Segcache: a memory-efficient and scalable
in-memory key-value cache for small objects

.

Juncheng Yang Yao Yue Rashmi Vinayak

Carnegie Mellon University, Twitter

Carnegie

Mellon

University

In-memory key-value caches

Reduce latency
Increase throughput

and scalability
Reduce backend load

backend

(_j | m RocksDB
Notification %%% @

services cache

MySQL

() | m Tensorflow

Rate limiter Memcached

Today’s in-memory caching systems

Have significant room for improvement

» Memory efficiency
- TTL and expiration

- Huge per-object metadata

- Memory fragmentation

* Throughput and scalability

- Tradeoff between efficiency and throughput or scalability

TTL and expiration
Time-to-live (TTL)

 TTL is set during object write

* Expired objects cannot be served

* Short TTLs are widely used in production

TTL usages

* Reduce stale data (cache writes are best-effort)

* Periodic refresh (e.g. ML predictions)

o | o 0 40 80 120 160
* |Implicit deletions (e.g. limiters, GDPR) Time (hour)

Impact of TTL Smaller working set if expired

objects are not considered
* Reduce effective working set size

* Removing expired objects is critical

T TL and expiration: takeaway

Timely removal of expired objects is critical for memory efficiency
* expiration: remove objects that cannot be used in the future

e eviction: remove objects that could potentially be used in the future

Existing solutions for T TL expiration

Efficient: low overhead Color: expiration time
Sufficient: can remove all or most expired objects [expireat T [T+20

[] 7+86400

Category Technique Efficient Sufficient

Eva%88 Delete upon re-access
expiration Check LRU tail v

Scanning x
Prqact!ve Sampling x
expiration
Transient object pool v/ How can | find

expired objects

6

Motivation summary

Today’s in-memory caching systems:

» Memory efficiency

- Cannot efficiently and timely remove expired objects
- Have huge per-object metadata (56 bytes in Memcached), but objects are small (10s-100s bytes)

- Suffer from memory fragmentation

 Throughput and scalability

- Tradeoff between efficiency and throughput or scalability

MICA MemC3 Memshare LHD Hyperbolic pRedis

Memory efficiency

Throughput/scalability

segment | (S1) EEEENEE _EEEEEEEE

segment chain
segment 2 (S2)

Sl o S51 g S EEEEEEE
EEEEEEE
EEEEEEE_ _SEEEEEEE
segment M L LLLL
S2
segment: a small fixed-size log bucket info (shared)
storing objects of similar TTLs B object info
TTL buckets object store hash table

Segcache: a memory-efficient and scalable

in-memory key-value cache for small objects

Segcache overview

Segcache: segment-structured cache

High memory efficiency
* Efficient and sufficient TTL expiration
* Tiny object metadata (5-byte)
* Almost no memory fragmentation

* Merge-based eviction for low miss ratio

High performance
* High throughput

* Close-to-linear scalability

Expect to enter Iwitter production this year

9

Segcache design

segmenc | (S1) EEEEEEEE

segment chain
segment 2 (S2)

write
S| 31— 154

JTITTTTT
segment M

segment: a small fixed-size log bucket info (shared)
storing objects of similar TTLs

B object info

TTL buckets object store hash table

Design principles

Design principle |: Maximize metadata approximation and sharing

Group objects into segments to approximate and share metadata

Segment: a small fixed-size log storing objects of similar TTLs

object segment

metadata«— | 4 data metadata 4—...]..-

Bucket info (shared)

Memcached object store Segcache object store

hash table

12

Design principle 2: Be proactive, don't be lazy

Efficiently and proactively remove expired objects

Time-sorted TTL-
indexed segment chain

objects in a segment share creation time and TTL

S| S3 54 _ . .
=> expire at the same time

segments in a chain have same TTL with sorted creation time
=> examine the first segment only

background thread scans TTL buckets (small array of metadata)
=> efficient and proactive expiration

TTL buckets

13

Design principle 3: Perform macro management

Manage segments (groups of objects), not objects
Perform less bookkeeping in batched sequential fashion with high throughput

Achieve a close-to-linear scalability

Segment chain

g g ¥ g

Expiration and eviction happen on the segment level

"~ |" 1000s - 10,0005 objects |

Only segment chain changes needs locking

14

In the paper (not covered in the talk)

* Segment homogeneity
* Merge-based eviction
- Approximate and smoothed frequency counter

Low overhead
Burst-resistant
Scan-resistant
Eviction-friendly

®©@ ® @® @

15

Evaluation

Implemented on Pelikan

* TJwitter’s open-source caching framework

Setup

* Five systems (research + production)
- Production
- Memcached and Memcached + scanning
- LHD + sampling
- Hyperbolic + sampling

- Segcache

* Five production traces
* Twitter production fleet

16

Evaluation: memory efficiency

. Metric: relative cache size to achieve
Reduce memOI")’ fOOth"Int by production miss ratio

* 40-90% compared to production
- 60% on Twitter’s largest cache cluster
e 22-60% compared to state-of-the-art

C O, 12

3 E N B Production

) i

1 o 10 M Memcached

0O L 0.8 -

k2 o 06 BEEE Memcached + scanning

C O 0.6-

g Vo4 = LHD + sampling
> Y.

O 2 0.2 - Hyperbolic + sampling
E) 00. X X Segcache

content user | user2 negative multi-tenant

Workloads

17

Evaluation: throughput and scalability

2
3
'
)
O
Wi
B
)
o e
.00
e

D

N

-

B Production
M Memcached

BEEE Memcached + scanning
= LHD + sampling

Hyperbolic + sampling

Throughput (MQPS)

-

Throughput (MQPS)
N B O
- -

-

user2 negative

Workloads

content user |

.

| == Memcached e

| =M= Segcache

w
-

w

== Memcached+scanning gg* "
al
™ o
. it

o
. W’

a o

W

0

6 12 18 24

Number of threads

- X X Segcache
multi-tenant

Single-thread
* similar to production
* up to 40% higher than Memcached
* significantly higher than the rest

Multi-thread
 8x improvement with 24 threads

Summary

Segcache: segment-structured cache, groups objects into segments for

* high memory efficiency and high performance

* Efficient proactive TTL expiration

 Object metadata reduction using metadata approximation and sharing
* Almost no memory fragmentation

 Small miss ratio/memory footprint with merge-based eviction

* High throughput and high scalability using macro management

Traces: https://www.github.com/twitter/cache-trace
Code: https://www.github.com/thesys-lab/segcache
Production code: https://www.github.com/twitter/pelikan

19

https://www.github.com/twitter/cache-trace
https://www.github.com/thesys-lab/segcache
https://www.github.com/twitter/pelikan

Thank youl

Acknowledgement: Jack Kosaian from CMU,
Rebecca Isaacs, Xi Wang, Dan Luu, Brian Martin from Twitter,

|OP, cache, HWEng team from Twitter,
Parallel Data Lab at CMU, Siobiosys lab at Emory University.

