
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Buffer-based End-to-end Request Event Monitoring
in the Cloud

Kaihui Gao, Tsinghua University and Alibaba Group; Chen Sun, Alibaba Group;
Shuai Wang and Dan Li, Tsinghua University; Yu Zhou, Hongqiang Harry Liu,

Lingjun Zhu, and Ming Zhang, Alibaba Group
https://www.usenix.org/conference/nsdi22/presentation/gao-kaihui

Buffer-based End-to-end Request Event Monitoring in the Cloud

Kaihui Gao⋆†, Chen Sun†, Shuai Wang⋆, Dan Li⋆,
Yu Zhou†, Hongqiang Harry Liu†, Lingjun Zhu†, Ming Zhang†

⋆Tsinghua University †Alibaba Group

Abstract
Request latency is a crucial concern for modern cloud
providers. Due to various causes in hosts and networks, re-
quests can suffer from request latency anomalies (RLAs),
which may violate the Service-Level Agreement for tenants.
However, existing performance monitoring tools have incom-
plete coverage and inconsistent semantics for monitoring re-
quests, resulting in the difficulty to accurately diagnose RLAs.

This paper presents BufScope, a high-coverage request
event monitoring system, which aims to capture most RLA-
related events with consistent request-level semantics in the
end-to-end datapath of request. BufScope models the data-
path of request as a buffer chain and defines RLA-related
events based on different properties of buffers, so as to end-
to-end monitor the root causes of RLA. To achieve consistent
semantics for captured events, BufScope designs a concise
request-level semantic injection mechanism to make events
captured in networks have the victim requests’ ID, and of-
floads the realization to SmartNICs for low overhead. We have
implemented BufScope on commodity SmartNICs and pro-
grammable switches. Evaluation results show that BufScope
can diagnose 95% RLAs with <0.07% network bandwidth
overhead and <1% application throughput decline.

1 Introduction

With the emergence of cloud-native architecture [1],
application-layer requests (e.g., RPC, HTTP, and RESTful
requests) become a fundamental component in the cloud [2].
The request latency is the total elapsed time across a request
end-to-end datapath, including the application, the end-host
network stack and the underlying network. Since request la-
tency directly affects the performance of many distributed
applications [3], it has become a crucial concern [4–6] for
cloud providers. Besides, request-level information is the tie
between the tenants and the cloud providers. For instance,
when a request (e.g., search, storage I/O) encounters a surge of
latency, the tenant will provide the operators with the request-
level descriptive information to diagnose the anomaly [7].

Request latency anomalies (RLAs), which cause long-tailed
request latency, are not rare in clouds. According to the data
of a block storage cluster with over 40,000 servers from a
prominent global cloud provider Alibaba, we observe that
across all the 440 million RPC requests in one hour, 0.01% of
them (44K) suffer from a latency of >100 ms, which violates
the Service-Level Agreement (SLA) of the storage service.
Cloud providers need to accurately diagnose RLAs to explain
SLA violations, otherwise revenue loss will be caused [8].

However, accurately diagnosing RLAs is challenging, be-
cause it requires high coverage for request-level abnormal
events (i.e., request events). Specifically, cloud providers
must be able to capture as many abnormal events that hap-
pen on the end-to-end datapath of requests as possible, e.g.,
data pause, congestion, drop, etc., which are direct triggers of
RLAs. Moreover, the captured events should be mapped to
request-level semantics (e.g., RPC ID), rather than the flow-
or packet-level. In practice, it is non-trivial to extract the
request-level semantics from flow- or packet-level data.

Unfortunately, existing performance or latency monitoring
tools are far from satisfying the preceding requirements for
diagnosing RLAs. Specifically, though distributed application
performance tracing tools [9–16] can provide any request-
level timing data, they cannot capture the request events be-
low the application layer; Network performance monitoring
tools [8, 17–25] can capture flow-level events that happen in
the network stack or the underlying networks, such as delayed
ACK, packet drop, and path change, but the captured events
have no request-level information, so the events captured in
applications and networks cannot be associated.

Since these existing monitoring tools have incomplete cov-
erage and inconsistent semantics, the cloud providers often
get into trouble when diagnosing RLAs. For instance, based
on the RLA information reported by the tracing tool, the ap-
plication owners or tenants often naturally blame server and
network team [8, 24]. However, due to the mismatch of moni-
toring semantics, these teams have to associate the events ob-
tained from their own monitoring tools with the RLA through
coarse-grained time-correlation methods [24], which is not

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 829

only inefficient, but also inaccurate (§2.1).
The fundamental reason why existing tools fail to achieve

the high coverage is that the traditional data plane in datacen-
ter networks is a black box [8]. The request events which hap-
pen in the data plane cannot be detected and parsed as flexibly
as those in the host software. Consequently, network monitor-
ing tools typically capture accessible and coarse-grained flow-
or packet-level events. This makes it difficult to end-to-end
monitor RLAs with consistent request-level semantics. Fortu-
nately, recent advances on the commodity programmable data
plane provides a new foundation to improve the situation.

This paper presents BufScope, a high-coverage request
event monitoring system. The main idea of BufScope is to
translate most RLAs to buffer-related abnormal events, moni-
tor all buffers in the request’s end-to-end datapath, and capture
all buffer-related abnormal events with consistent request-
level semantics. Specifically, BufScope achieves end-to-end
monitoring and consistent request-level semantics through
two core designs which keep low overhead in mind.
(i) Buffer event modeling. The main purpose of buffer is to
deal with the mismatch between upstream and downstream
processing rates. If upstream or downstream processing has
an anomaly, the buffer will reveal the corresponding abnormal
events, such as queue buildup, data pause, and packet out-of-
order [26]. Based on the operational experience in Alibaba,
we observe that most (>90%) RLAs reveal abnormal events in
buffers (§3.1). The remaining (<10%) RLAs that come from
NIC flapping, link corruption, bugs, etc., are very difficult
and inefficient to cover. For low overhead consideration, in
this work we only cover RLAs with buffer-related abnormal
events. Thus, BufScope models the end-to-end datapath of
request as a buffer chain (§3.2), including the application,
network stack, NIC and switch, and monitors RLA-related
abnormal events that happen in all the buffers.

However, these buffers may have different RLA-related ab-
normal events, and pre-defining all the events for all types of
buffers is challenging. For example, in lossy Ethernet, packets
may be dropped before entering the buffer, while in lossless
Ethernet, the upstream switch will pause packet forwarding to
avoid the packet drop in the downstream switch. In response,
BufScope uniformly classifies all buffers in both hosts and
networks according to three properties, including priority
awareness, order sensitivity, and enqueue feature. Based on
these properties, BufScope defines a complete buffer event li-
brary, including packet drops, congestion, pause, out-of-order
and priority contention (§3.3). Then, operators can monitor
the corresponding events in a buffer based on its properties.
(ii) Request-level semantic injection. The lack of request-
level semantics in the network is because the request header
may not exist in the packet payload; even if it exists, its lo-
cation in the payload is not fixed. This causes commodity
programmable switch to fail to extract the request-level in-
formation when generating abnormal events. In response,
BufScope designs a concise semantic injection mechanism,

which just inserts the offset of the first request header (if it is
in the payload) at the end of the packet header (§3.4). Then,
based on the location-specific information, programmable
switches can iteratively parse all request identifier in a packet.

A straightforward approach to injecting request-level se-
mantic is to implement the function in the end-host network
stack. However, the overhead of this strawman design is sig-
nificant for applications that adopt run-to-completion (RTC)
model (§5.3). RTC model packs the entire logic (including
application and network stack processing) in one single thread
to achieve ultra-low latency, which is quite common for large-
scale datacenter applications [7, 27]. To reduce the impact
of request-level semantic injection on the application perfor-
mance, we offload the operation to hardware.

We have integrated BufScope in an open-source RPC
system and Alibaba’s production storage application with
Broadcom PS225 SmartNICs and Barefoot Tofino switches.
Testbed-based evaluation shows that BufScope can diagnose
95% RLAs (64% for the combined solution of existing state-
of-the-art monitoring tools [8, 15, 21]) with <0.07% network
bandwidth overhead (>4% for the baseline) and <1% applica-
tion throughput decline (4.3% for the baseline).

2 Background and Motivation

In this section, we firstly use representative experiences of
Alibabato demonstrate the RLAs in production. Then, we ana-
lyze the limitations of existing monitoring tools to accurately
diagnose RLAs. Finally, we present this paper’s motivation.

2.1 RLAs in the Cloud

There are generally two types of performance anomalies for
one request: connectivity loss and RLA. The former means
the client loses connectivity to the remote server for seconds
to minutes, due to issues such as hardware failure, program
corruption, or network outage. The latter type of anomaly
means that, even though the request can be finally completed,
the latency for this request is larger than expected, which
compromises the SLA. We focus on the monitoring of RLA,
which is easy to happen but very difficult to mitigate. This
is because RLAs are usually caused by abnormal events in
a shorter time-scale with randomness, leaving minor finger-
prints for monitoring and locating. Potential root causes could
be polling hang and badly-tuned network stack parameters in
hosts, congestion and packet drop in networks [8, 17, 24], etc.

To understand the impact of RLA on application perfor-
mance, we have conducted experiments using the Alibaba’s
production block storage application, which adopts RPC
framework, user-level network stack and RTC model. One
front-end server constantly performs 4KB file read operations
from the storage back-end over RPC request. We simulate
RLAs by adding microsecond-level latency to the RPC pro-

830 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

46
29

18
5

0

20

40

60

0
100
200
300
400
500
600

Native Add 2μs Add 4μs Add 16μs Th
ro

ug
hp

ut
 (G

bp
s)

P9
99

 L
at

en
cy

 (μ
s)

P999 Latency Throughput

Figure 1: Impact of RLAs on application performance.

cessing logic, and measure its affection on the application
regarding to end-to-end tail latency and overall throughput.

As shown in Figure 1, a 2µs latency added to every single
RPC could be amplified to around 50µs increased end-to-
end tail latency, and jeopardize the overall throughput by
up to 36.9%, which are even worse under severe RLA. The
reason why RLAs could severely compromise the application
performance is that once the logic processes RPCs slower
than NIC bandwidth (50Gbps in this experiment), lots of
packets would jam the NIC buffers and be dropped, causing
the network stack to retransmit massive packets and slow
down, and leading to severe performance decline.

Such a performance decline would violate the SLA of cloud
service, which requires an explanation in practice. However,
cloud providers often face difficulties in the explanation, we
list two representative real cases to show this.
Case-1: Is the network congestion causing the RLA? A
tenant reported persistently low transmission rate between two
VMs. The tenant naturally blames the network, since network
congestion could slow down the sending rate. Then, network
operators first retrieved switch queue and drop statistics. Data
showed that the network utilization remained low and no
packets were lost during that period. They have to reproduce
the case using the VM’s trace. However, the real cause is the
limited TCP receive buffer in the host, which may be caused
by CPU polling hang. It is hard for the network operators to
claim their innocence unless they could detect the real cause
by end-to-end monitoring.
Case-2: Is the cause in the network or end-host? A tenant
reported an unexpected latency glitches (100s of ms) of a read
request. To diagnose the RLA, the storage application owners
first checked the request’s trace obtained by their tracing tool
and found that the interval between the request send and re-
ceive exceeded the expectation. Then, the application owners
passed the ticket to the server and network team. Operators
of the server team look up the second-level logs of kernel,
CPU etc., based on the timestamp in the ticket; Operators of
the network team query the flow-level monitoring system if
packet losses or network faults have occurred in the request’s
flow. Even if these queries have results, neither team has high
confidence to claim their innocence due to the mismatch of
monitoring granularity among these teams.

The above two cases indicate that cloud providers need a
confident and accurate end-to-end monitoring tool to improve
the efficiency of the explanation for SLA violations.

2.2 Limitations of Existing Monitoring Tools
From the two cases above, we can also see that the challenges
of RLA diagnosis stem from the variety of the locations of
root causes. Thus, accurate RLA diagnosis requires moni-
toring tools to have high coverage for the causes. However,
existing monitoring tools have two limitations to achieve it:

(i) Incomplete coverage. Existing tools monitor partial dat-
apath of requests, which either focus on application layer
tracing/logging [3, 9–11, 16, 28–30], transport layer monitor-
ing [17, 21, 24, 25, 31], network monitoring [8, 18, 19, 26, 32–
35], or partial combination [34, 36–38]. In addition, exist-
ing tools define a separate set of abnormal events based on
their monitoring goals. For example, Dapper [21] infers TCP
performance events (e.g., non-backlogged, congestion and de-
layed ACK) by analyzing packet statistics; Trumpet [23] lever-
ages triggers at end-hosts to monitor network-wide events
(e.g., burst, heavy flow and congestion); NetSeer [8] monitors
flow-level abnormal events (e.g., packet drop, queuing, detour-
ing and pause) in networks; performance profiling tools (e.g.,
Perf [39]) can analyze events (e.g., CPU cycles, page fault
and cache miss) that occur during program execution; tracing
tools [9–11,14,15] record timing data about requests and pro-
vide API to monitor application-specific annotations. Overall,
there is no tool that can capture all RLA-related events in the
end-to-end datapath of request so far, causing that operators
have no confidence to claim their innocence (e.g., Case-1).

(ii) Inconsistent semantics. Since these existing tools have
different focuses, cloud providers have to combine multiple
monitoring tools in production to cover the datapath of re-
quest as fully as possible. For example, tracing [9–11, 14, 15]
is used in the application layer to track the performance of
requests, and network monitoring tools [8, 18, 19] are used in
the underlying network to record flow-level abnormal events.
However, these monitoring tools have inconsistent semantics,
the abnormal events captured by them cannot be correlated,
leading to the failure of this combination (e.g., Case-2). We
obtain the production storage application and anonymized
request traces, and run them on our testbed for 6 hours (§5.1).
We use existing monitoring tools to capture abnormal events
during that period and try to diagnose the cause of detected
slow RPCs. Unfortunately, existing monitoring tools fail to
explain a large portion of slow RPCs. First, request-level
events and timing data collected by application tracing tool
are too coarse-grained and incomplete, and can only explain
28% RLAs. Then, based on the time-correlation methods,
flow-level events captured by network monitors can only infer
36% more RLAs, leaving 36% RLAs inexplicable.

2.3 Motivation
To accurately diagnose all RLAs, it is necessary to monitor
the entire life cycle of all individual requests. Thus, our goal
is to design a high-coverage request event monitoring sys-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 831

tem which can monitor RLA-related events with consistent
request-level semantic in the end-to-end datapath of request.

The fundamental limitation of existing performance moni-
toring tools to achieve our goal is that, they cannot uniformly
model the data plane in network hardware and the datapath
in end-host software. Unlike the software, traditional fixed-
function data plane in network only provides limited accessi-
bility for packets and black-box visibility [8].

With the development of commodity programmable hard-
ware, which has been widely deployed in modern cloud, we
see the opportunity of completely realizing our goal. We be-
lieve this choice is rational because of two unique advan-
tages of programmable hardware. First, with the help of pro-
grammable switches and NICs, fine-grained abnormal events
in networks can be easily detected, parsed and reported [8].
It makes monitoring the data plane in networks as flexi-
ble as monitoring the datapath in software. Second, Smart-
NICs show promising capability to offload CPU-consumption
tasks [40,41]. By leveraging them, we can achieve the consis-
tent request-level monitoring semantics with low overhead.

3 Design

This section first outlines the overview of BufScope, then
elaborates BufScope’s design to achieve high coverage with
low overhead. Finally, it shows how cloud providers can use
events captured by BufScope to diagnose and mitigate RLAs.

3.1 Overview
The crux to make operators accurately and confidently judge
where and how a request gets disturbed is to track the RLA-
related events that directly happen to the request’s traffic.
Insight. To understand the distribution of the RLA’s causes
and corresponding abnormal events, we have analyze almost
500 typical incident tickets of one-day’s RLAs from Alibaba’s
block storage service, which were troubleshooted by manual
debugging. We present the root causes and the locations ex-
posed anomaly in Figure 2. The root causes spread across the
datapath of request, such as polling hang in hosts, incast in
NICs, and burst in switches. We derive our insight that most
(>90%) RLAs expose anomalies in buffers. The remaining
(<10%) RLAs come from NIC flapping, network update, bugs,
etc., which requires hardware- or program-specific monitor-
ing, and is hard to cover using a general solution. Besides,
given that buffers are where the request’s traffic stays and
latency rises [26], BufScope chooses the buffer as the key
object to monitor the most RLA-related events.
Design goals. BufScope is a request event monitoring system,
which aims to achieve high coverage for RLAs’ root causes.
Specifically, the design of BufScope needs to achieve the fol-
lowing three requirements. First, BufScope should be able to
monitor the request’s end-to-end datapath for RLA-related
events. Second, all events captured by BufScope need to have

NIC buf NIC hw SW buf SW hw Stack buf code
Anomaly Locations ("SW" for Switch, "hw" for hardware)

Burst
Code bug

Disk full
Hardware failure

Incast
Network update
Out of memory

Polling hang
Priority contention

R
oo

t C
au

se
s

0.00

0.02

0.04

0.06

0.08

Figure 2: Heatmap for root causes and anomaly locations of
RLAs.

consistent request-level semantics to correlate the events hap-
pening in the hosts and networks. Finally, in order to reduce
the impact on the performance of the monitored application,
BufScope must be designed with low overhead.
Challenges. It is highly challenging to achieve the above
requirements:

• End-to-end monitoring: For generality, BufScope needs
to model a unified buffer chain for various communication
frameworks and underlying networks. However, buffers are
various and have different RLA-related events. Therefore,
BufScope needs to define a complete event library, which
contains all events that will occur in all types of buffers.

• Consistent request-level semantics: The uncertainty of
location of request header in packet makes it hard for the
commodity programmable switches to parse out the request-
level information when generating events. Thus, BufScope
needs to design a novel mechanism to inject request-level
semantics into the specific location of packets.

• Low overhead: The semantic injecting mechanism of the
strawman solution consumes valuable CPU resources for
the RTC application, and degrade the application perfor-
mance [10]. Thus, BufScope must be designed to reduce
the semantic injecting overhead as much as possible.

Architecture. We present BufScope’s architecture in Figure 3.
Following the buffer chain model (§3.2), BufScope’s agents
monitor buffers along the datapath of request, including ap-
plications, network stack, NICs and switches, and capture
the corresponding events according to the type of buffers
(§3.3). Besides, in order to record the victim request identi-
fier when generating events in networks, BufScope enables
request-level semantic injection in sender side, and offloads it
into SmartNICs to reduce overhead (§3.4). For efficient event
collection (§3.3), in the software and SmartNIC, the BufS-
cope agents execute event collection asynchronously with
respect to the monitored application; In the programmable
switch, after events are generated by the detection logics in
the ingress and egress pipeline, the egress agent hands the
events to the switch control plane for further processing, such
as deduplication, batching and reporting. Finally, events from
these components are associated in Event Collector based on
the request identifier, to diagnose RLAs (§3.5).

832 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Semantic
Injection

Agent

SmartNIC

Ingress
Agent

Egress
Agent

Semantic
Recovery

SmartNIC

Agent

Application

Network stack

Agent

Agent
Agent

Network stack

Applica:on

Agent

Event
Collector

Event preprocessing
Switch Control Plane

Switch Data Plane

Request
Packet

Buffer

BufScope’s functions

Event flow

Figure 3: The architecture of BufScope.

3.2 Buffer Chain Modeling

Buffer in both of hosts and networks is where the request’s
traffic stays and is the main source of abnormal request la-
tency rising [26], which is also proved by the production
data of Alibaba. Thus, our key design choice is ignoring the
complexity of programs, function calls and hardware faults,
and closely monitor all buffers in the end-to-end datapath of
requests instead, to cover the most RLA-related events.

The first step is to identify the buffers in the datapath of
highly diversified Layer-7 frameworks [2, 6, 42, 43]. Exist-
ing frameworks rely on different network stacks (such as
kernel-bypass network stack [44], and kernel-based network
stack [43]) and different threading models (such as run-to-
completion model and pipeline model). To maintain its gener-
ality, BufScope is challenged to model the datapath of various
Layer-7 frameworks as a uniform composition of buffers.

We address the challenge by analyzing programs of various
available Layer-7 frameworks, buffers, and their connections
across the end-to-end datapath of request. We observe that
one single request follows one unified chain of buffers across
its entire life cycle. Therefore, we construct a buffer chain
model as shown in the Buffer diagram of Figure 3.

There exist three-part buffers in the buffer chain, including
host buffers, NIC buffers, and switch buffers. 1⃝ Host buffers
are used to maintain messages from/to the application, as
well as packets that are formed by decomposing messages (or
packets that will be constructed into messages). Besides, some
applications also have buffers, such as MessageQueue [45].
2⃝ Sending side NIC buffer keeps packets delivered from
the transport layer, and regularly schedules packets out into
networks. Meanwhile, receiving side NIC buffer often stores
packets from the network, and wait for the end-host network
stack to pull packets or actively write packets into host mem-
ory. 3⃝ Network switch buffers keep packets for switching,
once the packets cannot be instantaneously forwarded, i.e., a
packet will be buffered or dropped in the egress queue of the
port that connects the chosen next-hop.

By using different I/O techniques (e.g., zero-copy), the ex-
act number of buffers a request will experience may differ
from this model. Essentially, this model provides a methodol-
ogy for monitoring the end-to-end datapath of request.

3.3 Event Definition & Generation

Event definition and generation will determine the effective-
ness and overhead of BufScope. BufScope designs them based
on the principles of high coverage and low overhead.
Buffer classification. The buffer chain includes diverse types
of buffers, which have different RLA-related abnormal events.
Taking the switch buffer as an example. For lossy Ethernet,
when the queuing length of a switch buffer exceeds a certain
threshold, subsequent arrival packets will be dropped instead
of entering the buffer, incurring a drop event. For lossless Eth-
ernet, when the buffer of a downstream switch is congested,
the upstream switch will pause packet forwarding until the
downstream switch buffer has space for new packets, causing
a pause event. Another example, order-sensitive buffers, such
as TCP receiving buffer, may encounter head-of-line blocking
(HOL), while order-insensitive buffers do not. BufScope is
challenged to thoroughly analyze all types of buffers, and
define the events for them respectively.

To address the challenge, we observe that though there exist
various types of buffers, they could be classified according to
three key properties, i.e., priority awareness, order sensitivity,
and enqueue feature. Priority awareness is a property for a
buffer with multiple queues. If strict priority is maintained
across different queues (i.e., priority-aware), packets in a low
priority queue will have to wait for the high priority queue to
drain. Otherwise, packet dequeuing follows the FIFO princi-
ple (i.e., priority-unaware). Order sensitivity refers to whether
a buffer maintains strong orders of arrived packets before pop-
ping them for subsequent processing. Enqueue features are
different for lossy and lossless buffers as mentioned above.
Event definition. According to the different type of the three
properties, we define five kinds of buffer events which may
cause RLAs, as shown in Table 1. We not only consider the
occurrence of events, but also capture the detailed causes.

• Priority contention. This type of event is triggered in
priority-aware buffer (i.e., multi-level priority queue) when
the lengths of higher-priority queues exceed a certain
threshold, blocking the packets in low-priority queues for
a long time. Inappropriate priority allocation may cause
RLAs [46]. Conversely, FIFO buffers always first forward
the packets that arrive earlier, and don’t have this event.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 833

Table 1: Buffer event definition. “•” means that the cause for this event happens right within this buffer, “←” means that the
cause happens before this buffer (in a preceding buffer or program), and “→” means that the cause happens after this buffer.

Property Type Event Triggering Condition Cause Location Event Information
Priority

awareness
priority-unaware - - - -

priority-aware priority contention
Queuing delay exceeds a threshold
& Lengths of higher-priority queues
exceed a threshold

•

- Request ID
- Egress queue
- Lengths of higher-priority queues
- Queuing delay

Order
sensitivity

order-sensitive out-of-order Inconsecutive sequence number ←
- Request ID
- ID of out-of-order request
- Queuing delay

order-insensitive - - - -

Enqueue
feature

lossy drop
Queues are about to be full
or already full •

- Request ID
- Egress queue
- Egress port
- Ingress port

lossless pause Receiving a PAUSE signal →

- Request ID
- Egress queue
- Egress port
- Queuing delay

- - congestion
Queuing delay exceeds a threshold
& no PAUSE signal •

- Request ID
- Egress queue
- Egress port
- Queuing delay

• Out-of-order. This type of event is triggered in order-
sensitive buffers such as TCP receiving buffer. Packets have
to be delivered to the applications in the same order as they
are sent. That is, the packets that have been received by the
order-sensitive buffers have to be delayed before receiving
the packets sent earlier. In contrast, the order-insensitive
buffers don’t have the out-of-order event.

• Drop. This event happens in lossy buffers when queues are
about to be full or already full. Packet drops would incur
packet retransmission and may result in RLAs.

• Pause. This type of event happens in lossless buffer. Once
the buffer occupancy of the downstream switch exceeds
a specific threshold, then the downstream switch sends a
PAUSE signal to the upstream switch. The latter will pause
packet forwarding until a RESUME signal is received. This
increases the delay of the paused packets.

• Congestion. This type of event could happen to any kinds
of buffers. Congestion is defined as the situation where the
queuing delay exceeds a threshold, and is not due to PAUSE.
This could be caused by the mismatch between upstream
and downstream processing or transmission rates.

Based on that, we could predict the RLA-related events
that will occur in a buffer, and deploy monitoring mechanism
accordingly. Note that the events are not exclusive with each
other, multiple events may be captured by BufScope simulta-
neously, such as congestion and priority contention.
Event generation. Event generation, which includes the event
detection and collection, could degrade the monitored appli-
cation performance due to its expensive operation, e.g., gen-
erating unique ID, writing disk and etc. [10]. Thus, they must
be low overhead in BufScope. Here, we describe how they are
designed in the hosts, SmartNICs and switches, respectively.

In the end-host and SmartNIC, event detection in software
is straightforward. In order to reduce the impact of event col-
lection on application performance, BufScope’s agent daemon
executes disk write asynchronously. Then, the agent daemon
sends the event logs to the Event Collector in bulk.

In the programmable switch, event detection needs to be
implemented entirely in the data plane. Packets that experi-
ence pause or drop were detected in the ingress pipeline and
MMU, respectively. For priority contention and congestion,
we record the length of queues, ingress and egress times-
tamps through INT (in-band network telemetry) [47], and
judge whether packet’s queuing delay and length exceed the
thresholds. After the victim packets are detected, egress agent
utilizes a bloom filters to aggregate them into request-level
events with flow’s 5-tuple and request ID (§3.4) as the key.
Then, request events are sent to the switch control plane via
data plane generated packets. Finally, the control plane will
eliminate false positive in received events, and report them
to the Event Collector in bulk. Most of the design of event
generation in the data plane was proposed in NetSeer [8], and
we simply changed the granularity of monitoring events from
flow to request. We do not claim any novelty here.

3.4 Request-level Semantic Injection
The layered network architecture [48] has been a cornerstone
of the Internet and is used in clouds. However, it presents a
challenge for performance monitoring of distributed applica-
tions. Specifically, these teams, e.g., network (Layer-3), server
(Layer-4) and application (Layer-7), often blame each other
for diagnosing RLAs due to the inconsistent semantics of
their monitoring tools [8, 24]. To address this challenge and
improve the accuracy of RLA diagnosis, BufScope needs to

834 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Packet
Header

Original payload

Req #2
header

Req #2
data

…… Req #n
header

Req #n data
(maybe partial)

Req #1 data
(maybe partial)

Packet
Header

Original payload

Req #2
header

Req #2
data

… Req #n
header

Req #n data
(maybe partial)

Req #1 data
(maybe partial)

Original packet

Extended packet ID#1 Offset

Additional payload (0.7% overhead)
Figure 4: Request-level semantic injection in sender’s NIC. (Req stands for request.)

map all captured events to the request-level semantics.
Challenge of request-level semantic parsing. A request con-
tains two major parts, i.e., header and payload. The header
includes request ID, type (request/response), length, and other
metadata, while payload holds the actual content of the re-
quest. The network stack is responsible for encapsulating the
request into packets, with the request as the packet payload.
In this process, multiple requests are considered as a byte
stream and packed into packets. One large request could be
carried by multiple (maybe >1,000 for storage applications)
packets, while multiple (maybe >10) small requests may be
consolidated in one packet. Therefore, each packet may not
carry or carry multiple request headers in practice.

Realizing request-level semantic parsing in networks is non-
trivial. The request header may be anywhere in the packet
payload, which makes the commodity switch unable to parse
the request IDs. A straightforward solution is inserting all
IDs appeared in the packet before the packet payload, so that
programmable switches could match and derive request IDs.
However, this solution results in significant overhead. First,
one request ID has 8 bytes in gRPC [43]. The standard MSS
of TCP packets is 1460 bytes. Therefore, inserting 10 request
IDs would introduce a 5% bandwidth overhead. This overhead
is ever-present, and can lead to bandwidth degradation and
packet loss under traffic bursts. Furthermore, performing lots
of memory copy operations seriously wastes CPU resources.
Concise request-level semantic injection. To address this
challenge, we leverage the fact that request ID and length are
already carried in the request headers packed in packet pay-
loads. Thus, we choose to insert the offset field (2 bytes) of the
first complete request header at the beginning of the packet
payload, as shown in Figure 4. If there are other request head-
ers, we can use the length field in their headers to iteratively
parse their indexes. By performing such concise operation,
we explicitly maintain the request-level information in a way
which programmable switches (e.g., P4-16 [49]) could easily
parse, while introducing very little additional overhead on
performance and bandwidth.

Besides, the first data segment of the payload, i.e., the par-
tial Req#1 data in Figure 4, may not has the corresponding
header in the current packet, because large request could be
carried by multiple packets. Therefore, we should also main-

Algorithm 1: Semantic injection in sender’s NIC
Input: Packet, last_ID

1 ID#1_index← tcp_payload_begin;
2 o f f set_index← tcp_payload_begin+ ID_len;
3 insert_len← ID_len+o f f set_len;
4 buf_append(Packet, insert_len);
5 buf_move(ID#1_index+ insert_len, ID#1_index);
6 while index++ <tcp_end do
7 if ∗index = Request.header then
8 if now_ID = NULL then
9 if index = ID#1_index+ insert_len then

10 ID#1_index← NULL;

11 else
12 ∗ID#1_index← last_ID;

13 ∗o f f set_index← index;

14 ∗now_ID←∗index;

15 if now_ID = NULL then
16 ∗ID#1_index← last_ID;
17 o f f set_index← NULL;

18 else
19 last_ID←∗now_ID;

tain the identifier of the Req#1 data. To this end, we always
insert the ID field (8 bytes) at the beginning of the packet
payload, which records the Req#1 ID. It requires us to main-
tain a stateful variable, which records the ID of the recent
request. The bandwidth overhead of our injection solution is
only 0.7% ((8+2)/1460), which is fixed and negligible.
SmartNIC-offloaded semantic injection and recovery. To
reduce the CPU overhead in hosts, we offload the semantic
injection to SmartNICs. We present the process of semantic
injection in Algorithm 1. For each packet, we first insert a
fixed space to store the offset and ID field (line 1-5). Then
we look at three possible scenarios. 1⃝ These is no partial
Req#1 data and there is a complete Req#2 header at the
beginning of the payload (line 9-10); 2⃝ These is partial Req#1
data and a complete Req#2 header (line 11-14); 3⃝ There
are no request headers in this packet (line 15-17), then the
stateful variable about the recent request ID does not need to
be updated. Otherwise, in the first two scenarios, the variable

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 835

records the last request ID in the current packet (line 18-19),
which may becomes the recent request ID for the next packets.

We recover the packets in the receiver’s SmartNIC, which
just removes the content that was inserted in the sender’s
SmartNIC. Through SmartNIC offloading instead of host
CPU processing, semantic injection and recovery can be
achieved with little impact on the application performance.

3.5 RLA Diagnosis and Mitigation
We introduce how cloud providers diagnose the cause of
RLAs according to the events captured by BufScope. First,
BufScope correlates events by request ID, and reports the
beginning and ending events (possibly guilty) to the operators.
Then, since the blocked time is also recorded in the events, op-
erators can clearly see which event is the culprit, even through
a request experiences multiple events. We also elaborate on
how applications can benefit from these request events.
• Priority contention. This type of events suggests that RLAs

happen directly in the current buffer. It indicates that queues
with higher priorities are jammed. To mitigate this type of
RLA, application owners can either upgrade the priority of
its requests, or try to reduce the traffic of other applications
that enter the high-priority queues.

• Out-of-order. This type of event suggests that packets are
dropped or detoured in previous buffers or logic. For in-
stance, network packet drop and path change could cause
out-of-order in TCP receiving buffer. Application owners
could ask network operators for help to debug network de-
vice failures, blackholes, or random packet drops. Also,
refer to the next item if accompanied by drop events.

• Drop. Drop events cause time-consuming retransmission,
which could directly cause RLAs. MMU drop is usually
caused by burst and incast. Application owners could con-
sider optimizing the traffic pattern through scheduling to
reduce TCP incast or congestion possibilities.

• Pause & Congestion. These events happen due to the slow
scheduling of packets out of the current buffer or the down-
stream buffer. In this case, BufScope could identify the
request that contribute the most to the congestion, i.e., the
heavy request, because the heavy request will experiences
more congestion events. Then, cloud providers need to eval-
uate the network architecture and application mixing model.

4 Implementation

We have implemented BufScope for a kernel-based RPC
framework named Finagle [50] and the kernel-bypass-based
Alibaba’s block storage application. We use Barefoot Tofino
switches and Broadcom PS225 SmartNICs to implement the
functions of BufScope in the data plane.
Requirements. Because BufScope needs to insert the ID and
offset field of the request at the end of the packet header, im-
plementation of BufScope requires application-layer protocol

awareness and MTU modification. And kernel-intrusive is
needed for monitoring kernel-based application. Finally, Buf-
Scope is designed to monitor requests inside the cloud (i.e.,
east-west traffic) that are typically not encrypted.
Incremental deployment. For end-to-end monitoring, multi-
ple teams (e.g., server and network) in the cloud need to mon-
itor the buffers they manage by using BufScope’s APIs. How-
ever, partial deployment of BufScope still facilitates RLAs
diagnosis. With sole support from the server team, semantic in-
jection and in-server event monitoring can still be performed,
which helps operators decide whether the root cause locates
in the server or not. With sole support from the network team,
operators can blame or exonerate the network according to
packet- or flow-level events in the network.
Buffer identification. BufScope summarizes a basic buffer
chain for various applications and network stacks. For kernel-
based, there is an application buffer and a socket buffer. For
kernel-bypass-based, the zero-copy technology makes the
applications may have only one mbuf array for DPDK [51].
The manual efforts to identify buffers are small and only
need to be done once. Moreover, resource contention in other
hardware or OS queues (e.g., CPU, DRAM, and PCIe) will
cause slow message processing, resulting in queue buildup in
the upstream buffer [52], which can be detected by BufScope.
Event capturing. We record the following necessary infor-
mation for each type of events.
• Priority contention (15B): <ID, egress queue, length of

higher-priority queues, queuing delay>. We measure the
queuing delay inside a switch with ingress and egress times-
tamps. The victim request ID, the timestamps and the length
of the higher-priority queue is obtained by INT.

• Out-of-order (20B): <ID, ID of out-of-order request, queu-
ing delay>. We identify out-of-order requests by observing
inconsecutive sequence number in packets, and generate
this type of events for latter blocked requests.

• Drop (11B): <ID, egress queue, egress port, ingress port>.
In network, we redirect packets dropped by MMU to a
dedicated internal port, and report in egress pipeline [8],
then parse the request ID in these packets.

• Pause (14B): <ID, egress queue, egress port, queuing de-
lay>. For a lossless network, the switch begins to generate
pause events immediately after receiving the pause signal.

• Congestion (14B): <ID, egress queue, egress port, queuing
delay>. Congestion events are produced when the queuing
delay exceeds a threshold while the length of the higher-
priority queue is normal.

To reduce the bandwidth overhead, we leverage lossless
ZigZag Encoding [53] to compress events. The average length
of events is shortened from 15 bytes to 8 bytes. Besides, BufS-
cope allows setting an upper limit on the event generation rate.
Once this threshold is exceeded, sampling can be enabled.
SmartNIC. We implement the NIC buffer monitoring and
semantic injection in the ARM-based SmartNIC. In addi-
tion to the cores required for packet forwarding, BufScope

836 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

requires only one additional core for event collection and
reporting. Note that the ID of the partial Req#1 data in re-
transmitted packets has been missed in NIC. We just set the
inserted ID field as NULL in the retransmitted packets. The
effects of this simplification are limited, because the causes of
packet retransmission have already been captured (e.g., drop
or out-of-order). When enabling TSO, semantic injection is
performed after packets are segmented in SmartNIC.
Switch. BufScope’s ASIC logic can be embedded into orig-
inal switch programs (switch.p4 in our experiment) as an
extension. We layout the timestamp record and pause detec-
tion modules in ingress pipelines, enable drop detection in
the MMU, and detect congestion, priority contention in the
egress pipeline. After the event is generated by the switch
ASIC, event pre-processing and reporting in the switch CPU
is similar to that in the NetSeer system [8].
Event collector. To timely receive events, we use the servers
with 100Gbps NICs in the cluster as the Event Collector.
To improve the readability and usability of monitored data,
Collector aggregate the events in two stages. First, the events
captured by all components are aggregated together at per-
request granularity. Then, if there is a trace data generated by
the tracing tool for the request, the request events timestamp
and the associated information are marked in that trace.

5 Evaluation

Environment: We evaluate BufScope and existing monitor-
ing tools on a testbed with a 4-ary and 3-tier Fat-Tree topol-
ogy [54] composed of 10 Barefoot Tofino switches and 16
servers. Each server has 192 CPU cores, 64GB RAM, and one
Broadcom PS225 SmartNICs (2×25G) [55]. Each SmartNIC
possesses eight ARM Cortex-A72 3.0 GHz CPUs and 16GB
memory. There are 4 ToR, 4 Aggregate and 2 Core switches.
They are interconnected with 100G links, while each ToR
connects four servers with 2×25G link.
Baselines: Given that none of the existing monitoring tools
are designed to monitor the end-to-end datapath of request,
we combine multiple state-of-the-art tools to fully cover it:
(i) Application tracing. We enable an open-source tracing
tool [15] to capture the RPC timing data and application-
specific abnormal events in application layer. Because of
the large amount of captured data and non-negligible CPU
overhead, tracing tools typically require sampling (e.g., 0.1%
under high-load services [10]) to reduce impact on the perfor-
mance of the monitored application. Thus, we set the sampling
rate of tracing as 0.1% and 100% for comparison.
(ii) TCP monitoring. Dapper [21] is used to diagnose perfor-
mance problem of TCP in the end-host network stack.
(iii) Network monitoring. We deploy NetSeer [8] and packet
sampling to capture events in networks and NICs. NetSeer is
a flow-level event monitoring system based on programmable
data plane. For packet sampling, we can parse the request ID
in the mirrored packet offline to get request events. Since it

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Congestion Prio. con. Drop Pause OoO

C
ov

er
ag

e
R

at
io

BufScope Tracing(1.0) Tracing(0.001)
Dapper NetSeer Sampling(0.01)

100

10-1

10-2

10-3

10-4

Figure 5: Event coverage ratios. Tracing(sampling rate).
has a large bandwidth overhead under a high sampling rate [8],
we configure the sampling rate as 1%.

The evaluation needs to answer the following 3 questions.
• Coverage: Can BufScope capture most (close to 100%)

request events that happen in hosts, NICs, and network
switches, and help accurately diagnose the real RLAs?

• Scalability: What’s the bandwidth overhead of BufScope
to deliver events to the Event Collector? Can it scale with
the increasing datacenter size and bandwidth?

• Performance overhead: How to choose an efficient thresh-
old? How does BufScope affect the application perfor-
mance? How about the impact of each module, including
request-level semantic injection by host CPU or SmartNIC?

5.1 Coverage
We deploy the storage application (supports RDMA) and Fi-
nagle as the monitored applications, and run traffic traces
based on four real-world workloads including DCTCP [56],
VL2 [57], storage and WEB [58] for 6 hours. We set the
average link utilization as 80% to test BufScope’s coverage
under extreme conditions. Congestion, drop and out-of-order
(OoO) are naturally produced. We configure various priority
queues to trigger priority contention, and enable priority flow
control (PFC [59]) in RDMA network to trigger pause, which
do occur in production environments [8, 37]. We start by eval-
uating BufScope’s capability to fully capture all events along
the datapath of request. Next, we compare the proportion of
unexplained RLAs of different monitoring tools, and study 2
real RLAs which cause the SLA violations.
Event coverage. We enable tracing, Dapper, NetSeer, packet
sampling and BufScope to capture events, respectively. We
present the event coverage ratios for different types of events
in Figure 5. For a fair comparison, we enable tracing tool in
this experiment to monitor all buffer events in host buffers
that it can cover. Even so, the tracing tool only has visibil-
ity into applications, it cannot detect events in the network.
Therefore, tracing(1.0) can only cover up to 23% events, while
tracing(0.001) can only cover 0.1% events. Dapper analyzes
TCP statistics to infer the occurrence of network events, such
as congestion and drop, it can only cover up to 15% events.

NetSeer could capture flow-level events in networks, in-
cluding congestion, pause and drop, but leaves out the priority

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 837

72%
49% 36%

5%

0%

20%

40%

60%

80%

100%

Tracing Tracing+D T+D+N BufScope

Application Net. Stack Network Both U

Figure 6: Diagnosing RLAs by different monitoring tools
(T:Tracing, D:Dapper, N:NetSeer, U:Unknown).

contention and OoO events. Besides, its captured events miss
request-level semantics. Based on the time-correlation meth-
ods, NetSeer can only cover up to 45% request events. For
packet sampling, if the mirrored packet is lucky enough to
encounter an event, then we can parse out the event with re-
quest ID. Thus, it only cover <10% events which is always
less than its sampling rate. In comparison, BufScope has full
coverage for the 5 types of request events happened in both
of the end-hosts and networks.
Diagnosing RLAs. We try to diagnose the root cause of the
slow RPC (i.e.,RLAs) detected during that period according
to different monitoring tools. Request-level timing data col-
lected by tracing tool with full sampling can only explain 28%
RLAs, leaving 72% RLAs undetermined, as shown in Fig-
ure 6. Then, server and network monitors capture flow-level
events to diagnose RLAs based on the time-correlation meth-
ods, can only explain 23% and 13% more RLAs, respectively.
Even so, enabling tracing, Dapper and NetSeer (i.e., T+D+N)
at the same time still leaves 36% RLAs inexplicable. With
BufScope’s help, we can tell whether and how much each
component is responsible for each slow RPC, and explain
much more (95%) RLAs, including those whose causes were
unknown with existing monitors, and some RLAs that were
caused by multiple components. The remaining 5% of the
RLAs did not reveal any events. We speculate that they are
caused by hardware-related anomalies.

We reproduce 2 real Alibaba’s production RLAs on our
testbed with inferred topology, requests pattern, and traffic rate
during the incidents, which cannot be captured and explained
by existing monitoring tools.

#1) Polling hang in the host. When a request encounters
more than one anomaly, the challenge in diagnosing is to
identify the one that has the greatest impact. For example, one
RPC in this experiment encountered congestion in the net-
work and polling hang in the receiver. However, existing mon-
itoring tools cannot capture how much delay each anomaly
causes, and treat them equally, resulting in the inefficient diag-
nostic process. Conversely, BufScope can end-to-end capture
latency-critical events with consistent semantics, which can
associate events that occur in different components. BufScope
found that it was blocked for 5ms at the receiver’s NIC, and
only experienced 80µs of congestion in the network. There-
fore, the reason for the RLA was polling hang. Based on this,

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

VL2 DCTCP WEB Storage

B
an

dw
id

th
 o

ve
rh

ea
d

(%
)

BufScope Tracing(1.0) Tracing(0.001)
Dapper NetSeer Sampling(0.01)

10-5

10-3

10-4

10-2

10-1

Figure 7: Bandwidth overhead of event collection.
application owners can further analyze the abnormal events
in the host and the system log to solve the problem.

#2) Cascaded priority contention. In a priority-aware net-
work, it is non-trivial to assign priorities to different appli-
cations. An inappropriate allocation can result in SLA miss
for low-priority application. Thus, checking the priority con-
tention in the network is an important task of performance
monitoring tools. Worse still, a cascading effect would hap-
pen when there are multiple queues with diverse priorities.
Consider there are three requests, Req#1, Req#2, and Req#3
have decreasing order of priority. Req#1 and Req#2 contend
in an upstream switch S1, while Req#2 and Req#3 contend in
a downstream switch S2. If Req#1 in S1 is congested, Req#2
would be delayed, which then delays Req#3 in the low-priority
queue of S2. To debug the RLAs of Req#3, simply observ-
ing the priority contention in a switch is not enough. Since
BufScope can capture all contention events and their details,
we can analyze this cascade effect and find a more effective
method to mitigate it.

5.2 Scalability
We compared the bandwidth overhead (BO) required by BufS-
cope and baselines to report events or traces during that period.
Figure 7 shows that BufScope only incurs <0.07% BO un-
der various real-world workloads, of which 0.02% from host,
0.01% from NICs and 0.04% from switches. For link band-
width at 100Gbps, the overhead is at most 70Mbps, which
is within the capacity of PCIe (18Gbps) and switch CPU
(13.4Gbps with 2 cores). In comparison, tracing(1.0) suf-
fers from >4% BO, its each span (i.e., every request) needs
400B on average. Tracing(0.001) needs >0.004% BO. Dapper
records only TCP abnormal events and consumes only 0.04%
BO. Network packet sampling (0.01) needs ∼ 1% BO, which
is similar to its sampling rate, because the payload also needs
to be recorded to parse request semantics. Because NetSeer
captures and reports flow-level events, its event scale and fine-
ness are not as high as BufScope. Thus, NetSeer only incurs
∼ 0.01% BO. In summary, T+D+N consumes >4.05% BO.

To further understand the scalability of BufScope, we
calculate the monitoring event traffic as well as the pro-
cessing overhead of BufScope according to the configura-
tion of Alibaba’s production datacenters. For a normal 3-
tier datacenter, connecting 10,000 servers requires approxi-

838 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-20%

10%

40%

70%

0 0.05 0.1 0.15 0.2 0.25

Pe
rfo

rm
an

ce
 c

ha
ng

e
(%

)

Congestion Threshold (ms)

QPS QCT

Figure 8: Impact of congestion threshold on performance.

0
0.2
0.4
0.6
0.8
1

0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25N
um

be
ro

f e
ve

nt
s

(×
10

6)

Congestion Threshold (ms)

#Events Recall Precision

Figure 9: Number of captured congestion events and the two
indicators under different thresholds.
mately 400 switches (3.2Tbps), which produce a maximum of
400× 3200Gbps× 0.07% = 896Gbps monitoring traffic at
most. Processing such traffic requires 9 servers with 100Gbps
NICs, which implies a 0.09% processing overhead.

5.3 Performance Overhead

In this experiment, we use as many threads as possible, which
perform 4KB file read, to test the extreme performance of the
Alibaba’s storage application under different monitoring tools.
We first show a method for selecting the appropriate con-
gestion event threshold. Then, we evaluate the performance
overhead of the per-module and overall BufScope.
Congestion event threshold determination. Congestion
events appear when the queuing delay exceeds a certain
threshold, which we define as the congestion threshold. We
pay special attention to congestion events as it occupies a
major portion of all events, which will occur in both the hosts
and networks. BufScope can harm application performance
if too many congestion events are collected. Thus, we run
the application for 10 seconds with a full-mesh traffic pattern,
and measure the impact on the QPS (Query per Second) and
QCT (Query Completion Time) of the application as we vary
the congestion threshold. As shown in Figure 8, the larger
the threshold, the smaller the performance overhead, because
fewer congestion events would be collected. Thus, threshold
selection is highly related to the efficiency of BufScope.

Since requests without RLA can also experience light con-
gestion, this means that not all captured congestion events
are RLA-related. In this experiment, the captured events are
RLA-related when the RLA request experiences only con-
gestion events and no other events. We use two indicators to

1,409.81

1,361.98
1,349.36

1,400.29

1,337.40

1,396.08

1320

1340

1360

1380

1400

1420

Benchmark Tracing T+D+N BufScope- BufScope* BufScope

Q
PS

 (k
)

(a) Application QPS

56

75 76

58

80

59
66

89 90

67

97

68

50

60

70

80

90

100

Benchmark Tracing T+D+N BufScope- BufScope* BufScope

Q
C

T
(𝜇

s)

Average
P999

(b) Application QCT
Figure 10: Application performance under different tools.

evaluate the efficiency of the congestion threshold. Recall
represents the proportion of the captured RLA-related conges-
tion events in all real RLA-related congestion events, while
precision represents the proportion of the captured RLA-
related congestion events in all captured congestion events.
The higher the threshold, the lower the recall and the higher
the precision. Thus, the selection of the threshold needs to
balance these two indicators. Figure 9 shows the changes in
the number of events collected, the recall and precision.
We observe that as the threshold increases from 0 to 0.25ms,
the precision increases from a very low value to nearly
100%, and recall drops from 100% to a very low value. In
the following experiments, we take 0.1ms as the congestion
threshold for high monitoring efficiency.
Event monitoring in hosts. Because monitoring in hosts
uses expensive CPU resources, we evaluate the performance
overhead of only enabling functions of BufScope in hosts (we
refer to this variation as BufScope-). As shown in Figure 10,
we generate the highest load (i.e., extreme throughput of NIC)
with 8 threads to test the application, and obtain the QPS, av-
erage and P999 QCT by running 30 seconds. The Benchmark
represents the raw performance of the application without any
monitoring tools. BufScope- decreases the QPS by 0.7% and
increases the P999 QCT by 1.5%. Because BufScope records
events asynchronously, most of this overhead comes from
event detection, which takes tens of nanoseconds on average.
In contrast, the tracing tool generates a trace for each sampled
request, which takes sub-microseconds. Thus, only enabling
tracing(1.0) in hosts decreases the QPS by 3.4% and increases
the P999 QCT by 34.8% under the same load. This demon-
strates that BufScope’s event-driven approach significantly
reduces the performance overhead.
Semantic injection in network stack. Next, we enable all
monitoring functions of BufScope in hosts, SmartNICs and

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 839

switches. In this experiment, we evaluate the impact on the
RTC application by implementing the BufScope’s semantic
injection in the application’s network stack, namely BufS-
cope*. As shown in Figure 10, since the semantic injection
uses the same thread with the application processing, BufS-
cope* decreases the QPS by 5.1% and increases the P999
QCT by 47.0%. In comparison, the combination of tracing,
Dapper and NetSeer, i.e., T+D+N, decreases the QPS by 4.3%
and increases the P999 QCT by 36.4%. BufScope*’s perfor-
mance overhead is large than the combination. The results
reveal that the overhead of using the same CPU to perform se-
mantic injection is not negligible, and we need to use offload
techniques to reduce the overhead.
Overall performance overhead of BufScope. According to
BufScope’s design, here semantic injection is implemented in
the sender’s SmartNIC. BufScope only decreases the QPS by
1.0% and increases the P999 QCT by 3.0%. This demonstrates
that SmartNIC-offloaded semantic injection and recovery can
significantly reduce the performance overhead. Compared
with T+D+N, BufScope improves the QPS by 3.5% and re-
duces the P999 QCT by 24.4%. Besides, the performance
of BufScope is slightly lower than that of BufScope-. Such
performance decline is introduced by our ARM-based imple-
mentation in SmartNIC. We will use FPGA-based SmartNIC
in the future to further improve processing performance.

6 Related Work

There has been a rich literature regarding application mon-
itoring and diagnosis. We classify them into six categories
according to their coverage for the request’s datapath.
Tracing-based. Tracing-based monitoring tools are widely
used for large-scale application performance tracing and de-
bugging [9–14,16,28,30,60,61]. By inserting annotations into
the execution path of the request, tracing tools can locate the
problematic step in application layer, but has no visibility in
the network stack and underlying networks. Besides, tracing
could provide fine-grained latency statistics, but will actually
degrade application performance [10]. Therefore, tracing are
often used in an on-demand and sampling way.
Log-based. Log analysis is proven effective in many pro-
grams or performance debugging scenarios [3, 29, 62–67].
However, logs are often created by CPU, which is proven
inefficient and could waste much CPU resources. Therefore,
log-based monitoring systems often use second-level moni-
toring granularity, which will miss a lot of RLAs.
Network stack-based. Many researches are trying to moni-
tor network performance on the end-host network stack. For
example, some research efforts propose to constantly monitor
TCP performance by watching TCP statistics such as time-
out and retransmission, and deduce the root cause of RLAs
through statistical analytics [17, 21, 31, 68], replay [25], or
machine learning [24]. Trumpet [23] leverages triggers at
end-hosts to monitor every packet and network-wide events.

However, they lack visibility into the network, leading to
the incomplete coverage for RLAs. Moreover, they focus on
packet- or flow-level event capturing and analysis, and cannot
correlate events to the corresponding requests.
NIC-based. Simon [35] collects statistics from NICs, and
reconstruct flow queuing time, link utilization, link compo-
sition, and other statistics. Nevertheless, it could only obtain
aggregated statistics with millisecond-level granularity and
lose clues for events at fine-timescale such as microsecond-
level microbursts. Similarly, it mainly focuses on network
events and cannot fully detect host events.
Network-based. The network serves as the conjunction
component among distributed servers. Thus, many efforts
have been devoted to network monitoring by active prob-
ing [19, 22], telemetry [18, 32], etc. NetSeer [8] leverages
programmable switch to monitor flow-level network abnor-
mal events, without the request-level semantics. Retro [33]
and Microscope [26] monitor the queue to identify anoma-
lies, which is similar to BufScope’s buffer model. However,
network-based monitoring tools have no visibility into hosts.
Moreover, their combination with tracing cannot improve the
accuracy of RLAs diagnosis due to the inconsistent semantics.
Network and host collaboration. Recent researches use both
the network and end-host to jointly collect, store and analyze
data [34, 36–38]. In order to correlate packets’ behaviour in
end-hosts and networks, they often enable network switches to
attach metadata to packets, and extract event in hosts, which
will consume a lot of host CPU resources. Besides, these
systems did not consider the request-level abnormal events
and RLA diagnosis.

7 Conclusion

This paper presents a promising way to utilize the pro-
grammable data plane to achieve high coverage for request
monitoring and accurate RLA diagnosis, by proposing Buf-
Scope. Its core idea is to uniformly model the data plane in
networks and the datapath in hosts using buffer. It translate
most RLAs to buffer-related events, and monitor them in the
buffer chain with consistent request-level semantic. Testbed-
based evaluations show that BufScope can diagnose 95%
RLAs with negligible bandwidth and performance overhead.

Acknowledgement

We thank our shepherd Dr. Ying Zhang, and the anonymous
reviewers for their constructive comments. Dan Li is the cor-
responding author. This work is supported by the National
Key R&D Program of China (2018YFB1800100), Alibaba
Innovative Research (AIR) Program, Tsinghua University-
China Mobile Communications Group Co.,Ltd. Joint Insti-
tute, and the National Natural Science Foundation of China
(U21B2022).

840 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] CNCF. Cloud native computing foundation:
https://cncf.io/, 2021.

[2] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and
Jonas Pfefferle. Darpc: Data center rpc. In ACM SoCC,
2014.

[3] Xu Zhao, Yongle Zhang, David Lion, Muham-
mad Faizan Ullah, Yu Luo, Ding Yuan, and Michael
Stumm. lprof: A non-intrusive request flow profiler for
distributed systems. In USENIX OSDI, 2014.

[4] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,
Ming Wu, Vijayan Prabhakaran, Michael Wei, John D
Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango:
Distributed data structures over a shared log. In ACM
SOSP, 2013.

[5] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, et al. The
ramcloud storage system. In ACM TOCS, 2015.

[6] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In USENIX
NSDI, 2019.

[7] Yixiao Gao, Qiang Li, et al. When cloud storage meets
RDMA. In USENIX NSDI, 2021.

[8] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao,
Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen
Shen, Yongqing Xi, et al. Flow event telemetry on pro-
grammable data plane. In ACM SIGCOMM, 2020.

[9] Rodrigo Fonseca, George Porter, Randy H Katz, and
Scott Shenker. X-trace: A pervasive network tracing
framework. In USENIX NSDI, 2007.

[10] Benjamin H Sigelman, Luiz Andre Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. 2010.

[11] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edi-
son Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win
Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, et al.
Canopy: An end-to-end performance tracing and analy-
sis system. In ACM SOSP, 2017.

[12] Arjun Satish, Thomas Shiou, Chuck Zhang, Khaled
Elmeleegy, and Willy Zwaenepoel. Scrub: online trou-
bleshooting for large mission-critical applications. In
ACM EuroSys, 2018.

[13] Dan Ardelean, Amer Diwan, and Chandra Erdman. Per-
formance analysis of cloud applications. In USENIX
NSDI, 2018.

[14] Uber Technologies. Jaeger: open source, end-to-end dis-
tributed tracing. https://www.jaegertracing.io/,
2020.

[15] Twitter. Zipkin. http://zipkin.io/, 2021.

[16] CNCF. Opentelemetry. http://opentelemetry.io/,
2021.

[17] Minlan Yu, Albert G Greenberg, David A Maltz, Jennifer
Rexford, Lihua Yuan, Srikanth Kandula, and Changhoon
Kim. Profiling network performance for multi-tier data
center applications. In USENIX NSDI, 2011.

[18] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry
in large datacenter networks. In ACM SIGCOMM, 2015.

[19] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In ACM SIGCOMM, 2015.

[20] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Lossradar: Fast detection of lost packets in data center
networks. In ACM CoNEXT, 2016.

[21] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rex-
ford. Dapper: Data plane performance diagnosis of tcp.
In ACM SOSR, 2017.

[22] Yanghua Peng, Ji Yang, Chuan Wu, Chuanxiong Guo,
Chengchen Hu, and Zongpeng Li. detector: a topology-
aware monitoring system for data center networks. In
USENIX ATC, 2017.

[23] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers in
data centers. In ACM SIGCOMM, 2016.

[24] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf
Schuster, and Geoff Outhred. Taking the blame game
out of data centers operations with netpoirot. In ACM
SIGCOMM, 2016.

[25] Yuliang Li, Rui Miao, Mohammad Alizadeh, and Minlan
Yu. Deter: Deterministic {TCP} replay for performance
diagnosis. In USENIX NSDI, 2019.

[26] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,
and Minlan Yu. Microscope: Queue-based performance
diagnosis for network functions. In ACM SIGCOMM,
2020.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 841

https://www.jaegertracing.io/
http://zipkin.io/
http://opentelemetry.io/

[27] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. Tcp = rdma: Cpu-efficient remote storage access
with i10. In USENIX NSDI, 2020.

[28] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using magpie for request extraction
and workload modelling. In USENIX OSDI, 2004.

[29] Yongle Zhang, Serguei Makarov, Xiang Ren, David
Lion, and Ding Yuan. Pensieve: Non-intrusive fail-
ure reproduction for distributed systems using the event
chaining approach. In ACM SOSP, 2017.

[30] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm,
and Ding Yuan. The inflection point hypothesis: a prin-
cipled debugging approach for locating the root cause
of a failure. In ACM SOSP, 2019.

[31] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C
Snoeren. Passive realtime datacenter fault detection and
localization. In USENIX NSDI, 2017.

[32] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, David Mazières, and Nick McKeown. I know what
your packet did last hop: Using packet histories to trou-
bleshoot networks. In USENIX NSDI, 2014.

[33] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and
Madanlal Musuvathi. Retro: Targeted resource manage-
ment in multi-tenant distributed systems. In USENIX
NSDI, 2015.

[34] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica.
Confluo: Distributed monitoring and diagnosis stack for
high-speed networks. In USENIX NSDI, 2019.

[35] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji
Prabhakar, Mendel Rosenblum, and Amin Vahdat. Si-
mon: A simple and scalable method for sensing, in-
ference and measurement in data center networks. In
USENIX NSDI, 2019.

[36] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with path-
dump. In USENIX OSDI, 2016.

[37] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Distributed network monitoring and debugging with
switchpointer. In USENIX NSDI, 2018.

[38] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In USENIX HotOS, 2017.

[39] Arnaldo Carvalho De Melo. The new linux’perf’tools.
In Slides from Linux Kongress, volume 18, 2010.

[40] YoungGyoun Moon, SeungEon Lee, Muhammad Asim
Jamshed, and KyoungSoo Park. Acceltcp: Accelerating
network applications with stateful {TCP} offloading. In
USENIX NSDI, 2020.

[41] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed nics. In USENIX NSDI, 2020.

[42] Apache. Thrift. http://thrift.apache.org/, 2020.

[43] Google. grpc: A high-performance, open source univer-
sal rpc framework. https://grpc.io/, 2020.

[44] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mtcp: a highly scalable user-level {TCP}
stack for multicore systems. In USENIX NSDI, 2014.

[45] Apache. Rocketmq. https://rocketmq.apache.
org/, 2021.

[46] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer
Rexford, Ori Rottenstreich, Steven A Monetti, and Tzuu-
Yi Wang. Fine-grained queue measurement in the data
plane. In CoNEXT. ACM, 2019.

[47] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In ACM SIGCOMM, 2015.

[48] I Standardization. Iso/iec 7498-1: 1994 information
technology–open systems interconnection–basic refer-
ence model: The basic model. International Standard
ISOIEC, 74981:59, 1996.

[49] Mihai Budiu and Chris Dodd. The p416 programming
language. ACM SOSP, 2017.

[50] Twitter. Finagle. http://twitter.github.io/
finagle/, 2021.

[51] DPDK Intel. Data plane development kit. http://
dpdk.org, 2014.

[52] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for con-
gestion control in the datacenter. In ACM SIGCOMM,
2020.

[53] Google. Protocol buffers: Encoding: Signed
integers. https://developers.google.com/
protocol-buffers/docs/encoding#signed_
integers, 2021.

842 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://thrift.apache.org/
https://grpc.io/
https://rocketmq.apache.org/
https://rocketmq.apache.org/
http://twitter.github.io/finagle/
http://twitter.github.io/finagle/
http://dpdk.org
http://dpdk.org
https://developers.google.com/protocol-buffers/docs/encoding#signed_integers
https://developers.google.com/protocol-buffers/docs/encoding#signed_integers
https://developers.google.com/protocol-buffers/docs/encoding#signed_integers

[54] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network ar-
chitecture. SIGCOMM computer communication review,
2008.

[55] Broadcom. Stingray ps225 smartnic.
https://www.broadcom.com/products/
ethernet-connectivity/smartnic/ps225, 2020.

[56] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In ACM SIGCOMM, 2010.

[57] Albert Greenberg, James R Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: a scalable and flexible data center network. In ACM
SIGCOMM, 2009.

[58] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In SIGCOMM, 2015.

[59] Ieee standard for local and metropolitan area networks–
media access control (mac) bridges and virtual bridged
local area networks–amendment 17: Priority-based flow
control. IEEE Std 802.1Qbb-2011 (Amendment to IEEE
Std 802.1Q-2011 as amended by IEEE Std 802.1Qbe-
2011 and IEEE Std 802.1Qbc-2011), pages 1–40, 2011.

[60] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai
Budiu, and Gloria Mainar-Ruiz. Fay: extensible dis-
tributed tracing from kernels to clusters. In ACM TOCS,
2012.

[61] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. In ACM TOCS, 2018.

[62] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and
Michael Stumm. Non-intrusive performance profiling
for entire software stacks based on the flow reconstruc-
tion principle. In USENIX OSDI, 2016.

[63] Liang Luo, Suman Nath, Lenin Ravindranath
Sivalingam, Madan Musuvathi, and Luis Ceze. Trou-
bleshooting transiently-recurring errors in production
systems with blame-proportional logging. In USENIX
ATC, 2018.

[64] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,
Michael M Lee, Xiaoming Tang, Yuanyuan Zhou, and
Stefan Savage. Be conservative: enhancing failure diag-
nosis with proactive logging. In USENIX OSDI, 2012.

[65] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando
Fox, and Eric Brewer. Pinpoint: Problem determination
in large, dynamic internet services. In IEEE DSN, 2002.

[66] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
Structured comparative analysis of systems logs to diag-
nose performance problems. In USENIX NSDI, 2012.

[67] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik,
Sharad Agarwal, Jitendra Padhye, and Paramvir Bahl.
Detailed diagnosis in enterprise networks. In ACM SIG-
COMM, 2009.

[68] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Boon Thau Loo, and
Geoff Outhred. 007: Democratically finding the cause
of packet drops. In USENIX NSDI, 2018.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 843

https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225

	Introduction
	Background and Motivation
	RLAs in the Cloud
	Limitations of Existing Monitoring Tools
	Motivation

	Design
	Overview
	Buffer Chain Modeling
	Event Definition & Generation
	Request-level Semantic Injection
	RLA Diagnosis and Mitigation

	Implementation
	Evaluation
	Coverage
	Scalability
	Performance Overhead

	Related Work
	Conclusion

