and not just the flowTable.size) and
use that to determine if the flow’s upstream queue should be
paused. Second, each upstream queue can, in general, have
flows sending packets to multiple queues at multiple egresses.
We pause an upstream queue if any of its flows are assigned
a congested queue, and we resume when none of its flows
have packets at a congested queue (as measured at the time
the packet arrived at the switch).

We monitor this using a Pause Counter, an array indexed
by the ingress port and the upstreamQ of a packet. The
upstream queue is paused if and only if its Pause Counter
at the downstream switch is non-zero. On enqueue of a
packet, if its flow is assigned a queue that exceeds the pause
threshold, we increment the pause counter at that index
by 1. When this packet (the one that exceeded Th) leaves
the switch we decrement the counter by 1. Regardless of
the number of flows assigned to the upstreamg, it will be
resumed only once all of its packets that exceeded the pause
threshold (when the packet arrived) have left the switch.

On Enqueue(packet):
key = <packet.ingressPort, packet.upstreamQ>
if packet.qAssignment.qlLength > Th:
packet.metadata.counterlncr = True
pauseCounter[key] += 1
if pauseCounter[key] ==
// Pause the queue at upstream
sendPause (key)

On Dequeue(packet):
key = <packet.ingressPort, packet.upstreamQ>

if packet.metadata.counterlncr == True:
pauseCounter[key] —= 1
if pauseCounter[key] == 0:
//Resume the queue at upstream
sendResume (key)

To minimize bandwidth consumed in sending pause/re-
sumes, we only send a pause packet when the pause counter
for an index goes from O to 1, and a resume packet when it
goes from 1 to 0. For reliability against pause/resume packets
being dropped, we also periodically send a bitmap of the
queues that should be paused at the upstream (using the pause
counter). Additionally, the switch uses a high priority queue
for processing the pause/resume packets. This reduces the
number of queues available for dynamic queue assignment by
1, but it eliminates performance degradation due to delayed
pause/resume packets.

The memory required for the pause counter is small
compared to the flow table. For example, if each upstream
switch has 128 queues per egress port, then for a 32-port
downstream switch, the pause counter is 4096 entries.

Pause threshold. BFC treats any queue buildup as a sign of
congestion. BFC sets the pause threshold 7'/ to 1-Hop BDP at
the queue drain rate. Let N, be the number of active queues
at an egress, i.e. queues with data to transmit that are not
paused, HRTT be the 1-Hop RTT to the upstream, and u be
the port capacity. Assuming fair queuing as the scheduling pol-
icy, the average drain rate for a queue at the egress is 1t/ Nycrive-
The pause threshold T4 is thus given by (HRTT)-(u/Nactive)-
When the number of active queues increases, Th decreases.
In asymmetric topologies, egress ports can have different link
speeds; as a result, we calculate a different pause threshold for
every egress based on its speed. Similarly, ingress ports can
have different 1-Hop RTTs. Since a queue can have packets
from different ingresses, we use the max of HRTT across
all the ingresses to calculate Th. We use a pre-configured
match-action table indexed with Ny, and u to compute Th.

BFC does not guarantee that a flow will never run out
of packets due to pausing. First, a flow can be paused
unnecessarily if it is sharing its upstream queue with other
paused flows. Second, a switch only resumes an upstream
queue once all its packets (that exceeded the pause threshold
when they arrived) have left the downstream switch. Since the
resume takes an HRTT to take effect, a flow can run out of
packets at the downstream switch for an HRT T, potentially
hurting utilization. However, this scenario is unlikely —a
pause only occurs when a queue builds up, typically because
multiple flows are competing for the same egress port. In this
case, the other flows at the egress will have packets to occupy
the link, preventing under-utilization.

We might reduce the (small) chance of under-utilization
by resuming the upstream queue earlier, for example, when
a flow’s queue at the downstream drops below Th, or more
precisely, when every queue (with a flow from the same

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 785

upstream queue) drops below Th. Achieving this would
require extra bookkeeping, complicating the design.

Increasing the pause threshold would reduce the number of
pause/resumes generated, but only at the expense of increased
buffering (Fig. 7). In App. C, we analyze the impact of Th
on under-utilization and peak buffer occupancy in a simple
model, and we show that a flow runs out of packets at most
20% of the time when T'h is set to 1-hop BDP. Our evaluation
results show that BFC achieves much better throughput than
this worst case in practice (Table 1, §6).

Sticky queue assignment: Using upstreamQ for pausing
flows poses a challenge. Since a switch does not know the
current queue assignment of a flow at the upstream, it uses the
upstream(conveyed by the last packet of the flow to pause a
queue. However, if a flow runs out of packets at the upstream
switch (e.g., because it was bottlenecked at the downstream
switch but not the upstream), then its queue assignment may
change for subsequent packets, causing it to temporarily
evade the pause signal sent by the downstream switch. Such
a flow will be paused again when the downstream receives
packets with the new upstreamQ. The old queue will likewise
be unpaused when its last packet (that exceeded Th) departs
the downstream switch.

To reduce the impact of such queue assignment changes,
we add a timestamp to the flow table state, updated whenever
a packet is enqueued or dequeued. A new queue assignment
only happens if the size value in the flow table is 0, and the
timestamp is older than a “sticky threshold” (i.e., the entry
in the flow table has had no packets in the switch for at least
this threshold). Since with BFC’s backpressure mechanism
a flow can run out of packets for an HRT T, we set the sticky
threshold to a small multiple of HRTT (2 HRTT).

While sticky queue assignments reduce the chance that a
backlogged flow will change queues, it doesn’t completely
eliminate it (e.g., packets from the same flow may arrive
slower than this interval due to an earlier bottleneck). Such sit-
uations are rare, and we found that BFC performs nearly iden-
tically to an ideal (but impractical) variant that pauses flows
directly using the flow ID without sticky queue assignments.

4 TOFINO2 IMPLEMENTATION

We implemented BFC in Tofino2, a to-be-released P4-based
programmable switch ASIC with a Reconfigurable Match
Table (RMT) architecture [17]. A packet in Tofino2 first
traverses the ingress pipeline, followed by the traffic manager
(TM) and finally the egress pipeline. Tofino2 has four ingress
and four egress RMT pipelines. Each pipeline has multiple
stages, each capable of doing stateful packet operations.
Ingress/egress ports are statically assigned to pipelines.

Bookkeeping: The flow table and pause counter are both
maintained in the ingress pipeline. The flow table contains
three values for each entry and is thus implemented as three
separate register arrays (one for each value), updated one
after the other.

Multiple pipelines: The flow table is split across the four
ingress pipelines, and the size of the table in each ingress
pipeline is 25 x the number of queues. During normal
operation, packets of an active flow arrive at a single ingress
pipeline (same ingress port). Since the state for a flow only
needs to be accessed in a single pipeline, we can split the flow
table. However, splitting can marginally increase collisions
if the incoming flows are distributed unevenly among the
ingress pipelines. Similarly, the pause counter is split among
the ingress pipelines. An ingress pipeline contains the pause
counter entries corresponding to its own ingress ports.

Gathering queue depth information: We need queue depth
information in the ingress pipeline for pausing and dynamic
queue assignment. Tofino2 has an inbuilt feature tailored
for this task. The TM can communicate the queue depth
information for all the queues in the switch to all the ingress
pipelines without consuming any additional ingress cycles
or bandwidth. The bitmap of empty queues is periodically
updated with this data, with a different rotating starting point
per pipeline to avoid new flows from being assigned to the
same empty queue.

Communicating from egress to ingress pipeline: The enqueue
operations described earlier are executed in the ingress
pipeline when a packet arrives. Dequeue operations should
happen at the egress but the bookkeeping data structures are
at the ingress. To solve this, in the egress pipeline, we mirror
packets as they exit and recirculate the header of the mirrored
packet back to the ingress pipeline it came from. The dequeue
operations are executed on the recirculated packet header.

Recirculating packets involves two constraints. First, the
switch has dedicated internal links for recirculation, but
the recirculation bandwidth is limited to 12% of the entire
switch capacity. Second, the recirculated packet consumes an
additional ingress cycle. The switch has a cap on the number
of packets it can process every second (pps capacity).

Most workloads have an average packet size greater
than 500 bytes [16], and Tofino2 is designed with enough
spare capacity in bandwidth and pps to handle header
recirculation for every packet for those workloads (with room
to spare). If the average packet size is much smaller, we can
reduce recirculations by sampling packets for recirculation
(described in App. A.8).

Recirculation is not fundamental to BFC. For example,
Tofino2 has native support for PFC bookkeeping in the TM.
Likewise, if BFC bookkeeping was implemented in the
TM, it would not need recirculation. Similarly, in switches
with a disaggregated RMT architecture [23] where the same
memory can be accessed at both the ingress and egress, there
is no need for recirculation.

786 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

S DISCUSSION

Guaranteed losslessness. BFC does not guarantee lossless-
ness. In particular, a switch in BFC pauses an upstreamg only
after receiving a packet from it. This implies an upstreamQ
can send packets for up to an HRTT to the bottleneck switch
before being paused, even if the switch is congested. In
certain mass incast scenarios, this might be sufficient to
trigger drops. Using credits [11,41] could address this at the
cost of added complexity. We leave an investigation of such
prospective variants of BFC to future work. In our evaluation
with realistic switch buffer sizes, BFC never incurred drops
except under a 2000-to-1 incast (§6.3) and even then only
0.007% of the packets were dropped.

Deadlocks: Pushback mechanisms like PFC have been
shown to be vulnerable to deadlocks in the presence of cyclic
buffer dependencies (CBD) or misbehaving NICs [29, 31].
BFC NICs do not generate any backpressure and as a result
cannot cause deadlocks. Since NICs always drain, in the
absence of CBD, BFC cannot have deadlocks (see App. B for
a formal proof). A downstream switch in BFC will resume an
upstrean if it drains all the packets sent by the upstreamQ.
If a downstream is not deadlocked, it will eventually drain
packets from the upstream, and as a result, the corresponding
upstream cannot be deadlocked.

To prevent CBD, we can reuse prior approaches for
deadlock prevention. These approaches can be classified into
two categories. The first is to redesign routing protocols to
avoid installing routes that might cause CBD [57,58]. The
other is to identify a subset of possible ingress/egress pairs
that are provably CBD free, and only send pause/resume
along those pairs [32]. For a fat-tree topology, this would
allow up-down paths but not temporary loops or detour
routes [44]. In BFC, we use the latter approach. Given a
topology, we pre-compute a match action table indexed by
the ingress and egress port, and simply elide the backpressure
pause/resume signal if it is disallowed. See App. B for details.

Incremental Deployment: In a full deployment, BFC
would not require end-to-end congestion control. In a
partial deployment, we advocate some form of end-to-end
congestion control, such as capping the number of inflight
packets of a flow. A common upgrade strategy is to upgrade
switches more rapidly than server NICs. If only switches and
not NICs are running BFC, capping inflight packets prevents
a source NIC from overrunning the buffers of the first hop
switch. The same strategy can be used for upgrading one
cluster’s switches before the rest of the data center [64]. In
our evaluation, we show incremental deployment would have
some impact on buffer occupancy at the edge but minimal
impact on performance (App. A.8).

Receiver 1 Receiver 2

Sender Group 1 Sender Group 2 Sender Group 3

Figure 6: Testbed topology. The colored lines show the path for
different flow groups.

__15.0 33 m

v
3 S <
g <125 F30 -
c c =
= 2 10.01 =2
5 g 3
o N 75
5 =) 15 g
4 E 5.0 9]
o 5 10 >
&
2 T 25 ls —
Q c o
=} 31 S g
o T T T T T 0.0 T T 0 I
0 100 200 300 400 0 2 4 6
Time (us) Pause Threshold (us)
(a) Queue Length (b) Under-utilization

Figure 7: Queue length and under-utilization. 2 flows are
competing at a 100 Gbps link. Cell size is 176 bytes. BFC achieves
high utilization and low buffering.

6 EVALUATION

We present a proof-of-concept evaluation of our Tofino2
implementation. To compare performance of BFC against
existing schemes, we perform large scale ns-3 [4] simulations.

6.1 Tofino2 evaluation

Testbed: For evaluation, we were able to gain remote access
to a Tofino2 switch. Using a single switch, we created
a simple multi-switch topology (Fig. 6) by looping back
packets from the egress port back into the switch. All
the ports are 100 Gbps, each port has 16 queues.” The
experiments include three groups of flows.

* Sender Group 1 — Switch 1 — Switch 2 — Receiver 1.

* Sender Group 2 — Switch 1 — Switch 2 — Receiver 2.

 Sender Group 3 — Switch 3 — Switch 2 — Receiver 2.
To generate traffic we use the on-chip packet generator with
no end-to-end congestion control.

Low buffering, high utilization: Fig. 7a shows the queue
length for a flow when two flows are competing at a link
(a group 2 flow is competing with a group 3 flow at the
switch 2 — receiver 2 link). The pause threshold is shown
as a horizontal black line. BFC’s pausing mechanism is
able to limit the queue length near the pause threshold (T'h).
The overshoot from Th is for two reasons. First, it takes
an HRTT for the pause to take effect. Second, Tofino2 has
small hardware queues after the egress pipeline, and a pause
from the downstream cannot pause packets already in these
hardware queues.

Notice that the queue length goes to 0 temporarily. Recall
that a downstream switch only resumes the upstreamQ

3For 100 Gbps ports, Tofino2 has 32 queues, but in loopback mode only
16 queues are available.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 787

—#— BFC + dynamic BFC + stochastic -~ BFC + single
2500 P - =

G2000{ =
2 15001 *~ H
5 1000 //
w 1
500 l T

0

4 6 8 10 12 14 16 18 20
of flows in group 2

Figure 8: Congestion spreading. Dynamic queue assignment
reduces HoL blocking, improving FCTs on average and at the tail.

when it has drained all the packets from the upstreamQ
that exceeded Th. As a result, a flow at the downstream
can run out of packets for an HRTT. This can cause
under-utilization when the queues for the two flows go empty
simultaneously. We repeat the above experiment but vary
the pause threshold. Fig. 7b shows the average queue length
and the under-utilization of the congested link. With a pause
threshold of 2 us, BFC achieves close to 100% utilization
with an average queue length of 15 KB.

Queue assignment and congestion spreading: We next
evaluate the impact of queue assignment on HoL blocking and
performance. We evaluate three different queue assignment
strategies with BFC’s backpressure mechanism: (1) “BFC
+ single”: All flows are assigned to a single queue (similar to
PFC); (2) “BFC + stochastic”: Flows are assigned to queues
using stochastic hashing; (3) “BFC + dynamic”: Dynamic
queue assignment as described in §3.3.1.

The setup consists of two group 1 flows, eight group 3 flows,
and a number of group 2 flows varied between four to twenty.
All flows are 1.5 MB in size. The experiment is designed such
that for group 2 and 3 flows, the bottleneck is the switch 2 —
receiver 2 link. The bottleneck for group 1 flows is the switch
1 — switch 2 link. Switch 2 will pause queues at switch 1
in response to congestion from group 2 flows. Notice that
group 1 and group 2 flows are sharing the switch 1 — switch
2 link. If a group 1 flow shares a queue with a group 2 flow (a
collision), the backpressure due to the group 2 flow can slow
down the group 1 flow, causing HoL blocking and increasing
its flow completion time (FCT) unnecessarily.

Fig. 8 shows the average FCT for group 1 flows across four
runs. The whiskers correspond to one standard deviation in
the FCT. BFC + single achieves the worst FCT as group 1 and
2 flows always share a queue. With stochastic assignment,
the FCT is substantially lower, but the standard deviation
in FCT is high. In some runs, group 1 and 2 flows don’t
share a queue and there is no HoL blocking. In other runs,
due to the stochastic nature of assignment, they do share a
queue (even when there are other empty queues), resulting in
worse performance. With dynamic assignment, BFC achieves
the lowest average FCT and the best tail performance. In
particular, the standard deviation is close to 0 when the
number of flows at the switch 1 — switch 2 link (group 1 +
group 2 flows) is lower than the number of queues. In such
scenarios, group 1 flows consistently incur no collisions.
When the number of flows exceed the queues, collisions are

inevitable, and the standard deviation in FCT increases.
6.2 Simulation-based evaluation

We also implemented BFC in ns-3 [4]. For DCQCN we
use [5], for ExpressPass we use [1], and for all other schemes
we use [3].

6.2.1 Setup

Network Topology: We use a Clos topology with 128 leaf
servers, 8 top of the rack (ToR) switches and 8 Spine switches
(2:1 over subscription). Each Spine switch is connected to
all the ToR switches, each ToR has 16 servers, and each
server is connected to a single ToR. All links are 100 Gbps
with a propagation delay of 1 us. The maximum end-to-end
base round trip time (RTT) is 8 us and the 1-Hop RTT is 2 us.
The switch buffer size is set to 12 MB. Relative to the ToR
switch capacity of 2.4 Tbps, the ratio of buffer size to switch
capacity is 40 us, the same as Broadcom’s Tomahawk3 from
Fig. 1. We use an MTU of 1 KB. Unless specified otherwise,
we use Go-Back-N for retransmission, flow-level ECMP
for load balancing, and the standard shared buffer memory
model implemented in existing switches [20].

Comparisons: HPCC: HPCC uses explicit link utilization
information from the switches to reduce buffer occupancy and
drops/PFCs at the congested switch. We use the parameters
from the paper, 1 =0.95 and maxStage =5. The dynamic PFC
threshold is set to trigger when traffic from an input port occu-
pies more than 11% of the free buffer (as in the HPCC paper).
We use the same PFC thresholds for DCQCN and DCTCP.
HPCC-PFC: This version replaces PFC with perfect
retransmission. On a packet drop, the switch informs the
sender directly, which then retransmits the dropped packet.
We choose this (potentially impractical) strategy to provide
a bound on the performance that can be achieved using any
retransmission scheme.

DCQCN: DCQCN uses ECN bits and end-to-end control to
manage buffer use at the congested switch. The ECN thresh-
old triggers before PFC (K,,;, = 100KB and K,,;, = 400KB).
DCTCP: The ECN threshold is same as DCQCN. Flows start
at line rate to avoid degradation in FCTs from slow-start.
ExpressPass: In ExpressPass, senders transmit data based
on credits generated by the receiver. These credits are
rate-limited at the switches to avoid congestion. We chose
a=0.5,w;,;; =0.0625 and a credit buffer size of 16 credits.
The ExpressPass simulator does not follow a shared buffer
model; instead it assumes dedicated per-port buffers. To
eliminate drops, we supplied a high per-port buffer value of
75 MB. There is no PFC.

BFC: We use 32 physical queues per port (consistent with
Tofino2) and our flow table has 76K entries. The flow table
takes 400 KB of memory. We chose per-flow fair queuing
as our scheduling mechanism; all the comparison schemes
strive for per-flow fairness, thus, fair queuing provides for
a just comparison.

788 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

- DCQCN

—— HPCC-PFC

—-— Exp-Pass

4
% = ‘ ‘Avg‘. el ‘95pc‘t ‘ ‘ ‘99pc‘t
10° 10 10?2 103 10° 10! 102 10° 10° 10' 102 103
FlowSize (KB)
(a) FCT

------ IdealFQ DCTCP M Spine->ToR
1.00 ST g #7 ToR->Spine
AR e E
4 o
50901 7 °
/ 1
0.85{ | ' Es
I it 5
08000 20 30 40 =
° N <R
Buffer Occupancy (us) W OC,Q 06
(b) Buffer occupancy (c) PEC Time

Figure 9: Google distribution with 55% load + 5% 100-1 incast. BFC tracks the ideal behavior, improves FCTs, and reduces buffer occupancy.

For FCT slowdown, both the x and y axis are log scaled.

------- HPCC ---- DCQCN —— Exp-Pass —— HPCC-PFC

10° 10! 102 103

100 10 102 10°
FlowSize (KB)
(a) FCT

10° 10 10?2 10°

------ IdealFQ DCTCP ——— With-Incast
1.00 ComemmmnTeett —-= Without-Incast
095] | g P B————
[T [
Gosol i/ L 095 if
O il 8 o901
1 1 J
0.85 'l / : 0.85 :.'
0.80 +—= ; . 0.80 44 y , .
0 2 4 6 8 0 50 100 150 200
Buffer Occupancy (us) # of active flows at a port
(b) Buffer Occupancy (c) Active Flows

Figure 10: FCT slowdown and buffer occupancy for Google distribution with 60% load. For all the schemes, PFC was never triggered. Part
(c) shows the CDF of active flows at a port with and without incast, with the vertical bar showing the total number of queues per port.

Ideal-FQ: To understand how close BFC comes to optimal
performance, we simulate ideal fair queuing with infinite
buffering at each switch. The NICs cap the in-flight packets of
a flow to 1 BDP. Note that infinite buffering is not realizable
in practice; its role is to bound how well we could possibly do.

Sensitivity to parameters: All systems were configured to
achieve full throughput for a single flow on an unloaded
network. For end-to-end schemes, the choice of parameters
governs the trade-off between the performance of short
flows (through reduced queuing) and long flows (higher link
utilization). We perform parameter sensitivity analysis for
HPCC, DCTCP and ExpressPass in App. A.4.

Performance metrics: We consider three performance
metrics: (1) FCT normalized to the best possible FCT for
the same size flow, running at link rate (referred as the FCT
slowdown); (2) Overall buffer occupancy at the switch; (3)
Throughput of individual flows.

Workloads: We synthesized a trace to match the flow size
distributions from the industry workloads discussed in Fig. 2:
(1) Aggregated workload from all applications in a Google
data center; (2) a Hadoop cluster at Facebook (FB_Hadoop).
The flow arrival pattern is open-loop and follows a bursty
log-normal inter-arrival time distribution with ¢ = 2.% For
each flow arrival, the source-destination pair is derived from a
uniform distribution. We consider scenarios with and without
incast, different traffic load settings, and incast ratios. Since
our topology is oversubscribed, on average links in the core
(Spine-ToR) will be more congested than the ToR-leaf server
links. In our experiments, by X% load we mean X% load on

5Most prior work evaluates using Poisson flow arrivals [22,49], but we use
the more bursty Lognormal as it provides a more challenging case for BFC.

the links in the core.
6.2.2 Performance

Fig. 9 and 10 show our principal results. The flow sizes are
drawn from the Google distribution and the average load is set
to 60% of the network capacity. For Fig. 9 (but not Fig. 10),
5% of the traffic (on average) is from incast flows. The incast
degree is 100-to-1 and the size is 20 MB in aggregate. A new
incast event starts every 500 us. Since the best-case comple-
tion time for an incast is 1.6 ms (20 MB/100 Gbps), multiple
incasts coexist simultaneously in the network. We report the
FCT slowdowns at the average, 95t and 99th percentile, the
tail buffer occupancy (except for ExpressPass simulations
which do not follow the shared buffer model), and the fraction
of time links were paused due to PFC. We report the FCT
slowdowns for the incast traffic separately in App. A.12.
Out of all the schemes, DCQCN is worst on latency for
small flow sizes, both at the average and the tail. Compared
to DCQCN, DCTCP improves latency as it uses per-ACK
feedback instead of periodic feedback via QCN. However, the
frequent feedback is not enough, and the performance is far
from optimal (Ideal-FQ). The problem is that both DCQCN
and DCTCP are slow in responding to congestion. Since
flows start at line rate, a flow can build up an entire end-to-end
bandwidth-delay product (BDP) of buffering (100 KB) at the
bottleneck before there is any possibility of reducing its rate.
The problem is aggravated during incast events. The bottle-
neck switch can potentially accumulate one BDP of packets
per incast flow (10 MB in aggregate for 100-to-1 incast).
Both protocols have low throughput for long flows. When
capacity becomes available, a long flow may fail to ramp up
quickly enough, reducing throughput and shifting its work

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation

789

to busier periods where it can impact other flows. Moreover,
on sudden onset of congestion, a flow may not reduce its rate
fast enough, slowing short flows.

HPCC improves on DCQCN and DCTCP by using link
utilization instead of ECN and a better control algorithm.
Compared to DCQCN and DCTCP, HPCC reduces tail
latency, tail buffer occupancy, and PFC pauses (in case of
incast). Compared to BFC, however, HPCC has 5-30x worse
tail latency for short flows with incast, and 2.3-3x worse
without. Long flows do worse with HPCC than DCQCN and
DCTCP since HPCC deliberately targets 95% utilization and
very small queues to improve tail latency for short flows.

With ideal retransmission, HPCC performance improves,
especially for short and medium flows. However, HPCC with-
out PFC has higher tail buffer occupancy and suffers packet
loss. Compared to BFC, overall performance is still worse for
both long and short flows.

Across all systems, ExpressPass achieves the worst through-
put for long flows. In ExpressPass, the receiver can generate
unnecessary credits for an additional RTT before learning that
a flow is finished. These credits are considered “wasted” as the
sender cannot transmit packets in response, and can therefore
cause link under-utilization. Credit waste and the correspond-
ing under-utilization increase with faster link speeds and/or
when the flow sizes get shorter (see §6.3 and §7 in [22]).

Ideal-FQ achieves lower latency than all the schemes, but
its buffer occupancy can grow to an unfeasible level.

BFC achieves the best FCTs (both average and tail) among
all the schemes. Without incast, BFC performance closely
tracks optimal. With incast, incoming flows exhaust the num-
ber of physical queues, triggering HoL blocking and hurting
tail latency. This effect is largest for the smallest flows at the
tail. Fig. 10c shows the CDF of the number of active flows at
a port. In the absence of incast, the number of active flows is
smaller than the total queues 99% of the time, and collisions
are rare. With incast, the number of active flows increases,
causing collisions. However, the tail latency for short flows
with BFC is still 5-30x better than existing schemes. BFC
also improves the performance of incast flows, achieving 2 x
better FCTs at the tail compared to HPCC (see App. A.12).

Note that, compared to BFC and Ideal-FQ, latency for
medium flows (200-1000KB) is slightly better with existing
schemes. Because they slow down long flows relative to
perfect fairness, medium flows have room to get through
more quickly. Conversely, tail slowdown is better for long
flows than medium flows with BFC and Ideal-FQ. Long
flows achieve close to the long term average available
bandwidth, while medium flows are more affected by
transient congestion.

Another workload: We repeated the experiment in Fig. 9
and Fig. 10 with the Facebook distribution. Fig. 11 shows the
99" percentile FCT slowdown. The trends in the FCT slow-
downs are similar to that of the Google distribution, except
that ExpressPass performs better since it incurs fewer wasted

--- DCQCN
------ HPCC —:- Exp-Pass

647 T sssonn

100 102 10° 10* 100 102 10° 10*
Flow Size (KB) Flow Size (KB)

(a) 55% + 5% 100-1 incast (b) 60%

Figure 11: FCT slowdown (99" percentile) for Facebook
distribution with and without incast.

—e— BFC32 -4- BFC128 —m=— HPCC - PFC DCTCP

z)

c c

™ 4

Z7 16 %’{,’8

og oy
— N

32 ¢ 3n*

n o 0o
o)) 0 2

Ce , Ca

=9 “qale - x . .
< 50 60 70 80 9095 50 60 70 80 9095

Load (%) Load (%)
(a) Average FCT for long flows (b) Tail FCT for short flows
Figure 12: Average FCT slowdown for long flows, and 997"
percentile tail FCT slowdown for small flows, as a function of load.

credits (as a percentage) for the Facebook workload, which
has larger flows. We omit other statistics presented earlier in
the interest of space, but the trends are similar to Fig. 9 and 10.
Henceforth, all the experiments use the Facebook workload.

6.3 Stress-testing BFC

In this section we stress-test BFC under high load and large
incast degree. Flow arrivals follow a bursty log-normal
distribution (¢ = 2). We evaluate BFC under two different
queue configurations: (1) 32 queues per port (BFC 32);
(2) 128 queues per port (BFC 128). We show the average
slowdown for long flows (> 3MB) and 99" percentile
slowdown for short flows (< 3KB).

Load: Fig. 12 shows the performance as we vary the average
load from 50 to 95% (without incast). HPCC only supports
loads up to 70%. At higher loads, it becomes unstable (the
number of outstanding flows grows without bound), in part
due to the overhead of the INT header (80 B per-packet). All
other schemes were stable across all load values.

At loads < 80%, BFC 32 achieves both lower tail latency
(Fig. 12b) for short flows and higher throughput for long flows
(Fig. 12a). The tail latency for short flows is close to the per-
fect value of 1. At higher loads, flows remain queued at the
bottleneck switch for longer periods of time, raising the like-
lihood that we run out of physical queues, leading to head
of line blocking. This particularly hurts tail performance for
short flows as they might be delayed for an extended period if
they are assigned to the same queue as a long flow. At the very
high load of 95%, the HoL blocking degrades tail latency sub-
stantially for BFC 32. However, it still achieves good link uti-
lization, and the impact of collisions is limited for long flows.

Increasing the number of queues reduces collisions and
the associated HoL blocking. BFC 128 achieves better tail
latency for short flows at load >90%.

790 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

—e— BFC 32 -4- BFC128 —=— HPCC-PFC DCTCP

o —

cs c @ 256
m

g 16 _.a g‘{,’ 12

oy AT Q¢ 32

2n T z N Jg

2= 8 own g

0 o v o

-2 A ~ 0 4

ol e S 0 27

Lo gl Lo 1
< 10 100 00 500 00,000 10 100 200 00 100,000

Incast Degree Incast Degree
(a) Average FCT for long flows (b) Tail FCT for short flows
Figure 13: Average FCT slowdown for long flows, and 99"
percentile tail FCT slowdown for small flows, as a function of incast
degree.

— BFC e HPCC-PFC+SFQ HPCC-PFC+DQA
—.- HPCC-PFC e IdealFQ
c
3 64 1.00 p—
5 32 F P .
2 16 . 0.95 Lo
5 8- gosoy e -
«n 4 085] 1 [e
! 0.80+
100 102 103 10* 0 10 20 30 40
Flow Size (KB) Buffer Occupancy (us)

(a) FCT SlowDown

Figure 14: FCT slowdown (99" percentile) and buffer occupancy
of HPCC variants, using the setup in Fig. 11a.

(b) Buffer Occupancy

Incast degree: If the size of an incast is large enough, it can
exhaust physical queues and hurt performance. Fig. 13 shows
the effect of varying the degree of incast on performance.
The average load is 60% and includes a 5% incast. The incast
size is 20 MB in aggregate, but we vary the degree of incast
from 10 to 2000.

For throughput, both BFC 32 and BFC 128 perform well
as long as the incast degree is moderate compared to the
number of queues. Both start to degrade when the incast
degree exceeds 8x the number of queues per port. Till this
point, BFC can leverage the Fanln from the larger number
of upstream queues (and greater aggregate upstream buffer
space) to keep the incast from impeding unrelated traffic. As
the incast degree scales up further, BFC 32 is able to retain
some of its advantage relative to HPCC and DCTCP.

For high incast degree, the tail latency for short flows be-
comes worse than HPCC. The tail is skewed by the few per-
cent of small requests that happen to go to the same destina-
tion as the incast. (Across the 128 leaf servers in our setup,
several servers are the target of an incast at any one time, and
these also receive their share of normal traffic.) As the incast
degree increases, more small flows share physical queues with
incast flows, leading to more HoL blocking.

In App. A.1, we further explore this issue with microbench-
marks designed to trigger a variable number of active flows at
the bottleneck switch. We show that by adding a very simple
end-to-end control mechanism to BFC, we can ameliorate the
impact of HoL blocking while still fully utilizing the link.

6.4 Dynamic Queue Assignment

We next consider the effect of applying BFC’s dynamic
queue assignment separately from the backpressure mech-
anism. For this, we modified HPCC with idealized re-

transmission (HPCC-PFC) to add stochastic fair queuing
(HPCC-PFC+SFQ) and dynamic queue assignment (HPCC-
PFC+DQA). To match BFC, we use 32 physical queues with
HPCC. We repeat the experiment from Fig. 11a, showing tail
slowdown and buffer occupancy for the HPCC variants, BFC,
and IdealFQ in Fig. 14.

Adding SFQ to HPCC improves short flow latency by iso-
lating them from long flows in different queues, but it still
suffers from more collisions (and thus higher tail latency
for short flows) than DQA. DQA on its own, however, has
no benefit for long flows: since HPCC is unable to adapt
to rapid changes in the number of flows (and the fair-share
rate), it is unable to fully utilize the link for long flows, even
with DQA. Moreover, both HPCC-PFC+SFQ and HPCC-
PFC+DQA build deep buffers and experience drops at the
same rate as HPCC-PFC. Notice that HPCC’s lower through-
put for long flows favors short flows to such an extent that
HPCC-PFC+DQA achieves better tail latency for short flows
than both BFC and IdealFQ.

6.5 Additional Experiments

In App. A, we use our simulation framework to further char-
acterize the limits of BFC, compare BFC to Homa, as well as
study the impact of priority scheduling, parameter selection,
locality in the traffic matrix, slow start, incast labelling, and
other factors.

7 CONCLUSION

In this paper, we present Backpressure Flow Control (BFC),
a practical congestion control architecture for data center
networks. BFC provides per-hop per-flow flow control, but
with bounded state, constant-time switch operations, and
careful use of buffers. Switches dynamically assign flows to
physical queues, allowing fair scheduling among competing
flows and use selective backpressure to reduce buffering
with minimal head of line blocking. Relative to existing
end-to-end congestion control schemes, BFC improves short
flow tail latency and long flow utilization for networks with
high bandwidth links and bursty traffic. We demonstrate
BFC’s feasibility by implementing it on Tofino2, a state-of-art
P4-based programmable hardware switch. In simulation,
compared to several deployed end-to-end schemes, BFC
achieves 2.3-60x lower tail latency for short flows and
1.6 - 5% better average completion time for long flows.

Acknowledgments. We thank Hari Balakrishnan, Naveen
Kr. Sharma, and Anirudh Sivaraman for useful discussions.
We are grateful to the anonymous reviewers for their
feedback and useful comments. This work was supported
in part by NSF grants CNS-2006827, CNS-1563826, and
CNS-1563826, a Cisco Research Center Award, a Microsoft
Faculty Fellowship, and a Google Research Award.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 791

REFERENCES

[1] Express pass simulation. https://github.com/
kaist-ina/ns2-xpass.

[2] Homa simulation. https://github.com/
PlatformLab/HomaSimulation/tree/omnet
simulations/RpcTransportDesign.

[3] Hpcc simulation. https:
//github.com/alibaba-edu/
High-Precision-Congestion-Control.

[4] Network simulator 3. https://www.nsnam.org.

[5] Ns-3 simulator for rdma. https://github.com/
bobzhuyb/ns3-rdma.

[6] Atul Adya, Robert Grandl, Daniel Myers, and Henry
Qin. Fast key-value stores: An idea whose time has
come and gone. In Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS 2019, Bertinoro,
Italy, May 13-15, 2019, pages 113-119. ACM, 2019.

[7] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan,
Navindra Yadav, and George Varghese. CONGA:
distributed congestion-aware load balancing for datacen-
ters. In Fabidan E. Bustamante, Y. Charlie Hu, Arvind Kr-
ishnamurthy, and Sylvia Ratnasamy, editors, ACM SIG-
COMM 2014 Conference, SIGCOMM’ 14, Chicago, IL,
USA, August 17-22, 2014, pages 503-514. ACM, 2014.

[8] Mohammad Alizadeh, Albert G. Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data
center TCP (DCTCP). In Shivkumar Kalyanaraman,
Venkata N. Padmanabhan, K. K. Ramakrishnan, Rajeev
Shorey, and Geoffrey M. Voelker, editors, Proceedings
of the ACM SIGCOMM 2010 Conference on Applica-
tions, Technologies, Architectures, and Protocols for
Computer Communications, New Delhi, India, August
30 -September 3, 2010, pages 63-74. ACM, 2010.

[9] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: minimal near-optimal datacenter
transport. In Dah Ming Chiu, Jia Wang, Paul Barford,
and Srinivasan Seshan, editors, ACM SIGCOMM 2013
Conference, SIGCOMM’ 13, Hong Kong, China, August
12-16, 2013, pages 435-446. ACM, 2013.

[10] Amazon. Amazon Web Services. https:
//aws.amazon.com/s3/.

[11] Thomas E. Anderson, Susan S. Owicki, James B. Saxe,
and Charles P. Thacker. High speed switch scheduling

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

for local area networks. ACM Trans. Comput. Syst.,
11(4):319-352, 1993.

Arista. Arista 7170 Multi-function Programmable
Networking. https://www.arista.com/assets/
data/pdf/Whitepapers/7170_White_Paper.pdf.

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In 12th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 15), pages 455-468, 2015.

Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostic,
Gerald Q. Maguire Jr., Panagiotis Papadimitratos, and
Marco Chiesa. A high-speed load-balancer design
with guaranteed per-connection-consistency. In Ranjita
Bhagwan and George Porter, editors, 17th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, pages 667-683. USENIX Association, 2020.

Barefoot. Tofino: World’s Fastest P4-Compatible Ether-
net Switch ASICs. https://www.barefootnetworks.
com/products/brief-tofino/.

Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Understanding data center traffic charac-
teristics. Comput. Commun. Rev., 40(1):92-99, 2010.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: programming protocol-independent packet
processors. Comput. Commun. Rev., 44(3):87-95, 2014.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware
for sdn. In Proceedings of the ACM SIGCOMM 2013
Conference, SIGCOMM 13, page 99110, New York,
NY, USA, 2013. Association for Computing Machinery.

Eric A. Brewer and Bradley C. Kuszmaul. How to
get good performance from the CM-5 data network.
In Howard Jay Siegel, editor, Proceedings of the
8th International Symposium on Parallel Processing,
Canciin, Mexico, April 1994, pages 858-867. IEEE
Computer Society, 1994.

Broadcom. StrataXGS. https://www.broadcom.
com/products/ethernet-connectivity/
switching/strataxgs.

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-Based Congestion Control. ACM Queue,
14(5):50:20-50:53, October 2016.

792 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/kaist-ina/ns2-xpass
https://github.com/kaist-ina/ns2-xpass
https://github.com/PlatformLab/HomaSimulation/tree/omnet_simulations/RpcTransportDesign
https://github.com/PlatformLab/HomaSimulation/tree/omnet_simulations/RpcTransportDesign
https://github.com/PlatformLab/HomaSimulation/tree/omnet_simulations/RpcTransportDesign
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://www.nsnam.org
https://github.com/bobzhuyb/ns3-rdma
https://github.com/bobzhuyb/ns3-rdma
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for
datacenters. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2017, Los Angeles, CA, USA, August 21-25,
2017, pages 239-252. ACM, 2017.

Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh
Sivaraman, Shay Vargaftik, Alon Berger, Gal Mendel-
son, Mohammad Alizadeh, Shang-Tse Chuang, Isaac
Keslassy, Ariel Orda, and Tom Edsall. drmt: Disag-
gregated programmable switching. In Proceedings of
the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM 2017, Los Angeles,
CA, USA, August 21-25, 2017, pages 1-14. ACM, 2017.

Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74-80, 2013.

Peter Xiang Gao, Akshay Narayan, Gautam Kumar,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
phost: distributed near-optimal datacenter transport
over commodity network fabric. In Felipe Huici and
Giuseppe Bianchi, editors, Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and
Technologies, CoONEXT 2015, Heidelberg, Germany,
December 1-4, 2015, pages 1:1-1:12. ACM, 2015.

Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani,
and Mohammad Alizadeh. Juggler: a practical
reordering resilient network stack for datacenters. In
Cristian Cadar, Peter R. Pietzuch, Kimberly Keeton,
and Rodrigo Rodrigues, editors, Proceedings of the
Eleventh European Conference on Computer Systems,
EuroSys 2016, London, United Kingdom, April 18-21,
2016, pages 20:1-20:16. ACM, 2016.

Google. Google Cloud Platform.
//cloud.google.com.

https:

Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you
can JUMP them! 1In [2th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
15, Oakland, CA, USA, May 4-6, 2015, pages 1-14.
USENIX Association, 2015.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
RDMA over commodity ethernet at scale. In Marinho P.
Barcellos, Jon Crowcroft, Amin Vahdat, and Sachin
Katti, editors, Proceedings of the ACM SIGCOMM 2016
Conference, Florianopolis, Brazil, August 22-26, 2016,
pages 202-215. ACM, 2016.

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wéjcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
2017, Los Angeles, CA, USA, August 21-25, 2017, pages
29-42. ACM, 2017.

Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Deadlocks
in datacenter networks: Why do they form, and how
to avoid them. In Bryan Ford, Alex C. Snoeren, and
Ellen W. Zegura, editors, Proceedings of the 15th ACM
Workshop on Hot Topics in Networks, HotNets 2016,
Atlanta, GA, USA, November 9-10, 2016, pages 92-98.
ACM, 2016.

Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical PFC deadlock prevention in data center networks.
In Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies,
CoNEXT 2017, Incheon, Republic of Korea, December
12-15,2017, pages 451-463. ACM, 2017.

Intel. Tofino2. https://www.intel.
com/content /www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-2-series.html. 2020.

Lavanya Jose, Stephen Ibanez, Mohammad Alizadeh,
and Nick McKeown. A distributed algorithm to cal-
culate max-min fair rates without per-flow state. Proc.
ACM Meas. Anal. Comput. Syst., 3(2):21:1-21:42, 2019.

Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas E. Anderson. TAS: TCP acceleration as an OS
service. In George Candea, Robbert van Renesse, and
Christof Fetzer, editors, Proceedings of the Fourteenth
EuroSys Conference 2019, Dresden, Germany, March
25-28, 2019, pages 24:1-24:16. ACM, 2019.

Changhoon Kim, Anirudh Sivaraman, Naga Katta,
Antonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
2015.

Leonard Kleinrock. Queueing systems, volume 2: Com-
puter applications, volume 66. wiley New York, 1976.

Smaragda Konstantinidou and Lawrence Snyder. Chaos
router: Architecture and performance. In Zvonko G.
Vranesic, editor, Proceedings of the 18th Annual Inter-

national Symposium on Computer Architecture. Toronto,
Canada, May, 27-30 1991, pages 212-221. ACM, 1991.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation

793

https://cloud.google.com
https://cloud.google.com
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Abdesselem Kortebi, Luca Muscariello, Sara Oueslati,
and James W. Roberts. Evaluating the number of active
flows in a scheduler realizing fair statistical bandwidth
sharing. In Derek L. Eager, Carey L. Williamson,
Sem C. Borst, and John C. S. Lui, editors, Proceedings
of the International Conference on Measurements and
Modeling of Computer Systems, SIGMETRICS 2005,
June 6-10, 2005, Banff, Alberta, Canada, pages 217-228.
ACM, 2005.

Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. = Swift:
Delay is simple and effective for congestion control
in the datacenter. In Henning Schulzrinne and Vishal
Misra, editors, SIGCOMM °20: Proceedings of the
2020 Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, Virtual Event, USA, August 10-14, 2020,
pages 514-528. ACM, 2020.

NT Kung and Robert Morris. Credit-based flow control
for ATM networks. IEEE network, 9(2):40-48, 1995.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John L. Hennessy,
Mark Horowitz, and Monica S. Lam. The stanford dash
multiprocessor. Computer, 25(3):63-79, 1992.

Yuliang Li, Rui Miao, Honggiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. HPCC: high precision congestion control. In Jian-
ping Wu and Wendy Hall, editors, Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2019, Beijing, China, August 19-23, 2019,
pages 44-58. ACM, 2019.

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy,
and Thomas E. Anderson. F10: A fault-tolerant engi-
neered network. In Nick Feamster and Jeffrey C. Mogul,
editors, Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2013, pages 399—412. USENIX Association, 2013.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael
Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam
Kumar, Carl Mauer, Emily Musick, Lena E. Olson, Erik
Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, Xi Wang, and Amin Vahdat. Snap:
a microkernel approach to host networking. In Tim
Brecht and Carey Williamson, editors, Proceedings

[46]

[47]

(48]

[49]

(50]

(51]

[52]

of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada,
October 27-30, 2019, pages 399-413. ACM, 2019.

Paul E. McKenney. Stochastic fairness queueing. In
Proceedings IEEE INFOCOM ’90, The Conference
on Computer Communications, Ninth Annual Joint
Conference of the IEEE Computer and Communications
Societies, The Multiple Facets of Integration, San
Francisco, CA, USA, June 3-7, 1990, pages 733-740.
IEEE Computer Society, 1990.

Microsoft. Microsoft Azure.
microsoft.com/.

https://azure.

Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily R. Blem, Hassan M. G. Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, and
David Zats. TIMELY: rtt-based congestion control for
the datacenter. In Steve Uhlig, Olaf Maennel, Brad Karp,
and Jitendra Padhye, editors, Proceedings of the 2015
ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM 2015, London, United Kingdom,
August 17-21, 2015, pages 537-550. ACM, 2015.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John K. Ousterhout. Homa: a receiver-driven
low-latency transport protocol using network priorities.
In Sergey Gorinsky and Janos Tapolcai, editors,
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
2018, Budapest, Hungary, August 20-25, 2018, pages
221-235. ACM, 2018.

The Next Platform. Flattening networks -
and budgets - with 400G ethernet. https:
//www.nextplatform.com/2018/01/20/
flattening-networks-budgets-400g-ethernet/.
January 20, 2018.

Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi,
Davide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, and Felipe Huici. Flowblaze: Stateful
packet processing in hardware. In Jay R. Lorch
and Minlan Yu, editors, 16th USENIX Symposium
on Networked Systems Design and Implementation,
NSDI 2019, Boston, MA, February 26-28, 2019, pages
531-548. USENIX Association, 2019.

Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa H. Ammar, Ellen W. Zegura,
Keon Jang, Mohammad Alizadeh, Abdul Kabbani, and
Amin Vahdat. Annulus: A dual congestion control loop
for datacenter and WAN traffic aggregates. In Henning
Schulzrinne and Vishal Misra, editors, SIGCOMM
"20: Proceedings of the 2020 Annual conference of the

794

19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://azure.microsoft.com/
https://azure.microsoft.com/
https://www.nextplatform.com/2018/01/20/flattening-networks-budgets-400g-ethernet/
https://www.nextplatform.com/2018/01/20/flattening-networks-budgets-400g-ethernet/
https://www.nextplatform.com/2018/01/20/flattening-networks-budgets-400g-ethernet/

[53]

[54]

[55]

[56]

[57]

[58]

ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and
protocols for computer communication, Virtual Event,
USA, August 10-14, 2020, pages 735-749. ACM, 2020.

Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating fair queueing
on reconfigurable switches. In Sujata Banerjee and
Srinivasan Seshan, editors, 15th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2018, Renton, WA, USA, April 9-11, 2018, pages 1-16.
USENIX Association, 2018.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Holzle, Stephen Stuart, and Amin
Vahdat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In
Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra
Padhye, editors, Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
SIGCOMM 2015, London, United Kingdom, August
17-21, 2015, pages 183—-197. ACM, 2015.

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In Marinho P. Barcellos, Jon
Crowcroft, Amin Vahdat, and Sachin Katti, editors,
Proceedings of the ACM SIGCOMM 2016 Conference,
Florianopolis, Brazil, August 22-26, 2016, pages 15-28.
ACM, 2016.

Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling
at line rate. In Marinho P. Barcellos, Jon Crowcroft,
Amin Vahdat, and Sachin Katti, editors, Proceedings
of the ACM SIGCOMM 2016 Conference, Florianopolis,
Brazil, August 22-26, 2016, pages 44-57. ACM, 2016.

Brent Stephens and Alan L. Cox. Deadlock-free local
fast failover for arbitrary data center networks. In 35th
Annual IEEE International Conference on Computer
Communications, INFOCOM 2016, San Francisco, CA,
USA, April 10-14, 2016, pages 1-9. IEEE, 2016.

Brent Stephens, Alan L. Cox, Ankit Singla, John B.
Carter, Colin Dixon, and Wes Felter. Practical DCB
for improved data center networks. In 2014 IEEE
Conference on Computer Communications, INFOCOM
2014, Toronto, Canada, April 27 - May 2, 2014, pages
1824-1832. IEEE, 2014.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Vojislav Puki¢, Sangeetha Abdu Jyothi, Bojan Karlas,
Muhsen Owaida, Ce Zhang, and Ankit Singla. Is
advance knowledge of flow sizes a plausible assump-
tion? In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), pages
565-580, 2019.

Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin
Taheri, and Tom Edsall. Let it flow: Resilient asym-
metric load balancing with flowlet switching. In Aditya
Akella and Jon Howell, editors, /4th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages
407—-420. USENIX Association, 2017.

Jim Warner. Switch buffer size. https:
//people.ucsc.edu/~warner/buffer.html. 2020.

Robert Williams and Bahadir Erimli. Method and
apparatus for performing priority-based flow control,
October 18 2005. US Patent 6,957,269.

David Zats, Tathagata Das, Prashanth Mohan, Dhruba
Borthakur, and Randy H. Katz. Detail: reducing the
flow completion time tail in datacenter networks. In
Lars Eggert, Jorg Ott, Venkata N. Padmanabhan, and
George Varghese, editors, ACM SIGCOMM 2012
Conference, SIGCOMM ’12, Helsinki, Finland - August
13-17, 2012, pages 139-150. ACM, 2012.

Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong,
Jeffrey C. Mogul, and Amin Vahdat. Minimal rewiring:
Efficient live expansion for clos data center networks.
In Jay R. Lorch and Minlan Yu, editors, /16th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2019, Boston, MA, February 26-28,
2019, pages 221-234. USENIX Association, 2019.

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion control for large-scale RDMA
deployments. In Steve Uhlig, Olaf Maennel, Brad Karp,
and Jitendra Padhye, editors, Proceedings of the 2015
ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM 2015, London, United Kingdom,
August 17-21, 2015, pages 523-536. ACM, 2015.

Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Forster, Arvind Krishnamurthy, and Thomas E.
Anderson. Understanding and mitigating packet cor-
ruption in data center networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM 2017, Los Angeles, CA,
USA, August 21-25, 2017, pages 362-375. ACM, 2017.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation

795

https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html

A ADDITIONAL EXPERIMENTS

In this appendix, we present a more complete set of simulation
results for BFC. We first summarize those results, and then
present them.

Understanding the Limits of BFC: A limitation of BFC
is that performance can degrade when collisions occur.
The worst case is when many long-running flows share a
bottleneck link with bursty traffic. We synthetically create this
scenario and show that by adding a very simple end-to-end
control system to BFC, we can largely ameliorate the impact
of long flows, while still fully utilizing the link. See App. A.1
for details.

Comparison with Homa: Homa is a receiver driven data
center transport that uses network priorities to achieve an
approximation of the shortest remaining flow first (SRF)
scheduling to provide low latency for short flows while still
using the full bandwidth of the bottleneck for long flows.
Homa also uses packet spraying. In App. A.2, we configure
BFC with a similar scheduling policy. We show that Homa
with packet spraying outperforms BFC, but when we turn
off packet spraying, BFC outperforms Homa.

Priority Scheduling: Data center operators often classify
traffic into multiple classes and use scheduling priorities
to ensure performance for the most time-sensitive traffic.
We repeat the experiment in Fig. 11b but with traffic split
equally among four priority traffic classes, and show that
BFC performs well in this case. See App. A.3 for details.

Parameter Sensitivity: We perform parameter sensitivity
analysis for HPCC, DCTCP and ExpressPass. See App. A.4
for details.

Spatial Locality: We repeat the experiment in Fig. 11 with
spacial locality in source-destination pairs such that the
average load on all links across the network is same. The
trends in performance are similar. See App. A.5 for details.

Slow-start: We evaluate the impact of using TCP slow-start
instead of starting flows at line rate. We repeat the experiment
in Fig. 11 and compare the original DCTCP with slow start
(DCTCP + SS) and our modified DCTCP where flows start
at the line rate. With incast, DCTCP + SS reduces buffer oc-
cupancy by reducing the intensity of incast flows, improving
tail latency. However, it also increases median FCTs by up
to 2. Flows start at a lower rate, taking longer to ramp up to
the desired rate. In the absence of incast, it increases both the
tail and median FCT for short flows. See App. A.6 for details.

Reducing Contention for Queues: We tried a variant of
BFC where the sender labels incast flows explicitly (similar
to the potential optimization in [49]). All the incast flows
at an egress port are assigned to the same queue. This
frees up queues for non-incast traffic and reduces collisions
substantially under large incasts. (see App. A.7).

Incremental Deployment: We repeated the experiment in
Fig. 11a in the scenario where (i) BFC is deployed in part of

—e— BFC 32
1000
100
10

1

-4- BFC 128 —=— BFC 32 (CC) =% |dealFQ

Direct Indirect e

/ I S
e R

/
i -

2 1022 0 OO Pee®® 2 10 20 6010000 °

Slowdown

Median FCT

of Long Running Flows

Figure 15: Median FCT slowdown for mice flows in the presence
of long-running flows.

the network; (ii) The switch doesn’t have enough capacity to
handle all the recirculations. The impact on FCTs is minimal
under these scenarios (see App. A.8).

Performance in Asymmetric Topologies: BFC makes no
assumption about the topology, link speeds and link delays.
We evaluate the performance of BFC in a multi-data-center
topology. BFC achieves low FCT for flows within the data
center, and high link utilization for the inter-data-center links
(see App. A.9).

Dynamic vs. Stochastic Queue Assignment in BFC: We
repeat the experiment in Fig. 11a but use stochastic hashing
to statically assign flows to physical queue instead. With
stochastic assignment, the number of collisions in physical
queues increases, hurting FCTs (see App. A.10).

Size of Flow Table: Reducing the size of the flow table can
increase index collisions in the flow table, potentially hurting
FCTs. We repeat the experiment in Fig. 11a and evaluate the
impact of size of flow table. Reducing the size partly impacts
the short flow FCTs (see App. A.11).

Incast Flow Performance: App. A.12 shows the slowdown
for incast flows for the Google workload used in Fig. 9. BFC
reduces the FCT for incast flows compared to other feasible
schemes.

A.1 Understanding the limits of BFC

This section investigates the impact of large numbers of active
flows on BFC’s performance through controlled microbench-
marks. We also show that adding a simple end-to-end flow
control mechanism on top of pure BFC helps alleviate the
performance impairments caused by large numbers of flows.

Collisions hurt performance in two ways. Consider a con-
gested port X. First, at X, the packets of a short flow can
get stuck behind the packets of a long flow sharing the same
queue, increasing the FCT. Such performance degradation
occurs when the number of active flows exceeds the number
of queues at X. Second, X can pause an upstream queue. Un-
related flows sharing this upstream queue will get paused even
though they are not going through the congested port X (con-
gestion spreading). BFC can leverage the larger number of
upstream queues at the upstream switches to limit congestion
spreading (§3.3.1). Typically, congestion spreads only once
the number of flows at the congested port exceeds the total
number of upstream queues. As a result, in larger topologies
with more upstream switches, congestion spreading is harder
to create.

796 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

To illustrate these issues, we conduct experiments on our
standard topology (§6.2.1) where we create different numbers
of long-running elephant flows destined to the same receiver
(Receiver A). All elephant flows start at the beginning of the
experiment. We then create two groups of short flows: (1)
destined to the same receiver A (referred as “direct” mice
flows), and (2) destined to a different receiver B in the same
rack as receiver A (referred to as “indirect” mice flows). The
aggregate load for each group of mice flows is 3% of the link
capacity, and the size of the mice flows is 1 KB. Fig. 15 shows
the median FCT slowdown for mice flows as we vary the
number of long-running flows. We show results for BFC with
32 and 128 queues, and also IdealFQ (described in §6.2.1)
for reference. As expected, for direct mice flows, the FCT
degrades when the number of long-running flows exceeds the
number of queues. For indirect flows, the degradation only
happens when long flows exceed 8 x the number of queues,
since the topology has 8 spine switches connected to each
ToR switch. In this case, some indirect mice flows get paused
unnecessarily because they share an upstream queue with a
paused long-running flow.

Combining end-to-end congestion control with BFC:
In the previous experiment, each long-running flow can
build up to 1 Hop-BDP of buffering before getting paused.
With N long-running flows, in the worst case, a mice flow
experiencing a collision can get stuck behind N x 1-Hop BDP
of buffering. BFC can use a simple end-to-end congestion
control mechanism to reduce this buffering and limit HoL
blocking. This mechanism is helpful in scenarios with
persistently large numbers of active flows. As our evaluations
showed (§6.3), even in workloads with high load and
occasional large-scale incast, pure BFC (with no end-to-end
control) performs well except in extreme cases.

Augmenting BFC with end-to-end control is simple. The
main goal of the end-to-end control is to prevent flows from
sending an excessively large number of packets into the net-
work. Importantly, the end-to-end mechanism need not try to
accurately control queuing, react quickly to bursts, or achieve
fairness — typical requirements for low-latency data center
congestion control protocols — since BFC already achieves
these goals.

As an example, we implemented a simple delay-based con-
gestion control that tries to maintain the end-to-end RTT at
a certain threshold (RTT74rger). We chose a high RTT7yger
value of 2.5x base RTT to avoid hurting the throughput of
long flows, exploiting the fact that it isn’t necessary to tightly
control queuing in BFC. The algorithm adjusts the sender’s
window (w) as follows.

With the above rule, the window of a sender roughly goes
from w — w x RT;;"}“’ within an RTT. Fig. 15 shows the
performance with this variant (BFC 32 (CC)). The perfor-
mance is close to IdealFQ in all the cases. To check if this
change negatively affected the overall behavior of BFC, we
repeat the principle experiment in Fig. 11 (Facebook work-

RTTTarger = 2.5% Base RTT;
w=1BDP;
for each Acknowledgement do

if RTT > RTT7,yge then
‘ _ RIT = RTT7arger
w=w-— RTT
else

‘ w=w+ RTTT(’;QK;;RTT

Algorithm 1: Simple end-to-end congestion control

— BFC —- BFC (CC)

n
=
o

FCT Slow Dow

10! 102 103 104 10! 102 103 104
Flow Size (KB) Flow Size (KB)

(a) 55% + 5% 100-1 incast (b) 60%

Figure 16: 99" percentile FCT slowdown when combined with
congestion control. Facebook workload, same setup as Fig. 11.

load) with BEC 32 (CC). Fig. 16 shows the 99" percentile
FCT slowdowns. The FCTs of long flows are similar to that
of the original BFC (within 10%). However, in the presence
of incast, adding congestion control improves the 99 per-
centile FCT of short flows and the peak buffer occupancy by
30%. While using end-to-end congestion control can improve
performance under frequent collisions (and we advocate sup-
plementing BFC with such a mechanism in practice), in this
paper we focus on BFC without any such mechanism to better
understand the core benefits and limitations of BFC in its
purest form.

In App. A.7, we experiment with a variant of BFC where
the sender labels incast flows explicitly (similar to the poten-
tial optimization in [49]). All the incast flows at an egress
port are assigned to the same queue. This frees up queues for
non-incast traffic and reduces collisions substantially under
large incasts.

A.2 Comparison with Homa

Homa is a receiver driven data center transport that uses
network priorities to achieve an approximation of shortest-
remaining-flow-first (SRF) scheduling. Homa divides a flow’s
data into unscheduled (first BDP of traffic) and scheduled
categories. The sender assigns a fixed priority level to a flow’s
unscheduled bytes based on its size and the flow size distribu-
tion of the workload. The unscheduled bytes are transmitted
at line rate. The receiver assigns priority levels to the sched-
uled bytes and issues grants (credits) for them. Homa assumes
per-packet spraying to ensure load balancing across core links,
and sufficient core capacity to guarantee minimal congestion
in the core.

While we focus on fair queuing in this paper, BFC’s design
is applicable to other scheduling policies. In this section, we

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 797

—— BFC-SRF —— Homa ---- Homa (ECMP) - IdealSRF+ECMP
3 =
3 8
a
24
o
& ;
b 2 e z
o —== __Avg. ‘ : __95pct. : ‘ _99pct_
100 10! 102 10% 104 10° 10 102 103 10% 10° 10' 102 103 10*
FlowSize (KB)
(a) Google, 60%
—— BFC-SRF —— Homa ---- Homa (ECMP) - IdealSRF+ECMP
c
E 16
o 8
2
o 4
v .
5 2 T =
Y Avg. 95pct 99pct

100 102 103 10*
FlowSize (KB)
(b) Facebook Hadoop, 60%

Figure 17: FCT slowdown on an oversubscribed clos topology.
With packet spraying, Homa encounters minimal congestion in the
core and outperforms other schemes.

10T 10 10° 10*

evaluate a variant of BFC, BFC-SREF, that aims to approximate
SRF. Flows insert their remaining size into a header field in
each packet transmitted, and the switch schedules queues in
order of remaining size of the packet at the head of the queue.
Similarly to Homa, NICs also follow SRF scheduling. We ran
Homa using its OMNet++simulator [2]. The Homa simulator
assumes unbounded buffers at the switch. For BFC, we use a
12 MB shared buffer. We use 32 queues for both Homa and
BFC. For Homa, the 32 priority levels are divided between
unscheduled and scheduled priorities based on the ratio of
unscheduled and scheduled traffic; the overcommitment level
is equal to the number of scheduled priorities [49]. We use our
default topology with 128 servers and 2:1 oversubscription at
the ToR uplinks (§6.2.1).

Two differences between Homa and BFC-SRF are worth
highlighting. First, BFC-SRF uses flow-level ECMP rather
than packet spraying for enforcing per-flow backpressure. Sec-
ond, BFC-SRF uses dynamic queue assignment and performs
SRF scheduling directly on the switch, as opposed to Homa’s
priority assignment from the end-points. To understand the im-
pact of these aspects separately, we also evaluate a variant of
Homa with ECMP, and report results for IdealSRF+ECMP, an
idealized SRF scheme with unlimited queues and unbounded
buffers at each switch with ECMP load balancing.

We repeat the experiments in Fig. 10 and Fig. 11b for the
Google and Facebook workloads at 60% load (log-normal
flow arrivals without incast). Fig. 17 reports the FCTs. Homa
performs the best out of all schemes, achieving up to 2 x better
FCTs for long flows. With packet spraying, flows encounter
minimal congestion in the core, and compete for bandwidth
primarily at the last-hop. In contrast, ECMP is prone to path
collisions [7] and flows encounter congestion in the core.
Notice that a last-hop link carries half the load of a core

Scheme Link 95% Delay (us) [99% Delay (us)
Homa Agg-ToR 24 6.7
Homa ToR-Agg 2.1 6.0

Homa ECMP | Agg-ToR 40.8 87.2
Homa ECMP | ToR-Agg 43.7 93.3

Table 2: Per-packet queuing delay for scheduled traffic in the core.

—— BFC-SRF —-— Homa/Homa (ECMP) - IdealSRF+ECMP
g 8 N
8 Jd o || e
= I o
o
v 2
w g - Avg. 95pct 99pct
10° 10! 102 103 104 10° 10! 102 10° 10* 10° 10' 102 103 10%
FlowSize (KB)
(a) Google, 60%
—— BFC-SRF —-— Homa / Homa (ECMP)
£ 16
2
8 8
2
2]
52 =
Y == AVg. [= 95pct | |=
10' 102 10° 104 10! 102 103 104 10' 102 103 10%
FlowSize (KB)

(b) Facebook Hadoop, 60%
Figure 18: BFC’s dynamic queueue assignment achieves a better

approximation of the SRF scheduling policy. BFC-SRF achieves
close to optimal FCTs.

link (30% vs 60%) in this experiment on average (§6.2.1).
Since packet spraying essentially eliminates congestion on the
core links, with Homa flows experience congestion only on
the last-hop links. But with the ECMP-based schemes, flows
contend at the core links (with 2 x the load). As a result, Homa
even outperforms Ideal SRF+ECMP. This result illustrates the
benefits of packet spraying; nevertheless, packet spraying
is rarely deployed in practice because it can cause packet
reordering, increasing CPU overhead at endpoints’, and it can
hurt performance in asymmetric topologies (e.g., caused by
rolling upgrades or link failures) [60].

Among the ECMP approaches, BFC-SREF is close to Ideal-
SRF+ECMP and Homa is worse. In Homa, receivers have no
visibility into congestion in the core and don’t react to queue
buildup in the core (though each flow limits its total in-flight
data to 1 BDP). Also, Homa’s receiver-set priorities are only
based on contending flows at the last hop, and can violate SRF
scheduling when congestion occurs in the core. Table 2 shows
that with ECMP, the scheduled traffic encounters significantly
higher queuing in the core.

Benefits of BFC’s dynamic queue assignment over Homa.
BFC makes queue assignment and scheduling decisions at
the switch, based on an instantaneous view of competing
flows. In principle, this should allow BFC to more accurately
approximate SRF compared to Homa. To understand if this

7Packet reordering makes hardware offloads such as Large Receiver
Offload (LRO) ineffective [26].

798 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

—— BFC-SRF —— Homa ---- Homa (ECMP) - IdealSRF+ECMP
g 64 T~
232
% 16
3 8]
o4 ; St
52 7 : e 7l
L] s Ayg, ~-/95pct 99pct
10° 10! 102 10° 10 10° 10 102 103 104 10° 10! 10% 103 10*
FlowSize (KB)
(a) Google, 55% + 5% 100-1 incast
—— BFC-SRF —— Homa ---- Homa (ECMP) - IdealSRF+ECMP
64
c S
[
232 |
016 i f
3 8 i
[f
[T .
O AL
L | o™ Avg, - 95pct T 99pct
10! 102 10%® 10 10! 102 103 10* 10' 102 103 10%
FlowSize (KB)

(b) Facebook Hadoop, 55% + 5% 100-1 incast

Figure 19: FCT slowdown with 100-1 incast. Collisions in
BFC-SREF can cause priority inversions hurting FCTs

is actually the case, we conduct an experiment with the same
Google and Facebook workloads but with all flows destined
to a single receiver, and the senders located within the same
rack as the receiver. Since there is no traffic in the core, load
balancing (ECMP vs. packet spraying) does not matter in
this case. Flow arrivals are log-normal and the load on the
receiver’s link is 60%. Fig. 18 shows the results. BFC-SRF
achieves better FCTs primarily at the tail.

We give two examples of priority inversions in Homa which
BFC avoids. First, the Homa sender assigns priorities to un-
scheduled traffic based on flow size distributions rather than
using the current set of flows competing at the switch due
to lack of visibility for the first RTT. As a result with Homa,
short flows (< 1 BDP) with similar flow sizes can end up shar-
ing unscheduled priority queues unnecessarily, even when
there are sufficient queues at the switch to assign each flow
a unique queue. Second, in Homa the unscheduled bytes of
a flow are always scheduled ahead of the scheduled bytes of
competing flows. This implies that the unscheduled bytes of
a new long flow will be incorrectly scheduled ahead of the
scheduled bytes of a shorter flow. This also violates SRF and
increases FCT for flows larger than a BDP.

Impact of collisions on BFC-SRF. Recall that with large
incast, BFC can experience collisions. For BFC-SRF, such
collisions can cause priority inversions that hurt FCTs. To
illustrate this, we repeat the experiments in Fig. 9 and Fig. 11a
(55% load plus 5% 100-1 incast traffic). Fig. 19 shows that
the average FCT for short flows is higher with BFC-SREF. This
is because of high completion times for a (small) fraction of
short flows sharing queues with longer flows. To understand
why, consider the following situation. An incoming short flow
arrives when there are no free queues, and ends up sharing
the queue with a long flow. Let’s say the remaining size of
the long flow is greater than the incast flow size (200 KB in

this experiment). In case there are competing incast flows
present in other queues, the incast flows will be scheduled
ahead of this long flow. Therefore, the short flow will have
to wait for all the traffic from the incast flows to finish to
make any progress. This can severely degrade its completion
time. The core of this problem is that when a port runs out
of queues, the BFC switch assigns the new flow to a queue
randomly. This is fine for fair queuing but with SRF, a more
sophisticated strategy may improve performance (e.g., assign
the new flow to a queue with similar remaining flow sizes).

As explained earlier, Homa is not immune to priority inver-
sions. Fig. 19 shows that with Homa, flows with size greater
than 1 BDP but less than 2 BDP have high FCTs at the tail.
This is because unscheduled bytes of the the incast flows are
incorrectly scheduled ahead of the scheduled bytes of such
flows.

These experiments suggest an interesting possibility to try
to get the best of both schemes: we could combine BFC’s dy-
namic queue assignment for unscheduled traffic with Homa’s
grant mechanism for controlling scheduled traffic. We leave
exploration of such a design to future work.

A.3 Multiple traffic classes

Many data center operators allocate network traffic into a
small number of priority traffic classes to ensure that mission
critical traffic is delivered with low tail latency, while other
traffic is delivered according to its quality of service needs.
BFC has a simple extension to support priority groups. To
avoid priority inversion where a flow at one priority can be
stalled behind a flow of a lower priority, we assume queues at
a port are statically assigned to different priority levels. The
switch performs dynamic queue assignment for each class
independently. A flow with priority X is only assigned to
physical queues associated with that priority. Queues at the
same priority level follow fair scheduling.

Statically partitioning physical queues among traffic classes
could make it more likely for traffic within a class to run out
of queues and suffer degraded performance with collisions
and HoL blocking. On the other hand, high priority traffic
is preferentially scheduled, leading to short queues and few
active flows. Collisions will be more likely at lower priority
traffic classes, where performance is already degraded. Pri-
ority scheduling results in rapid and extreme changes in the
available rate for these background classes. Relative to end-
to-end control, per-hop backpressure can more easily utilize
rapidly changing spare capacity.

To test how BFC behaves with multiple traffic classes, we
repeat the experiment in Fig. 11b: Facebook workload, 60%
load, and no incast. We configure the system with 4 priority
classes, each with equal load (15% each, 60% in aggregate).
We allocate physical queues evenly to each traffic class. We
consider configurations with 32 and 128 queues per port (8
or 32 queues per class). We also show results for HPCC and
DCTCEP. In this study, DCTCP marks packets based on per-

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 799

— BFC(32) —-- HPCC-PFC — BFC(32) —-- HPCC-PFC
--- BFC (128) DCTCP --- BFC (128) DCTCP
£ 64 — S 64 —
S 32 Vg S 32 -
2 16 7 2 16 Lo
58 /o 58 T
5 4 e — . R o
52 /ﬂv 1 52 _ Priority 2
* 101 102 103 104 * 101 102 103 10%
Flow Size (KB) Flow Size (KB)
(a) Priority Class 1 (highest) (b) Priority Class 2

— BFC(32) —-- HPCC-PFC — BFC(32) —-- HPCC-PFC
--- BFC (128) DCTCP --- BFC (128) DCTCP
c c
£1 £ 256 -
3 3 128 { me—mmmmmm
a o % \
z i 3 1
s 8 . 38—
521 _ Priority 3_ 521 _ Priority 4_
* 101 102 103 104 = 101 102 103 104
Flow Size (KB) Flow Size (KB)
(c) Priority Class 3 (d) Priority Class 4 (lowest)

Figure 20: Multiple traffic classes with BFC, reporting 99" I percentile FCT slowdown for the Facebook workload, 60% load, and no incast.

class queueing, while HPCC uses switch aggregates. Fig. 20
shows the 99" percentile FCT slowdown for different priority
classes. BFC achieves good performance across all traffic
classes and flow sizes. In particular, BFC achieves up to 5x
better tail latency for short flows than DCTCP. At the lowest
priority level, DCTCP’s short flow tail latency converges to
that of BFC. For low priority flows, tail latency is primarily
governed by time spent waiting to be scheduled at the switch.

HPCC’s performance is somewhat anomalous. Long flows
suffer priority inversion, where long flows at high priority
achieve significantly worse service than short flows at lower
priority. In HPCC, long flows back off in an attempt to keep
queues empty. The (transient) extra capacity left by such long
flows can be used by short flows traffic at all priority levels,
improving performance for these short flows.

BFC has only slightly better performance with 32 vs. 8
queues per priority level, indicating that collisions did not
have much impact. For high priority traffic, the setup is equiv-
alent to running our experiment with just one traffic class at
15% load and a small number of queues—even modest num-
bers of active queues are unlikely at such low load. Lower
priority traffic can run out of queues, but they gain the benefit
of being able to take immediate advantage when the high
priority queues are empty. In other words, work conserving
behavior is more important for background traffic than the
number of queues. We acknowledge this is just one study, and
there are likely scenarios where BFC’s performance could
suffer when using multiple traffic classes.

One obvious improvement is to split queues dynamically
among classes rather than statically. But in the long run, we
strongly believe that the number of queues per port is likely
to continue to grow to whatever is needed to deliver good
performance.

A.4 Parameter sensitivity for comparison schemes

In this section, we perform sensitivity analysis to understand
the impact of parameters on performance of HPCC, DCTCP
and ExpressPass. We repeat the experiment in Fig. 11b (Face-
book distribution with 60% load). Fig. 21 reports the average,
95" and 99" percentile flow completion times as we vary the
parameters. In general, we observe that parameters present a
trade-off between the latency of short flows (queuing) and the
throughput of long flows (link utilization).

HPCC: We vary the target utilization (1) from 90 to 98%.

—= 90% —— 95% -

c
§ 32
316 ’_‘.
E 8 Vi
w4
52
O
! Avg. 95pct 99pct
100 102 10° 10¢ 10' 102 10° 104 10 107 10° 10*
FlowSize (KB)
(ay HPCC ()
—— 50-200kB —— 100-400KB -

== Avg.

FCT SlowDown
IS

95pct 99pct
10 102 103 10 10! 102 103 10* 10! 102 103 10°
FlowSize (KB)
(b) DCTCP (ECN marking threshold: Kpin-Kinax)
R 8 — 16 32

FCT SlowDown
©

21 Avg. 95pct 99pct
10! 102 10® 10 10 102 10° 10* 10' 102 10° 10*
FlowSize (KB)
(c) ExpressPass (Credit Buffer Size)
—— 0.0625 — 0.5

FCT SlowDown
©

2 Avg. 95pct 99pct
101 102 10° 10* 10! 10?2 103 10* 10! 102 103 10*
FlowSize (KB)
(d) ExpressPass (o)

Figure 21: 99" percentile FCT slowdown for the Facebook
workload, 60% load without incast. Sensitivity to the choice of
parameters in HPCC, DCTCP, and ExpressPass.

As expected, increasing 1 worsens the FCT of short flows
but improves the FCT for long flows (marginally for both),
see Fig. 21a.

DCTCP: We vary the ECN marking threshold governed by
parameters K,,;;, and Kj,,y. Increasing the threshold increases
the queuing at the switch, which increases FCT of short flows
but improves link utilization (Fig. 21b).

800 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

— BFC —-- HPCC-PFC DCTCP
c c 64 =
E) -
7/
o 016 7
: X e
n 0 a7
= |l -
O O
w [T 1
10! 102 103 104 10! 102 10° 104
Flow Size (KB) Flow Size (KB)
(a) 55% + 5% 100-1 incast (b) 60%

Figure 22: Impact of spatial locality. FCT slowdown (99"
percentile) for Facebook distribution with and without incast.

o — BFC+FQ DCTCP c —-- DCTCP+SS
% 128 % 16 o e
a g‘z‘ o 8 ///‘
2 16 34l
n 8 n
5ol cil
o 10! 102 10®° 104 & 100 102 10® 10
Flow Size (KB) Flow Size (KB)

(a) 55% + 5% 100-1 incast (b) 60%

(99" percentile FCT) (99" percentile FCT)
~— BFC+FQ DCTCP c —-- DCTCP+SS
: &,
Qg4 T a J— =
2 /_/'—/ 2 -
27 7 22 e
(%] e .
G ‘:"/ G =
= 10! 102 10 104 & 100 102 103 104

Flow Size (KB) Flow Size (KB)
(¢) 55% + 5% 100-1 incast (d) 60%
(Median FCT) (Median FCT)

Figure 23: Impact of using slow start on median and 99th percentile
tail latency FCT slowdown, for the Facebook flow size distribution
with and without incast (setup the same as Fig. 11). With incast,
DCTCP + SS (slow start) reduces the tail FCT, but it increases median
FCTs by up to 2 x. In the absence of incast, DCTCP + SS increases
both the tail and median FCT for short and medium flows.

ExpressPass: Varying the credit buffer size has little impact
on performance (Fig. 21c). We vary o, which controls how
the receiver credits are generated. Reducing o reduces “credit
waste”, improving the FCT of long flows. However, it also
increases the FCT of short flows (Fig. 21d).

A.5 Impact of Spatial Locality

We repeated the experiment from Fig. 11 with spatial locality
in source-destination pairs such that the average load on all
links across the network is same. Fig. 22 shows the 99/
percentile slowdowns. The trends are similar to Fig. 11.

A.6 Using TCP Slow-start

We also evaluate the impact of using TCP slow-start instead
of starting flows at line rate in Figure 23. We compare the
original DCTCP with slow start (DCTCP + SS) with an initial
window of 10 packets versus the modified DCTCP used so

far (initial window of the BDP). The setup is same as Fig. 11.

With incast, DCTCP + SS reduces buffer occupancy by
reducing the intensity of incast flows, improving tail latency
(Fig. 23a). However, slow start increases the median FCT
substantially (Fig. 23c). Flows start at a lower rate, taking

—e— BFC + Flow FQ -4- BFC + IncastLabel

o —
s —=- HPCC - PFC Q DCTCP
£m $¥ 256
3A 16 - 3% 128
8g1e| _ae-ocz 81
32 g™ sn 1§
0wy n,_. 4
|9}
Ef algmteta—cwt| B8 flplopggy
-9 O . o® 0 ® 0 2 O . o® A0 ¥ O a®
2 0 A0 g0 o (O o & A0 A0 400 (o 00

Incast Degree
(a) Average FCT for long flows

Incast Degree
(b) Tail FCT for short flows
Figure 24: FCT slowdown for short and long flows as a function of
incast degree. The x axis is not to scale. By isolating incast flows, BFC
+ IncastLabel reduces collisions and achieves the best performance.

longer to ramp up to the desired rate. For applications with
serially dependent flows, an increase in median FCTs can
impact the performance substantially.

In the absence of incast, slow start increases both the tail
(Fig. 23b) and median (Fig. 23d) FCT for the majority of flow
sizes. In particular, short flows are still slower than with BFC,
as slow start does not remove burstiness in buffer occupancy
in the tail.

A.7 Reducing contention for queues

To reduce contention for queues under incast, we tried a
variant of BFC where the sender labels incast flows explicitly
(similar to the potential optimization in [49]). BFC +
IncastLabel assigns all the incast flows at an egress port to
the same queue. This frees up queues for non-incast traffic,
reducing collisions and allowing the scheduler to share the
link between incast and non-incast traffic more fairly.

Fig. 24 shows the performance of BFC + IncastLabel in
the same setup as Fig. 13. The original BFC is shown as BFC
+ Flow FQ for per-flow fair queuing. BFC + IncastLabel
achieves the best performance across all the scenarios.
However, the FCTs for incast flows is higher compared to
BFC + Flow FQ (numbers not shown here). When there are
multiple incast flows at an ingress port, the incast flows are
allocated less bandwidth in aggregate compared to per-flow
fair queuing.

While BFC + IncastLabel achieves great performance, it
assumes the application is able to label incast flows, and so
we use a more conservative design for the main body of our
evaluation.

A.8 Incremental Deployment

We repeated the experiment in Fig. 11a in the scenario where 1)
BFC is deployed in part of the network; ii) The switch doesn’t
have enough capacity to handle all the recirculations. Fig. 25
reports the tail FCT and buffer occupancy for these settings.

Partial deployment in the network: We first evaluate the
situation when BFC is only deployed at the switches and the
sender NICs don’t respond to backpressure signal (shown
as BFC - NIC). To prevent sender NIC traffic from filling
up the buffers at the ToR, we assume a simple end-to-end
congestion control strategy where the sender NIC caps
the in-flight packets for a flow to 1 end-to-end bandwidth

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 801

— BFC --- BFC- NIC —-- BFC + Sampling
c
z 1.00{ — -
o 0.95 /
; w
8 5 0.90
5 0.85 i
e 0.80 :
100 102 10® 10% 0 10 20 30 40
Flow Size (KB) Buffer Occupancy (us)
(a) 99" percentile FCT (b) Buffer Occupancy

Figure 25: FCT slowdown (99" percentile) and buffer occupancy
distribution for two BFC variants. When NICs don’t respond to
backpressure (BFC - NIC), BFC experiences moderate increased
buffering. Using sampling to reduce recirculation (BFC + sampling)
has marginal impact on performance.

delay product (BDP). As expected, BFC - NIC experiences
increased buffering at the ToR (Fig. 25b). However, the tail
buffer occupancy is still below the buffer size and there are no
drops. Since all the switches are BFC enabled and following
dynamic queue assignment, the frequency of collisions and
hence the FCTs are similar to the orignal BFC.

Sampling packets to reduce recirculations: A BFC switch
with an RMT architecture [18] recirculates packets to execute
the dequeue operations at the ingress port. Depending on the
packet size distribution of the workload, a switch might not
have enough packet processing (pps) capacity or recirculation
bandwidth to process these recirculated packets. In such
scenarios, we can reduce recirculations by sampling packets.
Sampling works as follows.

On a packet arrival (enqueue), sample to decide whether a
packet should be recirculated or not. Only increment the pause
counter and size in the flow table for packets that should be
recirculated. The dequeue operations remain as is and are only
executed on the recirculated packets. The size now counts the
packets sampled for recirculation and residing in the switch.
While sampling reduces recirculations, it can cause packet re-
ordering. Recall, BFC uses size to decide when to reassign a
queue. With sampling, size can be zero even when a flow has
packets in the switch. This means a flow’s queue assignment
can change when it already has packets in the switch, causing
reordering. However, sticky queue assignment should reduce
the frequency of these events (§3.3.2).

We now evaluate the impact of sampling on the perfor-
mance of BFC (shown as BFC + Sampling). In the experiment,
the sampling frequency is set to 50%, i.e., only 50% of the
packets are recirculated. BFC + Sampling achieves nearly
identical tail latency FCT slowdowns and switch buffer occu-
pancy as the orginal BFC. With sampling, fewer than 0.04%
of the packets were retransmitted due to packet reordering.

A.9 Cross data center traffic

For fault tolerance, many data center applications replicate
their data to nearby data centers (e.g., to a nearby metro area).
We evaluate the impact of BFC on managing cross-data
center congestion in such scenarios. We consider the ability

— BFC —- HPCC --- DCQCN 100
€32

i
o
» O
o © o

N
o

Utilization (%)

IS

FCT Slow Dow
oo

N

100 102 10 10 &« o<~ o
Flow Size (KB) A o

(a) 99" percentile FCT

Figure 26: Performance in cross data center environment where
two data center are connected by a 200 us link, for the Facebook
workload (60% load) with no incast traffic. The left figure shows the
99th percentile FCT slowdown for intra-data-center flows. The right
figure shows the average utilization of the link connecting the two
data centers.

(b) Utilization at the interconnect.

of different systems to achieve good throughput for the
inter-data-center traffic, and we also consider the impact of
the cross-data-center traffic on tail latency of local traffic,
as the larger bandwidth-delay product means more data is
in-flight when it arrives at the bottleneck.

We created a Clos topology with 64 leaf servers, and
100 Gbps links and 12MB switch buffers. Two gateway
switches connect the data centers using a 200 Gbps link with
200 us of one-way delay (i.e. the base round trip delay of the
link is 400 us), or roughly equivalent to the two data centers
being separated by 50 km assuming a direct connection. The
experiment consists of intra-data-center flows derived from
the Facebook distribution (60% load). Additionally, there are
20 long-lived inter-data-center flows in both the directions.

Fig. 26a shows the 99th percentile tail latency in FCT
slowdown for intra-data-center flows for BFC, HPCC and
DCQCN.® Fig. 26b shows the average utilization of the link
connecting the two data centers (interconnect), a proxy for
the aggregate throughput of the long-lived inter-data-center
flows. BFC is better for both types of flows. With BFC,
the link utilization of the wide area interconnect is close to
100%, while neither HPCC nor DCQCN can maintain the
link at full utilization, even with ample parallelism. This
is likely a consequence of slow end-to-end reaction of the
inter-data-center flows [52]. The congestion state on the links
within a data center is changing rapidly because of the shorter
intra-data-center flows. By the time an inter-data-center
flow receives congestion feedback and adjusts its rate, the
congestion state in the network might have already changed.
When capacity becomes available, the inter-data-center flows
can fail to ramp up quickly enough, hurting its throughput.

Relative to the single data center case (cf. Fig. 11b), tail
latency FCTs are worse for all three protocols, but the relative
advantage of BFC is maintained. Where HPCC has better
tail latency than DCQCN in the single data center case for
both short and medium-sized flows, once inter-data-center
traffic is added, HPCC becomes worse than DCQCN. With
bursty workloads, on the onset of congestion, the long-lived

8Data center operators have developed specialized protocols for better inter-
data center link management [21]; comparing those to BFC is future work.

802 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

—ZBFC+Dyn. ---- BFC+Stoch.

—— BFC+Dyn. ---- BFC+Stoch.
1.00

o
+ ool

0.95

w
N
/

. &
. § 0.90

©

0.85

FCT Slow Down
-
-
o

IS

0.80

00 02 04 06 08
Flow Size (KB) Fraction of Collisions
(a) 99" percentile FCT (b) Collisions
Figure 27: Performance of BFC with stochastic queue assignment,
for the workload in Fig. 11a. BFC + Stochastic incurs more queue
collisions leading to worse tail latency especially for small flows
compared to BFC + Dynamic.

10t 102 10® 104

flow will take an end-to-end RTT to reduce its rate, and can
build up to 1 BDP (or 500 KB) of buffering, hurting the tail
latency of intra-data-center traffic. This has less of an impact
on DCQCN because it utilizes less of the inter-data-center
bandwidth in the first place.

In contrast, BFC reacts at the scale of the hop-by-hop
RTT. Even though inter-data-center flows have higher end-
to-end RTTs, on switches within the data center, BFC will
pause/resume flows on a hop-by-hop RTT timescale (2 us).
As a result, with BFC, tail latencies of intra-data-center flows
are relatively unaffected by the presence of inter-data-center
flows, while the opposite is true of HPCC.

A.10 Physical queue assignment

To understand the importance of dynamically assigning
flows to physical queues, we repeated the experiment in
Fig. 11a with a variant of BFC, BFC + Stochastic, where we
use stochastic hashing to statically assign flows to physical
queues (as in SFQ). In BFC (referred as BFC + Dynamic
here), the physical queue assignment is dynamic. To isolate
the effect of changing the physical queue assignment, the
pause thresholds are the same as BFC + Dynamic.

Fig. 27a shows the tail latency. Compared to BFC, tail
latency for BFC + Stochastic is much worse for all flow
sizes. Without the dynamic queue assignment, flows are often
hashed to the same physical queue, triggering HoL blocking
and hurting tail latency, even when there are unoccupied
physical queues. Fig. 27b is the CDF of such collisions.
BFC+Stochastic experiences collisions in a high fraction of
cases and flows end up being paused unnecessarily. Such
flows finish later, further increasing the number of active
flows and collisions. Even with incast, the number of active
flows in BFC is smaller than the number of physical queues
most of the time.

A.11 Size of flow table

We repeated the experiment in Fig. 11a, but varied the size
of the flow table (as a function of the number of queues in the
switch). The default in the rest of the paper uses a flow table
of 100X. Fig. 28 shows the tail latency as a function of flow
size, for both smaller and larger flow tables. Reducing the
size of the flow table increases the index collisions in the flow

---- 25X —— 50X —— 100X 200X e IdealFQ
c 64
232
016
5 8
n o4
§ 2
1 : : : :
101 102 103 104
Flow Size (KB)
(a) 99" percentile FCT

Figure 28: FCT slowdown (99th percentile) for BFC for different
size flows as a function of the size of the flow table (as a multiple
of the number of queues in the switch). The other experiments in the
paper use a flow table of 100X. Further reducing the size of the flow
table hurts small flow performance.

. Avg

:— 95 pct
$512 2P

o 256

R

C O OR C o
F L E SR LS
o & 0\28(,%.&

@ 99 pct

w

FCT Sl

Figure 29: FCT slowdown for incast traffic. Slowdown is defined
per flow.BFC reduces the FCT for incast flows compared to other
feasible schemes. Setup from Fig. 9.

table. Each flow table collision means that those flows are
necessarily assigned to the same physical queue. Tail latency
FCTs degrade as a result, particularly for small flows and for
smaller table sizes. This experiment shows that increasing
the size of the flow table would moderately improve short
flow tail latency for BFC.

A.12 Incast flow performance

Fig. 29 shows the slowdown for incast flows for the
Google workload used in Fig. 9. The benefits of BFC for
non-incast traffic do not come at the expense of worse
incast performance. Indeed, BFC improves the performance
of incast flows relative to end-to-end congestion control,
because it reacts faster when capacity becomes available at
the bottleneck, reducing the percentage of time the bottleneck
is unused while the incast is active.

B DEADLOCK PREVENTION

We formally prove that BFC is deadlock-free in absence of
cyclic buffer dependency. Inspired by Tagger [32], we define
a backpressure graph (G(V,E)) as follows:

1. Node in the graph (V): A node is an egress port in
a switch and can thus be represented by the pair
<switchID, egressPort>.

2. Edge in the graph (E): There is a directed edge from
B — A, if a packet can go from A to B in a single
hop (i.e., without traversing any other nodes) and
trigger backpressure from B— A. Edges represent how
backpressure can propagate in the topology.

We define deadlock as a situation when a node (egress

port) contains a queue that has been paused indefinitely.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 803

Cyclic buffer dependency is formally defined as the situation
when G contains a cycle.

Theorem 1 BFC is deadlock-free if G(V,E) does not contain
any cycles.

Proof: We prove the theorem by using contradiction.

Consider a node A that is deadlocked. A must contain a
queue (A,) that has been indefinitely paused as a result of
backpressure from the downstream switch. If all the packets
sent by A, were drained from the downstream switch, then A,
will get unpaused (§3.3.2). There must be at least one node
(B) in the downstream switch that triggered backpressure
to A, but hasn’t been able to drain packets from Ay ie., B
is deadlocked. This implies, in G, there must be an edge
from B — A. Applying induction, for B there must exist
another node C (at the downstream switch of B) that is
also deadlocked (again there must be an edge from C — B).
Therefore, there will be an infinite chain of nodes which are
paused indefinitely, the nodes of the chain must form a path
in G. Since G doesn’t have any cycles, the paths in G can
only be of finite length, and therefore, the chain cannot be
infinitely long. A contradiction, hence proved.

Preventing deadlocks: To prevent deadlocks, given a topol-
ogy, we calculate the backpressure graph, and pre-compute
the edges that should be removed so that the backpressure
graph doesn’t contain any cycles. Removing these edges thus
guarantees that there will be no deadlocks even under link
failures or routing errors. To identify the set of edges that
should be removed we can leverage existing work [32].

To remove a backpressure edge B— A, we use the simple
strategy of skipping the backpressure operation for packets
coming from A going to B at the switch corresponding to B.’
Note that, a switch can identify such packets locally using
the ingress and egress port of the packet. This information
can be stored as a match-action-table (indexed by the ingress
and egress port) to check whether we should execute the
backpressure operations for the packet.

For Clos topologies, this just includes backpressure edges
corresponding to packets that are coming from a higher
layer and going back to a higher layer (this can happen due
to rerouting in case of link failures). Note that, usually the
fraction of such packets is small (< 0.002% [32]), so forgoing
backpressure for a small fraction of such packets should hurt
performance marginally (if at all).

C IMPACT OF PAUSE THRESHOLD

A consequence of the simplicity of BFC’s backpressure
mechanism is that a flow can temporarily run out of packets

9To remove backpressure edges in PFC, Tagger uses a more complex
approach that invloves creating new cycle free backpressure edges correspond-
ing to the backpressure edges that should be removed. To ensure losslessness,
Tagger generates backpressure using these new cycle free edges instead
of the original backpressure edge. In our proposed solution, we forgo such
requirement for simplicity.

at a bottleneck switch while the flow still has packets to send.
The pause threshold (Th) governs the frequency of such
events. Using a simple model, we quantify the impact of Th.

Consider a long flow f bottlenecked at a switch S. To
isolate the impact of the delay in resuming, we assume that
f 1s not sharing a queue with other flows at S or the upstream
switch. Let uy be the dequeue rate of f at S, i.e., when f has
packets in S, the packets are drained at a steady rate of uy.
Similarly, let uz-x be the enqueue rate of f at the switch, i.e.,
if f is not paused at the upstream, S receives packets from f
at a steady rate of uy-x. Here, x denotes the ratio of enqueue
to dequeue rate at S. Since f is bottlenecked at S, x> 1.

We now derive the fraction of time in steady state that f
will not have packets in S. We show that this fraction depends
only on x and T, and is thereby referred as E¢(x,Th).

The queue occupancy for f will be cyclic with three phases.

» Phase 1: § is receiving packets from f and the queue

occupancy in increasing.

* Phase 2: § is not receiving packets from f and the queue

is draining.

* Phase 3: § is not receiving packets from f while the

queue is empty.

The time period for phase 1 (#,1) can be calculated as
follows. The queue occupancy at start of the phase is 0 and
S is receiving packets from f. f gets paused when the queue
occupancy exceeds Th. The queue builds at the rate uyg-x—puy
(enqueue rate - dequeue rate). The pause is triggered after
yf~(+h—1) time from the start of the phase. Since the pause takes
an HRTT to take effect, the queue grows for an additional
HRTT.tp is therefore given by:

t Th | prrr (1)
| = .
" up(x-1)

The queue occupancy at the end of phase 1 is
Th+HRTT - uys- (x—1). The time period for phase 2 (¢,7)
corresponds to the time to drain the queue. 7, is given by:

Th+HRTT -us-(x—1
e Wuf().)

At the end of phase 2, there are no packets from f in S. As
aresult, S resumes f at the upstream. Since the resume takes
an HRTT to take effect, the queue is empty for an HRTT.
Time period for phase 3 (¢,3) is given by:

t;3=HRTT 3)

Combining the equations, E¢(x,Th) is given by:

Ef(x,Th):tpi3
tpl +tp2+tp3
x—1

= Th (4)

HRTT X+ (¥ 1)

804 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

0.5

0.4

0.3

(EATh, x))

max
x>1

1 2 3 4 5

Th (HRTT - y)
Figure 30: Impact of pause threshold (74) on the metric of worst
case inefficiency. Increasing 7'/ reduces the maximum value for the
fraction of time f can run out of packets at the bottleneck.

Notice that for a given x, Ef(x,Th) reduces as we increase
Th. Increasing Th, increases the time period for phase 1
and phase 2, and the fraction of time f runs out of packets
reduces as a result.

We now quantify the impact of pause threshold on the
worst case (maximum) value of E¢(x, Th). Given a Th,
E¢(x,Th) varies with x. When x — 1, (E¢(x,Th) — 0, and
when x — oo, (E¢(x,Th) — 0. The maxima occurs somewhere

in between. More concretely, for a given value of Th, the

Th
HRTT 4y

(max,~1(Ef(x,Th))) is given by:

+ 1. The maximum value

maxima occurs at x =

1
malx(Ef(x,Th)): R
x> Th
(\/ HRTT-,uf+1) +1

Fig. 30 shows how max,~(Es(x,Th)) changes as we in-
crease the pause threshold. As expected, increasing the pause
threshold reduces max, (Ey(x,Th)). However, increasing
the pause threshold has diminishing returns. Additionally,
increasing Th increases the buffering for f (linearly).

In BFC, we set Th to 1-Hop BDP at the queue drain
rate, i.e., Th=HRTT -uy. Thereofore, the maximum value
of E¢(x,Th) is 0.2 (at x = 2). This implies, under our
assumptions, that a flow runs out of packets at most 20% of
the time due to the delay in resuming a flow.

Note that 20% is the maximum value for E¢(x,Th). When
x#2, Ef(x,Th) is lower. For example, when x=1.1 (i.e., the
enqueue rate is 10% higher than the dequeue rate), E¢(x,Th)
is only 7.6%.

The above analysis suggests that the worst-case under-
utilization caused by delay in resuming is 20%. Note that
in practice, when an egress port is congested, there are
typically multiple flows concurrently active at that egress. In
such scenarios, the under-utilization is much less than this
worst-case bound, because it is unlikely that all flows run
out of packets at the same time. As our evaluation shows,
with BFC, flows achieve close to ideal throughput in realistic
traffic scenarios (§6).

®

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 805

	Introduction
	Motivation
	Limits of End-to-End Congestion Control
	Existing Solutions are Insufficient
	Revisiting Per-hop, Per-Flow Flow Control

	Design
	Design Constraints
	A Strawman Proposal
	Backpressure Flow Control (BFC)
	Assigning flows to queues
	Backpressure mechanism

	Tofino2 implementation
	Discussion
	Evaluation
	 Tofino2 evaluation
	Simulation-based evaluation
	Setup
	Performance

	Stress-testing BFC
	Dynamic Queue Assignment
	Additional Experiments

	Conclusion
	Additional Experiments
	 Understanding the limits of BFC
	 Comparison with Homa
	 Multiple traffic classes
	 Parameter sensitivity for comparison schemes
	 Impact of Spatial Locality
	Using TCP Slow-start
	Reducing contention for queues
	Incremental Deployment
	Cross data center traffic
	Physical queue assignment
	Size of flow table
	Incast flow performance

	Deadlock prevention
	Impact of Pause Threshold

