
This paper is included in the Proceedings of the 
19th USENIX Symposium on Networked Systems  

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the  
19th USENIX Symposium on Networked  

Systems Design and Implementation  
is sponsored by

Katra: Realtime Verification for Multilayer Networks
Ryan Beckett, Microsoft; Aarti Gupta, Princeton University

https://www.usenix.org/conference/nsdi22/presentation/beckett



KATRA: Realtime Verification for Multilayer Networks

Ryan Beckett
Microsoft

Aarti Gupta
Princeton University

Abstract
We present a new verification algorithm to efficiently and
incrementally verify arbitrarily layered network data planes
that are implemented using packet encapsulation. Inspired by
work on model checking of pushdown systems for recursive
programs, we develop a verification algorithm for networks
with packets consisting of stacks of headers. Our algorithm is
based on a new technique that lazily “repairs” a decomposed
stack of header sets on demand to account for cross-layer
dependencies. We demonstrate how to integrate our approach
with existing fast incremental data plane verifiers and have
implemented our ideas in a tool called KATRA. Evaluating
KATRA against an alternative approach based on equipping
existing incremental verifiers to emulate finite header stacks,
we show that KATRA is between 5x-32x faster for packets
with just 2 headers (layers), and that its performance advan-
tage grows with both network size and layering.

1 Introduction

The success of networks is in part due to their layered de-
sign where different protocol layers are delegated different
responsibilities. For instance, many networks, including vir-
tual networks [3, 16, 31], are designed in an overlay/underlay
pattern that is implemented by encapsulating packets, e.g. us-
ing IP-in-IP [34], IP GRE [18], or VXLAN [30] tunnels. In a
wide-area network (WAN), routing protocols such as iBGP
and SDN solutions such as SWAN [19] rely on an underly-
ing label-switching protocol like MPLS. In routers, Ethernet
frames are encapsulated in IP headers to implement forward-
ing, and new and emerging technologies such as SD-WAN
can connect two WANs together by tunneling packets to each
other securely using IPSEC [28].

However, while this layered design has proven successful,
allowing each layer to hide many details from others, it also
makes operating networks reliably a challenge as many bugs
can sit in the intersection of one or more of these layers [37].
Given the pervasiveness of layering as a fundamental design
pattern in networks, it is critical that we be able to ensure
the reliability of networks using this design. In practice, the
implementation of layering is often extraordinarily complex.
For instance, packets going over AT&T’s backbone network
consist of as many as eleven encapsulated headers [44].

To ensure the safe operation of multilayer networks, a nat-
ural technology to employ is that of network verification,
which has emerged as a viable technique to proactively catch
bugs and misconfigurations related to automation and hu-
man error. Employed by nearly all major cloud providers
now [5,17,21,39,45], network verification has witnessed sub-
stantial practical use in industry as researchers have iteratively
improved upon the scalability, responsiveness, and expressive-
ness of the underlying verification tools and techniques. Many
of these tools are engineering marvels – through complex data
structures and algorithms, they enable efficient verification of
new network changes in milliseconds.

While recent progress in network verification has been
substantial, existing tools typically analyze a single layer or
component of the network stack. For example, most verifi-
cation tools in use today analyze only the simple IP-based
forwarding tables and ACLs [4,7,20,21,26,27,29,41,42,46]
governed by the control plane. To verify a network with N lay-
ers using verification tools today, one possibility is to model
packets in the network as consisting of N duplicate copies of
different headers (e.g., an IPv4 header). While this approach
is possible, and researchers have proposed this approach in
some prior work [42, 46], it suffers from two major problems.

The first problem is that the number of layers N may not be
known a priori by the user of the verification tool. For instance,
a network making use of the MPLS fast reroute (FRR) [14,
25, 33] protects links against failure by rerouting traffic that
would have gone over the failed link along a predetermined
backup tunnel. FRR schemes may encapsulate a packet’s
header a number of times that depends on the number of
failures encountered by the packet along its path. Moreover,
if a user provides an incorrect (low) estimate of N, then the
verifier may report both false positives and false negatives.

The second problem is that, even when the user is able to
statically determine N, modeling this many packet headers
simultaneously leads to a highly inefficient representation.
Most network verifiers work by modeling the sets of packets
that are reachable from each ingress and egress point in the
network [27,41,42,46], and such sets may grow substantially
larger and more complex to process when capturing the de-
pendencies between different headers in the packet. In our
experiments (§7), even with just two layers, this simple ap-
proach can be anywhere from 5x-32x slower than necessary.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    617



IPSEC
Tunnel

GRE
Tunnel

Web Server

DB server

Datacenter
(IP underlay)

WAN
(MPLS underlay)

Internet
(IP underlay)

bug

TE Server

VXLAN
Tunnel

Figure 1: A user attempts to access a corporate web service.

To address these problems, in this paper, we present KA-
TRA, the first tool for real-time verification of layered net-
works – those networks that manipulate stacks of headers
through packet encapsulation. Inspired by recent work on ana-
lyzing MPLS [22,23], we leverage ideas from the verification
of pushdown systems [36] used to model recursive programs.
A key new idea is to keep a decomposed representation of the
set of header stacks as a stack of header sets where the set of
headers at one layer in the stack are treated as independent
of those in another. When an operation modifies and later re-
stricts packets at a given layer, it may be necessary to go back
and “repair” the sets of packets representative of previous
headers in the stack to account for this change.

We demonstrate how we can integrate our ideas with ex-
isting incremental data plane verifiers, and we implement
KATRA as an extension to the state-of-the-art verifier AP-
Keep [46]. In addition to being able to reason about arbitrarily
large header stacks, for networks consisting of just two lay-
ers, we further demonstrate that KATRA can verify properties
5x-32x faster than an approach based on extending existing
algorithms with a finite header stack encoding.

Our contributions with KATRA are the following:

• We present a new formal model, and its semantics, for lay-
ered networks that supports arbitrarily nested packet encap-
sulations and decapsulations.

• We develop an efficient algorithm for verifying layered net-
works in our model. The algorithm is based on a new notion
of partial equivalence class as well as a new decomposed
representation for symbolic header stacks.

• We implement our ideas in a tool called KATRA, which inte-
grates our new model and algorithm with the state-of-the-art
incremental verification approach based on APKeep [46].

• We evaluate KATRA against a baseline based on a finite
header stack representation and demonstrate that KATRA is
5x-32x faster with this speedup growing larger with both
network size and the number of network layers.

Networking example Layering mechanism

campus network isolation [44] VLAN, VXLAN [30]
virtual private network [15] IP-IP [34], IP GRE [18]
3G/4G mobile packet core [38] GPRS tunneling [1]
interior gateway protocol [32] LSPs, MPLS [35]
performance proxy [8] IPSEC [28]
traffic engineering [43] IP GRE [18]
software-defined WAN [13] IPSEC [28]

Table 1: Example network services features with layering.

2 Motivation and Background

Protocol layering in networks is used pervasively as a way to
separate concerns and build new features and services atop
existing infrastructure. Consider the scenario depicted in Fig-
ure 1. In the example, an employee of a company attempts
to access a corporate web service, that is hosted in the cloud,
from their home. The employee uses a secure VPN connec-
tion so their traffic is encapsulated in an IPSEC [28] tunnel
before being forwarded over the Internet. When the traffic
traverses the cloud provider’s wide area network (WAN), a
traffic engineering server selects an egress point for a nearby
data center. The WAN forwards packets to this egress using
an IP-GRE tunnel over its MPLS-based core. Once the traffic
reaches the data center, it is forwarded to the requested web
server. The web server must now access data from a database
(DB) server configured in the same virtual overlay network.
The web server thus sends traffic to the DB server using a
VXLAN tunnel configured atop an IP-based datacenter fabric.

In the example, layer 2 and layer 3 forwarding elements
are combined to implement several abstractions. While this
approach to protocol layering is powerful, if any one of the
forwarding policies at any layer in the example is miscon-
figured, then the user will not be able to reach the intended
service. For instance, if there were a misconfigured security
rule in the overlay network between the web and DB servers
then the user may lose connectivity to the web service. Simi-
larly, a misconfiguration in the datacenter’s IP-based underlay
network could break connectivity. To make matters worse,
when network forwarding bugs span multiple layers, iden-
tifying the root cause of the issue can be complicated as it
may require coordination between multiple different teams
spread across one or more organizations [37], each with only
a partial view of the network as a whole.

Multilayer verification. Network verification is a natural fit
to ensure the correctness of multilayer networks, yet verifiers
today were not built with layering in mind. Existing verifiers
assume that packets have a fixed size header rather than an
expandable stack of headers. While it is sometimes possible to
retroactively analyze such multilayer networks using existing
verifiers by pessimistically modeling a “worst case” fixed size
header stack, doing so is often highly inefficient.

618    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



3 Layered Network Model

Rather than model networks with fixed size headers, as is
done by existing network verifiers, in this section we define a
new network model that includes protocol layering as a first
class concern. We model multilayer networks as operating
on an unbounded stack of headers. We then demonstrate that
one can view both single-layer and multi-layer networks as
instances of our general model.

3.1 Notation and Preliminaries

Before defining our network model, we first introduce some
notation and preliminary definitions.

Definition 3.1 (Sequences). For a set X, we use the notation
X∗ to mean the set of all possible sequences of elements
of X. We define a sequence σ ∈ X∗ inductively as either ε

representing the empty sequence, or the concatenation (σ′ ·x)
of another sequence σ′ ∈ X∗ together with an element x ∈ X.

For simplicity of notation, we sometimes write a sequence
σ ∈ X∗ as σ = x0 · x1 · · · · · xn where xi ∈ X and x0 is the first
element of the sequence and xn is the last element, and we
omit writing out the ε. Concatenation of two sequences is
defined recursively as σ ·ε = σ and σ · (σ′ ·x) = (σ ·σ′) ·x As
a shorthand, for a sequence σ = σ′ · x we define top(σ) = x
and bot(σ) = σ′. These two partial functions are undefined
when σ = ε. Finally, we write |σ| to mean the length of a
sequence such that |ε|= 0 and |σ · x|= 1+ |σ|. A stack is a
sequence σ where the top of the stack is given by top(σ).

For sets X and Y , we use the standard notation Y X or X→Y
to mean the set of functions from X to Y . Similarly, we use
the notation X ↪→ Y to represent partial functions from X
to Y . Given a (potentially partial) function f from X to Y
and function g from Y to Z, we write f ◦ g to define their
composition, from X to Z.

3.2 Formal network model

We define a network N as a tuple 〈V,E,H ,T ,R 〉 where:

• V is a set of vertices, and E ⊆ 2V×V is a set of edges.
Edges are unidirectional and we represent bidirectional
edges with a pair of edges. For edge e = 〈u,v〉, we use
the notation src(e) = u and tgt(e) = v.

• H is a set of valid headers for the protocols in use.

• T is a set of transformations, which are partial functions
over packet headers of type T ⊆ 2H ↪→H .

• R is a set of rules R ⊆N×E×2H ×T . For rule r ∈ R
where r = 〈p,e,m,τ〉. We use the notation priority(r) =
p, edge(r)= e, match(r)=m, and modify(r)= τ to refer
to the components of the rule.

Intuitively, lower priority rules take precedence over those
with higher priority at a given node. The best rule for a given
header at a node is the rule with lowest priority at that node
that also matches the header.
Definition 3.2 (Best rule). For a node u ∈ V and a header
h ∈ H , we define the best matching rule at u as: Ω(u,h) =
minpriority{r ∈ R | src(edge(r)) = u, h ∈match(r)}

For simplicity, we assume that there is always a unique
best rule for a given header. This is ensured by requiring
that (1) rule priorities must be unique, and (2) all headers are
matched by at least one rule. In practice, one can ensure this
requirement is met by adding a maximum priority default rule
that matches all other unmatched headers.

3.3 Network semantics
Given a header h ∈ H and an initial node u ∈ V , which we
call a located packet L =V ×H , the network produces a se-
quence of new located packets to capture the packet’s history
as it goes through the network. Specifically, we define the
semantics of a network N as a function JN Ki : L → L∗ that
takes an initial located packet to a trace of located packets
through the network for a given number of steps i ∈ N:

JN Ki〈u,h〉=


ε · 〈u,h〉 if i = 0
σ elif τ(h′) undefined
σ · 〈v,τ(h′)〉 otherwise

where σ = JN Ki−1〈u,h〉 and top(σ) = 〈u′,h′〉 and:

τ = modify(Ω(u′,h′))
v = tgt(edge(Ω(u′,h′)))

Definition 3.3 (Packet termination). We say network N
has terminated a located packet ` after i steps, written
N ⊗〈i, `〉, if the trace no longer changes: JN Ki`= JN Ki−1`.

3.4 Lifting networks to layered networks
To implement layering, conceptually packets contain an un-
bounded stack of headers to which the network can push or
pop. A layered network is just an instance of a network that
processes stacks of headers:
Definition 3.4 (Multilayer network). A multilayer network
is an instance of a network N = 〈V,E,H ∗,T ,R 〉 over se-
quences of headers H ∗ with some restrictions on T and R .

Primarily, we require that every transformation τ ∈ T and
every rule match set match(r) for r ∈R only inspects or mod-
ifies the top of the stack1. In other words, we often write
that τ(σ · x) = σ · τ(x). And that σ · h ∈ match(r) ⇐⇒ h ∈
match(r) as though τ and match(r) were defined over H . The

1This restriction can express encapsulation and decapsulation in real
networks yet also makes verification tractable.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    619



tunnel

v1 v2 v3c1 c2

10.0.1.0/24

ts td

rule p e m τ

r0 100 〈c1,v1〉 H ∗ τid
r1 100 〈v1,v1〉 φdst(23.1.4.0/24) τpush ◦ τtunl
r2 200 〈v1,v2〉 φdst(10.0.1.0/24) τid
r3 300 〈v1,v1〉 H ∗ τdrop
r4 100 〈v2,v3〉 φdst(10.0.1.0/24) τid
r5 200 〈v2,v2〉 H ∗ τdrop
r6 100 〈v3,v3〉 φsrc(ts)∩φdst(td) τpop
r7 200 〈v3,c2〉 H ∗ τid
r8 100 〈c2,c2〉 H ∗ τdelv

Figure 2: Example formulation of a network with a single
tunnel between v1 and v3. We use the notation φ f (P) for
set P as a shorthand to mean packets where the field f is
contained in P. Thus φdst(P) = {σ∈H ∗ | 〈d,s〉 ∈ top(σ),d ∈
P}. Tunneled packets are encapsulated by first executing τpush
to duplicate the top-most header before modifying this header
copy with τtunl to set to source ip to ts = 10.0.2.0 and the
destination ip to td = 10.0.1.0. Packets are then forwarded
according to the underlay network towards td ∈ 10.0.1.0/24
hosted at v3. Packets at v3 are decapsulated by popping the
top-most header and then delivered to client c2.

only exception to this restriction is for two special transfor-
mations τpush, which makes a new copy of the current top of
the stack, and τpop, which drops or decapsulates the top of
the stack. More specifically, we define τpush(σ · x) = σ · x · x
and we define τpop(σ · x · y) = σ · x. Both transformations are
undefined otherwise and may be composed with other trans-
formations (e.g., τ◦ τpush).

Example Network. To make the model more concrete, we
show an example of its instantiation in Figure 2. The net-
work in the figure is given by the tuple N = 〈V,E,H ∗,T ,R 〉
where the nodes and edges are defined by the sets:

V = {c1,v1,v2,v3,c2}
E = {〈c1,v1〉,〈v1,v1〉,〈v1,v2〉,〈v2,v3〉,〈v3,v3〉,〈v3,c2〉}

Note that the edges include self edges (e.g., 〈v1,v1〉) to model
recursive lookup for forwarding and tunneling.

The set of headers H = {〈d,s〉 | d,s ∈ {0, . . . ,232− 1}}
defines headers consisting of two 32-bit IP address fields for
destination and source IP, and H ∗ is all sequences (stacks) of
such headers. The set of transformations for the network is
given by T = {τid,τdrop,τdelv,τpush ◦τtunl,τpop}. The transfor-
mation τid is the identity transformation such that τid(σ) = σ,
τdrop and τdelv are transformations that are undefined for all
inputs and thus terminate traffic, τtunl is a transformation that

i top(JN Ki〈c1,〈d,s〉〉) description

0 〈c1,〈d,s〉〉 forward to v1
1 〈v1,〈d,s〉〉 encapsulate
2 〈v1,〈d,s〉 · 〈ts, td〉〉 forward to v2
3 〈v2,〈d,s〉 · 〈ts, td〉〉 forward to v3
4 〈v3,〈d,s〉 · 〈ts, td〉〉 decapsulate
5 〈v3,〈d,s〉〉 forward to c2

≥ 6 〈c2,〈d,s〉〉 delivered

Table 2: Trace of a packet with source s and destination d
from client node c1 in the network shown in Figure 2.

rewrites the source IP address to ts and the destination IP
address to td . The composed transformation τpush ◦ τtunl first
creates a copy of the top of the stack and then rewrites the IP
addresses according to τtunl for the encapsulated header.

A trace through the network given by the semantics (see
§3.3) represents the packet forwarding in the network. Con-
sider sending an initial packet from client c1 with some des-
tination address d ∈ φdst(23.1.4.0/24) and some arbitrary
source address s. The top of the trace given by the semantics
JN Ki〈c1,〈d,s〉〉 is shown in Table 2.

4 Realtime Verification of Layered Networks

Given a network N = 〈V,E,H ∗,T ,R 〉 over stacks of headers
H ∗ and a new rule r being inserted or removed from R , our
goal is to incrementally verify the correctness of N with
respect to some user defined properties of interest.

In this section we first give a brief overview of how exist-
ing incremental verification algorithms work for finite header
sets H (§4.1). We then show how this notion of equivalence
class falls apart for the infinite space of header stacks H ∗,
which leads existing algorithms to not terminate. To solve
this problem, we define a new notion of partial equivalence
class based on only the top of the header stack (§4.2). Par-
tial equivalence classes can be computed efficiently, however
they do not necessarily guarantee equivalent network-wide
behavior. Instead, we develop an algorithm that lazily refines
these classes while verifying properties (§4.3 and §4.4).

4.1 Existing incremental verifiers
Most incremental data plane verifiers today work by analyzing
the network rules R and, based on that analysis, dividing
the headers H into subsets that have the same forwarding
behavior, which can then be checked using graph algorithms.
More specifically equivalence classes are defined as:

Definition 4.1 (Trace hops). Given a trace σ (from §3.3)
consisting of located packets L , we define function hops(σ),
which produces only the nodes in the trace, inductively over
σ as hops(ε) = ε and hops(σ′ · 〈u,h〉) = hops(σ′) ·u.

620    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Definition 4.2 (Equivalence classes). A set of header sets
{H1, . . . ,Hn} are equivalence classes for a network N =
〈V,E,H ,T ,R 〉 if the following conditions hold:

• H = H1∪ . . .∪Hn (complete)
• ∀i, j ∈ {1, ..,n}, i 6= j⇒Hi∩H j = /0 (disjoint)
• ∀ j ∈ {1, ..,n}, ∀h1,h2 ∈H j, ∀u ∈V, ∀i ∈ N, (g-equiv)

hops(JN Ki〈u,h1〉) = hops(JN Ki〈u,h2〉)
Existing incremental verification tools compute an over-

approximate set of equivalence classes {H1, . . . ,Hn} using
intricate data structures such as multi-dimentional tries [29]
and Binary Decision Diagrams (BDDs) [46]. While early
work on incremental verification such as Veriflow [29] and
Deltanet [20] could not handle rule transformations (i.e.,
all transformations must be τid), more recent work such as
AP [42] and APKeep [46] can account for transformations.

At a high-level, these tools work as follows. First, they
compute a set of equivalence classes {H1, . . . ,Hn} based on
the rule match fields. Next, for each transformation τ ∈ T
and each i ∈ {1, ..,n}, they compute τ(Hi) = {τ(h) | h ∈Hi}.
Since the transformed sets may now violate the disjoint condi-
tion, the resulting set {H1, . . . ,Hn,τ(H1), . . . ,τ(Hn)} is made
disjoint by dividing up these sets. This process is iterated with
all transformations until no more changes occur.

The problem with equivalence classes. There are several
problems that occur when trying to lift this approach to equiv-
alence class generation to stacks of headers. One problem is
that the space of header stacks H ∗ is infinite and symbolic
data structures in existing tools cannot represent and manipu-
late infinite sets of values. This is generally a hard problem,
which we solve in §4.3.

Even with data structures to manipulate such infinite sets,
the algorithm discussed previously does not necessarily termi-
nate in this infinite space. For instance, an equivalence class
for stacks with a single header: H ∗i = {ε ·h | h∈H } does not
terminate with τpush – one would compute a new equivalence
class for packets with two headers, then three, and so on.

4.2 Partial equivalence classes
To solve this problem, we introduce a new notion of partial
equivalence classes. Partial equivalence classes capture sets
of packets that will have the same forwarding behavior at
every node in the network but may not be transformed un-
ambiguously by transformations to other partial equivalence
classes. Formally, we define them as:
Definition 4.3 (Partial Equivalence Classes). A set of
header sets {H1, . . . ,Hn} are partial equivalences classes
for a network N = 〈V,E,H ,T ,R 〉 if the following hold:

• H = H1∪ . . .∪Hn (complete)
• ∀i, j ∈ {1, ..,n}, i 6= j⇒Hi∩H j = /0 (disjoint)
• ∀ j ∈ {1, ..,n}, ∀h1,h2 ∈H j, ∀u ∈V, (l-equiv)

edge(Ω(u,h1)) = edge(Ω(u,h2)) ∧
modify(Ω(u,h1)) = modify(Ω(u,h2))

The difference between partial equivalence classes and
equivalence classes (Definition 4.2) is subtle. We demonstrate
the difference in Figure 3. In the example, packet headers con-
sist of a destination IP field and time-to-live (TTL) field. If
we ignore the layering transformations τpush and τpop, which
make the example not terminate, existing tools AP and AP-
Keep would compute the equivalence classes shown in Fig-
ure 3b according to Definition 4.2. There are 257 equivalence
classes. This large number comes from repeatedly applying
τttl to compute the transitive closure of equivalence classes as
described in §4.1. In contrast, there are only 3 partial equiva-
lence classes for the example, shown in Figure 3c since they
depend only on local forwarding behavior.

Note that partial equivalence classes do not guarantee equiv-
alent end-to-end behavior of packets, only local forwarding.
For instance the packets 〈10.7.1.2, 255〉 and 〈10.7.1.2, 1〉
belong to the same partial equivalence class (2) in Figure 3c.
Yet when sent from v1, the latter packet will be dropped at v2
while the former will be forwarded to v3.

Of importance is that the definition of partial equivalence
classes depends only on the rule transformations τ applied
rather than the application of τ(Hi) to some set of packets.
This means that we can compute partial equivalence classes
efficiently for header stacks using techniques similar to that
of prior work [46] by looking only at the top of the stack.

4.3 Verification algorithm overview
Given a set of (changed) partial equivalence classes and a
property P, our objective is to check whether P holds for all
packets in all of the (changed) partial equivalence classes.

Our approach is as follows: given a set of partial equiva-
lence classes {H1, . . . ,Hn} we start by exploring the reach-
able paths from every source node using a depth-first search.
At each node u, packets in the partial equivalence class for
Hi will all have the same next hop v and transformation τ

(by definition). We proceed to apply τ(Hi) to get some new
set of packets H ′i . Because H ′i may partially overlap with
one or more existing partial equivalence classes, we identify
all other partial equivalence classes Hi1 , . . . ,Him such that
∀ j ∈ {1, ..,m},H ′i ∩Hi j 6= /0. We then continue the search
with each subset (H ′i ∩Hi j).

Representing header stacks. We still have the problem of
symbolically representing the infinite space of stacks of head-
ers H ∗. To do so, we use a decomposed representation where
we model a set of header stacks as a concrete stack of sym-
bolic header sets. For instance, suppose the set of reachable
header stacks at a given node is {ε · h1 · h2, ε, ·h3 · h4}. We
instead represent this set as the stack of header sets given by
the stack ε · {h1,h3} · {h2,h4}.

Of course, this decomposed representation naturally over
approximates the set of headers (e.g., it would appear that
ε ·h1 ·h4 is a reachable header stack). However, by carefully
tracking the transformations that modify the stack (e.g., that

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    621



v1 v2 v3

rule p e m τ

r0 100 〈v1,v1〉 φttl({0}) τdrop
r1 200 〈v1,v2〉 φdst(10.7.1.0/24) τpush ◦ τttl
r2 300 〈v1,v2〉 H ∗ τdrop
r3 100 〈v2,v2〉 φttl({0}) τdrop
r4 200 〈v2,v3〉 φdst(10.7.1.0/24) τpop ◦ τttl
r5 300 〈v2,v2〉 H ∗ τdrop
r6 100 〈v3,v3〉 φttl({0}) τdrop
r7 200 〈v3,v3〉 H ∗ τdelv

(a) Example network topology and rules.

(1) φdst(10.7.1.0/24) ∩ φttl({0})
(2) φdst(10.7.1.0/24) ∩ φttl({1})
. . . . . .
(256) φdst(10.7.1.0/24) ∩ φttl({255})
(257) H −φdst(10.7.1.0/24)

(b) Equivalence classes computed by APKeep [46].

(1) φttl({0})
(2) φdst(10.7.1.0/24) ∩ φttl({1, ..,255})
(3) H −φdst(10.7.1.0/24) ∩ φttl({1, ..,255})

(c) Partial equivalence classes computed by KATRA.

Figure 3: Running example of computing reachability in a simple multilayer network. Example network has headers consisting of
a destination IP and a time-to-live (TTL) field: h ∈H = 〈d, t〉 where d ∈ {0, ..,232−1} and t ∈ {0, ..,255}. The transformation
τttl decrements the TTL field. (a) shows APKeep equivalence classes for the single-layer version of the network and (b) Katra’s
partial equivalence classes for the multi-layer version.

only h1 leads to h2 and only h3 leads to h4), this represen-
tation remains precise. On the other hand, the decomposed
representation is convenient because it allows for modeling
arbitrary sized stacks and can execute τpush and τpop cheaply
on the symbolic representation since it is just a concrete stack
operation. It also lets us leverage existing efficient data struc-
tures such as those based on BDDs, to manipulate the stacks
despite not having a fixed size.

Given a decomposed stack of header sets σ = ε ·H1 · . . . ·Hn
the usual definitions for τpush and τpop apply, and we use a
definition of a transformation τ applied to stacks: τ(σ ·h) = σ ·
τ(H). One drawback with this definition is that the headers at
different layers of the stack lose dependencies between them.
For instance, if the stack ε ·H1 ·H1 is filtered and becomes
ε ·H1 ·H2, it may be that the new stack should be ε ·H2 ·H2
since only those packets with the inner header in H2 would
have pushed to headers that later survived the filter. In general,
we track the transformations applied to the headers at each
layer of the stack, and then “repair” the stack on demand
whenever our representation is at risk of losing precision.

4.4 Layered verification algorithm
The algorithm for verifying arbitrarily layered networks is
shown in Algorithm 1. CheckProperty takes as input the net-
work N , the partial equivalence class (e.g., one that changed
after a rule insertion or deletion) Hi, a set of source nodes S,
a destination node d, and a path property P to check for each
pair of source and destination.

The algorithm starts by running a depth-first search from
each source node s ∈ S (line 7) and tracking the visited nodes.
Each node in the algorithm contains (i) a topology node, (ii)
the current partial equivalence class (initially Hi), and (iii) the
current symbolic stack (initially ε ·Hi). An invariant of the

algorithm is that the top of the symbolic stack is a subset of
the current partial equivalence class.

The depth-first search first looks up the next hop (edge and
transformation τ on line 11) for the current partial equivalence
class Hi and node u. It then applies the transformation τ to the
current stack (line 12). If τ is undefined for this stack, then
the trace is terminated and the algorithm checks the property
P on the path (stored in the previous pointers starting at u on
line 14). If the property fails, it returns a counter example.

Otherwise, the algorithm inspects the new top of the stack
σ and finds all new overlapping partial equivalence classes
Hi j (line 16). For each, it computes a new stack σ′ (line 17)
obtained by restricting the top of the stack to this new partial
equivalence class. If the top of the stack changed it then “re-
pairs” the rest of the stack (line 20). We go into this operation
in more detail in §4.5. Afterwards, the algorithm creates a
new node for the next hop v with the new partial equivalence
class Hi j and the new stack σ′ (line 20).

At this point the algorithm marks u as visited (line 22)
checks if the new node creates an infinite loop (line 25). The
details of this check are complex and are covered in detail
in §5.1. Finally, if the new node v has not yet been visited, it
recursively calls Dfs from this new node (line 28).

Example. We can see an application of Algorithm 1 in
Figure 4. This shows the DFS trace produced for the ear-
lier example network shown in Figure 3 that uses a time-
to-live field. The execution is shown for the partial equiv-
alence class Hi = (2), which corresponds to packets in the
set H0 = φdst(10.7.1.0/24)∩φttl({1, ..,255}). Initially the al-
gorithm starts in partial equivalence class (2) with the stack
ε ·H0. From here, the algorithm discovers that the next hop is
v2 and the transformation is τpush ◦ τttl. The result of applying
this transformation to ε ·H0 is two new sets of stacks corre-

622    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Algorithm 1: Reachability for layered networks.
Input: Network N , partial equivalence class Hi,

Source locations S, Property P
Output: Counterexample, or null if none

1 Procedure CheckProperty(N , Hi, S, P)
2 visited← /0

3 for s in S do
4 u← new Node(s, Hi, ε ·Hi)
5 if u 6∈ visited then
6 u.previous← null
7 trace← Dfs(N , P, visited, u, 0)
8 if trace 6= null return trace

9 return null

10 Procedure Dfs(N , P, visited, u, i)
11 〈edge,τ〉 ← Forward(N , u.loc, u.ec)
12 σ← τ(u.stack)
13 if σ undefined then
14 return (if P(u) then null else GetTrace(u))

15 nexthops← /0

16 for Hi j in OverlappingEcs(top(σ)) do
17 σ′← bot(σ) ·

(
top(σ)∩Hi j

)
18 if top(σ) 6= top(σ′) or |σ| 6= |σ′| then
19 σ′← Repair(σ′)

20 v← new Node(tgt(edge), Hij , σ′)

21 nexthops← nexthops ∪ {〈τ,v〉}
22 visited← visited ∪ {u}
23 for 〈τ,v〉 in nexthops do
24 v.previous← 〈τ,u〉
25 if HasLoop(v, visited) then
26 return GetTrace(v)

27 if v 6∈ visited then
28 trace← Dfs(N , P, visited, v, i+1)
29 if trace 6= null return trace

30 return null

sponding to different partial equivalence classes. The first is
ε ·H0 ·H1, which remains in partial equivalence class (2). The
second is ε ·H0 ·H2, which now falls into partial equivalence
class (1) since the TTL field reaches zero. In both cases, we
“repair” the stack since the first header may be wrong. The
results are given by ε ·H3 ·H1 and ε ·H4 ·H2. Those packets
in partial equivalence class (1) are now dropped since the
TTL field is 0. And the remaining packets are forwarded to
v3, decapsulated, and eventually delivered.

4.5 Repairing the stack
Recall in the example in Figure 4, the initial state is
〈v1,(2),H0〉 capturing all packets for the destination pre-

Algorithm 2: Unbounded loop check.
Input: Graph node u, and visited nodes visited
Output: Boolean for if there is an infinite/finite loop.

1 Procedure HasLoop(u, visited)
2 C ←{n | n ∈ visited,n.loc = u.loc}
3 c← u.previous
4 µ← |u.stack|
5 while c 6= null and C 6= /0 do
6 µ←Min(µ, |c.stack|)
7 if c ∈ C then
8 C ← C −{c}
9 γ← LCS(u.stack, c.stack)

10 if µ > |c.stack|− γ then
11 return true

12 c← c.previous

13 return false

〈v1,(2), ε ·H0〉

〈v2,(2), ε ·H0 ·H1〉 〈v2,(1), ε ·H0 ·H2〉

〈v2,(2), ε ·H3 ·H1〉 〈v2,(1), ε ·H4 ·H2〉

〈v3,(2), ε ·H1〉

τpush ◦ τttl

repair repair

τpop ◦ τttl

H0 = φdst(10.7.1.0/24) ∩ φttl({1, ..,255})
H1 = φdst(10.7.1.0/24) ∩ φttl({1, ..,254})
H2 = φdst(10.7.1.0/24) ∩ φttl({0})
H3 = φdst(10.7.1.0/24) ∩ φttl({2, ..,255})
H4 = φdst(10.7.1.0/24) ∩ φttl({1})

Figure 4: Example execution of Algorithm 1 for the partial
equivalence class Hi = (2) from the example in Figure 3.

fix with TTL greater than zero. After being transformed by
τpush ◦ τttl, the resulting headers for partial equivalence class
(2) are given by the stack ε ·H0 ·H1. Regrettably, H0 is no
longer correct because it contains a packet with a TTL field
of 1, which would be 0 after the TTL decrement and thus no
longer be part of H1, which has TTL values in {1, ..,254}.

The problem generally is that after restricting the top of
the stack (Algorithm 1, line 17), the bottom of the stack may
contain too many headers. To repair the stack, we reverse all
transformations applied to the current stack to recover the
initial set of packets from the source that will eventually lead
to the new restricted stack. We then replay the transformations
forward with the correct initial set to simulate the construction

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    623



of the repaired stack as though we had started with the set
that takes into account the later restriction.
Definition 4.4 (Transformation Inverse). Given a transfor-
mation τ for sets of stacks, we define its inverse as τ−1(H∗) =
{σ ∈H ∗ | τ(σ) ∈ H∗}.

Assume we have a sequence of stacks and transformations
starting from the initial state of the depth-first search: σ1

τ1−→
σ2

τ2−→ . . .σn−1
τn−1−−→ σn. We compute:

σinit = (τ−1
1 ◦ . . .◦ τ−1

n )(σn)
σrepair = (τn ◦ . . .◦ τ1)(σinit)

Example. We clarify this idea through an example. In the
DFS shown in Figure 4, at node 〈v2,(2),H0 ·H1〉 we perform
a stack repair operation. To do so, we compute σinit:

σinit compute σinit
= (τpush ◦ τttl)

−1(H0 ·H1) unfold definition
= τ

−1
push(τ

−1
ttl (H0 ·H1)) function composition

= τ
−1
push(H0 ·H3) inverse of τttl

= H3 inverse of τpush

σrepair compute σrepair
= (τpush ◦ τttl)(H3) unfold definition
= τttl(τpush(H3)) function composition
= τttl(H3 ·H3) definition of τpush
= H3 ·H1 definition of τttl

This result is given by node 〈v2,(2),H3 ·H1〉 in Figure 4.

4.6 Property expressiveness
For efficiency, our algorithm concerns itself primarily with
checking path properties P that are “subpath closed”:
Definition 4.5 (Subpath Closed). A property P is subpath
closed if whenever P holds on a sequence of nodes u0, . . . ,un,
it also holds on any subsequence u j,u j+1, . . . ,un for j ≥ 0.

Subpath-closed properties include reachability to a desti-
nation, loop-freedom, and network isolation. We focus on
this subset of properties because they permit an efficient im-
plementation by avoiding exploring previously visited nodes
(Algorithm 1, line 5). However, this is not an inherent limi-
tation of our algorithm – with only minor changes it can be
used to check any path properties for packets, albeit at greater
cost since we can not reuse previously visited nodes.

5 Algorithm Correctness

We now prove that Algorithm 1 is sound with respect to our
concrete packet semantics from §3.3. But first we must define
what it means for a DFS state to contain a located packet:
Definition 5.1 (DFS overapproximation). For a located
packet ` and Dfs node u, we write ` ∈ u if ` = 〈v,σ〉 and
u.loc = v and σ ∈ u.stack and top(σ) ∈ u.ec.

u1 u2 u3

rule p e m τ

r0 100 〈u1,u1〉 φdst(10.0.1.0/24) τpush ◦ τd ◦ τpush
r1 100 〈u2,u2〉 φdst(d) τpop
r2 200 〈u2,u3〉 φdst(10.0.1.0/24) τpush
r3 300 〈u2,u3〉 H ∗ τdrop
r3 100 〈u3,u2〉 H ∗ τpush

Figure 5: Example network with an infinite loop for the
10.0.1.1 address. The value d can be any other IP address.

Now given this definition, we state the soundness of Algo-
rithm 1 as follows by relating the concrete semantics to the
DFS calls made in the algorithm. For the simplicity of the
proof, we elide the visited set optimization (lines 5 and 27)
and the loop check (line 25). We revisit the loop check for
termination in §5.1

Theorem 5.1 (Soundness). For any network N , partial
equivalence class H j, node v, header h ∈H j, located packet
`= 〈v,ε ·h〉, and step i≥ 0, if not N ⊗〈i, `〉 then after calling
CheckProperty(N ,H j,{v},P) there will eventually be a call
to Dfs(N ,P,_,u, i) for some node u such that top(JN Ki`)∈ u.

Proofs are included as extra material in the appendix.

Corollary 5.1 (Property checking). If i is the smallest step
such that N ⊗〈i, `〉 then Algorithm 1 checks P(u) for some
DFS node u such that top(JN Ki`) ∈ u.

5.1 Infinite Loops and Termination

While Theorem 5.1 says that Algorithm 1 is sound, it says
nothing about whether it will terminate. Intuitively, a network
N contains a loop for a header h, whenever that packet will
visit a node infinitely often in the future2. Catching infinite
loops is vital since otherwise Algorithm 1 may not terminate.
Finding loops in layered networks is surprisingly challenging
since the space of header stacks is infinite and no stack need
repeat to have an infinite loop.

We start by defining a loop for a given header:

Definition 5.2 (Network Loop). Given a network N , an in-
put located packet ` induces a loop if there exists a step index
i ∈ N for the start of the loop such that for all steps j ∈ N
where j ≥ i, there exists a future k ∈ N such that:

(1) |JN K j`|< |JN Kk`|
(2) top(hops(JN K j`)) = top(hops(JN Kk`))

2Note: networks modeling the TTL field like in Figure 7 do not have
a loop in the algorithmic sense because the packet will eventually expire
after a finite number of steps. Such issues can be caught with an appropriate
property P that looks for packets that eventually expire with TTL 0.

624    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



In other words, a loop exists if beyond some point in the
trace (i) the trace will continue to grow forever and repeatedly
visit the same nodes in the network.

Example. We demonstrate the difficulty of detecting infi-
nite loops in Figure 5. Unlike in single layer networks, loops
in multi-layer networks may be transient even when the top
of the stack repeats at the same node because of implicit state
lower in the header stack. Further, any given stack may not
repeat even when an infinite loop exists since the stack can
keep growing. Consider a trace for the example in Figure 5
for traffic sent from u1 with the 10.0.1.1 destination.

〈u1,10.0.1.1〉 encapsulate twice
〈u2,10.0.1.1 ·d ·d〉 pop
〈u2,10.0.1.1 ·d〉 pop
〈u2,10.0.1.1〉 forward to u3
〈u3,10.0.1.1 ·10.0.1.1〉 forward to u2
〈u2,10.0.1.1 ·10.0.1.1 ·10.0.1.1〉 forward to u3
. . .

Note that the top of stack d is repeated at node u2, how-
ever, this is not the cause of the infinite loop since eventually
this outer header is removed and the forwarding proceeds
according to the inner header for the 10.0.1.1 address. Later,
however, there is an infinite loop despite the stack never re-
peating exactly at any node in the trace.

Necessary and sufficient conditions. Suppose we have a
current header stack σ ·h at node u, and later on we arrive at u
once more, but with header stack σ ·σ′ ·h with the same shared
prefix σ. Moreover, assume that between visiting u twice, the
rules never examine the contents of σ. If these conditions
hold then the top of the stack h “regenerates” itself without
needing context from σ. In this case, we can infer that there
will be an infinite loop at u given by: 〈u,σ ·h〉 −→ 〈u,σ ·σ′ ·
h〉 −→〈u,σ ·σ′ ·σ′ ·h〉 −→ . . . This idea is similar to repeating
heads from the verification of pushdown systems [36] and we
prove that this condition is both sufficient and necessary for a
permanent loop:
Theorem 5.2 (Loop conditions). Given a network N over
H ∗, an input ` induces a loop if and only if there exists i,k∈N,
σ,σ′ ∈H ∗, and h ∈H such that:

(1) top(JN Ki`) = 〈u,σ ·h〉
(2) top(JN Kk`) = 〈u,σ ·σ′ ·h〉
(3) ∀ j, i < j < k⇒∃v,σ′′, top(JN K j`) = 〈v,σ ·σ′′〉

Loop detection algorithm. Based on the insights from The-
orem 5.2, we develop an efficient procedure for checking
loops during traversal, which is described in Algorithm 2.
Given the current node (u) in the DFS, and the visited nodes
(visited) the procedure checks for a loop by looking up all
candidate nodes (C ) for the same current topology location
(u.loc, line 2). The algorithm walks backwards through the
current path (line 5) and computes the longest common suffix
(LCS) γ between the tops of the stacks for the two nodes u

1 // instantiate a new network verifier
2 var headerType = new HeaderType(
3 ("dstip", 32), ("srcip", 32));
4 var nv = new NetworkVerifier(headerType);
5

6 // build the network topology
7 var (n1, n2) = nv.GetOrAddNodes("n1", "n2");
8 var (e12, e21) = nv.GetOrAddBiEdge(n1, n2);
9

10 // register the properties we want to monitor
11 nv.AddCheck(new LoopCheck(nv.AllHeaders()));
12

13 // create new prioritized forwarding rules
14 var r = nv.CreateRange(
15 (10, 20), (0, uint.MaxValue));
16 var t = nv.Seq(nv.Push(), nv.Set("dstip", 10));
17 var rule1 = new Rule(100, e12, r, t);
18 var rule2 = new Rule(100, e21, r, nv.Pop());
19

20 // find violations from adding rules.
21 var violations1 = nv.AddRule(rule1);
22 var violations2 = nv.AddRule(rule2);
23 Assert.AreEqual(1, violations2.Count);

Figure 6: Example use of the KATRA verification API.

and c (line 9) while also tracking the minimum stack size
µ between the two nodes. If µ is greater than |c.stack| − γ

(where γ generalizes h in the loop conditions) then there is
a loop (line 11). If the set of candidate loop nodes has been
exhausted, the algorithm terminates early.

6 Implementation

We have built an incremental verification system, KATRA
for layered networks based on the idea presented. KATRA
is implemented as a C# library and is written in around 8K
lines of code. KATRA’s implementation for computing header
equivalence classes is based on the algorithm from [46], but is
modified to incrementally compute the minimal set of partial
equivalence classes (see §4.2). An example of an API for the
tool is shown in Figure 6. The tool is programmable and is pa-
rameterized by the format of the header (e.g., MPLS vs. IPv4)
that the user wants to check (line 1)3. Our implementation
extends §3.2 to support mulipath routing.

Optimizations. KATRA makes use of several optimizations
to scale. One key challenge is that the use of partial equiv-
alence classes (§4.2) means that we must find overlapping
equivalence classes during traversal (Algorithm 1, line 16). To
make this operation fast, for every packet set H we keep a pair
of 〈b,H〉 where H is the set itself modeled as a BDD [10], and
b is a multi-dimensional bounding box that overapproximates

3To model different headers in different layers (e.g., Ethernet and IPv4
headers), one can define a “master” header with the union of fields across
headers along with a field indicating which header is currently being used.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    625



a
b

c

d
e

f
g

h

i

j

Figure 7: Example of a layered benchmark network with
layers `= 2 and nodes n = 5.

the set of headers in H. When sets are unioned or intersected,
the corresponding bounding boxes are grown or shrunk to
remain safe overapproximations for the sets of headers.

Keeping bounding boxes for header sets allows for the
use of fast collision detection data structures. We leverage
bounding volume hierarchies [40], which are hierarchical
balanced trees of bounding volumes used in game engines to
quickly eliminate possible collisions.

Our implementation also examines header sets H and de-
termines if the fields lie on prefix boundaries (e.g., for IPv4
prefix-based forwarding). If so, it uses an optimized trie data
structure to accelerate the collision detection.

7 Evaluation

We are primarily interested in evaluating the performance of
KATRA relative to a straightforward extension of prior work
that models packets with a fixed (bounded) number of headers
N. Of course, this approach requires a user to specify N and
may be unsound when N is not large enough to handle the
maximum stack possible in the network. However, if N is
chosen carefully this provides a reasonable comparison point.

7.1 Different implementations
To compare the approach in KATRA with that of duplicate
headers (DUP), we instantiate our framework (§6) with two
types of headers. For DUP, we instantiate the verifier with a
header that is similar to that of Figure 6 (line 2) but extended
to a full IPv4 header, and replicated N times. We choose
N to account for the maximum amount of layering in each
benchmark and do not evaluate DUP on networks that contain
unbounded loops, since it will give incorrect results.

Each field in the DUP header has versions f1 to fN and
f1 represents the outermost header (top of stack). The push
operation is implemented by copying each field fi to fi+1, its
next layer version, and the bottom header is lost in the process
if the stack exceeds size N. The pop operation is implemented
similarly by copying each field fi+1 to fi.

Single layer performance. APKeep was demonstrated to
outperform prior incremental verifiers while also being more

robust to multi-dimensional rules [46]. However, since AP-
Keep is not open source, we instead use our implementation
of KATRA, which uses a similar base algorithm to compare
results. We ran KATRA on the same datasets reported on in
the APKeep paper and originally released by Deltanet [20].
We found the performance for these single layer networks to
be similar to the times reported on by APKeep, and as such
do not report on the results here. Since the implementation
performance is comparable, going forward we report only the
times from different instantiations of KATRA.

Moreover, instantiating DUP in KATRA allows us to di-
rectly compare our algorithm to a naive solution without other
factors coming into play. For example, DUP also makes use
of our partial equivalence class reduction, our fast collision
detection data structure, and other optimizations.

7.2 Performance on multilayer networks
To measure the performance of KATRA for multilayer net-
works (i.e., with stack size greater than 1), we generated a
parameterized set of benchmark networks.

Benchmark description. The benchmarks have two param-
eters: the number of layers ` in the network, and the number
of nodes per layer n. The first layer represents the physical
network, while each layer i > 1 represents an overlay net-
work built on top of layer i− 1. Each link in the layer i in
the network is implemented by encapsulating a packet and
forwarding it according to the destination prefix for the tunnel
endpoint in layer i− 1. Routing in each layer is configured
to announce and propagate routes along shortest paths. For
each 〈`,n〉 pair, we generate the topologies as random con-
nected graphs and map nodes in each overlay to nodes in the
underlay for the purpose of establishing tunnel endpoints.

An example of such a network with ` = 2 and n = 5 is
shown in Figure 7. In the example, to forward traffic between
layer 2 nodes b and e, traffic is encapsulated and forwarded
from i to f via h in layer 1. For such networks, there are a
total of O(` ·n2) forwarding rules.

The first property we check is reachability between all
source and destination nodes in the outermost layer ` for all
advertised subnets. This strategy forces KATRA to reason
about the forwarding behavior at every single layer. Because
these reachability properties are violated while tunnels are
being established at different layers, for this benchmark we
disable property checking while connectivity is not expected.

Performance of KATRA compared to DUP. We show the
total verification time of KATRA and DUP in Figure 8 and
Figure 9. Figure 8 shows the total time spent recomputing
partial equivalence classes for both approaches. KATRA is
faster than DUP because DUP must represent significantly
larger headers in order to capture the full stack. This leads to
larger packet set representations in the BDD library and more
expensive set and transform operations.

Similarly, Figure 9 shows the total time spent checking

626    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



20 40 60 80 100
0
1
2
3
4

Nodes per layer (`=2)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

10

20

Nodes per layer (`=4)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

20

40

60

Nodes per layer (`=6)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

50
100
150

Nodes per layer (`=8)

Ti
m

e
(s

ec
) DUP

KATRA

Figure 8: Total time spent recomputing partial equivalence classes for an approach based on duplicate headers DUP vs. KATRA.

20 40 60 80 100
0

0.2

0.4

Nodes per layer (`=2)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0
2
4
6

Nodes per layer (`=4)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

10
20
30

Nodes per layer (`=6)

Ti
m

e
(s

ec
) DUP

KATRA

20 40 60 80 100
0

50

100

Nodes per layer (`=8)

Ti
m

e
(s

ec
) DUP

KATRA

Figure 9: Total time spent checking end-to-end reachability for an approach based on duplicate headers DUP vs. KATRA.

reachability for KATRA and DUP. There is a similar trend,
with KATRA’s decomposed stack set representation leading to
a large speedup over that of DUP. In both cases, the speedup
of KATRA grows with both the number of layers ` and the
number of nodes per layer n in the graph. For instance, at
`= 6 and n = 100, property checking is nearly 50x faster.

KATRA rule update time. The total verification time grows
quickly in part because the number of rules needed to imple-
ment the network design is proportional to the square of the
size of the network. However, looking at the time for each
individual rule update in Figure 10, essentially all updates
execute in under 1ms. The graphs show the CDF for rule
insertion time in milliseconds. In particular, the insertion time
is relatively independent of ` yet increases slightly with n.

7.3 Performance of loop checking

To evaluate the performance of Algorithm 2, we used example
networks with ` = 2 and replaced the reachability checks
for each destination subnet with a single loop check for all
packets. Unlike with reachability, this property gets rechecked
after every single rule insertion. Since each link in layer 2
crosses many of the same previous nodes in layer 1, this forces
Algorithm 2 to check for potential loops frequently.

A CDF of the rule insertion and loop checking time for
each update are shown in Figure 11. We vary n from 20 to 80
in increments of 20 and compare the results. Figure 11a shows
the checking time when rules are inserted in an arbitrary order.
The time grows with the size of the network and can become
high at the tail (e.g., around 40ms).

The reason why is that if a rule r with transformation τpop
is inserted early, then every other rule insertion will affect
the partial equivalence class for r. In other words, after a
decapsulation a packet may now be in any partial equivalence

10−2 10−1 100 101
0

0.2
0.4
0.6
0.8

1

Insertion Time (ms)

C
D

F

n = 20
n = 40

(a) Layers `=2

10−210−1 100 101
0

0.2
0.4
0.6
0.8

1

Insertion Time (ms)

C
D

F

n = 20
n = 40

(b) Layers `=4

Figure 10: CDF of rule insertion time for (a) `=2 and (b) `=4.
Both show results for nodes per layer n = 20 and n = 40.

class, so when any other partial equivalence class changes,
the partial equivalence class for r must also be rechecked. At
the extreme, this means that every rule insertion can require
rechecking the entire network from scratch. This is inherent
in the problem and is not unique to KATRA (e.g., APKeep
suffers a similar blowup for these networks).

However, by slightly reordering rule updates, we can im-
prove the performance significantly. In Figure 11b, we show
the same results but where the rule insertion order is done in
a way to delay the insertion of decapsulation rules. From the
figure, we can see that in the latter case, the checking time
remains well below 1ms for nearly all rules.

Since this benchmark requires checking the loop property
after all rule updates, the performance improvement of KA-
TRA grows substantially over that of DUP. Figure 12 shows
the total time to verify the loop-free property for all rules up-
dates. It shows the performance for `= 2 layers where we cap
the total verification time at 4 minutes. DUP times out after
n = 100 with 20K rules while KATRA can verify networks up
to n = 300 with 180K rules. The relative speedup of KATRA
over DUP for n = 20 to n = 100 is shown in Figure 12b.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    627



10−1 100 101 102
0

0.2
0.4
0.6
0.8

1

Checking Time (ms)

C
D

F

(a) Random order

10−2 100 102
0

0.2
0.4
0.6
0.8

1

Checking Time (ms)

C
D

F n = 20
n = 40
n = 60
n = 80

(b) Delayed decap

Figure 11: CDF of rule insertion time for `=2 and n = 20 to
n = 80 in increments of 20. Total checking time for loops is
low when decapsulation rule insertion is delayed.

0 100 200 300
0

100

200

Nodes per layer (`= 2)

Ti
m

e
(s

ec
)

(a) Total time

20 40 60 80 100

10

20

30

Nodes per layer (`= 2)

Sp
ee

du
p

(b) Relative speedup

Figure 12: (a) Total verification time for DUP (blue) vs. KA-
TRA (red) for `= 2 when checking for forwarding loops on
every change. (b) Speedup ranges from 5x to 32x.

8 Related Work

KATRA is related to several threads of prior work:
Data plane verification. There is a long line of work on

data plane verification, starting from the seminal work of Xie
et. al. [27, 41, 42], and incremental verification starting with
Veriflow [20,26,29,46]. Most work on data plane verification
has assumed stateless and transformation-free forwarding,
with the exception of AP [42] and APKeep [46], which han-
dle transformations (see §4). However, none of these works
consider layered networks where encapsulation and decapsu-
lation are pervasive. AP and APKeep can model finite header
stacks (e.g., DUP from §7) but this approach can be unsound
and can have poor performance, particularly when encapsu-
lation is common. KATRA builds on prior work to enable
incremental verification with transformations and layering.

Layered network verification. There has been little work
on verifying multilayer networks. One related work in this
area is Tiramisu [2], which can verify some combinations of
layer 2 and 3 control plane routing protocols (e.g., BGP, iBGP,
OSPF). However, Tiramisu is only superficially related to
KATRA: (i) Tiramisu verifies control plane routing while KA-
TRA verifies data plane forwarding, (ii) Tiramisu focuses on
specific layering mechanisms (e.g., between iBGP and eBGP)
while KATRA focuses on arbitrarily layered data planes, and
(iii) KATRA is interested in real-time (millisecond) verifica-

tion time for incremental changes.
Recent works on verifying MPLS label switching with

fast failover [22–24] were the first to leverage the insight
that label-based forwarding can be viewed as pushdown au-
tomata. The works use polynomial time algorithms to answer
reachability questions for all possible failures using overap-
proximation. While they focus on reasoning about failures,
we similarly leverage this insight that ideas from pushdown
automata are useful for reasoning about stacks of headers. We
generalize this reasoning from concrete label-based forward-
ing to symbolic forwarding (e.g., prefix-based forwarding)
and also focus on realtime verification for changes.

There are significant differences in the actual algorithms.
These prior works use saturation-based procedures to iter-
atively compute automata representations of (backward or
forward) reachable configurations of the pushdown system.
In contrast, our algorithm is an on-the-fly depth-first search
over symbolic configurations, which include (partial) equiva-
lence classes over the header space.

One work [24] considers abstractions based on network
labels to reduce PDS size and proposes a CEGAR-style re-
finement procedure, which improves performance in many
practical examples. Our symbolic configurations are also ab-
stractions of the network state space, where the control state
is a partial equivalence class in the header space located at a
particular node in the network, and the stack is a word over
these classes. These abstractions are refined lazily on-the-fly
in our novel method for stack repair, such that any trace in
our algorithm follows the specified network semantics.

Model checking of pushdown systems. More broadly, our
work builds on prior work in model checking of pushdown
systems [6, 9, 36], which can naturally represent sequential
programs with recursive procedures. Similar to symbolic
procedures for pushdown systems [12, 36], we also utilize
BDDs [11] for efficient representation of the state space and
use a notion similar to repeating heads [36] for detecting
loops. However, rather than computing sets of reachable con-
figurations, our procedure performs on-the-fly verification to
soundly check reachability of located packets.

9 Conclusion

In this paper we have presented KATRA, the first real-time
verifier for layered networks. KATRA extends incremental
data-plane verification to the setting with unbounded header
stacks. To do so, we introduced a new network model for
layered networks and presented an efficient algorithm for
such networks. The algorithm leverages a new idea of partial
equivalence classes and keeps a decomposed symbolic stack
representation that it lazily “repairs” as needed. Comparing
KATRA against a solution based on header duplication, we
showed that KATRA is 5x-32x faster for just 2 layers, and that
its benefits grow with network size and layering.

628    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References

[1] 3GPP. General Packet Radio Service (GPRS); GPRS
Tunnelling Protocol (GTP) across the Gn and Gp inter-
face, January 1999.

[2] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Tiramisu: Fast multilayer network
verification. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
201–219, Santa Clara, CA, February 2020. USENIX
Association.

[3] Amazon. Amazon ec2 secure and resizable compute
capacity to support virtually any workload. https://
aws.amazon.com/ec2/, 2021.

[4] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-
Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and
David Walker. Netkat: Semantic foundations for net-
works. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, pages 113–126, New York, NY, USA,
2014. ACM.

[5] John Backes, Sam Bayless, Byron Cook, Catherine
Dodge, Andrew Gacek, Alan J. Hu, Temesghen Kah-
sai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, Sean
McLaughlin, Jason Reed, Neha Rungta, John Sizemore,
Mark Stalzer, Preethi Srinivasan, Pavle Subotić, Carsten
Varming, and Blake Whaley. Reachability analysis for
aws-based networks. In Isil Dillig and Serdar Tasiran,
editors, Computer Aided Verification, pages 231–241,
Cham, 2019. Springer International Publishing.

[6] Thomas Ball and Sriram K. Rajamani. Bebop: a path-
sensitive interprocedural dataflow engine. In Proceed-
ings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis For Software Tools and Engineering
(PASTE), pages 97–103. ACM, 2001.

[7] Nikolaj Bjørner, Garvit Juniwal, Ratul Mahajan, San-
jit A. Seshia, and George Varghese. ddnf: An efficient
data structure for header spaces. In Haifa Verification
Conference, 2016.

[8] J. Border, M. Kojo, J. Griner, G. Montenegro, and
Z. Shelby. Performance Enhancing Proxies Intended to
Mitigate Link-Related Degradations. Internet Request
for Comments, June 2001.

[9] Ahmed Bouajjani, Javier Esparza, and Oded Maler.
Reachability analysis of pushdown automata: Applica-
tion to model-checking. In CONCUR ’97: Concurrency
Theory, Proceedings, volume 1243 of Lecture Notes in
Computer Science, pages 135–150. Springer, 1997.

[10] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant.
Efficient implementation of a bdd package. In Proceed-
ings of the 27th ACM/IEEE Design Automation Con-
ference, DAC ’90, pages 40–45, New York, NY, USA,
1990. ACM.

[11] Randal E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Comput-
ers, 35(8):677–691, 1986.

[12] Javier Esparza and Stefan Schwoon. A BDD-based
model checker for recursive programs. In Computer
Aided Verification, International Conference, CAV, Pro-
ceedings, volume 2102 of Lecture Notes in Computer
Science, pages 324–336. Springer, 2001.

[13] FlexiWAN. The world’s first open source sd-wan &
sase. https://flexiwan.com/, 2021.

[14] Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan
Schmid, and Gilles Tredan. Local fast failover routing
with low stretch. SIGCOMM Comput. Commun. Rev.,
48(1):35–41, apr 2018.

[15] B. Gleeson, A. Lin, J. Heinanen, Telia Finland, G. Ar-
mitage, and A. Malis. A Framework for IP Based Vir-
tual Private Networks. Internet Request for Comments,
February 2000.

[16] Google. Google cloud: Cloud computing services.
https://cloud.google.com/, 2021.

[17] Google. Network intelligence center: Connectivity tests
overview. https://cloud.google.com/network-
intelligence-center/docs/connectivity-
tests/concepts/overview, 2021.

[18] S. Hanks, Ltd. NetSmiths, T. Li, D. Farinacci, and
P. Traina. Generic Routing Encapsulation (GRE). Inter-
net Request for Comments, October 1994.

[19] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. SIGCOMM Comput. Commun. Rev., 43(4):15–26,
August 2013.

[20] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-
net: Real-time network verification using atoms. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 735–749, Boston,
MA, March 2017. USENIX Association.

[21] Karthick Jayaraman, Nikolaj Bjorner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette,
Shane Foster, Andrew Helwer, Mark Kasten, Ivan
Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi,
Hanukumar Pinnamraju, Adrian Power, Neha Milind
Raje, and Parag Sharma. Validating datacenters at scale.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    629

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://flexiwan.com/
https://cloud.google.com/
https://cloud.google.com/network-intelligence-center/docs/connectivity-tests/concepts/overview
https://cloud.google.com/network-intelligence-center/docs/connectivity-tests/concepts/overview
https://cloud.google.com/network-intelligence-center/docs/connectivity-tests/concepts/overview


In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, pages 200–213,
New York, NY, USA, 2019. ACM.

[22] Jesper Stenbjerg Jensen, Troels Beck Krøgh, Jonas Sand
Madsen, Stefan Schmid, Jiří Srba, and Marc Tom Thorg-
ersen. P-rex: Fast verification of mpls networks with
multiple link failures. In Proceedings of the 14th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’18, page 217–227,
New York, NY, USA, 2018. Association for Computing
Machinery.

[23] Peter Gjøl Jensen, Dan Kristiansen, Stefan Schmid,
Morten Konggaard Schou, Bernhard Clemens Schrenk,
and Jiří Srba. Aalwines: A fast and quantitative what-if
analysis tool for mpls networks. In Proceedings of the
16th International Conference on Emerging Network-
ing EXperiments and Technologies, CoNEXT ’20, page
474–481, New York, NY, USA, 2020. Association for
Computing Machinery.

[24] Peter Gjøl Jensen, Stefan Schmid, Morten Konggaard
Schou, Jirí Srba, Juan Vanerio, and Ingo van Duijn.
Faster pushdown reachability analysis with applications
in network verification. In Automated Technology for
Verification and Analysis (ATVA), Proceedings, volume
12971 of Lecture Notes in Computer Science, pages 170–
186, 2021.

[25] Andrzej Kamisiński. Evolution of ip fast-reroute strate-
gies. In 2018 10th International Workshop on Resilient
Networks Design and Modeling (RNDM), pages 1–6,
2018.

[26] Peyman Kazemian, Michael Chang, Hongyi Zeng,
George Varghese, Nick McKeown, and Scott Whyte.
Real time network policy checking using header space
analysis. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
99–111, Lombard, IL, April 2013. USENIX Associa-
tion.

[27] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12), pages 113–
126, San Jose, CA, April 2012. USENIX Association.

[28] S. Kent and K. Seo. Security Architecture for the Inter-
net Protocol. Internet Request for Comments, August
2005.

[29] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P. Brighten Godfrey. Veriflow: Verifying
network-wide invariants in real time. In Presented as

part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13), pages 15–
27, Lombard, IL, 2013. USENIX.

[30] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal,
L. Kreeger, T. Sridhar, M. Bursell, and C. Wright. Vir-
tual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Net-
works over Layer 3 Networks. Internet Request for
Comments, August 2014.

[31] Microsoft. Microsoft azure: Cloud computing services.
https://azure.microsoft.com/en-us/, 2021.

[32] J. Moy. Open Shortest Path First Protocol Version 2.
Internet Request for Comments, April 1998.

[33] A. Atlas P. Pan, G. Swallow. Fast Reroute Extensions
to RSVP-TE for LSP Tunnels. Internet Request for
Comments, May 2005.

[34] C. Perkins. IP Encapsulation within IP. Internet Request
for Comments, July 1996.

[35] E. Rosen, A. Viswanathan, and R. Callon. Multiproto-
col Label Switching Architecture. Internet Request for
Comments, January 2011.

[36] Stefan Schwoon. Model checking pushdown systems.
PhD thesis, Technical University Munich, 2002.

[37] Oliver Spatscheck. Layers of success. IEEE Internet
Computing, 17(1):3–6, 2013.

[38] 3GPP The Mobile Broadband Standard. 3gpp a global
initiative. https://www.3gpp.org/, 2021.

[39] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng
Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang,
Da Yu, Chen Tian, Haitao Zheng, and Ben Y. Zhao.
Safely and automatically updating in-network acl
configurations with intent language. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’19, page 214–226. Association for
Computing Machinery, 2019.

[40] Ingo Wald. On fast construction of sah-based bound-
ing volume hierarchies. In 2007 IEEE Symposium on
Interactive Ray Tracing, pages 33–40, 2007.

[41] G. G. Xie, Jibin Zhan, D. A. Maltz, Hui Zhang, A. Green-
berg, G. Hjalmtysson, and J. Rexford. On static reach-
ability analysis of ip networks. In Proceedings IEEE
24th Annual Joint Conference of the IEEE Computer
and Communications Societies., volume 3, pages 2170–
2183 vol. 3, March 2005.

630    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://azure.microsoft.com/en-us/
https://www.3gpp.org/


[42] Hongkun Yang and Simon S. Lam. Real-time verifi-
cation of network properties using atomic predicates.
IEEE/ACM Trans. Netw., 24(2):887–900, April 2016.

[43] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve
Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,
Taeeun Kim, Ashok Narayanan, Ankur Jain, Victor Lin,
Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka,
Manish Verma, Puneet Sood, Mukarram Tariq, Matt Tier-
ney, Dzevad Trumic, Vytautas Valancius, Calvin Ying,
Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’17, page
432–445, New York, NY, USA, 2017. Association for
Computing Machinery.

[44] Pamela Zave and Jennifer Rexford. The composi-

tional architecture of the internet. Commun. ACM,
62(3):78–87, February 2019.

[45] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar
Jeyakumar, Mickey Ju, Junda Liu, Nick McKeown, and
Amin Vahdat. Libra: Divide and conquer to verify for-
warding tables in huge networks. In 11th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 14), pages 87–99, Seattle, WA, April 2014.
USENIX Association.

[46] Peng Zhang, Xu Liu, Hongkun Yang, Ning Kang,
Zhengchang Gu, and Hao Li. Apkeep: Realtime verifica-
tion for real networks. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 241–255, Santa Clara, CA, February 2020.
USENIX Association.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    631



Appendix

Theorem 5.1 (Soundness). For any network N , partial equivalence class H j, node v, header h∈H j, located packet `= 〈v,ε ·h〉,
and step i≥ 0, if not N ⊗〈i, `〉 then after calling CheckProperty(N ,H j,{v},P) there will eventually be a call to Dfs(N ,P,_,u, i)
for some node u such that top(JN Ki`) ∈ u.

Proof. The proof is by induction on the step i. For the sake of simplicity, we assume that lines 5 and 27 of Algorithm 1, which
are optimizations using the visited set, are removed for the remainder of the proof.

Base case (i = 0) By assumption we have ` = 〈v,ε ·h〉. From unfolding the definition of the semantics JN K for the (i = 0)
step, we obtain the following equality:

top(JN K0`) = top(ε · `) = `= 〈v,ε ·h〉

Thus we must prove that there is a call to Dfs(N ,P,_,u,0) such that u.loc = v and ε · h ∈ u.stack and top(ε · h) ∈ u.ec. This
trivially follows from line 7 of Algorithm 1. Since S = {v} (line 3), we see that s = v (line 3) and therefore u.loc = v as expected,
and u.stack = ε ·H j (line 4), which implies that ε · h ∈ u.stack since ε · h ∈ ε ·H j ⇐⇒ h ∈ H j by definition and this is an
assumption. Finally, we have that top(ε ·h) = h ∈ u.ec or h ∈H j again by assumption.

Inductive case (i > 0) The proof proceeds by using the inductive hypothesis for step i−1 to prove that the statement holds
for step i. We list out our assumptions from the proof statement as well as the induction hypothesis below:

• not N ⊗〈i, `〉
• not N ⊗〈i−1, `〉
• top(JN Ki`) = 〈v1,σ1〉
• top(JN Ki−1`) = 〈v2,σ2〉
• there was a call to Dfs(N ,P,_,u2, i−1) for some u2
• u2.loc = v2
• σ2 ∈ u2.stack
• top(σ2) ∈ u2.ec

Given these assumptions, we must prove that each of the following statements holds as a result:

• there is a call to Dfs(N ,P,_,u1, i) for some u1
• u1.loc = v1
• σ1 ∈ u1.stack
• top(σ1) ∈ u1.ec

We walk through the lines of code in Algorithm 1 starting from the call to Dfs(N ,P,_,u2, i−1) that we know must have taken
place. By our assumption that top(σ2) ∈ u2.ec, and from the definition of a partial equivalence class (same local forwarding for
all packets in the equivalence class), we know the 〈edge,τ〉 pair returned in line 11 must be equivalent to those of the semantics:
τ = modify(Ω(v2,σ2)) and edge = edge(Ω(v2,σ2)) from the semantic definition in §3.3. Evaluating JN Ki` there are two cases:

Case 1: if τ(σ2) is undefined, then we compute: JN Ki` = JN Ki−1` and we observe that N ⊗〈i− 1, `〉. In this case, the
algorithm executes line 14 and terminates. Note that we do not call Dfs again, however, in this case the semantics were terminated
at step i−1 which contradicts the assumptions. Further, note that this is the minimal time step i at which N ⊗〈i, `〉 since we
assumed not N ⊗〈i−1, `〉.

Case 2: if τ(σ2) is defined, then we compute

〈v1,σ1〉= top(JN Ki`) = top(JN Ki−1` · 〈tgt(edge),τ(σ2)〉) = 〈tgt(edge),τ(σ2)〉

By the definition of τ lifted to sets, we know that because σ2 ∈ u.stack then it follows that τ(σ2) ∈ τ(u.stack) (line 12) and
therefore σ1 ∈ τ(u.stack). The algorithm proceeds on line 16 to iterate over all partial equivalence classes that can intersect
τ(u.stack). Because partial equivanence classes are disjoint and complete (see §4.2), there will be exactly one such H jk such that
top(σ1) ∈H jk . From this we can deduce line 17 will compute a new set of stacks σ′ that must contain σ1 – that is σ1 ∈ σ′ by
construction.

Line 19 of the algorithm updates σ′ as Repair(σ′). Because σ1 ∈σ′ we must show that that σ1 ∈Repair(σ′) as well. To compute
Repair(σ′) we first compute (τ−1

1 ◦ . . .◦τ−1
n )(σ′), which is equivalent to σinit = {σ′′ | (τn◦ . . .◦τ1)(σ

′′)∈σ′}. Since σ1 is the result

632    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



of applying (τn ◦ . . .◦ τ1) to the initial header ε ·h, it follows that ε ·h ∈ σinit. Because Repair(σ′) = σrepair = (τn ◦ . . .◦ τ1)(σinit)
and because ε ·h ∈ σinit, it follows that (τn ◦ . . .◦ τ1)(ε ·h) ∈ (τn ◦ . . .◦ τ1)(σinit) and therefore (τn ◦ . . .◦ τ1)(ε ·h) ∈ Repair(σ′).

Finally from lines 20 and 21 a new nexthop is added to the set of nexthops that contains the node u1 where u1.loc = tgt(edge)
and u1.ec = H jk and u1.stack = σ′. Line 23 iterates over the nexthops and calls Dfs on line 28 with this new node.

To complete the proof, we put together the pieces to show that the 4 conditions above hold.

• line 28 calls Dfs(N ,P,_,u1, i) for the u1 described previously
• we know that u1.loc = tgt(edge) = v1
• we know that σ1 ∈ u1.stack because σ1 ∈ σ′ and σ′ = u1.stack
• we know that top(σ1) ∈ u1.ec because top(σ1) ∈H jk and u1.ec = H jk

Corollary 5.1 (Property checking). If i is the smallest step such that N ⊗〈i, `〉 then Algorithm 1 checks P(u) for some DFS
node u such that top(JN Ki`) ∈ u.

Proof. The proof follows directly from Theorem 5.1. At the i− 1 step, we know that there must have been a call to
Dfs(N ,P,_,u, i− 1) for some u such that top(JN Ki−1`) ∈ u From the proof we can see that the algorithm will proceed to
line 14, where it will check P(u).

Theorem 5.2 (Loop conditions). Given a network N over H ∗, an input ` induces a loop if and only if there exists i,k ∈ N,
σ,σ′ ∈H ∗, and h ∈H such that:

(1) top(JN Ki`) = 〈u,σ ·h〉
(2) top(JN Kk`) = 〈u,σ ·σ′ ·h〉
(3) ∀ j, i < j < k⇒∃v,σ′′, top(JN K j`) = 〈v,σ ·σ′′〉

Proof. First, we require that no rule transformations τ ever both pop and push in the same transformation. For instance, the
transformation τpop ◦ τpush is disallowed, whereas τpush ◦ τpush is allowed. Note that this does not change the expressive power of
KATRA since one can always separate such a transformation into multiple transformations across nodes to get the same effect.

Sufficient (⇐) Assume that the conditions (1), (2), and (3) above hold. We must prove that ` induces a loop. From (1) and (2),
we know that there is a trace for JNKk` to step k of the form:

〈u1,σ1〉︸ ︷︷ ︸
step 1

→ 〈u2,σ2〉︸ ︷︷ ︸
step 2

→ . . .→ 〈ui−1,σi−1〉 → 〈u,σ ·h〉︸ ︷︷ ︸
step i

→ 〈ui+1,σi+1〉 → 〈ui+2,σi+2〉 → . . .︸ ︷︷ ︸
steps i< j<k

→ 〈u,σ ·σ′ ·h〉︸ ︷︷ ︸
step k

We observe that from (1), (2), (3), the stack retains the prefix σ for all steps between i and k. From the assumption that
transformations don’t both push and pop the stack, and our model requirement that transformations can only match the top of the
stack, this means that the forwarding for the stack at these steps does not depend on σ, and thus forall σ the subtrace starting at
step i:

〈u,σ ·h〉︸ ︷︷ ︸
step i

→ 〈ui+1,σi+1〉 → 〈ui+2,σi+2〉 → . . .︸ ︷︷ ︸
steps i< j<k

→ 〈u,σ ·σ′ ·h〉︸ ︷︷ ︸
step k

would be the same for any such σ. For this reason, expanding out the trace from k steps to 2k− i steps, we observe the following
continuation of the original trace:

〈u,σ ·h〉︸ ︷︷ ︸
step i

→ 〈ui+1,σi+1〉 → 〈ui+2,σi+2〉 → . . .︸ ︷︷ ︸
steps i< j<k

→ 〈u,σ ·σ′ ·h〉︸ ︷︷ ︸
step k

→ . . .→ 〈u,σ ·σ′ ·σ′′ ·h〉︸ ︷︷ ︸
step 2k−i

In other words, because the forwarding between steps i and k did not depend on σ, it similarly will not depend on (σ ·σ′) for the
same top of stack h between steps k and k+(k− i) = 2k− i for the same loop interval. Moreover, we know that σ′′ = σ′. This
same reasoning applies inductively with the new prefix (σ ·σ′ ·σ′). Thus we have an infinite loop.

Necessary (⇒) Let us assume there is an input ` that induces a loop in the network N . We must prove that there exist i,k ∈ N
and σ,σ′ ∈H ∗ and h ∈H such that conditions (1), (2), and (3) hold. By way of contradiction, we assume ` induces a loop in N
but that no such i,k,σ,σ′,h exist to satisfy (1-3). Because the input ` induces a loop, we know that there is an infinite trace:

〈u1,σ1〉 → 〈u2,σ2〉︸ ︷︷ ︸
t1

→ 〈u3,σ3〉 → 〈u4,σ4〉 → 〈u5,σ5〉︸ ︷︷ ︸
t2

→ 〈u6,σ6〉 → . . .

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    633



Because the set of headers H comprising the hops in H ∗ is itself finite and because there is a permanent loop, there must be an
infinite number of time steps t1, t2, t3, . . . where the stack never goes below the size at time ti in the future – i.e., ∀ j, j ≥ ti⇒
|σti | ≤ |σ j|. If there were no such infinite sequence, then there could not be a permanent loop since at some point t∗, the stack
would have to continue to shrink forever (∀ j1, j1 ≥ t∗⇒∃ j2, j2 > j1∧|σ j1 |< |σ j2 |) and would eventually become empty since
stacks are finite. This would contradict the fact that there is a permanent loop since the packet would eventually be dropped when
the stack becomes ε.

From the sequence of t1, t2, t3, . . . and the finiteness of the topology, eventually there must eventually be a subset of ti which
we will call tm1 , tm2 , tm3 . . . that repeat at the same node with the same top of stack:

〈u1,σ1〉 → 〈u2,σ2〉︸ ︷︷ ︸
t1

→ 〈u3,σ3〉 → 〈u4,σ4〉 → 〈u5,σ5〉︸ ︷︷ ︸
t2

→ 〈u6,σ6〉 → . . .→ 〈ui,σi〉︸ ︷︷ ︸
tm1

→ . . .→ 〈uk,σk︸ ︷︷ ︸
tm2

〉 → . . .

where utm1
= utm2

, and top(σtm1
) = top(σtm2

) and so on for all tmi . Because we know that at time tm1 the stack σtm1
never again

goes below this size, if σtm1
= σ ·h, then every stack in the trace from this time on must start with σ. The earliest two times

tm1 and tm2 capture exactly i,k in the theorem, and σtm1
captures σ ·h (condition 1). The trace retains the prefix σ after time tm1

(conditions 2, 3). And the nodes and top of stacks are the same at each time tmi being h (condition 2).

634    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association


	Introduction
	Motivation and Background
	Layered Network Model
	Notation and Preliminaries
	Formal network model
	Network semantics
	Lifting networks to layered networks

	Realtime Verification of Layered Networks
	Existing incremental verifiers
	Partial equivalence classes
	Verification algorithm overview
	Layered verification algorithm
	Repairing the stack
	Property expressiveness

	Algorithm Correctness
	Infinite Loops and Termination

	Implementation
	Evaluation
	Different implementations
	Performance on multilayer networks
	Performance of loop checking

	Related Work
	Conclusion

