
NetSMC: A Custom Symbolic Model Checker for Stateful Network Verification

Yifei Yuan1 Soo-Jin Moon2 Sahil Uppal2 Limin Jia2 Vyas Sekar2

1Intentionet 2Carnegie Mellon University

Abstract

Modern networks enforce rich and dynamic policies (e.g.,
dynamic service chaining and path pinning) over a number of
complex and stateful NFs (e.g., stateful firewall and load bal-
ancer). Verifying if those policies are correctly implemented
is important to ensure the network’s availability, safety, and
security. Unfortunately, theoretical results suggest that veri-
fying even simple policies (e.g., A cannot talk to B) in state-
ful networks is undecidable. Consequently, any approach for
stateful network verification has to fundamentally make some
relaxations; e.g., either on policies supported, or the network
behaviors it can capture, or in terms of the soundness/com-
pleteness guarantees. In this paper, we identify practical
opportunities for relaxations in order to develop an efficient
verification tool. First, we identify key domain-specific in-
sights to develop a more compact network semantic model
which is equivalent to a general semantic model for checking
a wide range of policies under practical conditions. Second,
we identify a restrictive-yet-expressive policy language to
support a wide range of policies including dynamic service
chaining and path pinning while enable efficient verification.
Third, we develop customized symbolic model checking al-
gorithms as our model and policy specification allows us to
succinctly encode network states using existential first-order
logic, which enables efficient checking algorithms. We prove
the correctness of our approach for a subset of policies and
show that our tool, NetSMC, achieves orders of magnitude
speedup compared to existing approaches.

1 Introduction

Today’s computer networks deploy a large number and vari-
ety of complex stateful functions [44], ranging from stateful
firewalls, NATs, to proxies, and load balancers. Network oper-
ators configure those network functions (NFs) to enforce rich
and dynamic policies, such as dynamic service chaining (e.g.,
all packets should traverse IPS, while only malicious packets
detected by IPS should be sent to FW) [18, 19] and path pin-
ning (e.g., if packets from A to B traverse NF f1 and then f2,
the reverse packets from B to A should traverse f2 and then
f1). Formally verifying if the network correctly implements
the policies is critical to ensure the availability, security, and
safety of the network.

Checking whether policies are correctly enforced, however,
is challenging on stateful networks (networks with stateful
NFs). Even checking simple policies such as isolation poli-
cies (packets from A cannot be delivered to B), an efficiently
solvable problem on stateless networks [23, 25–27, 31], is
undecidable on stateful networks [47]. In practice, policies

enforced on stateful networks will be more complex (see §2).
As such, making practical progress requires non-trivial

trade-offs on the supported network behavior, expressiveness
of policies, and the soundness/completeness guarantees. For
example, recent work VMN [41] simplifies the behavior of a
stateful network by assuming that each NF can buffer multi-
ple packets in an out-of-order way, which makes the problem
decidable for checking a restrictive set of policies. To verify
policies, VMN encodes the network and the policy using first-
order logical formulas which are solved by a general-purpose
SMT solver. However, it is inefficient to even check the iso-
lation policy due to its high complexity (i.e., EXPSPACE-
complete [47]).

In this work, we revisit the stateful network verification
problem and explore a different set of relaxation trade-offs
in order to achieve more efficient verification for practical
scenarios based on the following domain-specific insights:
One-packet at a time network model: Instead of dealing
with multiple packets, we adopt a simpler model where only
one packet exists in every network state. This model is moti-
vated by the fact that packets inducing conflict behavior on
a network are often processed by the network in an order-
preserving way. For example, connection-based NFs often
process packets in a connection in order. Thus, each packet
would be processed by the network exactly in the same way
when traversing the network with other packets as when
traversing alone. Therefore, we can consider only one packet
at a time in each network state. While this model simplifies
the behavior of a network (e.g., we cannot find violations ap-
pearing only under packet interleaving. See §8), we show that
the verification result of a wide range of policies (e.g., isola-
tion) based on this model is correct w.r.t. the more complex
model in previous work [41] for order-preserving networks
(details in §4).
Customized policy and verification algorithm: We design
a restricted-yet-expressive policy language based on a subset
of linear temporal logic and verification algorithms based on
symbolic model checking (SMC) to achieve further speedup
of the verification. While our model of network behavior
reduces the state space of the problem, checking simple poli-
cies (e.g., isolation) efficiently is still hard. Naive approaches
based on reducing the problem to constraint solving using
general-purpose solvers is not particularly efficient since it
would not benefit from the simpler model (see §7).

There are two key challenges to apply the SMC framework
to stateful networks: 1) how to succinctly encode a large num-
ber of network states and 2) how to efficiently support the
computation required in SMC. To this end, we leverage the

customized policy structure to use simple existential first or-
der logic (EFO) formulas to succinctly encode a large number
of network states. Furthermore, we develop efficient algo-
rithms required in the SMC framework by leveraging the
simple network model and extending classic algorithms in
other domains (e.g., query containment in database theory).

Based on the key insights discussed above, we implement
NetSMC, a symbolic model checker for stateful networks.
We prove the correctness of our algorithms w.r.t. a general
network semantic model for a subset of policies (e.g., isola-
tion properties). For other policies requiring reasoning about
packet interleaving, NetSMC is a sound-but-incomplete bug
finding tool that is very efficient. We show the effectiveness
of NetSMC via several use cases using real-world NFs such
as pfSense [3] and HAProxy [2] running in Cloudlab [43].
We evaluate NetSMC on various network topologies and poli-
cies and show that NetSMC scales to networks with hundreds
of stateful NFs and is > 200X faster than the state-of-the-
art stateful network verification tool VMN [41] on typical
fattree-topology networks.

2 Motivation

We motivate the stateful network verification problem by
describing several practical policies, followed by the key chal-
lenges of the verification problem.

2.1 Stateful Network Verification Examples

Isolation. Consider a network (Fig. 1a) with a stateful fire-
wall to protect the Department from the Internet. Network
operators may enforce the isolation policy: traffic from un-
trusted hosts in the Internet cannot be sent to the Department.
Conditional reachability. Continuing the example above,
the network operators may additionally enforce the policy
to allow all traffic from the Department and to allow traffic
from those trusted hosts in the Internet that have a connection
already established from a host in Department.
Flow affinity. Consider a load balancer that distributes traffic
among n servers as shown in Fig. 1b. To keep the service
provisioning undisrupted, the network operator wants to en-
force the following flow affinity policy: if a packet from a
host Client is load balanced to a server, then all future packets
in the same flow should always be sent to the same server.
Dynamic service chaining. Fig. 1c shows a multi-stage in-
trusion prevention system (IPS) consisting of a light IPS and a
heavy IPS. Each device in the network is configured such that
all traffic from the Department is sent to the light IPS, which
performs basic detection such as counting the number of bad
connections for each host. If a host is detected suspicious
by light IPS (e.g. issuing more than 10 bad connections), all
future packets from the host should be directed to the heavy
IPS for further processing; otherwise its traffic is directly sent
to the Internet.
Path pinning. Often a network needs to deploy multiple in-
stances of the same middlebox function for better throughput.

Buzz & Symnet VMN NetSMC

Model One-packet Out-of-order One-packet
Policy lang. Assertion LTL-based LTL-based
Correctness Sound Sound, Sound,

Complete Cond. complete

Table 1: Comparison with network verification tools.
Consider the network shown in Fig. 1d which is configured
to forward traffic between the Department and the Internet
to one of the firewalls. An interesting path pinning policy is:
if a packet from H1 in the Department to H2 in the Internet
goes through the i-th firewall, then all future packets from H2
to H1 should traverse the same firewall.

2.2 Challenges

Stateful network verification is more challenging compared
to stateless verification. In general, this problem has been
shown to be undecidable even for simple isolation policies
(see Theorem 1 in [47]). As such, any practical progress
needs to make practical relaxations on at least one of the
following dimensions: the supported network behavior, the
expressiveness of policies, and the correctness guarantees.

As an example, VMN [41] recovers the decidability of the
problem by assuming that an NF buffers packets in an out-of-
order fashion instead of FIFO. VMN reduces the verification
problem to encoding network configurations and policies as
first-order logical constraints which can be solved by an SMT
solver. Since solving general first-order constraints is undecid-
able, VMN targets policies in the form of “if packet p reaches
node B then p must not satisfy some property P in the past”,
so that the encoded constraints fall in a decidable fragment.
Even with the above simplification the verification problem
induces high complexity (i.e., EXPSPACE-hard [47]). Thus,
VMN is not scalable to large-size networks even for checking
simple isolation policies as shown in §7.

3 Overview

The undecidability result [47] means that any approach in this
space has to seek some relaxations or tradeoffs in order to
make the problem tractable. One of our contributions is identi-
fying and exploring a different point in this space of practical
relaxation choices in order to develop an efficient verification
tool in practical network scenarios. Table 1 summarizes key
difference of our trade-offs compared with existing work.

More specifically, our trade-off is based on the following
two key domain-specific insights: First, the key challenge to
stateful network verification is to handle interleaving among
multiple packets in the network (e.g., packet p1 is processed
by NF A before packet p2, but p2 is processed by NF B be-
fore p1). In practice, however, networks often exhibit intrinsic
order-preserving property in several scenarios, where packets
that induce conflict network behavior are processed in the
same order. For example, a syn packet is often processed
by the network before a synack packet is sent into and pro-
cessed by the network. Motivated by this observation, we

S1

Internet

Department
Stateful
firewall

(a) Stateful firewall.

…

LB
Server1

Servern

Client

(b) Load balancing.
S2

Light
IPS

Heavy
IPS

Department

S1

Internet

(c) Multi-stage IPS.
S1

FW1 FW2

Department

Internet

(d) Multiple stateful firewalls.
Figure 1: Examples

adopt a semantic model that only allows one packet being
considered at each network state. In effect, we consider a
sequential execution model of networks, similar to the ones
considered in stateful network testing tools [18, 45]. Second,
even with this simple model verifying simple isolation poli-
cies is still hard (i.e. PSAPCE-hard) and naively employing a
general-purpose tool is not efficient for large-size networks
(see §7). Motivated by recent success in customized stateless
network verification tools (e.g., HSA [26], VeriFlow [27]),
we design a customized policy language and verification tech-
nique for stateful networks based on the symbolic model
checking (SMC) framework. We are able to identify efficient
symbolic representations for network states and develop effi-
cient SMC algorithms.

Next, we discuss our key design choices before delving into
more detailed algorithmic designs in the following sections.
Network model (§4). To model the behavior of a stateful
network, we need two key components, an NF model that
can capture various NF behavior and the modeling of packets
traversing the network as we discussed above.

We need an expressive yet restrictive model that can model
various NF behavior while supporting efficient verification.
On one end of the spectrum, we could use a general purpose
language (e.g., C in Buzz [18]), but that leads to highly ineffi-
cient verification. Motivated by existing NF models [7, 52], a
stateful NF can be modeled as: 1) a set of state tables indexed
by packet header fields, and 2) a set of rules that modify those
state tables based on packet matching and table testing results
of the incoming packet. Such restricted formalization enables
efficient checking algorithms in SMC as we show in §6.
Policy specification language (§5). As shown in §2, stateful
network policies have temporal properties, so a temporal spec-
ification language such as linear temporal logic (LTL) [42]
is a natural choice for specifying such policies. While it is
expressive enough for a wide set of network policies, the full
set of LTL is computationally difficult to handle.

Our insight is that the set of network policies of interest
fall into the intersection of LTL and computational tree logic
(CTL) which has more efficient verification algorithms [13].
Therefore, we identify a subset of LTL that is intuitive and
expressive to specify a wide range of policies while using
efficient verification algorithms based on CTL. As we show
in §6, reasoning about policies in this set of policies also
enables us to use succinct symbolic encoding of network
states and efficient checking algorithms required in SMC.
Efficient verification algorithm (§6). We design customized
verification techniques based on classic SMC framework

for efficiency. Algorithms for the symbolic model checking
framework are well known. However, there are a set of chal-
lenges to instantiate the framework in the context of stateful
network verification. First, we need a succinct symbolic repre-
sentation for a large set of network states, particularly for the
internal state (e.g., connection state tables) of NFs. Second,
the symbolic model checking algorithm requires computing
the pre-image of a symbolic state (i.e., the set of states that
can transition to this state in one step), and the termination
of the symbolic model checking framework requires efficient
computation to check containment of two sets of states in
the symbolic representation. How to efficiently support the
computations remains another challenge. While classic data
structures such as BDD are widely used in other contexts, it is
not suitable in the context of stateful networks due to the large
state space. For example, a stateful firewall maintains state
for each flow and thus the number of states is as large as 2F

where F , the maximal number of flows a firewall tracks, can
be in the order of thousands. Our design of the network model
and policies allows us to address those two challenges. First,
we succinctly encode a large set of states into a fragment of
existential first-order logic (EFO). As an example for a state-
ful firewall, we may use 9x,y.Trust[x,y] = 1 to represent all
network states where there is a legitimate flow (a src-dst pair
for simplicity) recorded by the connection table Trust. Our
choice of the policy language ensures that any symbolic state
emerged during the computation of SMC can be encoded in
EFO. Second, our simple NF model allows us to efficient com-
pute the pre-image of a symbolic state . Moreover, using EFO,
we identify the connection between containment checking
of sets of states in EFO and conjunctive query containment
problem in the database community [11, 29]. We adapt the
query containment checking algorithm to efficiently check
the containment of two sets of network states.

4 Stateful Network Model

We present our stateful network model, including the NFs and
semantic rules. We illustrate the expressiveness of our NF
model via example encodings of common network functions.

4.1 NF Model

We summarize the syntax in Fig. 2. Inspired by prior
work [7,52], each NF includes local state which are key-value
maps and a set of rules for processing packets and updating
local state. NFs’ computations are restricted to state check-
ing, simple counting, and non-deterministic value choice. This
model is more expressive than the one used by the verification

Field Name f 2 {srcip, dstip, srcport. . . }
Value v 2 Int [IP [...
Packet pkt ::= {���!fi = vi}
Location l 2 Loc
Located Packet lp ::= (l,pkt)

State Table T 2 TableNames
Expression e ::= v | f | pickFrom(D) | T [�!ei]
Atomic Test at ::= True | loc2 D | f 2 D | T [�!ei] 2 D
Test t ::= at | ¬at | t,t
Update u ::= T [�!ei] := e | inc(T [�!ei], v) | dec(T [�!ei], v)
Action a ::= fwd(e) | drop | modify(f , e)
Command c ::= u | a | c;c
Rule r ::= t) c
NF Config R ::= · | r; R
NF NF ::= (

�!
l ,
�!
T ,R)

Network Topo topo 2 Loc! Loc
Network Config N ::= (topo, [NF1, ..,NFk])
Table Valuation D 2 TableNames! dT
Network State s ::= (lp,D)

Figure 2: Syntax of stateful network model.

tool VMN [41] and is efficient (§6).
Basics. We write pkt to denote packets, which are records of
packet fields (notation {�!ti } is a shorthand for {t1, · · · , tn}).
Packet field names, denoted f , are drawn from a set of pre-
defined names, including common field names such as srcip,
dstip, srcport and user-defined application specific field
names. We use Loc to denote the set of all locations (e.g., inter-
faces at a switch) in the network, including two special ones:
Drop (denoting that packets are dropped) and Exit (denoting
that packets exit the network). A located packet, denoted lp,
is a pair of a location and a packet.
NF. We model all the network devices as network functions,
denoted NF, which is a tuple consisting of a set of locations�!
l (i.e. interfaces), a set of tables

�!
T for storing internal state

(e.g. a stateful firewall may use state tables to store connection
state), and a list of rules R that process packets and update its
state. Stateless devices’ state tables are empty.

A rule r consists of a list of tests on packet fields and state
tables, denoted t, and a sequence of commands, denoted c,
for updating the state and generating the outgoing packet. For
instance, a stateful firewall may drop or forward the packet
(captured by c) depending on the result of testing the packet
headers and the internal state (captured by t). A rule r is fired,
i.e., its commands are executed, when the current packet and
state tables pass the tests in r.

We allow the following atomic tests: trivial tests that return
true; tests that check the current location of the incoming
packet; tests that check whether a field value or the value of
a state table entry is in a specified finite domain D (e.g., an
interval). Common features such as longest prefix matching
for IP addresses can be modeled using f 2 D. A command c
is a sequence of updates to state tables, denoted u and actions
applied to packets, denoted a.

We write e to denote expressions that can be used by rules
of NFs, which include constants, packet field values indexed
by field names, values picked (nondeterministically) from a
domain D (pickFrom(D)), and values stored in state tables.
Each state table is a finite key-value map, where we write
T [�!ei] to denote the value in an entry indexed by the key �!ei .

A state table can be updated. The update T [�!ei] := e up-
dates the entry indexed by the key �!ei to the value of e. We al-
low simple counting operations to model IDS/IPS. inc(T [�!ei],
v) increments the value in the table entry by a constant v;
dec(T [�!ei], v) performs decrementing similarly. We consider
the following actions for incoming packets: forwarding, drop-
ping, and modifying the value of a packet field. We do not
model multicasting or broadcasting in this paper.

Upon receiving a packet pkt at a location l, an NF attempts
to match the located packet lp = (l,pkt) with all of its rules.
The matching succeeds if all atomic tests in the rule are true
given lp and the current state tables. For an atomic test that
involves a field name f (e.g., f 2D), that field name evaluates
to the value of the field f in the packet pkt. As an example, an
atomic test Trust[dst,src]=1 first evaluates src and dst to be
the source and destination addresses of the incoming packet
pkt, then uses the concrete values as the key to look up the
entry in the table Trust, and finally checks if the corresponding
entry is 1. If the matching succeeds, all actions and updates of
the rule are applied sequentially. Without loss of generality,
we assume that exactly one rule can match an incoming packet.
It is straightforward to translate other models such as the one
based on first-match into this model.

4.2 NF Examples

To demonstrate the expressiveness of our model, we show ex-
ample encodings of several stateful network functions. Writ-
ing a NF model is a one-time effort, and can be automated
(c.f. [48]), which is out of the scope of this work.
Stateful firewall. A stateful firewall protects an internal net-
work by restricting accesses from external hosts. Fig. 3 shows
the code snippet of a stateful firewall. Here, we assume that
the internal network is connected to location 0 of the stateful
firewall, and the outside network is connected to location 1.
The stateful firewall uses a state table Trust to keep track of
the flows that are established by the internal network. Initially,
all entries in Trust have value 0. When a packet comes from
the internal network, the firewall forwards it directly to the
outside, and updates the state table entry for that flow to 1
(the 1st rule). When a packet comes from outside (location 1),
the firewall first checks the state table to see whether a packet
in the reverse direction has been seen (i.e., the table entry is
1); if so, the packet is forwarded (the 2nd rule); otherwise the
packet is dropped (the 3rd rule).
Load balancer. A load balancer forwards packets destined
for a virtual destination of a service (e.g., online searching) to
one of the backend servers that implement the service. Fig. 4
shows a load balancer for a service with virtual IP address

loc=0 => Trust[src,dst]:= 1, fwd(1);
loc=1, Trust[dst,src]=1 => fwd(0);
loc=1, Trust[dst,src]=0 => drop;

Figure 3: Stateful firewall.

VIP, where we assume that servers are connected to location
1 and clients are connected to location 0. The load balancer
maintains two state tables, Connected for storing whether a
client has been assigned to a server and Server for storing
the address of the server assigned to each client. Initially all
table entries have value 0, indicating that no server has been
assigned to any client. The first rule corresponds to the case
where a client was assigned to a server (i.e. Connect[src]=1),
and the load balancer needs to modify the destination address
of the packet to the address of the assigned server as stored
in the Server table. Similarly, the second rule accounts for the
case where the client has not been assigned to any servers
(i.e., Connect[src]=0). In this case, the load balancer picks a
server from all the backend servers D, updates the state tables,
and modifies the packet destination accordingly. Note that the
use of pickFrom(D) abstracts away the concrete mechanism
of choosing the server for a client. For packets not destined to
the service, the load balancer may drop the packets as shown
in the third rule. Last, for traffic going from servers to clients,
the load balancer simply modify the source address of the
packet to the virtual address, as indicated by the last rule.

loc=0, dst=VIP, Connected[src]=1 =>
modify(dst, Server[src]), fwd(1);

loc=0, dst=VIP, Connected[src]=0 =>
Server[src]:=pickFrom(D), Connected[src]:=1,
modify(dst, Server[src]), fwd(1);

loc=0, dst!=VIP => drop;
loc=1 => modify(src, VIP), fwd(0);

Figure 4: Load balancer.

4.3 Network Semantic Model

Network configuration. We consider a network configura-
tion N as a set of links, denoted topo, together with a set of
NFs in the network. We model the execution of a stateful
network as a state transition system, where each state cor-
responds to a snapshot of the network (referred to network
state) and a transition between two network states denotes an
atomic step of feasible network execution. In each network
state, we need to consider the valuation of state tables of each
NF as well as the packets in the network. We use a function
D, which maps each state table T to a function dT , to denote
the valuation of all NF state tables.
Packet processing in the network. To model packets in the
network, a general approach is to associate each NF inter-
face with an infinite FIFO queue buffering packets to be pro-
cessed. As mentioned in §1, unfortunately, policy checking in
such models is undecidable. Recent progress [41] relaxes this
model by assuming packets are buffered in an out-of-order

way. While this out-of-order model recovers decidability for
some policies, it still incurs high computational complexity.

For efficient verification, we consider a model where only
one packet exists in any network state. We model a network
state as a pair (lp,D), where lp is a located packet being pro-
cessed and D is a table valuation. Our model has three types
of transitions: (1) At a network state (lp,D), the packet is
received by a NF and NF modifies the located packet to lp0

and updates the state tables to D0, and the network evolves
to state (lp0,D0); (2) When a packet pkt is moved from one
end l of a link to the other end l0, a network state ((l,pkt),D)
can evolve to ((l0,pkt),D); (3) When the current packet pkt
is dropped or exits the network, a new packet at an ingress
location is brought into the network.That is, ((O,pkt),D) can
evolve to ((I,pkt0),D), where O is Drop or Exit, I denotes an
ingress location, and pkt0 is an arbitrary packet. We write

E = s0
lp0/lp1����! · · ·

lpn�1/lpn�����! sn to denote execution traces,
where si is a network state, lpi�1/lpi denotes the processed
located packet and the resulting located packet in step i re-
spectively. We assume no indefinite loops for any packet;
transient loops are allowed. Detailed rules are in Appendix A.
Connecting to packet-interleaving model. Our one-packet
model excludes packet interleaving behaviors, and thus cannot
find all policy violations. To answer the question: when can
packet interleaving be safely ignored, we first formalize when
do the two models agree and what do they agree on.

Let us write E•(N) to denote the set of all closed (i.e., both
the initial and final states have only packets at locations Drop
or Exit) finite execution traces of the network N under the
packet interleaving semantics; similarly, we write Eone(N) to
denote the set of all finite closed network execution traces
under the one-packet model. We assume that each packet
has an unique ID, that is not modified by any NFs. Given a

network execution trace E = s0
lp0/lp1����! · · ·

lpn�1/lpn�����! sn 2 Eone

of a network N and a packet ID id, we define per-packet
trace for a packet with ID id, denoted E|id , as the sequence
[lpi1/lpi1+1 . . . lpik/lpik+1] obtained by keeping only those
lpi/lpi+1 pairs whose packet ID is id. Per-packet trace for
E 2 E• can be defined similarly.

It turns out that most network policies are checkable on
per-packet traces. For example, checking the policy “packets
from N1 cannot reach N2” can be achieved by examining
packet-traces for every packet in the network. Then, when are
the per-packet traces of the one-packet model the same as the
per-packet traces of the packet interleaving model?

Our key insight is that a wide range of network scenarios
are intrinsically order-preserving, where packets whose inter-
leaving matters (i.e., swapping their process orders induces
divergent network behavior) are processed in the same order
by all NFs in the network. For example, the state update of
connection-based stateful NFs is triggered by control pack-
ets of a connection, which are often sent to and processed
by the network in order (e.g., a syn packet is processed be-

fore a synack packet). Thus, a network with connection-based
stateful NFs is order-preserving. As another example, mod-
ern network devices often integrate a pipeline of NFs where
packets traverse them in order. Networks with such stateful
devices on the edge of the network such that any packet only
traverses one of them is also an order-preserving network. The
formal definitions are in Appendix C. We can show that for
order-preserving networks, the packet interleaving model and
the one-packet model agree on per-packet traces. Formally:

Lemma 1 Given an order-preserving network N, 8E 2
E•(N), 9E 0 2 Eone(N), s.t. 8id, E|id = E 0|id .

The above lemma is the building block for proving the con-
ditional soundness and completeness results of our algorithm.

5 Network Policies

To strike a reasonable balance between efficiency and expres-
siveness, we use a subset of the linear temporal logic (LTL)
as our specification language. This language is expressive
enough to specify a wide range of policies as we show in §7
and also is more efficient for policy checking compared to
the full set of LTL formulas. Policies in this language can be
translated to equivalent ones in the computational tree logic
(CTL), thus allowing more efficient checking algorithms of
CTL to be used [14]. Further, a simple fragment of first order
logic can be used to reason about network states (details in
§6). We envision tools could be used to build policy templates
(e.g., [41]) or GUI (e.g., [18]), to ease the policy specifica-
tion process. We provide a high-level overview of our policy
specification language with details in Appendix B. We show
an example policy specification from §2. We end by a theo-
rem stating that the one-packet and packet interleaving model
agree on checking several practical policies.
Syntax. The syntax of our specification language is shown
below. Predicates, denoted q, include equality checks between
a packet field value, the current location of the packet, and a
state table value and a variable (a symbolic value).

Predicate q ::= f = x |loc= x |T [�!ei] = x
Basic formula g ::= q |¬g |g1^ g2 |g1_ g2
Temporal formula r ::= g |Fg |fg |X(g! r)

|G(g! r) |g(g! r)
Policy P ::= 8����!xi 2 Di.r

We write g to denote basic formulas, which include predi-
cates and propositional connectives. A temporal formula is
denoted r, whose semantics is defined on an execution trace
E, assuming the first state of E is the current state. An execu-
tion trace E satisfies Fg if g is true on some future network
state in E. We do not have the U operator in LTL but in-
troduce two special operators f and g to specify properties
that should hold during the traversal of the current packet
in the network. More concretely, fg is the short-hand for
(loc 6= Drop^ loc 6= Exit)Ug. E satisfies fg if g holds on
some future network state in the current packet’s traversal.

gg is the short-hand for gU(loc= Drop_loc= Exit). It is
true on E if g is true on every network state in the current
packet’s traverse. Nested temporal formulas is only allowed
in the restricted forms: X(g! r), G(g! r) and g(g! r),
where X(g! r) states that starting on the next state g is true
entails r is true, and G(g! r) (g(g! r), resp.) intuitively
asserts that whenever g holds (during the traversal of the cur-
rent packet, resp.) r should also hold. A network policy is a
closed temporal formula, universally quantified at the outer-
most layer. A network N satisfies a policy P, denoted N |= P
iff for all execution E starting from an initial network state of
N, E satisfies P. Formally definitions are in Appendix B.

The predicates here are customized to one-packet model in
that a packet field name uniquely identifies the packet in the
network state. By prefixing each packet field with a packet ID
(i.e., id. f), we can express (equivalent) policies for networks
with packet interleaving.
An example. We show the specification of the dynamic ser-
vice chaining policy in §2. More examples can be found in §7.
For space constraint, we consider a sub-policy of the dynamic
service chaining policy: if a host is detected suspicious by
Light IPS then all of its future packets should be directed to
Heavy IPS. Suppose Light IPS keeps an internal state table
named susp which counts bad connection numbers from each
host, and a host is suspicious when the count is larger than
10. The top-level structure of the policy is 8x.G(g(x)! r(x)),
which specifies that for all host x whenever g(x) holds r(x)
should also hold. Here, g(x) = (src= x^ susp[x]> 10) spec-
ifies that the susp count of x is larger than 10 and the current
packet is from x; r(x) specifies that whenever a packet is sent
from x, it will eventually reach H (i.e. the location of Heavy
IPS) before being dropped or exiting the network. We can
specify this policy as follows.

8x 2 Dept. G(src= x^ susp[x]> 10!
G(src= x! f(loc= H)))

Model equivalence. We write N |=• P to denote that a net-
work N satisfies policy P in the packet interleaving model; we
use N |=one P to denote that N satisfies P in the one-packet
model. A policy Pone specified for the one-packet model can
be translated to a policy for the packet-interleaving model,
denoted P•. For example, the translated isolation polity in
Appendix F is 8id.G(id.loc = A! ((id.loc 6= B)U(id.loc =
Drop_ id.loc = Exit)). We prove the following theorem stat-
ing that checking a number of policies is not affected by
ignoring the packet interleaving (Appendix D).

Corollary 2 For all order-preserving networks N, N |=• P•

if and only if N |=one Pone, if P is the isolation, tag preserva-
tion, or tag-based isolation policy.

6 NetSMC Checking Algorithms

We view the verification of policies on a network as a model
checking problem. Our choice of the policy language in the

S := {s|s not satisfies p}

SPre :=COMPUTEPREIMAGE(N, S)

SPre ✓ S? S := S[SPre

return S
yes

no

Figure 5: Generic SMC algorithm workflow to check G p

restricted LTL form allows us to use the more efficient CTL
model checking algorithm. In addition, to handle the large
state space we adopt the symbolic model checking (SMC)
framework for CTL. In this section, we first provide some
background of SMC to highlight key challenges in implement-
ing an SMC tool, and then discuss our approaches to address
those challenges.

6.1 Background on SMC

Symbolic model checking is a verification technique that has
been proven to be effective and efficient in many domains [14,
35]. Given a system model N and a policy P to be checked, a
generic SMC framework computes the set of system states S
that violates P (i.e. the set of states satisfying ¬P). Then the
algorithm checks whether an initial state is in the set S. If so,
a violation of the policy P is found; otherwise, P is verified.

To compute the set of states S satisfying ¬P, an SMC algo-
rithm computes the set of states that satisfies each sub-formula
of ¬P bottom-up, following the structure of ¬P. As an exam-
ple, Figure 5 shows the generic SMC algorithm to compute
the set of states that violates G p, i.e., from those states there
exists an execution trace of the system that violates p.

Initially, the algorithm computes the set of states violating
the sub-formula p. Then it repeatedly adds states that can
reach some state violating p. In each iteration of the loop, the
algorithm computes the set of states SPre that can transition to
a state in S in one step (i.e., SPre = {s|9s0 2 S.s! s0}, called
the pre-image of S). The algorithm converges when every
state in SPre is contained in S, and then returns the desired set.

To enable efficient SMC, we need a succinct symbolic en-
coding for a large set of states (e.g. S and SPre) while support-
ing efficient computation over them as shown in pre-image
computation and subset checking. In the following, we present
key components of our algorithm to address these challenges.

6.2 Symbolic Network States in EFO

To illustrate the intuition of our symbolic encodings, consider
the firewall example in Fig. 3, where we are interested in
checking whether packets from external networks can reach
the internal network. Based on the firewall model, a packet
from the outside is only allowed to go through if the tests
in the second rule return true. The tests return true for all

network states where an entry with value 1 exists in the table
Trust. That is, the network states of interest can be encoded
as 9x,y.Trust[x,y] = 1. Thanks to our policy specification,
any set of states generated in the checking of (violation of) a
policy can be encoded in such an existential form (see details
later in this section). Therefore, we can use the following
fragment of existential first-order logic (EFO) as our symbolic
state encoding. The existential quantifications are only at the
outermost level (we thus omit quantifiers) and we operate on
the inner formulas without quantifiers.

Atomic Predicates a ::= x 2 D | x 6= y
| loc = x | f = x | T [�!xi] = y

Clauses b ::=
V

i ai
State Formulas f ::=

W
i bi

A set of network states is encoded using a state formula, writ-
ten f, in a DNF form. We say that a network state (lp,D) is
encoded by f, if there exists a substitution of concrete values
for all free variables in f such that (lp,D) satisfies f under
that substitution. We write Sat(f) to denote the set of net-
work states encoded by f. The atomic predicates, a, include
membership predicate, inequality check, and test for fields,
location and state tables. For the firewall example above, the
state formula f is (Trust[x,y] = 1), encoding all network states
where the firewall has an entry in Trust with value 1. As we
show in the following, the encoding of EFO enables efficient
computation of key components in SMC.

6.3 Computing Pre-Image

Next, we describe how to compute the state formula of the
pre-image of a symbolic state S, denoted Pre(S), (i.e. COM-
PUTEPREIMAGE). That is, given a state formula f, we need
to compute the state formula fPre, such that Sat(fPre) =
Pre(Sat(f)). We develop an algorithm that directly generates
fPre by transforming f based on the network model.
Notation. Before explaining the algorithm, we define some
auxiliary notations. Without loss of generality, we assume that
for each clause b in f, each field f appears at most once (any
formula can be rewritten to this form). We write var(f ,b)
to denote the variable being compared to f in b. That is,
var(f ,b) = x if f = x appears in b. If f does not appear in b,
var(f ,b) returns a fresh variable. We write b\a to denote the
formula resulted from removing the clause a from b.
Top-level algorithm. Our pre-image computing algorithm
(shown in Alg. 1) considers all three types of network transi-
tions (c.f. §4). The top-level function COMPUTEPREIMAGE
takes as inputs the network model and the state formula f and
returns fPre. The loop (lines 2-5) goes over every rule in every
network function to generate a pre-image that could reach
f using that rule. Function COMPUTEPRERULE accounts
for the network transitions under NF processing; Function
COMPUTELINK on line 6 computes the pre-image for link
traversal; Function COMPUTELASTPKT on line 7 computes
the pre-image when f represents the state where a new packet

Algorithm 1 Computing the pre-image of a state formula.
1: function COMPUTEPREIMAGE(N, f)
2: for all NF in the network do

3: (L,
�!
T ,R) NF

4: fNF :=
W

l2L,r2R
W

b2fr((loc= l)^b)
5: where fr := COMPUTEPRERULE(r, f)
6: flink := COMPUTELINK(f)
7: fpkt := COMPUTELASTPKT(f)
8: return

W
NF fNF_fpkt _flink

9: function COMPUTEPRERULE(r, f)
10: t) c r
11: fc:= COMPUTEPRECMD(c, f)
12: return

W
b2fc(

V
at2t trans(at)^b)

13: function COMPUTEPRECMD(c, f)
14: match c with

15: | a) return COMPUTEPREACTION(a, f)
16: | u) return COMPUTEPREUPDATE(u, f)
17: | c1,c2) f2 := COMPUTEPRECMD(c2, f)
18: return COMPUTEPRECMD(c1, f2)
19: function COMPUTELASTPKT(f)
20: f0:=False
21: for all b in f do

22: b0 := b\loc=var(loc,b)
23: for all f = x in b do

24: b0 := b0\ f=x

25: for all ingress location l do

26: b1 := (var(loc,b) = l)^b0 ^ (loc= Drop)
27: b2 := (var(loc,b) = l)^b0 ^ (loc= Exit)
28: f0 := f0 _b1_b2

29: return f0

enters the network. The algorithm returns the disjunction of
all formulas for each possible transition. Note that the re-
turned state formula is still in EFO, which enables us to only
consider EFOs for state containment. Next, we describe two
key functions. We omit the third as it is similar.
Packet transitions. Function COMPUTELASTPKT computes
the pre-image when a new packet comes to the network. It
computes the pre-image of each clause b in f, and returns
the disjunction of all computed pre-images. If a network state
((l0,pkt0),D) is the result of the transition, then the state before
this transition has the same state tables but a different packet.
Therefore, all constraints on packet fields and locations are
removed from b (line 22-24) as they do not apply to the
packet in the pre-image. Furthermore, the location of the
packet in the pre-image must be either Drop or Exit, and l0
must be an ingress location. Thus, constraints loc = Drop,
loc = Exit are added, the same for var(loc,b) = l for each
ingress location l (line 26, 27).
NF transitions. The function COMPUTEPRERULE iteratively
computes the pre-image fc under the actions and updates in r

Algorithm 2 Sub-functions of computing the pre-image.
1: function COMPUTEPREACTION(a, f)
2: match a with

3: | fwd(e)) (ge,xe) := F(e)
4: return

W
b2f b\loc^ge^ (var(loc,b) = xe)

5: | drop)
6: return

W
b2f b\loc^(var(loc,b) = Drop)

7: | modify(f , e)) (ge,xe) := F(e)
8: return

W
b2f b\ f ^ge^ (var(f ,b) = xe)

9: function COMPUTEPREUPDATE(u, f)
10: T[�!ei]:=e u
11: (gei ,xei) := F(ei) for all ei
12: (ge,xe) := F(e)
13: g :=

V
i gei ^ge

14: for all b j in f do

15: f j := COMPUTECLS(u, bi, [(gei ,xei)], (ge,xe))
16: return

W
i
W

b2fi g^b
17: function COMPUTECLS(u, b, [(gei ,xei)], (ge,xe))
18: let tList be the list of state tests T (�!x) = y in b
19: match tList with

20: | nil) return b
21: | h::hs) f0 = COMPUTECLS(u, b\h)
22: T[�!ei]:=e u, (T (�!x) = y) h
23: b0 := (�!x =�!xei)^ (y = xe)
24: b j := h^ (x j 6= xe j) for j = 1, ..,m
25: return

W
b02f0((b0^b0)_

W
j(b j ^b0))

(line 9 in Alg. 1). The pre-image under rule r is obtained by
adding constraints of the tests t in r using the helper function
trans (not shown due to space) which translates each atomic
test into a clause. Key sub-routines are summarized in Alg. 2.

Function COMPUTEPREACTION computes the pre-image
of an action a. Consider the case where a is modify(f , e).
The semantics of modify require the value of field f be mod-
ified to the value of e. Thus, the algorithm first considers
the value returned by the expression e using the helper func-
tion F , which returns a clause ge together with a variable
xe given expression e. The intuitive meaning is that if ge
is satisfied, then the value of e is equal to xe (F’s formal
definitions is omitted). As an example for e = (T [src,dst]),
ge =(src= y1^dst= y2^T [y1,y2] = y3), and xe = y3. Then
the algorithm adds the constraint ge and var(f ,b) = xe. Fur-
thermore, since the value for f is modified, the constraints
associated with f from b can be removed as they do not apply
to the pre-image.

Function COMPUTEPREUPDATE computes the pre-image
under an update T [�!ei] := e; inc and dec are similar. The
function computes the pre-images for each clause b using
the sub-procedure COMPUTECLS, and returns the union of
them. Function COMPUTECLS recursively enumerates all
possible effects of u to b to compute its pre-image. More

concretely, the function considers two cases that u may impact
a constraint T (�!x) = y in b: 1) T (�!x) = y is updated by u,
and 2) T (�!x) = y is not updated by u. In the first case, it must
be the cases that �!x = �!xei and y = xe, where xei denotes the
value read from ei (b0 shown in line 23). In the second case,
xi 6= xei for at least one xi (line 24). We obtain the pre-image
of b as a disjunction of the two case shown in line 25.

6.4 Containment of Network States

As shown in Figure 5, we need an efficient approach to check
the containment of two sets of network states. Given two state
formulas f1 and f2, we need to check if Sat(f1) ✓ Sat(f2).
This is equivalent to checking 9�!x .f1) 9�!y .f2, where �!x
(�!y , resp.) denotes all free variables in f1 (f2, resp.). While
this can be solved using a general-purpose SMT solver, as we
show in the evaluation section, this is quite inefficient.

Instead, we observe that the state containment problem
of EFO is a variant of the query containment problem well-
studied in database theory [11]. In short, query containment
aims to determine if the result of a database query q1 is con-
tained in that of q2 for all database instances I. To make the
connection clearer, consider the state formula f1 = (src =
x^dst= y^Trust[y,x] = 1). This formula can be viewed as
the following (conjunctive) query on a database with three
tables: src, dst and Trust. q1(x,y) :�src(x),dst(y),Trust(y,x)

Each concrete network state can be viewed as a database
instance with the schema defined by packet fields and state
tables. Furthermore, each state formula f is a union of con-
junctive queries, where each clause b in f is a conjunctive
query with inequalities between variables.

In database theory, to determine whether a conjunctive
query q1 is contained in another conjunctive query q2, it is
equivalent to checking whether there is a homomorphism from
q2 to q1, i.e. a function h that maps variables in q2 to variables
and constants in q1, such that for all R(x1,x2, ..) in q2, there
is an R(h(x1),h(x2), ..) in q1 [11].

However, there are still a few challenges in applying the
algorithm to our problem. First, as shown in [29], when
there are inequalities, there may not exist a homomorphism
even when f1 is contained in f2. For example, f1 = (x1 6=
x3^T [x1,x2] = 1^T [x2,x3] = 1) is contained in f2 = (y1 6=
y2 ^ T [y1,y2] = 1), but there is not homomorphism from
f2 to f1. Second, in query containment problem a variable
ranges over a continuous domain (e.g. rational numbers) [29],
while in network verification a variable can only take dis-
crete values such as IP addresses. As a result again, there may
not exist a homomorphism, even if a set of states encoded
in f1 is contained in the set of states encoded in f2, E.g.,
f1 = (x 2 {0}^ y 2 {0}^T1[x] = 1^T1[y] = 0) is contained
in f2 = (T2[z] = 0) since no states are encoded by f1, but no
homomorphism exists.

To address the first challenge, we break each clause in f1
into atomic clauses, which has been shown to handle inequal-
ities [29]. We call a clause b an atomic clause w.r.t. a state

formula f2, if all variables in b are distinct, and for all vari-
ables x in b and y in f2, the domain of x is either contained
in or disjointed with the domain of y. For the first example
above, f1 can be break into the following three atomic clauses,
namely, b1 = (x1 6= x2 ^ x2 6= x3 ^ x1 6= x3 ^T [x1,x2] = 1^
T [x2,x3] = 1), b2 = (x1 6= x2^T [x1,x2] = 1^T [x2,x2] = 1),
and b3 = (x1 6= x3 ^ T [x1,x1] = 1^ T [x1,x3] = 1). We see
that there is a homomorphism from f2 to b3. For the sec-
ond challenge, we check for emptiness of clauses, and show
that given a state formula f2 and an atomic clause b w.r.t.
f2, Sat(b)✓ Sat(f2) if and only if there is a homomorphism
from some b0 2 f2 to b, or Sat(b) is empty. Now we can ver-
ify the containment in the second example above. We obtain
our algorithm of checking containment by putting these two
pieces together (Alg. 3).

Algorithm 3 Checking containment
1: function CHECKCMT(f1, f2)
2: for all b in f1 do

3: let [b0, ..,bk] be the set of atomic clauses w.r.t. f2
obtained from b

4: for all i = 0 to k do

5: if ISEMPTY(bi) then continue

6: if there is no homomorphism from b0 to bi for
all b0 2 f2 then

7: return False
8: return True

We prove the correctness of our algorithm w.r.t. the one-
packet semantics: if NetSMC says policy verified, then all
possible executions of the network satisfy the policy; and if
NetSMC says policy violated, then there exists an execution
that violates the policy. Formally:

Theorem 3 (Correctness) Given a stateful network N and
a policy P, NetSMC returns True if and only if N satisfies the
policy P under the one-packet model.

The above theorem uses our one-packet semantics. Com-
bined with theorems like Lemma 1 , the verification results of
our tool on a large set of practical scenarios are correct w.r.t.
the general packet interleaving semantic model as well.

7 Evaluation

We implement a prototype tool NetSMC in Python based on
the algorithms above. We evaluate NetSMC and show that:
• NetSMC can scale to large-size networks and is orders of

magnitude more efficient than existing approaches (§7.1);
• Our custom algorithm on containment checking in

NetSMC is effective and is 42 times more efficient than
naive approaches based on general-purpose solvers (§7.1);

• NetSMC can check a wide range of network policies in
various practical network scenarios, which can not be easily
supported in alternative tools (§7.2).

0 100 200 300 400 500 600 700 800
Number of Hosts

R
un

tim
e

(s
)

VMN
NetSMC

(a) Stateful firewall

0 100 200 300 400 500 600 700 800
Number of Hosts

R
un

tim
e

(s
)

VMN
NetSMC

(b) Load balancer

0 100 200 300 400 500 600 700 800
Number of Hosts

R
un

tim
e

(s
)

VMN
NetSMC

(c) Content cache
Figure 6: Scalability with NF complexity

0 20 40 60 80 100 120 140 160
Number of Stateful NFs

R
un

tim
e

(s
)

VMN
NetSMC/Z3
NetSMC

(a) Fattree

0 50 100 150 200 250 300 350
Number of Stateful NFs

R
un

tim
e

(s
)

VMN
NetSMC/Z3
NetSMC

(b) Ai3

0 50 100 150 200 250 300 350 400
Number of Stateful NFs

R
un

tim
e

(s
)

VMN
NetSMC/Z3
NetSMC

(c) Sprint
Figure 7: Scalability with network complexity.

Evaluation setup: We ran NetSMC on a server with 20 cores
(2.8GHz) and 128GB RAM. We first evaluate NetSMC’s scal-
ability by varying the complexity of NFs, topologies, and
policies (§7.1). For comparison, we use the open-source im-
plementation of VMN [41], a state-of-the-art stateful network
verification tool. We also demonstrate the effectiveness and
expressiveness in a range of network scenarios using real
NFs based on emulation in Cloudlab [43] (§7.2). We use pf-
Sense [3] as stateful firewalls and NATs, HAProxy [2] as load
balancers. For the case study that required dynamic rule in-
stallation (e.g., path pinning), we used the Mininet-based em-
ulation with POX [34] as the SDN controller. We ensure high-
fidelity of NetSMC NF models using Alembic [38], which
can automatically synthesize NF models from NF implemen-
tations. For NFs that are not readily available from Alembic
(e.g., POX programs), we manually translate NF programs
into equivalent NetSMC models.

7.1 Scalability

NF complexity. Stateful NFs may implement complex func-
tionalities using multiple configuration rules. To evaluate the
scalability of NetSMC w.r.t. the complexity of NFs, we con-
sider three types of stateful NFs: (1) a stateful firewall, (2) a
load balancer, and (3) a content cache. To create NF config-
urations with varying complexity, we connect n hosts and n
servers to each NF, and for each pair of hosts and servers, we
add a rule to the NF. For example, for the stateful firewall, we
add rules to limit access from servers to hosts.

Fig. 6 shows the runtime on verifying isolation of a server
to a host. NetSMC is orders of magnitude faster than VMN on
all tested NFs. Particularly, for the stateful firewall experiment,
VMN takes 1477 seconds to verify the policy with 300 hosts,
while NetSMC only takes 51 seconds (28⇥). In the load
balancer experiment, VMN takes 2693 seconds with 400 hosts
while NetSMC only takes 0.03 seconds. We observe similar
speedup in the cache experiment.

Topology complexity. We consider the fattree [4] topology
and Ai3 and Sprint, from Topology Zoo [30]. For fattree, we
create a range of topologies by varying the number of ports
per switch. For Ai3 and Sprint, we systematically extend
each switch with multiple switches to generate topologies
with varying size. For each topology with n switches, we add
additional 2n/3 stateful NFs where each switch is attached
to at most one stateful NF. We use each tool to verify the
isolation policy of two hosts in each network. Since VMN
critically relies on the slicing technique, we slice the flow-
space of all tested networks before applying both tools.

Fig. 7 shows the runtime of verification tools w.r.t. the num-
ber of stateful NFs in the network. We make the following ob-
servations. First, NetSMC is at least two orders of magnitude
faster than VMN. Specifically, VMN spends 1072 seconds
on the fattree network with 8 stateful NFs, while NetSMC
only uses 5 seconds (200⇥ faster). Furthermore, VMN cannot
scale to larger networks within 12 hours, while NetSMC can
successfully verify the desired policy for networks with 147
stateful NFs in half an hour. For Ai3 and Sprint network, we
see similar performance speedup. For example, VMN uses
2011 seconds on the Ai3 network with 34 stateful NFs while
NetSMC only uses 11 seconds (175⇥).
Effectiveness of customized algorithm. To evaluate the ben-
efit of our custom algorithms, we consider an alternative ap-
proach by using Z3 to solve the containment problem of
network states in NetSMC (shown as NetSMC/Z3 in Fig. 7).
We observe that our custom algorithm on containment check-
ing significantly improves the scalability. When using Z3 to
check containment, the tool uses 1844 seconds to verify the
policy for the fattree network with 48 stateful NFs, which is
16⇥ slower than our custom approach. On Ai3 and Sprint, we
measured 42⇥ and 25⇥ speedup respectively.
Policy complexity. To evaluate the scalability of NetSMC
w.r.t. the complexity of the policy to be checked, we use
NetSMC to check a range of service chaining policies with

varied number of NFs on the chain. Since VMN’s implemen-
tation does not support this type of policy, we consider the
variant of NetSMC that uses Z3 for containment checking for
comparison. Fig. 8 plots the results. First, we observe that
NetSMC can scale up to reasonably large policies. Particu-
larly, NetSMC can check the service chaining policy with 20
NFs in 20 minutes. Second, we observe again that our custom
algorithm on containment checking significantly improves
the performance: on 12 NFs, our custom model checking
algorithm is 23⇥ faster than the Z3 variant.

0 5 10 15 20
Number of NFs

R
un

tim
e

(s
)

NetSMC/Z3
NetSMC

Figure 8: Scalability with policy complexity.
Comparison with general-purpose model checkers. To
evaluate the benefit of our custom symbolic model check-
ing algorithm, we further compare NetSMC with a classi-
cal BDD-based symbolic model checker NuSMV [12] and
a SMT-based model checker Cubicle [15]. Since NuSMV
cannot effectively model the state tables using small BDD
structures, we model state tables with fixed sizes in NuSMV.
We repeat the stateful firewall experiment as described above.
With table size 16, NuSMV takes 1163 seconds on verify the
reachability policy, while NetSMC only uses 0.015 seconds
without size constraint on the state tables. NetSMC is 750X
faster than Cubicle. The result confirms that our encoding of
symbolic states and custom algorithms for stateful networks
are more efficient than general-purpose encodings and tools.

7.2 Effectiveness and Expressiveness

Red-blue team exercise: To validate the effectiveness of
NetSMC, we conduct a red-blue team exercise in a range
of network scenarios using real NFs. In each scenario, the
red team (Author 2 and Author 3) set up a network with
intended policies in CloudLab and then delele/modify NF
rules (which are kept secret from the blue team) to introduce
misconfiguration. The blue team (Author 1) uses NetSMC to
check intended policies on the network, so as to identify and
fix the misconfiguration.
• Blocking hosts behind NAT [19]: The red team sets up
a network with two subnetworks (N1 and N2) and two NFs
using pfSense with the intended policy to block a host h1 in
N1 from reaching another host h2 in N2. However, using
NetSMC, the blue team identifies a violation that packets
from h1 can still reach h2. The root cause is that the red team
mistakenly adds a NAT rule in the first NF such that h1’s
address is translated and bypassing the firewall rule installed
on the second NF blocking h1’s address. The blue team fixes
this misconfiguration by adding the firewall rule on the first

Time
Policy & network scenario Verification Bug find
Conditional reach.: A stateful firewall
with ACL rules.

0.06s 0.03s

Data isol. [41]: A content cache with
a client and a server.

2.23s 0.0007s

Pipeline [41]: A stateful firewall with
two hosts and servers.

0.001s 0.0006s

Flow affinity: As described in Fig. 1b. 0.19s 0.04s
Dynamic service chaining: As de-
scribed in Fig. 1c.

0.1s 0.008s

Reachability: Two cascaded NATs [1]
(Outside can reach the inside server).

0.001s 0.005s

Tag-based isol.: Network as in Fig. 1c.
(A packet labeled by a specific tag
should not pass a specific MB).

0.04s 0.94s

Tag preservation: Network as in
Fig. 1c. (A packet’s tag labeled by
a MB should be not be modified).

0.03s 0.98s

NAT consistency: If a NAT modifies
a packet’s port then all future packets
in the flow should have the same port.

0.09s 0.078s

Table 2: Example policies supported by NetSMC.

NF and NetSMC verifies the policy.
• Opposite rules in firewalls: The red team sets up a network
with two subnetworks (N1 and N2) and two stateful firewalls
in each subnetwork (fw1 in N1 and fw2 in N2) to protect the
subnetworks. The intended policy is to allow N1’s packet to
reach N2. The blue team uses NetSMC to check this policy
and find a violation that packets from N1 is allowed by fw1
but denied at fw2. The blue team fixes the misconfiguration
by removing the rule blocking N1 on fw2. Using the new
model after the fix, NetSMC successfully verifies the policy.
• Consistent load balancing: The red team configures
HAProxy to enforce the policy that packets from the same
host should always be load balanced to the same server. Us-
ing NetSMC, the blue team finds a violation where one flow
is sent to server 1 while another is sent to server 2. Checking
the configuration, the blue team identifies that HAProxy is
misconfigured in the “round robin” mode thus violating the
policy. The blue team then reconfigures the LB in the “Source”
mode. NetSMC successfully verifies the desired policy.
• Path pinning: The red team sets up the network scenario
in Fig. 1d with two hosts for the Department and Internet.
To enforce the path pinning policy, the red team uses a POX
controller to program the forwarding rules on s1. The blue
team uses NetSMC to check the path pinning policy, which
finds a violation where the first packet from Department is
sent to FW1 but the return packet is sent to FW2. The root
cause is that the controller mistakenly installed a wrong rule
on the switch for the return packets. The blue team fixes the
problem by using consistent rules on the controller. Then,
NetSMC then successfully verifies the policy.
Policy expressiveness. We show a wide range of policies that

can be specified and checked using NetSMC, summarized in
Table 2. For each case, we simulate networks in NetSMC
as described in the table and introduce misconfiguration by
deleting/modifying rules in NFs. NetSMC identifies the mis-
configuration in all cases and can verify all policies after
fixing the bugs. We report the time of verifying the policy or
finding bugs. We can see that NetSMC significantly expands
the scope of efficiently verifiable network policies. Today’s
stateless verification tools cannot model any network sce-
narios considered in the table, and existing stateful network
verification tools [5, 41] cannot specify some of the policies
(summarized in Appendix D).

8 Limitation and Discussion

One-packet model: NetSMC is built on top of the one-packet
model, and thus may not find violations caused by packet
interleaving. For instance, in the second example of the red-
blue team exercise, if fw1 drops all packets from N1 once
receiving packets from N2, while fw2 allows packets from N1
to reach N2 after seeing packets from N2 to N1, then NetSMC
declares packets from N1 cannot reach N2. However, the
following violating trace is missed by the one-packet model:
first, a packet p1 from N1 passes fw1, then fw2 processes
packet p2 from N2 to N1. Next, fw2 allows p1 to reach N2.
NF Model: NetSMC only supports header matching, state ta-
ble checking, and simple counting; more complex operations,
such as computing average values, are not supported.
Policy: Our policy language cannot express policies need-
ing arbitrary quantification, nesting of temporal operators, or
generic until path formulas. For instance, the policy that “at
some time in the future, a packet from h1 to h2 is delivered”,
F(loc = h1! f(loc = h2)), is beyond our scope.
Network failures: Currently NetSMC does not model net-
work failures directly and can only check policies in the pres-
ence of failure by enumerating each failure scenario and run
NetSMC in each case, which may not be efficient.

9 Related Work

Our stateful network model is motivated by existing work on
network modeling and programming languages [6, 7, 21, 28,
36, 37, 52]. Our NF model shares key characteristics with the
models in NetEgg [52] and SNAP [7].

There is a rich body of work for testing and verifying for-
warding behaviors in stateless networks [23, 25–27, 31, 32,
46, 49, 50, 53, 53, 54]. While those work can efficiently check
a number of policies such as reachability and loop freedom,
it is nontrivial to extend those work to support stateful data
planes, which are the target of our work.

For example, Header Space Analysis (HSA) [26] models
each packet as a point in the high-dimension space of packet
headers and each switch as a transfer function from a subspace
into another. Based on symbolic reasoning of the transfer func-
tions, HSA can efficiently verify policies such as reachability
and loop freedom. Adapting HSA for stateful network veri-

fication would need to introduce some notion of state to the
transfer function, which would require a complete redesign
of the verification algorithm.

Veriflow [27] uses an alternative “trie” like encoding and
focuses on checking policies incrementally when network
configurations change. Whenever a rule change occurs on a
switch, Veriflow computes the packet space that is influenced
by the change, and only applies verification to the delta part.
Again, adding state to the trie structure and its associated
algorithms is non-trivial.

NoD [31] is based on a generic Datalog framework to
check reachability policies, where both networks and policies
are encoded in Datalog. NoD can potentially be extended to
model stateful network functions. However, Datalog is limited
in its expressive power in terms of network policies; temporal
properties such as flow affinity and dynamic service chaining
cannot be easily specified. It is also unclear if such a stateful
extension (if exists) scales.

Our work is closely related to recent efforts on stateful data
plane testing and verification. Buzz [18] and SymNet [45]
generate test cases for stateful networks based on symbolic
execution. VMN [41] verifies isolation properties based on
SMT encodings. Alpernas et al. present abstractions to check
isolation properties [5]. Those projects, except VMN, only
support a subset of our policies. We cannot express generic
policies involving past operations; while VMN cannot ex-
press some policies NetSMC supports. Our approach is also
different in the network model and we build a highly custom
symbolic model checker to improve the efficiency.

There are several complementary proposals on verify-
ing control planes: Batfish [20], ERA [17], ARC [22] and
Minesweeper [9] analyze routing control planes. NICE [10],
VeriCon [8], SDNRacer [16], FlowLog [39] and Kuai [33]
target SDN controllers. Work on verifying firewalls [24, 40,
51, 55] can handle statefulness in firewalls, but it is not clear
whether those techniques can generalize to handle more ex-
pressive network functions and policies.

10 Conclusions

This paper explores a different design space in building effi-
cient verification tools for stateful networks. We identify key
domain-specific insights to define a compact model of stateful
networks, customize policy specifications, and develop effi-
cient custom symbolic model checking algorithms for verifica-
tion. We implement NetSMC and show that it achieves orders
of magnitude speedup compared to alternative approaches,
while supporting a wide range of policies.

Acknowledgements: This work is supported in part by
the National Science Foundation via grant CNS1513961 and
CNS1552481, and the CONIX Research Center, one of six
centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

References

[1] What is Double NAT? https://kb.netgear.com/
30186/What-is-Double-NAT.

[2] haproxy. https://www.haproxy.org/.

[3] pfSense. https://www.pfsense.org/.

[4] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM
’08, 2008.

[5] Kalev Alpernas, Roman Manevich, Aurojit Panda,
Mooly Sagiv, Scott Shenker, Sharon Shoham, and Yaron
Velner. Abstract Interpretation of Stateful Networks.
arXiv preprint arXiv:1708.05904, 2017.

[6] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-
Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and
David Walker. Netkat: Semantic foundations for
networks. In Proceedings of the 41st annual ACM
SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL), 2014.

[7] Mina Tahmasbi Arashloo, Yaron Koral, Michael Green-
berg, Jennifer Rexford, and David Walker. Snap: Stateful
network-wide abstractions for packet processing. In Pro-
ceedings of the 2016 Conference on ACM SIGCOMM
2016 Conference, SIGCOMM ’16, 2016.

[8] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar
Itzhaky, Aleksandr Karbyshev, Mooly Sagiv, Michael
Schapira, and Asaf Valadarsky. Vericon: towards veri-
fying controller programs in software-defined networks.
In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
page 31. ACM, 2014.

[9] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A General Approach to Network Configuration
Verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, 2017.

[10] Marco Canini, Daniele Venzano, Peter Peresini, Dejan
Kostic, Jennifer Rexford, et al. A nice way to test open-
flow applications. In 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2012.

[11] Ashok K Chandra and Philip M Merlin. Optimal Im-
plementation of Conjunctive Queries in Relational Data
bases. In Proceedings of the ninth annual ACM sympo-
sium on Theory of computing. ACM, 1977.

[12] Alessandro Cimatti, Edmund Clarke, Enrico
Giunchiglia, Fausto Giunchiglia, Marco Pistore,
Marco Roveri, Roberto Sebastiani, and Armando
Tacchella. Nusmv 2: An opensource tool for symbolic
model checking. In Proceedings of International
Conference on Computer Aided Verification (CAV),
2002.

[13] Edmund M. Clarke and E. Allen Emerson. Design and
synthesis of synchronization skeletons using branching-
time temporal logic. In Logic of Programs, Workshop,
pages 52–71, Berlin, Heidelberg, 1982. Springer-Verlag.

[14] Edmund M Clarke, Orna Grumberg, and Doron Peled.
Model checking. MIT press, 1999.

[15] Sylvain Conchon, Amit Goel, Sava Krstić, Alain Meb-
sout, and Fatiha Zaïdi. Cubicle: A Parallel SMT-based
Model Checker for Parameterized Systems . In Proceed-
gins of International Conference on Computer-Aided
Verification (CAV), 2012.

[16] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Lau-
rent Vanbever, and Martin Vechev. SDNRacer: concur-
rency analysis for software-defined networks. In ACM
SIGPLAN Notices, volume 51, pages 402–415. ACM,
2016.

[17] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Maha-
jan, Todd Millstein, Vyas Sekar, and George Varghese.
Efficient Network Reachability Analysis Using a Suc-
cinct Control Plane Representation. In Proceedings
of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016.

[18] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar
Chaki, and Vyas Sekar. Buzz: Testing context-
dependent policies in stateful networks. In Proceedings
of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), 2016.

[19] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar,
Minlan Yu, and Jeffrey C. Mogul. Enforcing network-
wide policies in the presence of dynamic middlebox ac-
tions using flowtags. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI’14, 2014.

[20] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd D
Millstein. A General Approach to Network Config-
uration Analysis. In Proceedings of Symposium on
Networked Systems Design and Implementation (NSDI,
2015.

[21] Nate Foster, Rob Harrison, Michael J Freedman, Christo-
pher Monsanto, Jennifer Rexford, Alec Story, and David

Walker. Frenetic: A network programming language.
In ACM SIGPLAN Notices, volume 46, pages 279–291.
ACM, 2011.

[22] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast Control Plane Analysis
Using an Abstract Representation. In Proceedings of
the 2016 ACM SIGCOMM Conference, 2016.

[23] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-
net: Real-time Network Verification Using Atoms. In
Proceedings of the 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17),
2017.

[24] Alan Jeffrey and Taghrid Samak. Model checking fire-
wall policy configurations. In Proceedings of IEEE
International Symposium on Policies for Distributed
Systems and Networks (POLICY), 2009.

[25] Peyman Kazemian, Michael Chang, Hongyi Zeng,
George Varghese, Nick McKeown, and Scott Whyte.
Real Time Network Policy Checking Using Header
Space Analysis. In Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), 2013.

[26] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
12), 2012.

[27] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P. Brighten Godfrey. VeriFlow: Verifying
Network-Wide Invariants in Real Time. In Proceed-
ings of 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), 2013.

[28] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad
Shahbaz, Nick Feamster, and Russ Clark. Kinetic: Veri-
fiable dynamic network control. In Proceedings of 12th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), 2015.

[29] Anthony Klug. On conjunctive queries containing in-
equalities. Journal of the ACM (JACM), 35(1):146–160,
1988.

[30] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The internet topology zoo. Selected Ar-
eas in Communications, IEEE Journal on, 29(9):1765
–1775, october 2011.

[31] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid,
Karthick Jayaraman, and George Varghese. Checking
Beliefs in Dynamic Networks. In Proceedings of 12th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), 2015.

[32] Haohui Mai, Ahmed Khurshid, Rachit Agarwal,
Matthew Caesar, P. Brighten Godfrey, and Samuel Tal-
madge King. Debugging the Data Plane with
Anteater. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, 2011.

[33] Rupak Majumdar, Sai Deep Tetali, and Zilong Wang.
Kuai: A model checker for software-defined networks.
In Proceedgins of Formal Methods in Computer-Aided
Design (FMCAD), 2014.

[34] J Mccauley. Pox: A python-based openflow controller,
2014.

[35] Kenneth L McMillan. Symbolic Model Checking. In
Symbolic Model Checking, pages 25–60. Springer, 1993.

[36] Christopher Monsanto, Nate Foster, Rob Harrison, and
David Walker. A compiler and run-time system for net-
work programming languages. ACM SIGPLAN Notices,
47(1):217–230, 2012.

[37] Christopher Monsanto, Joshua Reich, Nate Foster, Jen-
nifer Rexford, David Walker, et al. Composing software
defined networks. In Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2013.

[38] Soo-Jin Moon, Jeffrey Helt, Yifei Yuan, Yves Bieri, Su-
jata Banerjee, Vyas Sekar, Wenfei Wu, Mihalis Yan-
nakakis, and Ying Zhang. Alembic: Automated model
inference for stateful network functions. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), 2019.

[39] Tim Nelson, Andrew D Ferguson, Michael JG Scheer,
and Shriram Krishnamurthi. Tierless programming and
reasoning for software-defined networks. Proceedings
of USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2014.

[40] Timothy Nelson, Christopher Barratt, Daniel J
Dougherty, Kathi Fisler, and Shriram Krishnamurthi.
The Margrave Tool for Firewall Analysis. In Proceed-
ings of the 24th International Conference on Large
Installation System Administration, LISA’10, 2010.

[41] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly
Sagiv, and Scott Shenker. Verifying Reachability in
Networks with Mutable Datapaths. In Proceedings of
13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), 2016.

[42] A. Pnueli. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer Science
(sfcs 1977), pages 46–57, Oct 1977.

[43] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. ; login:: the maga-
zine of USENIX & SAGE, 39(6):36–38, 2014.

[44] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krish-
namurthy, Sylvia Ratnasamy, and Vyas Sekar. Making
Middleboxes Someone else’s Problem: Network Pro-
cessing As a Cloud Service. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Com-
munication, SIGCOMM ’12, 2012.

[45] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. Symnet: Scalable symbolic execution for
modern networks. In Proceedings of the 2016 Confer-
ence on ACM SIGCOMM 2016 Conference, SIGCOMM
’16, 2016.

[46] Brendan Tschaen, Ying Zhang, Theo Benson, Sujata
Benerjee, JK Lee, and Joon-Myung Kang. SFC-Checker:
Checking the Correct Forwarding Behavior of Service
Function Chaining. In Proceedings of IEEE SDN-NFV
Conference, 2016.

[47] Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander
Rabinovich, Mooly Sagiv, Scott Shenker, and Sharon
Shoham. Some complexity results for stateful network
verification. In Proceedings of International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Systems, 2016.

[48] Wenfei Wu, Ying Zhang, and Sujata Banerjee. Auto-
matic synthesis of nf models by program analysis. In
Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, HotNets ’16, 2016.

[49] Geoffrey G Xie, Jibin Zhan, David A Maltz, Hui Zhang,
Albert Greenberg, Gisli Hjalmtysson, and Jennifer Rex-
ford. On Static Reachability Analysis of IP Networks.
In Proceedings of the 24th Annual Joint Conference
of the IEEE Computer and Communications Societies
(INFOCOM), 2015.

[50] H. Yang and S. S. Lam. Real-Time Verification of Net-
work Properties Using Atomic Predicates. IEEE/ACM
Transactions on Networking, 24(2):887–900, April
2016.

[51] Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah,
Zhendong Su, and Prasant Mohapatra. Fireman: A
toolkit for firewall modeling and analysis. In Proceed-
ings of the 2006 IEEE Symposium on Security and Pri-
vacy, SP ’06, 2006.

[52] Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau
Loo. Scenario-based Programming for SDN Policies. In

Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT),
CoNEXT ’15, 2015.

[53] Hongyi Zeng, Peyman Kazemian, George Varghese,
and Nick McKeown. Automatic test packet generation.
IEEE/ACM Trans. Netw., 22(2):554–566, April 2014.

[54] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar
Jeyakumar, Mickey Ju, Junda Liu, Nick McKeown, and
Amin Vahdat. Libra: Divide and Conquer to Verify For-
warding Tables in Huge Networks. In Proceedings of
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2014.

[55] Shuyuan Zhang, Abdulrahman Mahmoud, Sharad Malik,
and Sanjai Narain. Verification and synthesis of firewalls
using SAT and QBF. In Proceedings of 20th IEEE
International Conference on Network Protocols (ICNP),
2012.

Appendix

A Semantics of Stateful Network Model

The top-level transition rules are of the form: s! s0. We use
a number of auxiliary transitions summarized below:

JeKlp;D = v Expression evaluation
JatKlp;D = b Atomic test evaluation
JtKlp;D = b Test evaluation
c; lp;D! lp0;D0 Command evaluation
r; lp;D! lp0;D0 Rule evaluation
NF; lp;D! lp0;D0 NF evaluation

The semantic rules of our stateful network model are sum-
marized in Figure 10, Figure 11, and Figure 9.

s! s0

NET-TRANS-NF
NF = (L,_,_) l 2 L

lp = (l,pkt) NF;(l,pkt);D! (l0,pkt0);D0

(lp,D)! ((l0,pkt0),D0)

topo(l) = l0

((l,pkt),D)! ((l0,pkt),D)
NET-LINK

l = Drop/Exit l0 2 IngressLocs
((l,_),D)! ((l0,pkt),D)

NET-PACKET

Figure 9: One-packet semantics of network execution.

JeKlp;D = v

PICKFROM
v 2 D

JpickFrom(D)Klp;D = v

FIELD
lp = (_,pkt) pkt. f = v

J f Klp;D = v

STATE-TABLE
8i,JeiKlp;D = vi dT = D(T) dT (

�!vi) = v

JT [
���!
i = ei]Klp;D = v

JatKlp;D = b

TEST-LOC-TRUE
lp = (l,_)

Jloc= lKlp;D = True

TEST-LOC-FALSE
lp = (l0,_) l 6= l0

Jloc= lKlp;D = False

TEST-FIELD-TRUE
J f Klp,D 2 D

J f 2 DKlp;D = True

TEST-FIELD-FALSE
J f Klp,D 62 D

J f 2 DKlp;D = False

TEST-TABLE-TRUE

JT [
���!
i = ei]Klp;D = v

JT [
���!
i = ei] = vKlp;D = True

TEST-TABLE-FALSE

JT [
���!
i = ei]Klp;D = u u 6= v

JT [
���!
i = ei] = vKlp;D = False

TEST-NEG

J¬atKlp;D = ¬JatKlp;D

JtKlp;D = b

TEST-SEQUENCE-TRUE

Jt1Klp;D = True

Jt1, t2Klp;D = Jt2Klp;D

TEST-SEQUENCE-TRUE

Jt1Klp;D = False

Jt1, t2Klp;D = False

Figure 10: Semantics of network function.

B Policy Semantics

We define the semantics of open formulas r over a tuple
(V,E,N) (Figure 2), where V is the valuation function of all
free variables appearing in r, E is an infinite network execu-
tion trace (i.e., a sequence of network states), and N is the
network configuration. We write Ei to denote the i-th state in
E and E[i..] as the suffix of E starting at the i-th state, Simi-
lar to the semantic rules, we omit the network configuration
N for simplicity of presentation. (V,E) satisfying r, written
(V,E), |= r is formally defined below.

• (V,E) |= g iff E0 |= g in the standard way.
• (V,E) |= Gr iff (V,E[i..]) |= r for all i� 0
• (V,E) |= gr iff there is an i� 0 where Ei = (lp,D), s.t.

1) lp = (Drop,_) or lp = (Exit,_) and
2) for all j < i, (V,E[j..]) |= r.

c; lp;D! lp0;D0

UPDATE
JeKlp;D = v 8i,JeiKlp;D = vi

dT = D(T) d0T = dT [
�!vi 7! v] D0 = D[T 7! d0T]

T [
���!
i = ei]:=e; lp;D! lp;D0

INC
8i,JeiKlp;D = vi dT = D(T)

d0T = dT [
�!vi 7! dT (

�!vi)+ v] D0 = D[T 7! d0T]
inc(T [

���!
i = ei],v); lp;D! lp;D0

DEC
8i,JeiKlp;D = vi dT = D(T)

d0T = dT [
�!vi 7! dT (

�!vi)� v] D0 = D[T 7! d0T]
dec(T [

���!
i = ei],v); lp;D! lp;D0

ACTION-FORWARD
lp = (l,pkt) JeKlp;D = v lp0 = (v,pkt)

fwd(e); lp;D! lp0;D

ACTION-DROP

drop;(l,pkt);D! (Drop,pkt);D

ACTION-MODIFY
lp = (l,pkt) JeKlp;D = v pkt0 = pkt[f 7! v]

modify(f ,e); lp;D! (l,pkt0);D

SEQUENCE

c1; lp;D! lp0;D0

(c1;c2); lp;D! c2; lp0;D0

r; lp;D! lp0;D0

RULE
JtKlp;D = True c; lp;D! lp0;D0

t) c; lp;D! lp0;D0

NF; lp;D! lp0;D0

NF
l p = (l,pkt)

l 2 L r j 2 R r j; lp;D! lp0;D0

(L,
�!
Tj ,R); lp;D! lp0;D0

Figure 11: Semantics of network function (cont.).

• (V,E) |= Fg iff (V,E[i..]) |= g for some i
• (V,E) |= fg iff there is an i� 0 s.t. 1) Ei |= g and 2) for all

j < i where E[j] = (lp,D), lp 6= (Drop,_) and lp 6= (Exit,_)
• (V,E) |= Xr iff (V,E[1..]) |= r.

C One packet vs. packet interleaving model

We identify sufficient conditions under which our one packet
model is equivalent to the interleaving model considered
in [41] w.r.t. a set of policies. First, we give the formal se-
mantics of the interleaving model; then we show sufficient
conditions under which our one packet model is equivalent to
the interleaving model, followed by our proofs establishing
the equivalence.

Executions in packet interleaving network model: A net-
work state in the packet interleaving model is a pair (Q,D),
where Q is the set of packets buffered at each network loca-
tion and D is the valuation function of state tables as usual.
The network state of the one-packet model is a special case
where |Q| = 1. We use ID(p) to denote the ID of packet p
and ID(lp) has its natural meaning. The top-level transition
rules of the packet interleaving model are given in Fig. 12,
where the three rules generalized the corresponding rules in
the one packet model. Each transition in the transition system

of the packet-interleaving model is of the form of s
lp/lp0
===)NF s0,

where lp/lp0 denote the (located) packet that is processed by
the transition and lp (lp0, resp.) denote the packet before (after,
resp.) the transition, NF denotes the NF that processes that
packet or null (which we typically ignore) if the packet is
transmitted by a link or injected into the network.

A network execution trace E is a sequence of transitions
s0) s1) · · ·) sn. A closed network execution trace is a
finite network execution where the both initial state s0 and
the final state sn contain no packets buffered at any location
except for Drop and Exit. We use E•(N) to denote the set
of all closed network execution traces of a given network N
under the packet interleaving semantics; similarly, we use
Eone(N) to denote the set of all closed network execution
traces under the one-packet model. We assume that there is
no indefinite loops for any packet traversal; transient loops
are allowed to appear.

Formalization of processing-order preserving: We give
necessary definitions first before we formalize the processing-
order preserving condition.

Definition 4 (Non-conflict) Given NF, lp1, lp2, we say that
lp1 is non-conflicting with lp2 at NF if 8D0,D1,D2, lp01, lp

0
2

s.t. NF; lp1;D0 ! lp01;D1 and NF; lp2;D1 ! lp02;D2, 9D01 s.t.
NF; lp2;D0! lp02;D01 and NF; lp1;D01! lp01;D2.

We define processing-order preserving based on packet
orders. Particularly, given a set of packets, a packet order� is
a strict total order on the IDs of the packets. Given two located
packets lp1 and lp2, we denote lp1 � lp2 if ID(lp1)� ID(lp2).

Definition 5 (Processing-order preserving trace) Given a
network N, a network execution trace E = s0 =) . . .=) sn (un-
der the packet interleaving model) in E•(N), a packet order
�, E is processing-order preserving (or order-preserving in

(Q,D) l p/l p0
===)NF (Q,D0)

NET-TRANS-NF
NF = (L,_,_)

l 2 L pkt 2 Q(l) NF;(l,pkt);D! (l0,pkt0);D0
Q0 = Q[l0 7! (Q(l0)[{pkt0})][l 7! (Q(l)\{pkt})]

(Q,D) (l,pkt)/(l0,pkt0)
========)NF (Q0,D0)

NET-LINK
topo(l) = l0 pkt 2 Q(l)

Q0 = Q[l0 7! (Q(l0)[{pkt})][l 7! (Q(l)\{pkt})]

(Q,D) (l,pkt)/(l0,pkt0)
========)null (Q

0,D)

NET-TRANS-IN
l 2 IngressLocs Q0 = Q[l 7! (Q(l)[{pkt})]

(Q,D) �/(l,pkt)
=====)null (Q

0,D)

Figure 12: Semantics of packet interleaving execution.

short) under � if 8lp1, lp2,NF such that lp2 � lp1 and lp1
is conflicting with lp2 at NF, there do not exist transitions

s j
lp1/lp01===)NF s j+1 and sk

lp2/lp02===)NF sk+1 in E where k � j+1.

We call a network N processing-order preserving if there
is a packet order � such that for all E 2 E•(N), E is order
preserving under �. Some example processing-order preserv-
ing networks includes: (1) a network with no stateful NFs; (2)
a network where any single packet only traverses one stateful
NF; (3) a network with connection-based NFs where packets
in a connection are delivered in order.

Equivalence between one packet model and packet inter-

leaving model: Given a closed network execution trace

E = s0
lp1/lp2===) · · ·

lpn�1/lpn=====) sn in E•(N) of a network N and
an ID id, we call the per-packet trace of id, denoted E|id , as
the sequence [lpi1/lpi1+1 . . . lpik/lpik+1] obtained by project-
ing all lpi/lpi+1 pairs (except for the first pair corresponding
to the NET-TRANS-IN rule) with the ID id from the sequence
[lp1/lp2 . . . lpn�1/lpn]. We define the per-packet trace for exe-
cutions in the one-packet model similarly.
Lemma 1 Given an order-preserving network N, 8E 2
E•(N), 9E 0 2 Eone(N), s.t. 8id, E|id = E 0|id .
PROOF. Let � be the packet order satisfying the

order-preserving of N. Suppose E = s0
lp0/lp00===) s1

lp1/lp01===)

, ...,
lpn�1/lp0n�1======) sn. We define the out-of-order index I of

E as number of disordered transitions w.r.t. �. Formally
I(E,�) = Âi<n |{ j| j < i, lpi � lp j}|.

We prove this lemma by induction over the out-of-order
index of E.
Base case: Since I(E,�) = 0, we know that lpi 6� lpi�1 for all

i� 1, i.e., ID(lpi�1) = ID(lpi) or ID(lpi�1)� ID(lpi). Since
E is closed, there is an execution trace (lp0,D0)! (lp1,D1)!
. . .! (lpn,Dn) (if some lpi is empty, simply ignore that state)
in the one-packet model where Di is the table valuation in si,
and the per-packet trace for all packets are the same.
Inductive case: We have the inductive hypothesis: For all
E 2 E•(N) where I(E,�)  k, there is an execution trace
E 0 2 Eone(N) s.t. E|id = E 0|id . Now consider the case where
I(E,�) = k+ 1. Since I(E,�) > 0, there exists i > 0 such

that si�1
lpi�1/lp0i�1======) si

lpi/lp0i===) si+1 and lpi � lpi�1. We claim

that there must exists a network state s0i such that si�1
lpi/lp0i===)

s0i
lpi�1/lp0i�1======) si+1. This is easy to see when the transition

si
lpi/lp0i===) si+1 is obtained from rule NET-LINK or NET-TRANS-

IN. Suppose the transition is from NET-TRANS-NF and the

NF that processes lpi on si is NF. If transition si�1
lpi�1/lp0i�1======) si

is not from NET-TRANS-NF or does not correspond to the
processing NF NF, the claim is also obvious. When both
transitions correspond to the process of the packets on NF,
from the processing-order preserving definition, lpi must be
non-conflicting with lpi�1 at NF. Thus from Lemma 6 the
claim is still true. By swapping the processing of lpi�1 and
lpi we obtain an order-preserving execution trace E 00 from E
such that E 00|id = E|id for all id and I(E 00,�) = k. From the
inductive hypothesis, there is an execution trace E 0 2 Eone(N)
s.t. E 0|id = E 00|id = E|id for all id. ⇤

Lemma 6 For all network N, located packets lp1, lp
0
1, lp2, lp

0
2,

NF 2 N, and network states s1,s2,s3 of N, if s1
lp1/lp01===)NF

s2
lp2/lp02===)NF s3 and lp1 is non-conflicting with lp2 at NF, then

9s02 s.t. s1
lp2/lp2===)NF s02

lp1/lp01===)NF s3.

PROOF. Immediate from definition of non-conflicting.

D Soundness and Completeness of Checking

Per-Packet-Trace Policies

From Lemma 1, we can show that checking a range of poli-
cies involving per-packet traces is equivalent between the
packet interleaving network model and the one packet model
provided that network is processing-order preserving.

Per-packet-trace policies. We define per-packet-trace poli-
cies (for the one-packet model) as follows.

jone ::= 8����!xi 2 Di.G(g1! gg2) |8
����!
xi 2 Di.G(g1! g2)

A translation function, denoted h·i, turns a formula for the
one-packet model to a corresponding formula for the packet-
interleaving model. It is defined as follows, which essentially
introduces a packet ID into the formula. We only show se-
lected rules and the rest are inductively defined over the struc-
ture of the formula.

h8����!xi 2 Di.G(g1! gg2)i =
8id.8����!xi 2 Di.G(hg1iid!
hg2iid U(id.loc= Drop_ id.loc= Exit))

h f = xiid = id. f = x
hloc= xiid = id.loc= x
h f iid = id. f hxiid = x hviid = v

We can prove the following theorem.

Theorem 7 For all order-preserving network N, N |=one jone

if and only if N |=• hjonei.

PROOF. We only prove the case for the first form of
jone. Proofs for the second is very similar. Let jone =

8����!xi 2 Di.G(g1! gg2).
() Suppose N 6|=one jone. By the definition of the pol-

icy, there exists �!vi for �!xi and an execution trace E =
(lp0,D0) ! . . . ! (lpn,Dn) 2 Eone(N), and some i, j, such
that 0 i j n, (V,E[i..]) |= g1, and (V,E[j..]) 6|= g2, where
V = [����!xi 7! vi]. and for all k, lk s.t. i < k < j and lpk = (lk,_),
lk 62 {Drop,Exit}.

By the semantics of one-packet model, 8m s.t. i < m < j,
ID(l pm) = ID(lpi) = ID(lp j) = pid.

We can then construct an execution trace E 0 2 E•(N) by
injecting one packet at a time to simulate E, and the only
trivial difference between E and E 0 is that incoming packets
takes an extra step, rather than being enqueued right after the
previous packet exits.

It’s straightforward to show that (V [id 7! pid],E 0[i..]) |=
hg1iid and (V [id 7! pid],E 0[j..]) 6|= hg2iid, and i < k < j and
(V [id 7! pid],E 0[k..]) |= id.loc 6=Drop^ id.loc 6=Exit, since
there is only one packet with ID pid in the packet queue.

By the formula semantics, (V [id 7! pid],E 0[i..]) 6|= hg g2iid.
It follows that (/0,E 0) 6|= hjonei, so N 6|=• hjonei, which con-
tradicts with our assumption.

(!) Suppose N 6|=• hjonei. By the definition of the pol-
icy, there exists �!vi for �!xi , pid for id and an execution
trace E = s0) . . .) sn 2 E•(N), and some i, j, such that
0  i  j  n, (V,E[i..]) |= hg1iid, and (V,E[j..]) 6|= hg2iid,
where V = [����!xi 7! vi, id 7! pid]. And for all k s.t. i < k < j,
(V,E[k..]) |= id.loc 6= Drop^ id.loc 6= Exit.

By the network semantics, the located packet with ID
pid in Ei must have entered the queue at some point. Let
i0  i be the index of the first such state in E, such that

E = · · ·
lpi0/lp0i0====) si0 · · · . Similarly, we identify j0  j such that

j0 is the first state where the located packet in E j has arrived

at the packet queue. W.o.l.g. E = · · ·
lpi0/lp0i0====) si0 · · ·

lp j0/lp0j0
====)

s j0 · · · . It is straightforward that for all k s.t. i0 < k < j0,
(V,E[k..]) |= id.loc 6=Drop^ id.loc 6= Exit (Dropped or Ex-
ited packets cannot come back with the same pid). Note that
ID(lp0i0) = ID(lp0j0) = pid.

By Lemma 1, there is an execution trace E 0 2 Eone(N)
where E 0|pid = E|pid. By the semantics of the one packet

model, E 0 = · · ·E 00 · · · , where E 00|pid = E|pid and E 00 contains
processing of only packets with ID pid. So, (V\id,E 0) 6|=
g1! g g2.

It follows that N 6|=one jone, which contradicts with our
assumption. ⇤

Corollary 8 NetSMC is sound and complete w.r.t. the packet
interleaving model when checking isolation, tag preservation,
tag-based isolation policies.

This follows from Theorem 7 and Theorem 3.

Comparison with VMN: VMN accepts policies of the form:
8n, p : G¬(rcv(d,n, p) ^ predicate(p)) (see Appendix B.2
in [41]) where predicate(p) may include past events. We
can express all the policies in VMN that do not have past
events in predicate(p) (i.e., a basic formula). Isolation, tag-
based isolation, and tag preservation fall into this category.
Further, in the three cases. NetSMC is sound and complete
w.r.t. VMN.

The conditional isolation in VMN cannot be expressed in
our policy language, since it involves past events and requires
a generic until operator, which we do not support. On the
other hand, NAT consistency, conditional reachability, flow
affinity, double NAT, and dynamic service chaining cannot
be expressed in VMN. In these cases, NetSMC is sound and
conditional complete w.r.t. the one-packet model.

E Policy Translation to CTL

Our choice of the policy language as a subset of LTL allows
us to translate policies to equivalent forms in CTL. Thus
we can use the model checking algorithm of CTL to check
those policies. To simplify our notation in the proof, we write
(V,s) |= r to denote that 8E s.t. E0 = s, (V,E) |= r.

Theorem 9 For all network N and policy P, N |= P if and
only if N |= PCT L.

PROOF. Suppose P = 8����!xi 2 Di.r and thus PCT L =

8����!xi 2 Di.rCT L. (If) Since N |= PCT L, by the definition over the
structure of r 8V,s s.t. V [xi] 2Di and s is an initial state of N,
(V,s) |= rCT L. By Lemma 10, (V,s) |= r. Thus N |= P. (Only
if) Since N |= P, by the definition, 8V,s s.t. V [xi] 2Di and s is
an initial state of N, (V,s) |= r. By Lemma 10, (V,s) |= rCT L.
Thus N |= PCT L. ⇤

Lemma 10 For all network N, temporal formula r, valuation
function V for variables appeared in r, state s in N, (V,s) |= r
if and only if (V,s) |= rCT L.

PROOF. Proof by induction over the structure of r.
Case 1 r = g: This is immediate from the definition.
Case 2 r = Fg: (If) Since (V,s) |= AFg, for all execution
trace E where E0 = s, there is some i � 0 s.t. Ei |= g. Thus,
(V,s) |= Fg. (Only if) Since (V,s) |= Fg, for all execution
trace E where E0 = s, there is some i � 0 s.t. Ei |= g. Thus,

(V,s) |= AFg.
Case 3 r = fg: (If) Since (V,s) |= A((loc 6= Drop^ loc 6=
Exit)Ug), for all execution trace E where E0 = s, there is some
i� 0 s.t. Ei |= g and for all j < i, the location of E j is not Drop
nor Exit. Thus, (V,E) |= fg. Thus, (V,s) |= fg. (Only if) Since
(V,s) |= fg, for all execution trace E where E0 = s, there is
some i � 0 s.t. Ei |= g and for all j < i the location of E j
is not Drop nor Exit. Thus, (V,s) |= A((loc 6= Drop^loc 6=
Exit)Ug).
Case 4 r = G(g! r0): From Lemma 12, we only need to
show for all s0, (V,s0) |= g! r0 if and only if (V,s0) |= g!
rCT L. First, when (V,s0) 6|= g, we have (V,s0) |= g! r0 and
(V,s0) |= g! rCT L. Second, when (V,s0) |= g, from the induc-
tive hypothesis, (V,s0) |= r0 if and only if (V,s0) |= rCT L.
Case 5 r = g(g! r1): Similar to the proof of Case 4 and use
Lemma 11.
Case 6 r = X(g! r1): Similar to the proof of Case 4 and use
Lemma 12. ⇤

Note that the r in the following two lemmas are generic
temporal formulas, not confined to our policy syntax.

Lemma 11 For all network N, temporal formula r, valua-
tion function V for variables appeared in r, if for all state
s, (V,s) |= r is equivalent to (V,s) |= rCT L, then for all state
s0, (V,s0) |= gr is equivalent to (V,s0) |= A((rCT L)U(loc =
Drop_loc= Exit)).

PROOF. (If) By the definition of (V,s0) |= A((rCT L)U(Drop_
Exit)), for all execution trace E where E0 = s0 and i � 0
where the location of Ei is Drop or Exit, (V,E j) |= rCT L for all
j < i. By the assumption, (V,E j) |= r. Thus, (V,E[j..]) |= r.
Therefore, (V,E) |= gr. Thus, (V,s0) |= gr.
(Only if) Suppose (V,s0) 6|= A((rCT L)U(loc= Drop_loc=
Exit)). By its definition, there is a execution trace E and
i � 0 such that E0 = s0 and (V,Ei) 6|= rCT L and for all j 
i, the location of E j is not Drop nor Exit. Since (V,Ei) 6|=
rCT L, we have (V,Ei) 6|= r; i.e. there is a execution trace E 0
where E 00 = Ei such that (V,E 0) 6|= r. Consider the execution
trace E 00 = E[0..i� 1] ++E 0. Note that E 00[i..] = E 0, thus
(V,E 00[i..]) 6|= r. In addition, for all j  i, the location of E 00j
is not Drop nor Exit. Thus (V,E 00) 6|= gr, which contradicts
to that (V,s0) |= gr. ⇤

Lemma 12 For all network N, temporal formula r, valua-
tion function V for variables appeared in r, if for all state
s, (V,s) |= r is equivalent to (V,s) |= rCT L, then for all
state s0, (V,s0) |= Gr is equivalent to (V,s0) |= AG(rCT L) and
(V,s0) |= Xr is equivalent to (V,s0) |= AX(rCT L).

PROOF. Similar to above. ⇤
F Formal Specification of Example Policies

Isolation: Packets sent from host A can never reach host B:

G(loc= A! g(loc 6= B))

Tag-based isolation: Packets tagged with T cannot reach
the middlebox MB.

G(tag= T ! g(loc 6= MB))

Tag preservation: The tag T should not be modified by NFs.

G(tag= T ! g(tag= T))

NAT consistency: If a NAT modifies a packet’s port then all
future packets in the flow should have the same port.

8i. G(flow= i^loc= NAT _IN!
X(srcport= p^loc= NAT _OUT !
G(flow= i^loc= NAT _IN!
X(srcport= p))))

Conditional reachability: Whenever a packet sent from a
host A reaches host B, all packets sent from host B afterwards
can reach A.

G(loc= A! g(loc= B! G(loc= B! f (loc= A))))

Flow affinity: Packets in the same flow should be load-
balanced ot the same server.

8i. G(flow= i^loc= S1!
G(loc=C^flow= i!
f(loc= S1)))

Double NAT: Packets from the outside can always reach the
inside (despite two NATs).

G(loc= OUT ! f(loc= IN))

Dynamic service chaining: After a host from Dept has sent
more than 10 suspicious packets, all of its packets should pass
heavy IPS H.

8x 2 Dept. G(src= x^ susp[x]> 10!
G(src= x! f(loc= H)))

