
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Segcache: a memory-efficient and scalable
in-memory key-value cache for small objects

Juncheng Yang, Carnegie Mellon University; Yao Yue, Twitter;
Rashmi Vinayak, Carnegie Mellon University

https://www.usenix.org/conference/nsdi21/presentation/yang-juncheng

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Juncheng Yang
Carnegie Mellon University

Yao Yue
Twitter

K. V. Rashmi
Carnegie Mellon University

Abstract
Modern web applications heavily rely on in-memory key-
value caches to deliver low-latency, high-throughput services.
In-memory caches store small objects of size in the range of
10s to 1000s of bytes, and use TTLs widely for data fresh-
ness and implicit delete. Current solutions have relatively
large per-object metadata and cannot remove expired objects
promptly without incurring a high overhead. We present Seg-
cache, which uses a segment-structured design that stores data
in fixed-size segments with three key features: (1) it groups
objects with similar creation and expiration time into the seg-
ments for efficient expiration and eviction, (2) it approximates
some and lifts most per-object metadata into the shared seg-
ment header and shared information slot in the hash table for
object metadata reduction, and (3) it performs segment-level
bulk expiration and eviction with tiny critical sections for high
scalability. Evaluation using production traces shows that Seg-
cache uses 22-60% less memory than state-of-the-art designs
for a variety of workloads. Segcache simultaneously delivers
high throughput, up to 40% better than Memcached on a sin-
gle thread. It exhibits close-to-linear scalability, providing a
close to 8× speedup over Memcached with 24 threads.

1 Introduction
In-memory caches such as Memcached [54] and Redis [13]

are widely used in modern web services such as Twit-
ter [18, 46], Facebook [21, 55], Reddit [3] to reduce service
latency and improve system scalability. The economy of cache
lies within supporting data retrieval more cheaply, and usually
more quickly, compared to the alternatives. The usefulness of
in-memory caches is judged by their efficiency, throughput,
and scalability, given certain hardware resource constraints.
Memory efficiency determines the amount of memory a cache
needs to achieve a certain miss ratio. Throughput is typically
measured in queries per second (QPS) per CPU core. Scala-
bility reflects how well a cache can use multiple cores on a
host. There have been several efforts to reduce miss ratio via
better eviction algorithms [22, 26, 36, 37]. Many other works
focus on improving throughput [41, 51]. However, several
other aspects of in-memory caching also play import roles in
memory efficiency.

Web services tend to cache small key-value objects in mem-
ory, typically in the range of 10s to 1000s of bytes [21, 46].

Figure 1: How Segcache compares to state-of-the-art caches

However, most popular production caching systems store a
relatively large amount of metadata. For example, both Mem-
cached and Redis impose over 50 bytes of memory overhead
per object. Furthermore, research aimed at reducing miss ra-
tio typically ends up expanding object metadata even fur-
ther [22, 26, 28, 36, 60], as shown in Table 1.

Time-to-live (TTL) is widely used in caching to meet data
freshness and feature requirements, or comply with regula-
tions such as GDPR [42, 65–67]. Twitter mandates the use
of TTLs in cache, with values ranging from a few minutes
to a month. Existing caching systems either remove expired
objects lazily or incur high overhead [70] when they attempt
to expire more proactively. We summarize the techniques for
removing expired objects in Table. 2 and discuss them in §2.

Most production in-memory caches use an external mem-
ory allocator such as malloc or a slab-based memory allo-
cator. The former often subjects the cache to external frag-
mentation, and the latter to internal fragmentation [63]. In
addition, slab-based allocators often suffer from the so-called
slab calcification problem [18, 44], or introduce extra cache
misses due to slab migration [29, 34].

One way to reduce memory fragmentation is to adopt a
log-structured design. This approach has been widely used
for file systems [62] and durable key-value stores [14, 31,
33, 57, 58, 63] for their simplicity, high write throughput [51,
62], low fragmentation, and excellent space efficiency [63].
There have been several in-memory caches built with log-
structured design. MICA [51], a throughput-oriented system
based on one giant log per thread, limits its eviction algorithm
to FIFO or CLOCK, both of which are sub-optimal for many

Table 1: Comparison of research systems (all comparisons are with corresponding baselines)

System
Memory
Allocator

Memory
fragmentation

Improve
TTL expiration

Object
metadata size

Throughput
Memory efficiency
improvement approach

MICA Log No No Decrease Higher Worse
Memshare Log No No Increase Lower Memory partitioning and sharing
pRedis Malloc External No Increase Lower Better eviction
Hyperbolic Malloc External No Increase Lower Better eviction
LHD Slab Internal No Increase Lower Better eviction
MemC3 Slab Internal No Decrease Higher Small metadata
Segcache Segment No Yes Minimal Higher Holistic redesign

workloads. Memshare [37], a multi-tenant caching system,
divides DRAM into small logs (called segments) and uses
segments to enforce memory partitioning between tenants.
However, its computation of miss ratio curve for each tenant
and object migration are relatively expensive, which result in
reduced throughput compared to Memcached.

As modern servers become denser with CPU cores over
time, thread-scalability becomes essential in modern cache
design. Several techniques have been proposed to improve
scalability in key-value caches and key-value stores, such
as static DRAM and data partitioning [50, 51], opportunistic
concurrency control with lock-free data structures [32, 41,
52], and epoch-based design [31]. However, each technique
comes with its own problems. Static partitioning uses memory
inefficiently. Opportunistic concurrency control works better
on read-heavy workloads, whereas some caching workloads
are write-heavy [46]. An epoch-based system requires a log-
structured design with a sub-optimal eviction algorithm.

Achieving high memory efficiency, high throughput, and
high scalability simultaneously in caching systems is chal-
lenging. Previous works tend to trade one for the other (Fig. 1
and Table 1). In this paper, we present Segcache, a cache de-
sign that achieves all the three desired properties. Segcache is
a TTL-indexed, dynamically-partitioned, segment-structured1

cache where objects of similar TTLs are stored in a small
fixed-size log called a segment. Segments are first grouped
by TTL and then naturally sorted by creation time. This de-
sign makes timely removal of expired objects both simple and
cheap. As a cache, Segcache performs eviction by merging
a few segments into one, retaining only the most important
objects, and freeing the rest. Managing the object life cycles
at the segment level allows most metadata to be shared within
a segment. It also allows metadata bookkeeping to be per-
formed with a limited number of tiny critical sections. These
decisions improve memory efficiency and scalability without
sacrificing throughput or features.

Below are some highlights of our contributions:
• To the best of our knowledge, Segcache is the first cache

design that can efficiently remove all objects immedi-
ately after expiration. This is achieved through TTL-
indexed, time-sorted segment chains.

1Since segments are small-sized logs, Segcache can be viewed as a log-
structured cache with special properties; see §6 for in-depth comparisons.

Table 2: Techniques for removing expired objects

Technique Remove all expired? Is removal cheap?

Deletion on access No Yes
Checking LRU tail No Yes
Transient item pool No Yes
Full cache scan Yes No
Random sampling No No

• We propose and demonstrate "object sharing economy",
a concept that reduces per-object metadata to just 5 bytes
per object, a 91% reduction compared to Memcached,
without compromising on features.

• Our single pass, merge-based eviction algorithm uses an
approximate and smoothed frequency counter to achieve
a balance between retaining high value objects and ef-
fectively reclaiming memory.

• We demonstrate that a "macro management strategy",
replacing per-request bookkeeping with batched opera-
tions on segments, improves throughput. It also delivers
close-to-linear CPU scalability.

• Segcache is designed for production on top of Pelikan,
and is open sourced (see §4).

• We evaluated Segcache using a wide variety of produc-
tion traces, and compared results with multiple state-of-
the-art designs. Segcache reduces memory footprint by
42-88% compared to Twitter’s production system, and
22-58% compared to the best of state-of-the-art designs.

2 Background and Motivation
As a critical component of the real-time serving infrastruc-

ture, caches prefer to store data, especially small objects, in
DRAM. DRAM is expensive and energy-hungry. However,
existing systems do not use the costly DRAM space efficiently.
This inefficiency mainly comes from three places. First, exist-
ing solutions are not able to quickly remove expired objects.
Second, metadata overhead is considerable compared to typi-
cal object sizes. Third, internal or external memory fragmen-
tation is common, leading to wasted space. While improve-
ments of admission [24, 25, 39, 40, 43], prefetching [73, 74],
and eviction algorithms [22, 23, 26, 30, 36, 37, 49, 68] have
been the main focus of existing works on improving memory
efficiency [22, 25, 26, 39], little attention has been paid to
addressing expiration and metadata reduction [41,63]. On the

contrary, many systems add more per-object metadata to make
smarter decisions about what objects to keep [22, 36, 39, 73].

We summarize recent advancements of in-memory caching
systems in Table 1 and discuss them below.

2.1 TTL and expiration in caching
TTLs are extremely common in caching. As a result, object

expiration is an integral part of all existing solutions.

2.1.1 The prevalence of TTL
TTLs are used by users of Memcached and Redis [4, 8, 10,

12], Facebook [17], Reddit [3], Netflix [6]. In Twitter’s pro-
duction, all in-memory cache workloads use TTLs between
one minute and one month. A TTL is specified at write time
to determine how long an object should remain accessible in
the caching system. An expired object cannot be returned to
the client, and a cache miss is served instead.

Cache TTLs serve three purposes. First, clients use TTLs
to limit data inconsistency [4, 46]. Writing to the cache is
usually best-effort, so it is not uncommon for data in cache
and database to fall out of sync. Second, some services use
TTLs to prompt periodic re-computation. For example, a rec-
ommendation system may only want to reuse cached results
within a time window, and recompute periodically to incor-
porate new activities and content. Third, TTLs are used for
implicit deletion. A typical scenario is rate-limiting. Rate lim-
iters are counters associated with some identities. Services
often need to cap requests from a particular identify within a
predefined time window to prevent denial-of-service attacks.
Services store rate limiters in distributed caches with TTLs,
so that the counts can be shared among stateless services and
reset periodically. Another increasingly common scenario is
using TTLs to ensure data in caches comply with privacy
laws [42, 67].

2.1.2 Lazy expiration
Lazy expiration means expiration only happens when an

object is reaccessed. Deletion on access is the most straight-
forward approach adopted by many production caching sys-
tems. If a system uses lazy expiration only, an object that’s no
longer accessed can remain in memory long past expiration.

2.1.3 Proactive expiration
Proactive expiration is used to reclaim memory occupied

by expired objects more quickly. Although there has been no
academic research on this topic to the best of our knowledge,
we identified four approaches introduced into production sys-
tems over the years, as summarized in Table. 2.

Checking LRU tail is used by Memcached. Before eviction
is considered, the system checks a fixed number of objects at
the tail of the LRU queue and removes expired objects. Oper-
ations on object LRU queues reduce thread scalability due to
the extensive use of locking for concurrent accesses [22, 26].
Additionally, this approach is still opportunistic and there-
fore doesn’t guarantee the timely removal of expired objects.
Many production caches track billions of objects over a few

LRU queues, so the time for an object to percolate through
the LRU queue is very long.

Transient object pool was introduced by Facebook [55]. It
makes a special case for the timely removal of objects with
small TTLs. The main idea is to store such objects separately,
and only allow them to be removed via expiration. However,
choosing the TTL threshold is non-trivial and can have side
effects [46]. Although Memcached supports it, it is disabled
by default.

Full cache scan is a popular approach adopted by Mem-
cached and CacheLib [17]. As the name indicates, this so-
lution periodically scans all the cached objects to remove
expired ones. Full cache scan is very effective if the scan
is frequent, but it wastes resources on objects that are not
expired, which can be the vast majority.

Random sampling is adopted by Redis. The key idea is to
periodically sample a subset of objects and remove expired
ones. In Redis, if the percentage of the expired objects in the
sample is above a threshold, this process continues. While
sampling is cheaper per run, the blind nature of sampling
decides that it is both inefficient and not very effective. Users
have to accept that the sampling can only keep the percentage
of expired objects at a pre-configured threshold. Meanwhile,
the cost can be higher than full cache scan due to random
memory access. There have been some production incidents
where Redis could not remove enough expired objects and
caused unexpected evictions [70].

Despite the various flaws, proactive expiration is highly
regarded by developers of production systems. When asked
to replace LRU for a better eviction strategy in Memcached,
the maintainer states that “pulling expired items out actively
is better than almost any other algorithmic improvement (on
eviction) I could think of.” [10] Meanwhile, Redis’ author
mentioned that “Redis 6 expiration will no longer be based
on random sampling but will take keys sorted by expiration
time in a radix tree.” 2

In summary, efficiently and effectively removing expired
objects is an urgent problem that needs to be solved in current
caching systems.

2.2 Object metadata
We observe that the objects stored in in-memory caches

are small [46], and the mean object sizes (key+value) of Twit-
ter’s top four production clusters are 230, 55, 294, 72 bytes,
respectively. This observation aligns with the observations at
Facebook [21], and Reddit [3].

Existing systems are not efficient in storing small objects
because they store considerable amount of metadata per ob-
ject. For example, Memcached stores 56 bytes of metadata
with each object 3, which is a significant overhead compared

2As of Redis v6.0.6, this change is not implemented yet.
32 × 8 bytes LRU pointers, 8 bytes hash pointer, 4 bytes access time, 4

bytes expire time, 8 bytes object size, 8 bytes cas (compare-and-set, used
for atomic update).

Figure 2: Slab memory allocation (left) and object-chained hash
table (right) in Memcached.

to typical object size. All of the metadata fields are critical
for Memcached’s operations, and cannot be dropped without
first removing some functionalities or features.

There have been several attempts at Twitter to cut metadata
overhead. For example, Pelikan’s slab-based storage removes
object LRU queues and reuses one pointer for both hash chain
and free object chain. As a result, it reduces object metadata
to 38 bytes. However, this prevents Pelikan from applying
the LRU algorithm to object eviction, and results in higher
miss ratio compared to Memcached in our evaluation. Pelikan
also introduced Cuckoo hashing [59] as a storage module for
fixed-size objects, only storing 6 bytes (or 14 bytes with cas)
of metadata per key.

Several academia works have also looked at reducing meta-
data size. RAMCloud [63] and FASTER [31] use a log-
structured design to reduce object metadata. However, their
designs target key-value stores instead of key-value caches
(See discussion in §5). MemC3 [41] redesigns the hash ta-
ble with Cuckoo hashing and removes LRU chain pointers.
However, it does not consider some operations such as cas
for atomic updates, does not support TTL expiration or other
advanced eviction algorithms.

2.3 Memory fragmentation
Memory management is one of the fundamental design as-

pects of an in-memory caching system. Systems that directly
use external memory allocators (e.g., malloc) such as Redis
are vulnerable to external memory fragmentation and OOM.

To avoid this problem, other systems such as Memcached
use a slab-based memory allocator, allotting a fixed-size slab
at a time, which is then explicitly partitioned into smaller
chunks for storing objects, as shown in Fig. 2 (left). The chunk
size is decided by the class id of a slab and configured
during startup. A slab-based memory allocator is subjected to
internal memory fragmentation at the end of each chunk and
at the end of each slab.

Using a slab-based allocator also introduces the slab cal-
cification problem, a phenomenon where some slab classes
cannot obtain enough memory and exhibit higher miss ra-
tios. Slab calcification happens because slabs are assigned to
classes using the first-come-first-serve method. When popu-
larity among slab classes change over time, the newly popular
slab classes cannot secure more memory because all slabs
have been assigned. This has been studied in the previous
works [29, 44, 46]. Memcached automatically migrates slabs

between classes to solve this problem, however, it is not al-
ways effective [2, 5, 9, 15]. Re-balancing slabs may increase
the miss ratio because all objects on the outgoing slab are
evicted. Moreover, due to workload diversity and complexity
in slab migration, it is prone to errors and sometimes causes
crash in production [7, 16].

Overall, existing production systems have not yet entirely
solved the memory fragmentation problem. Among the re-
search systems, log-structured designs such as MICA [50,51],
memshare [37] and RAMCloud [63] do not have this problem.
However, they cannot perform proactive expiration and are
limited to using basic eviction algorithms (such as FIFO or
CLOCK) with low memory efficiency.

2.4 Throughput and scalability
In addition to memory efficiency, throughput and thread-

scalability are also critical for in-memory key-value caches.
Memcached’s scalability limitation is well documented in var-
ious industry benchmarks [11,55]. The root cause is generally
attributed to the extensive locking in the object LRU queues,
free object queues, and the hash table. Several systems have
been proposed to solve this problem. Some of them remove
locking by using simpler eviction algorithms and sacrificing
memory efficiency [41, 51]. Some introduces opportunistic
concurrency control [41], which does not work well with
write-heavy workloads. Some other works use random evic-
tion algorithms to avoid concurrent reads and writes [22, 26],
which do not address all the locking contention. Moreover,
they reduce throughput due to the large number of random
memory accesses.

3 Design principles and overview
The design of Segcache follows three principles.

Be proactive, don’t be lazy. Expired objects offer no value,
so Segcache eagerly removes them for memory efficiency.
Maximize metadata sharing for economy. To reduce the
metadata overhead without loss of functionality, Segcache
maximizes metadata sharing across objects.
Perform macro management. Segcache operates on seg-
ments to expire/evict objects in bulk with minimum locking.

At a high level, Segcache contains three components: a
hash table for object lookup, an object store comprised of
segments, and a TTL-indexed bucket array (Fig. 3).

3.1 TTL buckets
Indexing on TTL facilitates efficient removal of expired

objects. To achieve this, Segcache first breaks the spectrum of
possible TTLs into ranges. We define the time-width of a TTL
range t1 to t2 (t1 < t2) as t2− t1. All objects in range t1 to t2
are treated as having TTL t1, which is the approximate TTL of
this range. Rounding down guarantees an object can only be
expired early, and no object will be served beyond expiration.
Objects are grouped into small fix-sized groups called seg-
ments (see next section), and all the objects stored in the same
segment have the same approximate TTL. Second, Segcache

Figure 3: Overview of Segcache. A read request starts from the hash table (right), a write request starts from the TTL buckets (left).

uses an array to index segments based on approximate TTL.
Each element in this array is called a TTL bucket. A segment
with a particular approximate TTL value is associated with
the corresponding TTL bucket. Within each bucket, segments
are chained and sorted by creation time.

To support a wide TTL range from a few second to at least
one month without introducing too many buckets or losing
resolution on the lower end, Segcache uses 1024 TTL buckets,
divided into four groups. From one group to the next, the time-
width grows by a factor of 16. In other words, Segcache uses
increasingly coarser buckets to efficiently cover a wide range
of TTLs without losing relative precision for typical TTL
buckets. The boundaries of the TTL buckets are chosen in
a way that finding the TTL bucket only requires a few bit-
wise operations. We show that this design allows Segcache to
efficiently and effectively remove expired objects in §3.5.

3.2 Object store: segments
Segcache uses segments as the basic building blocks for

storing objects. All segments are of a configurable size, de-
fault to 1 MB. Unlike slabs in Memcached, Segcache group
objects stored in the same segment by approximate TTL, not
by size. A segment in Segcache is similar to a small log in
log-structured systems. Objects are always appended to the
end of a segment, and once written, the objects cannot be
updated (except for incr/decr atomic operations). However,
unlike other log-structured systems [37, 51, 57, 58, 62, 63],
where available DRAM is either used as one continuous log
or as segments withou no relationship between each other,
segments in Segcache are sorted by creation time, linked into
chains, and indexed by approximate TTLs.

In Segcache, each non-empty TTL bucket stores pointers
to the head and tail of a time-sorted segment chain, with the
head segment being the oldest. A write in Segcache first
finds the right TTL bucket for the object, and then appends
to the segment at the tail of the segment chain. When the tail
segment is full, a new segment is allocated. If there is no free
segment available, eviction is triggered (§3.6).

3.3 Hash table
As shown in previous works [41], the object-chained hash

tables (Fig. 2 (right)) limits the throughput and scalability in
the existing production systems [54,71]. Segcache uses a bulk-
chaining hash table similar to MICA [51] and Faster [31].

An object-chained hash table uses object chaining to re-
solve hash collisions. The throughput of such a design is sen-
sitive to hash table load. Collision resolution requires walking
down the hash chain, incurring multiple random DRAM ac-
cesses and string comparisons. Moreover, object chaining
imposes a memory overhead of an 8-byte hash pointer per
object, which is expensive compared to the small object sizes.

Instead of having just one slot per hash bucket, Segcache
allocates 64 bytes of memory (one CPU cache line) as eight
slots in each hash bucket (Fig. 3). The first slot stores the
bucket information, the following six slots store object in-
formation. The last slot stores either object information or a
pointer to the next hash bucket (when more than seven ob-
jects hash to the same bucket). This chaining of hash buckets
is called bulk chaining. Bulk chaining removes the need to
store hash pointers in the object metadata and improves the
throughput of hash lookup by minimizing random accesses.

The bucket information slot stores an 8-bit spin lock, an
8-bit slot usage counter, a 16-bit last-access timestamp , and
a 32-bit cas value. Each item slot stores a 24-bit segment
id, a 20-bit offset in the segment, an 8-bit frequency counter
(described in §3.6.3), and a 12-bit tag. The tag of a key is a
hash used to reduce the number of string comparisons when
hash collisions happen.

3.4 Object metadata
Segcache achieves low metadata overhead by sharing meta-

data across objects. Segcache facilitates metadata sharing at
two places: the hash table bucket and the segment. Objects in
the same segment share creation time, TTL, reference counter,
while objects in the same hash bucket share last-access times-
tamp, spinlock, cas value, and hash pointer.

Because objects in the same segment have the same ap-
proximate TTL and are written around the same time, Seg-
cache computes the approximate expiration time of the whole

segment based on the oldest object in the segment and ap-
proximate TTL of the TTL bucket. This approximation skews
the clock and incurs early expiration for objects later in the
segment. As we will show in our evaluation, early expiration
has negligible impact on miss ratio.

Segcache also omits object-level hash chain pointers and
LRU chain pointers. Bulk chaining renders hash chain pointer
unnecessary. The LRU chain pointers are not needed because
because both expiration and eviction are performed at the
segment level. Segcache further moves up metadata needed
for concurrent accesses (reference counter) into the segment
header. In addition, to support cas, Segcache maintains a 32-
bit cas value per hash bucket and shares it between all objects
in the hash bucket. While sharing this value may increase false
data race between different objects hashed to the same hash
bucket, in practice, the impact of this compromise is negligible
due to two reasons. First, cas traffic is usually orders of
magnitude lower than simple read or write, as observed in
production environment [46]. Second, one cas value is shared
only by a few keys, the chance of concurrent updates on
different keys in the same hash bucket is small. In the case of
a false data race, the client usually retries the request.

The final composition of object metadata in Segcache con-
tains one 8-bit key size, one 24-bit value size, and one 8-bit
flag. And Segcache stores only 5 bytes4 of metadata with each
object, which is a 91% reduction compared to Memcached.

3.5 Proactive expiration
In Segcache, all objects in one segment are written sequen-

tially and have the same approximate TTL, which makes it
feasible to remove expired objects in bulk. Proactive removal
of expired objects starts with scanning the TTL buckets. Be-
cause segments linked in each TTL bucket are ordered by
creation time and share the same approximate TTL, they are
also ordered by expiration time. Segcache uses a background
thread to scan the first segment’s header in each non-empty
TTL buckets. If the first segment is expired, the background
thread removes all the objects in the segment, then continues
down the chain until it runs into one segment that is not yet
expired, at which point it will move onto the next TTL bucket.

Segcache’s proactive expiration technique uses memory
bandwidth efficiently. Other than reading the expired objects,
each full scan only accesses a small amount of consecutive
metadata — the TTL bucket array. This technique also en-
sures that memory occupied by expired objects are promptly
and completely recycled, which improves memory efficiency.

As mentioned before, objects are subject to early expiration.
However, objects are usually less useful near the end of their
TTL. Our analysis of production traces at Twitter shows that
a small TTL reduction makes negligible difference (if any) in
the miss ratio.

4The 5-byte does not include the shared metadata, which is small per
object. And it also does not include the one-byte frequency counter, which is
stored as part of object pointer in the hash table.

3.6 Segment eviction
While expiration removes objects that cannot be used in

the future and is preferred over eviction, cache cannot rely on
expiration alone. All caching systems support eviction when
necessary to make room for new objects.

Eviction decisions can affect the effectiveness of cache
in terms of the miss ratio, thus have been the main focus of
many previous works [22, 26, 35, 49, 56, 69]. Segcache does
not update objects in-place. Instead, it appends new objects
and marks the old ones as deleted. Therefore, better eviction
becomes even more critical.

Unlike most existing systems performing evictions by ob-
ject, Segcache performs eviction by segments. Segment evic-
tion could evict popular objects, increasing the miss ratio. To
address this problem, Segcache uses a merge-based eviction
algorithm. The basic idea is that by combining multiple seg-
ments into one, Segcache selectively retains a relatively small
portion of the objects that are more likely to be accessed
again and discards the rest. This design brings out several
finer design decisions. First, we need to pick the segments to
be merged. Second, there needs to be an algorithm making
per-object decisions while going through these segments.

3.6.1 Segment selection
The segments merged during each eviction are always from

a single TTL bucket. Within this bucket, Segcache merges
the first N consecutive, un-expired, and un-merged (in current
iteration) segments (Fig. 4). The new segment created from
the eviction inherits the creation time of the oldest evicted
segment. This design has the following benefits. First, the
created segment can be inserted in the same position as the
evicted segments in the segment chain, and maintains the time-
sorted segment chain property. Second, objects in the created
segment still have relatively close creation/expiration time,
and the merge distorts their expiration schedules minimally.

While within one TTL bucket, the segment selection is
limited to consecutive ones, across TTL buckets, Segcache
uses round-robin to choose TTL bucket.

3.6.2 One-pass merge and segment homogeneity
When merging N consecutive segments into one, Segcache

uses a dynamic threshold for retaining objects to achieve
merge in a single pass. This threshold is updated after scan-
ning every 1

10 of a segment and aims to retain 1
N bytes from

each segment being evicted.
The rationale for retaining a similar number of bytes from

each segment is that objects and segments created at a similar
time are homogeneous with similar properties. Therefore, no
segment is more important than others. Fig. 5a shows the rel-
ative standard deviation (RSD, std

mean) of the mean object size
in consecutive segments and across random segments, and
Fig. 5b compares the RSD of live bytes in consecutive and
random segments. Both figures demonstrate that consecutive
segments are more homogeneous (similar) than random seg-
ments. As a result, retaining a similar number of bytes from

Figure 4: Merge-based segment eviction.

each is reasonable. However, we remark that the current seg-
ment selection and merge heuristics may not be the optimal
solution in some cases, and deserve more exploration.

3.6.3 Selecting objects
So far, one question remains unsolved: what objects should

be retained in an eviction? An eviction algorithm’s effec-
tiveness is determined by its ability to predict future access
based on past information. Under the independent reference
model (IRM), a popular model used for cache workloads,
an object with a higher frequency is more likely to be re-
accessed. Moreover, it has been shown in theory that under
IRM and for fix-sized objects, the least frequently used (LFU)
is k-competitive and the best policy [27, 39, 61, 64].

Similar to greedy dual size frequency [35], Segcache
uses the frequency-over-size ratio to rank objects. There-
fore it needs a frequency counter that is memory-efficient,
computationally-cheap, and scalable. Meanwhile, it should
allow Segcache to be burst-resistant and scan-resistant. More-
over, The counter needs to provide higher accuracy for less
popular objects (opposite of the counter-min sketch). This is
critical for cache eviction because the highly-popular objects
are always retained (cached), and the less popular objects de-
cide the miss ratio of a cache. Segcache uses a novel one-byte
counter (stored in hash table), which we call approximate and
smoothed frequency counter (ASFC), to track frequencies.
Approximate counter. ASFC has two stages. When fre-
quency is smaller than 16 (last four bits of the counter), it
always increases by one for every request. In the second stage,
it counts frequency similar to a Morris counter [1], which in-
creases with a probability that is the inverse of current value.
Smoothed counter. Segcache uses the last access times-
tamp, which is shared by objects in the same hash bucket, to
rate-limit updates to the frequency counters. The frequency
counter for each object is incremented at most once per sec-
ond. This technique is effective in absorbing sudden request
bursts.

Simple LFU is susceptible to cache pollution due to request
bursts and non-constant data access patterns. While several
approaches such as dynamic aging [20, 39, 61], and window-
based frequency [38, 47] have been proposed to address this
issue, they require additional parameters and/or extensive
tuning [19]. To avoid extra parameters, Segcache resets the
frequency of retained objects during evictions, which has a
similar effect as window-based frequency.

The linear increase at low frequency and probabilistic in-
crease at high frequency allow ASFC to achieve a higher

merged segs random segs
0.0

0.2

0.4

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n

(a) Object size

merged segs random segs
0.0

0.1

0.2

0.3

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n

(b) Live bytes

Figure 5: a) Relative standard deviation of mean object size in
consecutive segments and random segments. b) Relative standard
deviation of live bytes in consecutive segments and random segments.

accuracy for less popular objects. Meanwhile, the approxi-
mate design allows ASFC to be memory efficient, using one
byte to count up to 28×28 requests. The smoothed design of
ASFC allows Segcache to be burst-resistant and scalable.

3.7 Thread model and scalability
Segcache is designed to scale linearly with the number of

threads by using a combination of techniques such as mini-
mal critical sections, optimistic concurrency control, atomic
operations, and thread-local variables. Most notably, because
object life cycle management is at the segment level, only
modifications to the segment chains require locking, which
avoids common contention spots related to object-level book-
keeping, such as maintaining free-object queues. This macro
management strategy reduces locking frequency by four or-
ders of magnitude in our default setting compared to what
would be needed in a Memcached-like system.

More specifically, no locking is needed on the read path
except to increment object frequency, which is at most once
every second. On the write path, because segments are append-
only, inserting objects can take advantage of atomic opera-
tions. However, we observe that relying on atomic operation
is insufficient to achieve near-linear scalability with more
than eight threads. To solve this, each thread in Segcache
maintains a local view of active segments (the last segment of
each segment chain), and the active segments in each thread
can be written only by that thread. Although the segments
are local to each thread for writes, the objects that have been
written are immediately available for reading by other threads.
During eviction, locking is required when segments are be-
ing removed from the segment chain. However, the critical
section of removing a segment from the chain is very tiny
compared to object removal, which is lock-free. Moreover,
evicting one segment means evicting thousands of objects, so
segment eviction is infrequent compared to object writes.

4 Implementation and Evaluation
In this section, we compare the memory efficiency, through-

put, and scalability of Segcache against several research and
production solutions, using traces from Twitter’s production.
Specifically, we are interested in the following questions,

• Is Segcache more memory efficient than alternatives?

Table 3: Traces used in evaluation
Trace Workload type # requests TTLs (TTL: percentage) Write ratio Mean object size Production miss ratio
c content 4.2 billion 1d: 65%, 14d: 27%, 12h: 7% 7% 230 bytes 1-5%
u1 user 6.5 billion 5d:1.00 1% 290 bytes <1%
u2 user 4.5 billion 12h:1.00 3% 55 bytes <1%
n negative cache 1.6 billion 30d:1.00 2% 45 bytes ∼1%

mix
content + user + negative cache
+ transient item 11.88 billion

30d: 14%, 14d:11%, 24h: 23%,
12h: 38%, 2min:12% 7% 243 bytes NA

• Does Segcache provide comparable throughput to state-
of-the-art solutions? Does it scale well with more cores?

• Is Segcache sensitive to design parameters? Are they
easy to pick or tune?

4.1 Implementation
Segcache is implemented as a storage module in the open-

sourced Pelikan project. Pelikan is a cache framework de-
veloped at Twitter. The Segcache module can both work as
a library or be setup as a Memcached-like server. Our cur-
rent implementation supports multiple worker threads, with a
dedicated background thread performing proactive expiration.
For our evaluation, eviction is performed by worker threads
as-needed, but it is easy to use the same background thread
to facilitate background eviction. We provide configurable
options to change the number of segments to merge for evic-
tion and segment size. The source code can be accessed at
http://www.github.com/twitter/pelikan and archived
at http://www.github.com/thesys-lab/segcache.

4.2 Experiment setup
4.2.1 Traces
Single tenant traces. We used week-long unsampled traces
from production cache clusters at Twitter (Table. 3, the same
as in previous work [46])5. Trace c comes from a cache stor-
ing tweets and their metadata, which is the largest cache clus-
ter at Twitter. Trace u1 and u2 are both user related, but the
access patterns of the two workloads are different, so different
TTLs are used. Notably, they are separated into two caches in
production because effective and efficient proactive expiration
was not achievable prior to Segcache. Trace n is a negative
result cache, which stores the keys that do not exist in the
database, a common way of using cache to shield databases
from unnecessary high loads.
Multi tenant trace. Although Twitter’s production deploy-
ments are single-tenant, multi-tenant deployments are also
common because of better resource utilization [21]. To evalu-
ate the performance under multi-tenant workloads, we merged
workloads from four types of caches: user, content, negative
cache, and transient item cache.

4.2.2 Baselines
Memcached used in our evaluation is version 1.6.6 with

segmented LRUs. It supports lazy expiration and checks LRU

5The traces are available at http://www.github.com/twitter/
cache-trace.

tail for expiration. We ran Memcached in two modes, one
with cache scanning enabled (s-Memcached), which scans
the entire cache periodically to remove expired objects; the
other with scanning disabled (Memcached). Other expira-
tion techniques are enabled in both modes. Our evaluation
also includes pelikan_twemcache (PCache), Twitter’s Mem-
cached equivalent and successor to Twemcache [18]. Com-
pared to Memcached, PCache has a smaller object metadata
without LRU queues, and only performs slab eviction [75].
We implemented LHD [22] and Hyperbolic [26] on top of
PCache since original implementations are not publicly avail-
able. These systems do not consider object expiration. To
make the comparisons fairer, we add random sampling to re-
move expired objects in these two systems, which is also how
Redis performs expiration. In the following sections, r-LHD
and r-Hyperbolic refer to these enhanced versions. Note that
adding random sampling to remove expired objects does not
significantly impact the throughput, and we observe less than
a 10% difference.

Because we do not modify the networking stack, we focus
our evaluation on the storage subsystem. We performed all
evaluations by close-loop trace replay on dedicated hosts in
Twitter’s production fleet using the traces described in §4.2.1.
The hosts have dual-socket Intel Xeon Gold 6230R CPU, 384
GB DRAM with one 100 Gbps NIC.

4.2.3 Metrics
We use three metrics in our evaluation to measure the mem-

ory efficiency, throughput, and scalability of the systems.
Relative miss ratio. Miss ratio is the most common metric
in evaluating memory efficiency. Because workloads have
dramatically different miss ratios in production (from a few
percent to less than 0.1%) and compulsory miss ratios, directly
plotting miss ratio is less readable. Therefore, we use relative
miss ratio (defined as mr

mrbaseline
where mr stands for miss ratio

and the baseline is PCache) in the presentation.
Relative memory footprint. Although miss ratio is a com-
mon metric, a sometimes more useful metric is how much
memory footprint can be reduced at a certain miss ratio. There-
fore, in §4.3, we show this metric using PCache memory
footprint as the baseline.
Throughput and scalability. Throughput is measured in
million queries per second (MQPS) and used to quantify
a caching system’s performance. Scalability measures the
throughput running on a multi-core machine with the number
of hardware threads from 1 to 24 in our evaluations.

http://www.github.com/twitter/pelikan
http://www.github.com/thesys-lab/segcache
http://www.github.com/twitter/cache-trace
http://www.github.com/twitter/cache-trace

c u1 u2 n mix
Workloads

0.0

0.5

1.0

Re
la

tiv
e

m
iss

 ra
tio

(a) Large cache size

c u1 u2 n mix
Workloads

0.0

0.5

1.0

Re
la

tiv
e

m
iss

 ra
tio

(b) Small cache size

Figure 6: Relative miss ratio of different systems (baseline Pelikan is 1), lower is better.

c u1 u2 n mix
Workloads

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Re
la

tiv
e

ca
ch

e
siz

e

(a) Production miss ratio

c u1 u2 n mix
Workloads

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Re
la

tiv
e

ca
ch

e
siz

e
(b) Miss ratio of Pelikan at the small cache size in Fig.6b

Figure 7: Relative memory footprint to achieve a certain miss ratio, lower is better.

4.3 Memory efficiency
In this section, we compare the memory efficiency of all

systems. We present the relative miss ratio at two cache sizes6

in Fig.6. (1) The “large cache” is the cache size when the
miss ratio of Segcache reaches the plateau (<0.05% miss ratio
reduction when the cache size increases by 5%). Miss ratios
achieved at large cache sizes are similar to production miss
ratios. (2) we choose the “small cache” size as 50% of the
large cache size.

Compared to the best of the five alternative systems, Seg-
cache reduces miss ratios by up to 58%. Moreover, it performs
better on both the single-tenant and the multi-tenant work-
loads. This large improvement is the cumulative effect of
having timely proactive expiration, small object metadata, no
memory fragmentation, and a merge-based eviction strategy.

We observe that Memcached and PCache have comparable
miss ratios in most workloads (except workload mix because
PCache is not designed for multi-tenant workloads). While
comparing Memcached and s-Memcached, we observe that
adding full cache scanning capability significantly reduces
the miss ratio by up to 40%, which indicates the importance
of proactive expiration. However, as we show in §4.4.1, cache
scanning is expensive and reduces throughput by almost half
for some workloads. Moreover, we observe that workload n
and mix do not benefit from full cache scanning. Workload
n shows no benefit because it uses a single TTL of 30 days
and no objects expire in the evaluation. Although workload
mix has a mixture of short and long TTLs, it shows no ben-
efit because the objects of different TTLs are from different
workloads with different object sizes, and are stored in dif-
ferent slab classes with different LRU queues. As a result,
checking LRU tail for expiration is effective at removing ex-

6We experimented with twenty cache sizes, and the two set of results
presented here are representative.

pired objects and scanning provides little benefit. Overall,
we observe that proactively removing expired objects can
effectively reduce miss ratio and improve memory efficiency.

State-of-the-art research caching systems, r-LHD and r-
Hyperbolic use ranking to select eviction candidates and of-
ten reduce miss ratio compared to LRU. In our evaluation,
r-Hyperbolic shows lower miss ratio compared to Memcached
and PCache, while r-LHD is only better on workload c. r-LHD
is designed for workloads with a mixture of scan and LRU ac-
cess patterns (such as block access in storage systems), while
in-memory caching workloads rarely show scan requests. This
explains why it has higher miss ratios. We have also evaluated
r-LHD and r-Hyperbolic without sampling for expiration (not
shown), and as expected, they have higher miss ratios due to
the wasted cache space from expired objects.

An alternative way of looking at memory efficiency is to
determine the cache size required to achieve a certain miss
ratio. We show the relative memory footprints of different sys-
tems in Fig. 7, using PCache as the baseline. The figures show
that for both the production miss ratio and a higher miss ratio,
Segcache reduces memory footprint by up to 88% compared
to PCache, 60% compared to Memcached, 56% compared to
s-Memcached, and 64% compared to r-Hyperbolic.

4.3.1 Ablation study
In Fig. 6, we observe that s-Memcached reduces miss ratio

by up to 35% compared to Memcached, which demonstrates
the importance of proactive expiration, one of the key design
features of Segcache. Besides proactive expiration, another
advantage of Segcache over previous systems is smaller object
metadata. To understand its impact, we measure the relative
miss ratio of increasing object metadata in Segcache (Fig. 8).
It shows that reducing object metadata size can have a large
miss raito impact for workloads with small object sizes. Work-
load c has relatively large object sizes (230 bytes), and reduc-

8 24 40 56
Object metadata size (byte)

1.00

1.05

1.10

Re
la

tiv
e

m
iss

 ra
tio

Segcache

PCache Memcached

small cache large cache

(a) Workload c

8 24 40 56
Object metadata size (byte)

1.0

1.1

1.2

1.3

1.4

Re
la

tiv
e

m
iss

 ra
tio Segcache

PCache Memcached

small cache large cache

(b) Workload n

Figure 8: Impact of object metadata size on miss ratio. Workload n
has smaller object sizes as compared to workload c and hence enjoys
larger benefit from reduction from object metadata.

ing the metadata from 56 bytes to 8 bytes reduces the miss
ratio by 6-8%. While workload n has small object sizes (45
bytes) and reducing object metadata size provides a 20-38%
reduction in miss ratio. This result indicates reducing object
metadata size is very important, and it is a critical component
contributing to Segcache’s high memory efficiency.

4.4 Throughput and scalability
4.4.1 Single-thread throughput

Besides memory efficiency, the other important metric of
a cache is the throughput. Fig. 9 shows the throughput of
different systems. Compared to other systems, PCache and
Segcache achieve higher throughput, up to 2.5× faster than s-
Memcached, up to 3× faster than r-Hyperbolic, and up to 4×
faster than r-LHD. The reason is that PCache performs slab
eviction only, and Segcache performs merge-based segment
eviction. Both systems perform batched and sequential book-
keeping for evictions, which significantly reduces the number
of random memory accesses and makes good use of the CPU
cache. In addition, PCache and Segcache do not maintain an
object LRU chain, which leads to less bookkeeping and also
contributes to the high throughput.

Although r-LHD and r-Hyperbolic have lower miss ratios
than Memcached, their throughput is also lower. The reason
is that both systems use random sampling during evictions,
which causes a large number of random memory accesses.
One major bottleneck of a high-throughput cache is the poor
CPU cache hit ratio, and optimizing CPU cache utilization
has been one focus of improving the throughput [51, 52].
Although r-LHD proposes to segregate object metadata for
better locality [22], it requires adding more object metadata,
and hence would further decrease memory efficiency.

4.4.2 Thread scalability
We show the scalability results in Fig. 10a, where we com-

pare Segcache with Memcached and s-Memcached. Fig. 10a
shows that compared to Memcached, Segcache has a higher
throughput and close-to-linear scalability. With 24 threads,
Segcache achieves over 70 MQPS, a 19.9× boost compared
to using a single-thread, while Memcached only achieves
9 MQPS, 3.4× of its single-thread throughput. The reason
why Segcache can achieve close-to-linear scalability is the

effect of multiple factors as discussed in §3.7. While there
is not much throughput difference between Memcached and
s-Memcached, s-Memcached is deadlocked when running
with more than 8 threads.

Note that we do not present the result of PCache in this
figure because it does not support multi-threading. We also
do not show the result of r-LHD and r-Hyperbolic because
we could not find any simple way to implement a better
locking than the one in Memcached. Although r-LHD and
r-Hyperbolic removes the object LRU chain and lock, the slab
memory allocator still requires heavy locking.

4.5 Sensitivity

In this section, we study the effects of parameters in Seg-
cache using workload c (from Twitter’s largest cache cluster).
The most crucial parameter in Segcache is the number of
segments to merge for eviction, which balances between pro-
cessing overhead and memory efficiency. Fig. 10b shows how
the miss ratio is affected by the number of merged segments.
Compared to retaining no objects (the bar labeled eviction),
using merge-based eviction reduces the miss ratio by up to
20%, indicating the effectiveness of merge-based eviction.
Moreover, it shows that the point for the minimal miss ratio
is between 3 and 4. Merging two segments or more than four
segments increases the miss ratio, but not significantly.

There are two reasons why merging too few segments leads
to a high miss ratio. First, merging too few segments can
lead to unfilled segment space. For example, when merging
only two segments, 50% of the bytes are retained from each
segment in one pass. If the second segment does not have
enough live objects, the new segment will have space wasted.
Second, the fidelity of predicting future accesses on unpopular
objects is low. Merging fewer segments means retaining more
objects, so it requires distinguishing unpopular objects, and
the decision can be inaccurate. Meanwhile, merging fewer
segments means triggering eviction more frequently, giving
objects less time to accumulate hits.

On the other hand, merging too many segments increases
the miss ratio as well. Because merging more segments means
setting a higher bar for retained objects, some important ob-
jects can be evicted. In our evaluation, we observe three and
four are, in general, good options. However, merging more
or fewer segments does not adversely affect the miss ratio
significantly and still provides a lower miss ratio than current
production systems. Therefore, we consider this parameter a
stable one that does not require tuning per workload.

Besides the number of segments to merge, another parame-
ter in Segcache is the segment size. We use the default 1 MB
in our evaluation; Fig. 10c shows the impact of different seg-
ment sizes. It demonstrates that segment size has little impact
on the miss ratio, which is expected. Because the fraction of
objects retained from each segment does not depend on the
segment size, thus not affecting the miss ratio.

c u1 u2 n mix
Workloads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

QP
S)

(a) Large cache size

c u1 u2 n mix
Workloads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

QP
S)

(b) Small cache size

Figure 9: Throughput of different systems, the higher the better.

0 6 12 18 24
Number of threads

0
20
40
60

Th
ro

ug
hp

ut
 (M

QP
S)

Memcached
s-Memcached
Segcache

(a) Scalability

Small cache Large cache0.6

0.8

1.0

1.2
Re

la
tiv

e
m

iss
 ra

tio eviction
2
3
4
6
8
10

(b) Number of segments to merge

Small cache Large cache0.8

0.9

1.0

Re
la

tiv
e

m
iss

 ra
tio 100 KiB

500 KiB
1 MiB
2 MiB
4 MiB

(c) Segment size

Figure 10: CPU scalability and sensitivity analysis.

5 Discussion
5.1 Alternative proactive expiration designs

Besides the TTL bucket design in Segcache, there are other
possible solutions for proactive expiration. For example, a
radix tree or a hierarchical timing wheel can track object
expiration time. However, neither is as memory efficient as
Segcache. In fact, any design that builds an expiration index
strictly at the object level requires two pointers per object, an
overhead with demonstrated impact for our target workloads.
The radix tree may also use an unbounded amount of memory
to store the large and uncertain number of expiration times-
tamps. In addition, performing object-level expiration and
eviction requires more random memory access and locking
than bulk operations, limiting throughput and scalability.

5.2 In-memory key-value cache vs store
In the literature, we observe several instances where there

is a mix-up of volatile key-value caches (such as Mem-
cached) and durable key-value stores (such as RAMCloud and
RocksDB). However, from our viewpoint, these two types of
systems are significantly different in terms of their usage, re-
quirements, and design. Indeed, one of the main contributions
is to identify the opportunity to approximate object metadata
and share them (time, pointers, reference counters, version/-
cas number) across objects. Time approximation in particular
is not as tolerated in a traditional key-value store. Below we
discuss the differences between caches and stores.
TTL. TTLs are far more ubiquitous in caching than in key-
value store [3, 6, 12, 17, 55, 70]. We described Twitter’s use of
TTLs in detail in [46]. In comparison, many datasets are kept
in key-value stores indefinitely.
Eviction. Eviction is unique to caching. In addition, eviction
is extremely common in caching. A production cache running
at 1M QPS with 10% writes, which can be new objects or on-
demand fill from cache misses, will evict 100K objects every

second. Re-purposing compaction and cleaning techniques
in log-structured storage may not be able to keep up with
the write rate needed in caching. On the other hand, caches
have considerable latitude in deciding what to store, and can
choose more efficient mechanisms.
Design requirements. In-memory caches are often used in
front of key-value stores to absorb most read requests, or to
store transient data with high write rates. Production users
expect caches to deliver much higher throughput and/or much
lower tail latencies. In contrast, key-value stores are often
considered sources of truth. As such they prioritize durability
(crash recovery) and consistency over latency and throughput.

The differences between cache and store allow us to make
some design choices in Segcache that are not feasible for
durable key-value stores (even if they are in-memory).

6 Related work
6.1 Memory efficiency and throughput

Approaches for improving memory efficiency fall broadly
in the two categories: improving eviction algorithms and
adding admission algorithms.
Eviction algorithm. A vast number of eviction algorithms
have been proposed in different areas starting from the early
90s [45, 53, 56, 61, 76]. However, most of them focus on the
cache replacement of databases or page cache, which are dif-
ferent from a distributed in-memory cache because cached
contents in databases and page cache are typically fix-sized
blocks with spatial locality. In recent years, several algorithms
have been proposed to improve the efficiency of in-memory
caching, such as LHD [22], Hyperbolic caching [26], pRe-
dis [60], and mPart [28]. However, all of them add more object
metadata and computation, which reduces usable cache size
and reduces throughput, which has significant repercussions
for caches with small objects.

Segcache uses a merge-based eviction strategy that retains
high-frequency small-sized objects from evicted segments,
which is similar to a frequency-based eviction algorithms
such as LFU [20, 47] and GDSF [35]. However, unlike some
of these systems that require parameters tuning, Segcache
uses ASFC that avoids these problems. In addition to the
eviction algorithm, two major components that contribute to
Segcache’s low miss ratio is efficient, proactive expiration,
and object metadata sharing, which are unique to Segcache.
Admission control. Adding admission control to decide
which object should be inserted into the cache is a popular ap-
proach for improving efficiency. For example, Adaptsize [25],
W-TinyLFU [39], flashshield [40] are designed in the recent
years. Admission control is effective for CDN caches, which
usually have high one-hit-wonder ratios (up to 30%) with
a wide range of object sizes (100s of bytes to 10s of GB).
Segcache does not employ an admission algorithm because
most of the in-memory cache workloads have low one-hit-
wonder ratios (<5%) and relatively small object size ranges.
Moreover, adding admission control often add more metadata
and extra computation, hurting efficiency and throughput.
Other approaches. There are several other approaches in
improving efficiency, such as optimizing slab migration strat-
egy in Memcached [29, 44], compressing cached data [72],
and prefetching data [73]. Reducing object metadata size has
also been considered in previous works [41]. However, for
supporting the same set of functions (including expirations,
deletions, cas), these approaches need more than twice as
much object metadata as Segcache.
Throughput and scalability. A large fraction of works on
improving throughput and scalability focus on durable key-
value stores [31, 50, 52], which are different from key-value
caches as discussed in §5. Segcache is inspired by these works
and further improves throughput and scalability by macro
management using approximate and shared object metadata.

6.2 Log-structured designs
Segcache’s segment-structured design is inspired by sev-

eral existing works that employ log-structured design [31,
33, 51, 57, 58, 62, 63] in storage and caching systems. The
log-structured design has been widely adopted in storage
systems to reduce random access and improve throughput.
For example, log-structured file system [62] and LSM-tree
databases [14, 48] transform random disk writes to sequen-
tial writes. Recently log-structured designs have also been
adopted in in-memory key-value store [31, 33, 57, 58, 63] to
improve both throughput and scalability.

For in-memory caching, MICA [51] uses DRAM as one
big log to improve throughput, but it uses FIFO for eviction
and does not optimize for TTL expiration. Memshare [37]
also uses log-structured design and has the concept of seg-
ments. However, Memshare optimizes for multi-tenant cache
by moving cache space between tenants to minimize miss
ratio based on each tenant’s miss ratio curve. Memshare uses

a cleaning process to scan N segments, evict one segment,
and keep N−1 segments where the goal is to enforce memory
partitioning between tenants. In terms of performance, scan-
ning N (N = 100 in evaluation) segments and evicting one
incurs a high computation overhead and negatively affects the
throughout. Moreover, to compute the miss ratio of different
tenants, Memshare adds more metadata to the system, which
reduces memory efficiency.

Systems employing a log-structured design benefit from
reduced metadata size and memory fragmentation, and in-
creased write throughput, for example, several of the existing
works [14,41,63] and including Segcache. Compared to these
existing works, Segcache achieves a higher memory efficiency
by approximating and sharing object metadata, proactive TTL
expiration, and using ASFC to retain fewer bytes during evic-
tion while providing a low miss ratio (10% - 25% bytes from
each segment are retained in Segcache compared to 75% in
RAMCloud [63] and 99% in Memshare [37]).

In a broad view, Segcache can be described as a
dynamically-partitioned and approximate-TTL-indexed log-
structured cache. However, one of the key differences between
Segcache and log-structured design is that Segcache is cen-
tered around the indexed and sorted segment chain. Both
objects in a segment and segments in the chains are time-
sorted and indexed by approximate TTLs for metadata shar-
ing, macro management, and efficient TTL expiration.

7 Conclusion
Segcache stems out of our insights from production

workloads, in particular, the observation that object expiration
and metadata play an important role in improving memory
efficiency. We chose a TTL-indexed segment-structured
design to achieve both high throughput, high scalability and
memory efficiency. Our evaluation against state-of-the-art
designs from both research and production projects shows
that Segcache comes out ahead on our stated goals. Its
efficient use of memory bandwidth, near linear scalability,
and low-touch configuration poise it favorably as a practical
production caching solution suitable for contemporary and
future hardware.

Acknowledgements. We thank our shepherd Ryan Stutsman
and the anonymous reviewers for their valuable feedback.
We also thank Rebecca Isaacs, Xi Wang and Dan Luu for
providing feedback, and the Cache, IOP and HWEng teams
at Twitter for their support in evaluating Segcache. This work
was supported in part by a Facebook PhD fellowship, and in
part by NSF grants CNS 1901410 and CNS 1956271.

References
[1] Approximate counting algorithm. https:

//en.wikipedia.org/wiki/Approximate_
counting_algorithm. Accessed: 2020-08-06.

https://en.wikipedia.org/wiki/Approximate_counting_algorithm
https://en.wikipedia.org/wiki/Approximate_counting_algorithm
https://en.wikipedia.org/wiki/Approximate_counting_algorithm

[2] bit vector + backoff timer + simpler implementation
for faster slab reassignment. https://github.com/
memcached/memcached/pull/542. Accessed: 2020-
08-06.

[3] Caching at reddit. https://redditblog.com/2017/
1/17/caching-at-reddit/. Accessed: 2020-05-06.

[4] database caching strategy using redis. https:
//d0.awsstatic.com/whitepapers/Database/
database-caching-strategies-using-redis.
pdf. Accessed: 2020-05-06.

[5] Enhance slab reallocation for burst of eviction. https:
//github.com/memcached/memcached/pull/695.
Accessed: 2020-08-06.

[6] Ephemeral volatile caching in the
cloud. https://netflixtechblog.com/
ephemeral-volatile-caching-in-the-cloud-8eba7b124589.
Accessed: 2020-05-06.

[7] Experiencing slab ooms after one week of uptime.
https://github.com/memcached/memcached/
issue/689. Accessed: 2020-08-06.

[8] Expiration in redis 6. https://news.ycombinator.
com/item?id=19664483. Accessed: 2020-08-06.

[9] Faster slab reassignment. https://github.com/
memcached/memcached/pull/524. Accessed: 2020-
08-06.

[10] Lfu eviction policy. https://github.com/
memcached/memcached/issues/543. Accessed:
2020-08-06.

[11] Memcached benchmark. https://github.com/
scylladb/seastar/wiki/Memcached-Benchmark.
Accessed: 2020-08-06.

[12] Memory used only grows despite unlink/delete of
keys. https://github.com/redis/redis/issues/
7482. Accessed: 2020-08-06.

[13] Redis. http://redis.io/. Accessed: 2020-05-06.

[14] Rocksdb. https://rocksdb.org/. Accessed: 2020-
08-06.

[15] slab auto-mover anti-favours slab 2. https://github.
com/memcached/memcached/issue/677. Accessed:
2020-08-06.

[16] slabs: fix crash in page mover. https://github.com/
memcached/memcached/pull/608. Accessed: 2020-
08-06.

[17] Cachelib: The general-purpose caching engine. 2020.

[18] Chris Aniszczyk. Caching with twemcache.
https://blog.twitter.com/engineering/en_
us/a/2012/caching-with-twemcache.html. Ac-
cessed: 2020-08-06.

[19] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich
Friedrich, and Tai Jin. Evaluating content management
techniques for web proxy caches. ACM SIGMETRICS
Performance Evaluation Review, 27(4):3–11, 2000.

[20] Martin Arlitt, Rich Friedrich, and Tai Jin. Performance
evaluation of web proxy cache replacement policies. In
International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, pages 193–
206. Springer, 1998.

[21] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international con-
ference on Measurement and Modeling of Computer
Systems, pages 53–64, 2012.

[22] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. Lhd
: Improving cache hit rate by maximizing hit density. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 389–403, 2018.

[23] Nathan Beckmann and Daniel Sanchez. Talus: A simple
way to remove cliffs in cache performance. In 2015
IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 64–75.
IEEE, 2015.

[24] Daniel S. Berger. Towards lightweight and robust ma-
chine learning for cdn caching. In Proceedings of the
17th ACM Workshop on Hot Topics in Networks, Hot-
Nets ’18, page 134–140, New York, NY, USA, 2018.
Association for Computing Machinery.

[25] Daniel S Berger, Ramesh K Sitaraman, and Mor
Harchol-Balter. Adaptsize: Orchestrating the hot ob-
ject memory cache in a content delivery network. In
14th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 17), pages 483–498,
2017.

[26] Aaron Blankstein, Siddhartha Sen, and Michael J Freed-
man. Hyperbolic caching: Flexible caching for web
applications. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 499–511, 2017.

[27] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and zipf-like distributions: Evi-
dence and implications. In IEEE INFOCOM’99. Con-
ference on Computer Communications. Proceedings.
Eighteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. The Future is Now

https://github.com/memcached/memcached/pull/542
https://github.com/memcached/memcached/pull/542
https://redditblog.com/2017/1/17/caching-at-reddit/
https://redditblog.com/2017/1/17/caching-at-reddit/
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://github.com/memcached/memcached/pull/695
https://github.com/memcached/memcached/pull/695
https://netflixtechblog.com/ephemeral-volatile-caching-in-the-cloud-8eba7b124589
https://netflixtechblog.com/ephemeral-volatile-caching-in-the-cloud-8eba7b124589
https://github.com/memcached/memcached/issue/689
https://github.com/memcached/memcached/issue/689
https://news.ycombinator.com/item?id=19664483
https://news.ycombinator.com/item?id=19664483
https://github.com/memcached/memcached/pull/524
https://github.com/memcached/memcached/pull/524
https://github.com/memcached/memcached/issues/543
https://github.com/memcached/memcached/issues/543
https://github.com/scylladb/seastar/wiki/Memcached-Benchmark
https://github.com/scylladb/seastar/wiki/Memcached-Benchmark
https://github.com/redis/redis/issues/7482
https://github.com/redis/redis/issues/7482
http://redis.io/
https://rocksdb.org/
https://github.com/memcached/memcached/issue/677
https://github.com/memcached/memcached/issue/677
https://github.com/memcached/memcached/pull/608
https://github.com/memcached/memcached/pull/608
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html

(Cat. No. 99CH36320), volume 1, pages 126–134. IEEE,
1999.

[28] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. mpart:
miss-ratio curve guided partitioning in key-value stores.
In Proceedings of the 2018 ACM SIGPLAN Interna-
tional Symposium on Memory Management, pages 84–
95, 2018.

[29] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. Faster
slab reassignment in memcached. In Proceedings of the
International Symposium on Memory Systems, pages
353–362, 2019.

[30] Pei Cao and Sandy Irani. Cost-aware www proxy
caching algorithms. In Usenix symposium on internet
technologies and systems, volume 12, pages 193–206,
1997.

[31] Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike Bar-
nett. Faster: A concurrent key-value store with in-place
updates. In Proceedings of the 2018 International Con-
ference on Management of Data, pages 275–290, 2018.

[32] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu,
Yuanyuan Sun, Huan Liu, and Feifei Li. Hotring: A
hotspot-aware in-memory key-value store. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 239–252, Santa Clara, CA, February
2020. USENIX Association.

[33] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. Flatstore: An efficient log-
structured key-value storage engine for persistent mem-
ory. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page
1077–1091, New York, NY, USA, 2020. Association for
Computing Machinery.

[34] Yue Cheng, Aayush Gupta, and Ali R. Butt. An in-
memory object caching framework with adaptive load
balancing. In Proceedings of the Tenth European Con-
ference on Computer Systems, EuroSys ’15, New York,
NY, USA, 2015. Association for Computing Machinery.

[35] Ludmila Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching policy.
Hewlett-Packard Laboratories, 1998.

[36] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs in
web memory caches. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 379–392, 2016.

[37] Asaf Cidon, Daniel Rushton, Stephen M Rumble, and
Ryan Stutsman. Memshare: a dynamic multi-tenant
key-value cache. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 321–334, 2017.

[38] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive software cache management. In Pro-
ceedings of the 19th International Middleware Confer-
ence, pages 94–106, 2018.

[39] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu:
A highly efficient cache admission policy. ACM Trans-
actions on Storage (ToS), 13(4):1–31, 2017.

[40] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 65–78, 2019.

[41] Bin Fan, David G Andersen, and Michael Kamin-
sky. Memc3: Compact and concurrent memcache with
dumber caching and smarter hashing. In Presented as
part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13), pages 371–
384, 2013.

[42] gdpr. Art. 17 gdpr right to erasure (‘right to be forgot-
ten’). https://gdpr-info.eu/art-17-gdpr/. Ac-
cessed: 2020-05-06.

[43] Yu Guan, Xinggong Zhang, and Zongming Guo. Caca:
Learning-based content-aware cache admission for
video content in edge caching. In Proceedings of the
27th ACM International Conference on Multimedia,
MM ’19, page 456–464, New York, NY, USA, 2019.
Association for Computing Machinery.

[44] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Ying-
wei Luo, Chen Ding, Song Jiang, and Zhenlin Wang.
{LAMA}: Optimized locality-aware memory allocation
for key-value cache. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 57–69, 2015.

[45] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-
pro: An effective improvement of the clock replace-
ment. In USENIX Annual Technical Conference, Gen-
eral Track, pages 323–336, 2005.

[46] Rashmi Vinayak Juncheng Yang, Yao Yue. A large scale
analysis of hundreds of in-memory caching clusters at
twitter. In OSDI’20, 2020.

[47] George Karakostas and D Serpanos. Practical lfu imple-
mentation for web caching. Technical Report TR-622–
00, 2000.

https://gdpr-info.eu/art-17-gdpr/

[48] Avinash Lakshman and Prashant Malik. Cassandra: A
decentralized structured storage system. SIGOPS Oper.
Syst. Rev., 44(2):35–40, April 2010.

[49] Conglong Li and Alan L Cox. Gd-wheel: a cost-aware
replacement policy for key-value stores. In Proceedings
of the Tenth European Conference on Computer Systems,
pages 1–15, 2015.

[50] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn,
Anuj Kalia, Michael Kaminsky, David G Andersen,
O Seongil, Sukhan Lee, and Pradeep Dubey. Architect-
ing to achieve a billion requests per second throughput
on a single key-value store server platform. In Proceed-
ings of the 42nd Annual International Symposium on
Computer Architecture, pages 476–488, 2015.

[51] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. Mica : A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, 2014.

[52] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 183–196, 2012.

[53] Nimrod Megiddo and Dharmendra S Modha. Arc: A
self-tuning, low overhead replacement cache. In Fast,
volume 3, pages 115–130, 2003.

[54] memcached. memcached - a distributed memory object
caching system. http://memcached.org/. Accessed:
2020-05-06.

[55] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 385–398, 2013.

[56] Elizabeth J O’neil, Patrick E O’neil, and Gerhard
Weikum. The lru-k page replacement algorithm for
database disk buffering. Acm Sigmod Record, 22(2):297–
306, 1993.

[57] John Ousterhout, Parag Agrawal, David Erickson, Chris-
tos Kozyrakis, Jacob Leverich, David Mazières, Subha-
sish Mitra, Aravind Narayanan, Guru Parulkar, Mendel
Rosenblum, et al. The case for ramclouds: scalable high-
performance storage entirely in dram. ACM SIGOPS
Operating Systems Review, 43(4):92–105, 2010.

[58] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego On-
garo, Seo Jin Park, Henry Qin, Mendel Rosenblum, et al.

The ramcloud storage system. ACM Transactions on
Computer Systems (TOCS), 33(3):1–55, 2015.

[59] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. Journal of Algorithms, 51(2):122–144, 2004.

[60] Cheng Pan, Yingwei Luo, Xiaolin Wang, and Zhenlin
Wang. predis: Penalty and locality aware memory allo-
cation in redis. In Proceedings of the ACM Symposium
on Cloud Computing, pages 193–205, 2019.

[61] John T Robinson and Murthy V Devarakonda. Data
cache management using frequency-based replacement.
In Proceedings of the 1990 ACM SIGMETRICS confer-
ence on Measurement and modeling of computer sys-
tems, pages 134–142, 1990.

[62] Mendel Rosenblum and John K Ousterhout. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS), 10(1):26–
52, 1992.

[63] Stephen M Rumble, Ankita Kejriwal, and John Ouster-
hout. Log-structured memory for dram-based storage.
In 12th {USENIX} Conference on File and Storage Tech-
nologies ({FAST} 14), pages 1–16, 2014.

[64] Dimitrios N Serpanos and Wayne H Wolf. Caching
web objects using zipf’s law. In Multimedia Storage
and Archiving Systems III, volume 3527, pages 320–326.
International Society for Optics and Photonics, 1998.

[65] Aashaka Shah, Vinay Banakar, Supreeth Shastri, Melissa
Wasserman, and Vijay Chidambaram. Analyzing the
impact of GDPR on storage systems. In 11th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 19), Renton, WA, July 2019. USENIX As-
sociation.

[66] Supreeth Shastri, Melissa Wasserman, and Vijay Chi-
dambaram. The seven sins of personal-data processing
systems under GDPR. In 11th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 19), Renton,
WA, July 2019. USENIX Association.

[67] Supreeth Shastri, Melissa Wasserman, and Vijay Chi-
dambaram. Gdpr anti-patterns. Commun. ACM,
64(2):59–65, January 2021.

[68] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
529–544, 2020.

[69] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. Ripq : Advanced photo caching on flash
for facebook. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 373–386, 2015.

http://memcached.org/

[70] Matthew Tejo. Improving key expiration in re-
dis. https://blog.twitter.com/engineering/
en_us/topics/infrastructure/2019/
improving-key-expiration-in-redis.html.
Accessed: 2020-08-06.

[71] Twitter. twitter twemcache. https://github.com/
twitter/twemcache. Accessed: 2020-05-06.

[72] Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren,
Michel Hack, and Song Jiang. zexpander: A key-value
cache with both high performance and fewer misses. In
Proceedings of the Eleventh European Conference on
Computer Systems, pages 1–15, 2016.

[73] Juncheng Yang, Reza Karimi, Trausti Sæmundsson,
Avani Wildani, and Ymir Vigfusson. Mithril: mining

sporadic associations for cache prefetching. In Proceed-
ings of the 2017 Symposium on Cloud Computing, pages
66–79, 2017.

[74] Qiang Yang, Haining Henry Zhang, and Tianyi Li. Min-
ing web logs for prediction models in www caching
and prefetching. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 473–478, 2001.

[75] Yao Yue. Eviction strategies. https://github.com/
twitter/twemcache/wiki/Eviction-Strategies.
Accessed: 2020-08-06.

[76] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. Second-
level buffer cache management. IEEE Transactions on
parallel and distributed systems, 15(6):505–519, 2004.

https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/improving-key-expiration-in-redis.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/improving-key-expiration-in-redis.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/improving-key-expiration-in-redis.html
https://github.com/twitter/twemcache
https://github.com/twitter/twemcache
https://github.com/twitter/twemcache/wiki/Eviction-Strategies
https://github.com/twitter/twemcache/wiki/Eviction-Strategies

	Introduction
	Background and Motivation
	TTL and expiration in caching
	The prevalence of TTL
	Lazy expiration
	Proactive expiration

	Object metadata
	Memory fragmentation
	Throughput and scalability

	Design principles and overview
	TTL buckets
	Object store: segments
	Hash table
	Object metadata
	Proactive expiration
	Segment eviction
	Segment selection
	One-pass merge and segment homogeneity
	Selecting objects

	Thread model and scalability

	Implementation and Evaluation
	Implementation
	Experiment setup
	Traces
	Baselines
	Metrics

	Memory efficiency
	Ablation study

	Throughput and scalability
	Single-thread throughput
	Thread scalability

	Sensitivity

	Discussion
	Alternative proactive expiration designs
	In-memory key-value cache vs store

	Related work
	Memory efficiency and throughput
	Log-structured designs

	Conclusion

