
Fine-Grained Replicated State Machines for a Cluster Storage System
Ming Liu∗ Arvind Krishnamurthy∗ Harsha V. Madhyastha† Rishi Bhardwaj‡ Karan Gupta‡

Chinmay Kamat‡ Huapeng Yuan‡ Aditya Jaltade‡ Roger Liao‡ Pavan Konka‡ Anoop Jawahar‡

Abstract
We describe the design and implementation of a consistent
and fault-tolerant metadata index for a scalable block storage
system. The block storage system supports virtualized exe-
cution of legacy applications inside enterprise clusters by au-
tomatically distributing the stored blocks across the cluster’s
storage resources. To support the availability and scalability
needs of the block storage system, we develop a distributed
index that provides a replicated and consistent key-value stor-
age abstraction.

The key idea underlying our design is the use of fine-
grained replicated state machines, wherein every key-value
pair in the index is treated as a separate replicated state ma-
chine. This approach has many advantages over a traditional
coarse-grained approach that represents an entire shard of data
as a state machine: it enables effective use of multiple storage
devices and cores, it is more robust to both short- and long-
term skews in key access rates, and it can tolerate variations in
key-value access latencies. The use of fine-grained replicated
state machines, however, raises new challenges, which we ad-
dress by co-designing the consensus protocol with the data
store and streamlining the operation of the per-key replicated
state machines. We demonstrate that fine-grained replicated
state machines can provide significant performance benefits,
characterize the performance of the system in the wild, and re-
port on our experiences in building and deploying the system.

1 Introduction
Enterprise clusters often rely on the abstraction of a block
storage volume to support the virtualized execution of appli-
cations. Block storage volumes appear as local disks to vir-
tual machines running legacy applications, even as the stor-
age service distributes any volume’s data across the cluster.
The storage system provides ubiquitous access to volumes
from any node in the cluster and ensures durability and avail-
ability through replication.

Our work is in the context of a commercial enterprise clus-
ter product built by Nutanix, a software company that special-
izes in building private clouds for enterprises. VMs deployed
in these clusters rely on a cluster block storage system, called
Stargate. As with other block storage systems [8,10,27,29,31],
Stargate provides a virtual disk abstraction on which applica-
tions/VMs can instantiate any file system. However, unlike
most other block storage systems, Stargate co-locates both
computing and storage on the same set of cluster nodes. This
∗University of Washington
†University of Michigan
‡Nutanix

approach provides cost, latency, and scalability benefits: it
avoids needing to provision separate resources for computing
and storage, it allows for local access to storage, and it lets
both storage and compute scale with the cluster size.

A key component of such a system is the metadata in-
dex, which maps the logical blocks associated with a virtual
disk to its actual physical locations. Just like the overall sys-
tem, this mapping layer should provide high performance and
strong consistency guarantees in presence of failures. These
requirements suggest a design with the following elements:
(a) achieve high throughput and scalability by distributing the
index as key-value pairs and utilizing all the cluster nodes, (b)
ensure availability and consistency by replicating key-value
pairs and using a consensus algorithm, such as Paxos [16] or
Viewstamped Replication [25], to implement replicated state
machines (RSMs), and (c) ensure durability of a node’s shard
of key-value state by employing a node-level durable data
structure such as the log-structured merge tree (LSM).

This traditional approach to building a distributed index has
drawbacks in our specific context where: (a) all operations,
including metadata operations, have to be made durable be-
fore they are acknowledged, (b) there is significant variation
in operation execution latency, and (c) the distributed index
service has to share compute and storage with the rest of Star-
gate and application VMs. In particular, the use of a per-shard
consensus operation log, which records the order of issued
commands, introduces inefficiencies, such as short- and long-
term load imbalances on storage devices, sub-optimal batch-
ing of storage operations, and head-of-line blocking caused
by more expensive operations.

To address these issues, we develop a design that uses fine-
grained replicated state machine (fRSMs), where each key-
value pair is represented as a separate RSM and can operate
independently. This approach allows for flexible and dynamic
scheduling of operations on the metadata service and enables
effective use of the storage and compute resources. To effi-
ciently realize this approach, we use a combination of tech-
niques to streamline the state associated with the object radi-
cally. In particular, our approach uses no operation logs and
maintains only a small amount of consensus state along with
the perceived value of a key. We also address performance
and consistency issues by co-designing the consensus proto-
col and the local node storage, providing strong guarantees
on operation orderings, and optimizing failure recovery by en-
hancing the LSM data structure to handle the typical failure
scenarios efficiently. It is worth noting that our innovation is
not in the consensus protocol (as we merely borrow elements
from Paxos and Viewstamped Replication), but in exploring

an extreme operating point that is appropriate for balancing
load across storage and compute resources in a managed en-
vironment with low downtimes.

In addition to describing our design of fRSMs, we present
experimental evaluations of our implementation both in a con-
trolled testbed as well as in production deployments. Com-
pared with traditional coarse-grained RSMs, fRSMs achieve
5.6× and 2.3× higher throughput for skewed and uniform
scenarios in controlled testbeds. The resulting implementa-
tion is part of a commercial storage product that we have de-
ployed on thousands of clusters over the past eight years. To
date, we have not had a data loss event at any of these de-
ployed production sites. We have also been able to leverage
the metadata store for other applications such as write-ahead
logs and distributed hypervisor management.

2 Motivation
We begin with a description of our setting and our goals. We
then describe a baseline approach and discuss its shortcom-
ings that motivate our work.

2.1 Metadata Storage Overview

Setting. Our work targets clusters that are typically used by
enterprises as private clouds to perform on-premise comput-
ing. Customers instantiate virtual machines (VMs) that run
legacy applications. The cluster management software then
determines which node to run each VM on, migrating them
as necessary to deal with faults and load imbalances.

Our Stargate storage system provides a virtual disk abstrac-
tion to these VMs. VMs perform reads and writes on the vir-
tual disk blocks, and Stargate translates them to the appro-
priate accesses on physical disks that store the correspond-
ing blocks. Stargate stores the blocks corresponding to vir-
tual disks on any one of the cluster nodes on which user VMs
are executed, thus realizing a hyper-converged cluster infras-
tructure that co-locates compute and storage. An alternate ap-
proach would be to use a separate cluster of storage nodes
(as is the case with solutions such as SAN) and provide the
virtual disk abstraction over the network. Nutanix employs
co-location as it reduces infrastructure costs and allows the
storage system to flexibly migrate data blocks accessed by a
VM to the node on which the VM is currently hosted, thereby
providing low latency access and lowering network traffic.
Metadata storage. In this paper, we focus on how Stargate
stores the metadata index that maps virtual disk blocks to phys-
ical locations across the cluster. One can implement the virtual
disk abstraction by maintaining a map for each virtual disk
(vDisk) that tracks the physical disk location for every block in
that vDisk. Our design, outlined below, introduces additional
levels of indirection to support features such as deduplication,
cloning and snapshotting. It also separates physical maps from
logical maps to allow for decoupled updates to these maps.

A virtual disk is a sequence of extents, each of which is
identified by an ExtentID. An extent can be shared across

VM 1
Init: x = 1
op1: write x = 2

op1 start op1 finish

op1 write propagation

event1: node B fails

VM 1
Init: x = 1
op1: write x = 2
op2: read x = 1

VM 1
Init: x = 1
op1: write x = 2
op2: read x = 1
op3: read x = 2

event2: node B recovers

time T

op2 op3event1 event2

<node A, node C><node A, node B> <node A, node C>

op1 timeout

Figure 1: Example timeline that satisfies linearizability but complicates
reasoning about failures. The notation <node A, node B> means that
the VM is on node A and the leader of the replica group maintaining
X is on node B. The value of key x is 1 at the start of the timeline. App,
initially running on node A, issues a write to x, partially performs it on
node B, and suffers a timeout due to B’s failure. After another node (C)
becomes the leader, the app reads 1 from x and expects to continue to
see x set to 1, barring new writes issued subsequently. If the old leader
were to recover, it could propagate its updated copy of x and interfere
with the client’s logic.

virtual disks either because of deduplication of disk blocks
or snapshotting/cloning of virtual disks. Extents are grouped
into units called extent groups, each of which has an asso-
ciated ExtentGroupID, and each extent group is stored as a
contiguous unit on a storage device. Given this structure, the
storage system uses the vDisk Block Map to map portions of
a vDisk to ExtentIDs, the ExtentID Map to map extents to
ExtentGroupIDs, and the ExtentGroupID Map to map Extent-
GroupIDs to physical disk locations. These maps are shared
across VMs and the cluster storage management system that
might move, compress, deduplicate, and garbage collect stor-
age blocks. All accesses to a given vDisk are serialized
through a vDisk server running on one of the cluster nodes.
Stargate migrates vDisk servers and VMs upon node failures.

Goals. In determining how to store Stargate’s metadata index,
apart from maximizing availability and efficiency, we have
the following goals:

• Durability: To minimize the probability of data loss, any
update to the metadata must be committed to stable storage
on multiple nodes in the cluster before Stargate acknowl-
edges the write as complete to the client. Note that our sys-
tem should maintain consistent metadata even when the en-
tire cluster comes down (e.g., due to a correlated failure).

• Consistency: Operations on the metadata index should be
linearizable, i.e., all updates to a block’s metadata should
be totally ordered, and any read should return the last com-
pleted write. This guarantee provides strong consistency
semantics to client VMs and various background services
that operate on the metadata.

• Reasoning about failures: Under linearizability, even if a
read issued after a failure does not reflect a write issued
before the failure, this does not mean that the write failed;
the update could have been arbitrarily delayed and might
get applied later, causing subsequent reads to observe the
updated value (see Figure 1). The system should provide
stronger guarantees to client VMs so that they can reason
about operation failures. In particular, any subsequent read

Figure 2: Baseline system architecture representing a coarse-grained
replicated state machine built using LSM and Paxos.

of the metadata after an operation timeout must confirm
whether the prior operation succeeded or not, and succes-
sive reads of a piece of metadata should return the same
value as long as there are no concurrent updates initiated
by other agents in the system.

2.2 Baseline Design

Let us now consider a baseline approach for realizing the
above-mentioned goals. This baseline takes the traditional
approach of (a) sharding the metadata index across multiple
nodes and multiple cores or SSDs on a given node, (b) using
a consensus protocol for ordering operations on any given
shard, and (c) executing operations on a durable data structure
such as a log-structured merge tree.

In the baseline, all nodes in the cluster participate in im-
plementing a distributed key-value store. We partition keys
into shards, use consistent hashing to map shards to replica
sets, and consider a leader-based consensus protocol wherein
each node serves as the leader for one or more shards in the
system. Leader-less designs (such as EPaxos [23]) can lower
the communication costs as they eliminate the coordination
overheads for the leader, but provide limited benefits in our
setting. First, when storage and compute are co-located, there
is limited value in moving communication costs from the
leader to a client that is sharing network resources with a dif-
ferent server in the cluster. Second, as we will demonstrate
later, storage and compute resources are bigger bottlenecks
in our setting than the network. Due to our design choice of
co-locating compute and storage, the metadata service shares
resources with client VMs, which have a higher priority.

The timeline for processing a request proceeds as follows.
We consider a layered design wherein the lower layer corre-
sponds to a consensus protocol, and the upper layer corre-
sponds to a state machine implementing a durable data struc-
ture such as a log-structured merge tree.
Consensus layer processing. For every shard, one of the
replicas of the shard becomes the leader by sending “prepare"

messages to a quorum of replicas. When the leader receives a
mutating command such as a write, it sequences and propa-
gates this command to all replicas (including itself) using a
consensus protocol such as Paxos [16], Viewstamped Repli-
cation [25], or Raft [26]. Each shard that a node is assigned
to is associated with a specific core and a specific SSD on
that node; the core is responsible for sequencing updates to
the shard, and the corresponding operation log is stored on
the SSD. The system maximizes efficiency by committing
commands to the SSD in batches, with every node batching
updates destined to one of its SSDs until the prior write to
that SSD is complete. Once a batched write is completed, all
operations in that batch are considered “accepted". After the
leader receives a quorum number of accepts for a command, it
can then execute the command locally and send “learn" mes-
sages to all followers, indicating that the command has been
“chosen." The chosen status does not have to be recorded in
stable storage as it can be recreated upon failures. A central-
ized approach with primary-backup replication [3] can elimi-
nate the use of a consensus protocol and simplify the system
design. Such a design, however, limits both the operational
scale and performance, and wouldn’t satisfy the system re-
quirements that we had outlined above.
LSM layer processing. At every node, the LSM layer pro-
cesses all chosen commands in the order determined by the
consensus layer. LSM processing is streamlined to include
just the in-memory Memtable and the stable SSTables. In
particular, this is a slightly customized version of a tradi-
tional LSM implementation as the commit log, which is avail-
able from the consensus layer, can be eliminated from the
LSM code. The Memtable access and compaction operations
need to be synchronized with other concurrent operations to
support multi-core operations. The leader acknowledges a
command as complete to the client after a quorum of nodes
have recorded the command, and the leader has executed the
command in its chosen order because the success of some
commands (e.g., compare-and-swap) can be determined only
when they are executed after all previously accepted com-
mands have been applied. Leases enable the leader to serve
reads on the LSM without any communication with other
nodes. However, the leader must synchronize every read on a
key with ongoing updates to the same key.
Ordering guarantees. RSMs built using consensus proto-
cols provide linearizability. Further, an RSM can guarantee in-
order execution of operations issued by a client. This helps the
client reason about the execution status of its operations that
have timed out – if the result of a later operation implies that
an earlier operation has not been performed, the client can not
only deduce that the prior operation has not yet completed but
also get the guarantee that the service will never perform the
operation. This guarantee can be provided even after RSM re-
configurations. Upon leadership and view changes, protocols
such as Viewstamped Replication ensure that operations par-
tially performed in a previous view are not completed in sub-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
D

F

Skewness

2 Shards

4 Shards

6 Shards

Figure 3: CDF of access skewness with 2/4/6
data shards. skewness at any instant is defined
as the ratio of the maximum to the average of
outstanding IOs per shard.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 300 400 500 600

C
D

F

IOPS (Kops)

6 sharded logs
2 consolidated logs

Figure 4: CDF of aggregate SSD throughput
when 6 commit logs (3 per SSD) are used com-
pared to when 2 commit logs (one per SSD) are
used.

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400 450

C
C

D
F

Latency (us)

LSM read
LSM write

Figure 5: CCDF of LSM random 4KB
read/write latencies. The 99.9th percentile la-
tency for LSM reads/writes is 57.1×/48.4× the
respective averages.

sequent views. These guarantees provide clients with some
capability to infer the completion status of their operations.

2.3 Performance Implications of Baseline Design

This baseline design, however, results in several sources of
inefficiency. We quantify them with micro-benchmarks using
the same computing setup as our evaluations (see Section 4.1).

• Load imbalance due to skew: The skew in load across
shards can lead to an imbalance across SSDs and CPU
cores. For instance, differences in popularity across keys
can result in long-term skew, whereas random Poisson ar-
rival of requests can cause short-term skew. Figure 3 quan-
tifies the skews across shards for random Poisson arrival.

• Sub-optimal batching: If there are n nodes in a replica set,
each with m SSDs, the number of shards into which com-
mands would be accumulated would be the least common
multiple of m and n. (This ensures that the assignment of
shard storage to SSDs and the assignment of shard leader-
ship to nodes are statically balanced.) Batching updates in-
dependently on each of these shards can result in less than
optimal latency amortization. Figure 4 shows that batching
across multiple data shards can achieve 1.6× higher band-
width than a traditional per-shard log design.
• High tail latency: Tail latency or even average latency of

operations could be high due to multiple reasons. First,
since the RSM abstraction requires that all replicas execute
all updates in the same order, if one of the replicas for a
shard is missing a command in its commit log, subsequent
operations on that shard will block until this replica catches
up. Second, since LSM operations vary in terms of their
execution costs (shown in Figure 5), a heavyweight opera-
tion can delay the execution of lightweight operations even
if processor cores are available to execute the operations.

Sub-dividing the shards into even smaller shards would
mitigate the load imbalance issue. However, it suffers from
three drawbacks. First, it doesn’t address the request head-of-
line blocking issue. Requests still have to commit and exe-
cute in sequence as specified in the log order. Second, it fur-
ther reduces batching efficiency for storage devices. Third, it
doesn’t provide the benefit of fast node recovery, as a recov-
ering node cannot immediately participate in the protocol. As
a result, we instead adopt a shard-less design to overcome all
of these issues, as we describe next.

3 System Design
We now present the design of Stargate’s metadata storage sys-
tem, which provides the desired efficiency, availability, dura-
bility, and consistency properties. We use the same high-level
approach as the baseline: consistent hashing to distribute meta-
data across replica sets, log-structured merge trees to store
and access large, durable datasets, and a consensus protocol
to ensure consistency of operations on replicated data.

Our approach differs in one fundamental aspect: it uses
fine-grained replicated state machines (fRSMs), wherein each
replicated key is modeled as a separate RSM. This approach
provides the flexibility needed to effectively manage multiple
storage devices and CPU cores on a server, reduces load imbal-
ances, and enables flexible scheduling of key-value operations.
However, the use of fine-grained state machines raises both
performance and consistency issues, and we address them by
carefully co-designing the consensus protocol, the data store,
and the client stubs that interact with the storage layer.

3.1 Overview and Design Roadmap

Replicating every key-value pair as a separate RSM, though
conceptually straightforward, could impose significant over-
heads because RSMs are rather heavyweight. For example, a
typical RSM contains an operation log and consensus state
for each entry in the operation log. The operation log is used
to catch up replicas that are lagging behind and/or have miss-
ing entries; each operation in the log has to be propagated to
laggards to get their state up-to-date.
Lightweight RSMs. Fortunately, the RSM state can be vastly
streamlined for simple state machines, such as the key-value
objects we use in our system.

• For normal read/write and synchronizing operations such
as compare-and-swap, the next state of a key-value pair
is a function of its current state and any argument that is
provided along with the operator. For such operations, one
can eliminate the need for an operation log; it suffices to
maintain just the last mutating operation that has been per-
formed on the object and any in-progress operations being
performed on the object. We use an API that is simple and
yet sufficiently powerful to support the metadata operations
of a cluster storage system. (See Section 3.2.)

• The consensus state for operations on a key (e.g., promised
and accepted proposal numbers) is stored along with the

key-value state in the LSM as opposed to requiring a sepa-
rate data structure for maintaining this information. (See
Section 3.3.1.)

• A consensus protocol typically stores accepted but not yet
committed values along with its committed state and com-
mits an accepted value when consensus has been reached.
Instead, our system speculatively executes the operations,
stores the resulting value in a node’s LSM, and relies on the
consensus protocol to update this to the consensus value
for the key in the case of conflicts. This further reduces the
RSM state associated with each key. It also eliminates the
need for explicit learn messages.1 (See Section 3.3.2.)

• Similar to the Vertical Paxos approach [18], leader election
is performed on a per key-range granularity using a separate
service (e.g., Zookeeper [13] in our case).

Enabled optimizations. We co-design the consensus proto-
col and the LSM layer implementing the key-value store to
realize per-key RSMs.2 This enables many optimization op-
portunities.

• Consolidated LSM: All the key-values replicated on a given
node can be stored in a single LSM tree as opposed to
the canonical sharded implementation that would require
a separate LSM tree for each shard. The commit log of
the unified LSM tree can be striped across the different
storage devices, thus leading to more effective batching of
I/O requests to the commit log.

• Load balancing: Per-key RSMs enable flexible and late
binding of operation processing to CPU cores; a key-value
operation can be processed on any core (as long as there
is per-key in-memory synchronization to deal with concur-
rency) and durable updates can be performed on any SSD,
leading to more balanced utilization of cores and SSDs.

• Minimizing stalls: By requiring ordering of operations only
per-key, rather than per-shard, we can eliminate head-of-
line blocking. Message loss and high-latency LSM opera-
tions do not impact the performance of ongoing operations
on other keys, thus improving the tail latency of operations.

• Low-overhead replication: Each operation can be applied
to just a quorum of replicas (e.g., two nodes in a replica
set of three), thus increasing the overall throughput that the
system can support. With coarse-grained RSMs, this opti-
mization would result in a period of unavailability when-
ever a node fails, because new operations on a shard can
only be served after stale nodes catch up on all previous
operations on the shard. With fRSMs, lagging nodes can
be updated on a per-key basis and can be immediately used
as part of a quorum.

1It is worth noting that the optimization of piggybacking learn messages
with subsequent commands is difficult to realize in fine-grained RSMs as a
subsequent operation on the same key might not be immediate.

2Since we integrate the RSM consensus state into each key-value pair,
we can reuse LSM APIs as well as its minor/major compaction mechanisms.

Challenges. The per-key RSM approach, however, comes
with certain performance and consistency implications that
we outline below.

• Overhead of per-key consensus messages: A coarse-grained
RSM can elect a leader for a given shard and avoid the use
of prepare messages for mutating operations performed on
any key in the shard. In contrast, with per-key RSMs, a
node would have to transmit a per-key prepare message if
it had not performed the previous mutating operation on
that key. Fortunately, node downtimes are low in managed
environments such as ours, and a designated home node
coordinates most operations on a key. We quantify the
overhead associated with this using failure data collected
from real deployments.

• Reasoning about the completion status of old operations:
As discussed earlier, a coarse-grained consensus protocol
such as Viewstamped Replication can discard operations
initiated but not completed within a view. With fRSMs,
one could perform such a view change on a per-key ba-
sis, but this would imply additional overheads even for
non-mutating operations. We limit these overheads to only
when a key might have outstanding incomplete operations
initiated by a previous leader. (See Section 3.3.3.)

3.2 Operation API and Consistency Semantics

Operations supported: Our key-value store provides the fol-
lowing operations: Create key-value pair, Read value associ-
ated with a key, Compare-and-Swap (CAS) the value associ-
ated with a key, and Delete key. The CAS primitive is atomic:
provided a key k, current value v, and a new value v′, the key-
value storage system would atomically overwrite the current
value v with new value v′. If the current value of key k is not
v, then the atomic CAS operation fails. Note that Create and
Delete can also be expressed as CAS operations with a special
value to indicate null objects.

We note that the CAS operation has a consensus number
of infinity according to Herlihy’s impossibility and universal-
ity hierarchy [12]; it means that objects supporting CAS can
be used to solve the traditional consensus problem for an un-
bounded number of threads and that realizing CAS is as hard
as solving consensus. Further, Herlihy’s work shows that ob-
jects supporting CAS are more powerful than objects that sup-
port just reads and writes (e.g., shared registers [1]) or certain
read-modify-write operations like fetch-and-increment.

We do not support blind writes, i.e., operations that merely
update a key’s value without providing the current value.
Since all of our operations are CAS-like, we can provide at-
most-once execution semantics without requiring explicit per-
client state as in RIFL [19]. Further, most of our updates are
read-modify-write updates, so it is straightforward to express
them as CAS operations.
Consistency model: Apart from linearizability, we aim to
provide two consistency properties to simplify reasoning

about operation timeouts and failures.

• Session ordering: Client operations on a given key are
performed in the order in which the client issues them. This
property lets a client reason about the execution status of
its outstanding operations.

• Bounded delays: Client operations are delivered to the
metadata service within a bounded delay. This property
lets other clients reason about the execution status of oper-
ations issued by a failed client.

Sections 3.3.2 and 3.3.3 describe how we implement lin-
earizable CAS and read operations using a leader-based pro-
tocol. We provide session ordering using two mechanisms:
(a) leaders process operations on a given key in the order in
which they were received from a client, and (b) the read pro-
cessing logic either commits or explicitly fails outstanding
operations initiated by previous leaders (see Section 3.3.3).
Section 3.4 describes how coarse-grained delay guarantees
from the transport layer can help clients reason about the stor-
age state of failed clients.

Our metadata service exposes single-key operation order-
ing semantics as opposed to supporting transactional seman-
tics involving multiple keys. To support multi-key operations,
one can implement a client-side transaction layer that includes
a two-phase commit protocol and opportunistic locking [14,
32]. This is similar to what is required of a coarse-grained
RSM system to support cross-shard multi-key transactions.

3.3 Operation Processing Logic

3.3.1 Consensus State

Associated with each key is a clock attribute that stores infor-
mation regarding logical timestamps and per-key state that is
used for providing consistent updates. The clock attribute is
stored along with a key-value pair in the various data struc-
tures (e.g., commit log, Memtable, and SSTables), and it com-
prises of the following fields.

• epoch number represents the generation for the key and is
updated every time the key is deleted and re-created.

• timestamp within an epoch is initialized when the key is
created and is advanced whenever the key’s value is up-
dated. The epoch number and the timestamp together rep-
resent a Paxos instance number (i.e., the sequence number
of a command performed on a key-value object).

• promised proposal number and accepted proposal number
associated with the key’s value maintained by a given node;
these represent consensus protocol state.

• chosen bit indicates whether the value stored along with
the key represents the consensus value for the given epoch
number and timestamp.

The clock attribute is a concise representation of the value
associated with the key, and it is used instead of the value
in quorum operations (e.g., quorum reads discussed in Sec-
tion 3.3.3). Since they are frequently accessed, the clock at-

tributes alone are maintained in an in-memory clock cache to
minimize SSTable lookups and optimize reads/updates.

3.3.2 CAS Processing

For implementing CAS operations, we use a variant of the tra-
ditional Multi-Paxos algorithm, wherein we co-design differ-
ent parts of the system and customize the consensus proto-
col for our key-value store. First, we integrate the processing
associated with the consensus algorithm and the key-value
store. As an example of a co-designed approach, accept mes-
sages will be rejected both when the promise is insufficient
and when there is a CAS error. Second, the nodes do not
maintain per-key or per-shard operation logs, but instead, skip
over missed operations and directly determine and apply the
accepted value with the highest associated proposal number
(with a possibly much higher timestamp). Third, the process-
ing logic speculatively updates the LSM tree and relies on
subsequent operations to fix speculation errors.

Client CAS updates are built using the clock obtained via
the key read previously. With each read, a client also receives
the current epoch (e) and timestamp (t) for the value. The
client CAS update for the key would then contain the new
value along with epoch e and timestamp t+1. This is a logical
CAS where the client specifies the new value for timestamp
t + 1 having read the value previously at timestamp t. The
request is routed to the leader of the replica group responsible
for the key. It then performs the following steps.

1. Retrieve key’s consensus state: The leader reads its local
state for key k and retrieves the key’s local clock. The clock
provides the following values: the proposal number for
a promise pp, and the proposal number for the currently
accepted value pa.

2. Prepare request: If pp is for a prepare issued by a differ-
ent node, then the leader generates a higher proposal num-
ber, sends prepare messages to other nodes, and repeats
this process until it obtains promises from a quorum of
nodes. The leader skips this step if pp and pa are the same
and refer to proposals made by the leader.
Prepare handler: Each of the replicas, including the
leader, acknowledges a prepare message with a promise
to not accept lower numbered proposals if it is the highest
prepare proposal number received thus far for the key. The
replicas durably store the prepare proposal number as part
of the key’s clock attribute (i.e., in the commit log as well
as the Memtable).

3. Accept request: The leader sends an accept message with
the client-specified timestamp, i.e., t+1, the current epoch,
and the proposal number associated with a successful pre-
pare.
Accept handler: At each of the replicas, including the
leader, the accept message is processed if the current times-
tamp associated with the key is still t and the proposal
number is greater than or equal to the local promised pro-

posal number. If so, the key’s value and the correspond-
ing clock are recorded in the commit log and Memtable
at each node. An accept request is rejected at one of the
nodes if it has issued a promise to a higher proposal num-
ber or if the timestamp associated with the object is greater
than t. In both cases, the replica returns its current value
and the proposal number attached to it.

4. Accept response processing: The leader processes the
accept responses in one of the following ways.

• If a quorum of successful accept responses is received
at the leader, the leader considers the operation to be
completed and records a chosen bit on its Memtable
entry for the key-value pair. It then reports success back
to the client.

• If the accept requests are rejected because the promise is
not valid, then the leader performs an additional round
of prepare and accept messages.

• If the request is rejected because the (epoch, timestamp)
tuple at a replica is greater than or equal to the client-
supplied epoch and timestamp, then a CAS error is sent
to the client. Further, accept messages are initiated to
commit the newly learned value and timestamps at a
quorum of nodes.

The protocol described above is faithful to the traditional
consensus protocols, but it is customized for our key-value
application and the use of fine-grained RSMs. In our system,
a client needs to wait for a previous write to complete before
issuing a subsequent write. We discuss the equivalence with
coarse-grained RSM in Appendix A.4.

3.3.3 Read Processing

A read operation has to ensure the following properties upon
completion: (a) the value returned should be the most recent
chosen value for a given key, and (b) other previously accepted
values with higher <epoch, timestamp> than the returned
value are not chosen. The former requires the completion of
in-progress CAS operations that are currently visible to the
leader; this property is required for linearizability. The latter
ensures that any other CAS operations that are in-progress but
aren’t visible will not be committed in the future; this is akin
to a view change in the Viewstamped Replication protocol
where operations that are not deemed complete at the end of
a view are prevented from committing in a subsequent view.

To meet these requirements, read operations are processed
in one of three different modes: leader-only reads, quorum
reads, and mutating quorum reads. When the operation is
routed to the leader, the leader checks whether it is operating
in the leader-only mode, where all of its key-value pairs are
up-to-date as a consequence of obtaining the chosen values for
every key in the shard through a shard-level scan (described
in Section 5.1). If the check is successful, then the leader will
serve the request from its Memtable or one of the SSTables. If
the leader is not operating in the leader-only mode, then it has

to poll the replica set for a quorum and identify the most recent
accepted value for a key (i.e., perform a quorum read). If this
value is not available on a quorum of nodes, the leader has to
propagate the value to a quorum of nodes (i.e., perform a mu-
tating quorum read). Further, if there is an unreachable replica
that might have a more recent accepted value, then the mutat-
ing quorum read performs an additional quorum-wide update
to just the timestamp to prevent such a value from being cho-
sen. Note that the consensus state can help determine the pos-
sibility of an update languishing in a failed/partitioned node;
at least one node in a quorum set of nodes should have an out-
standing promise to the failed/partitioned node, and the read
protocol can detect this condition using a quorum operation.

We now provide additional details regarding quorum reads
and mutating quorum reads. A leader not operating in leader-
only mode satisfies a read request using the following steps.

1. Quorum read request: The leader sends the read request
to other nodes in the replica set. Each node responds with
the clock attribute associated with its local version of the
key-value pair.

2. Quorum read response: The leader then examines the re-
ceived clock attributes and checks whether any of them
have a <higher epoch, timestamp> compared to the leader’s
clock and whether a quorum of nodes is reporting the most
recent value. If the leader does not have the value associ-
ated with the highest epoch and timestamp, it obtains the
value from one of the nodes reporting the most recent value.
If a quorum of nodes reports not having this value, the
leader propagates this value to other nodes in the quorum.

3. Check for outstanding accepted values: The leader then
examines the received clock attributes and checks whether
any of them contain a promise that satisfies the following
two conditions: (1) the promise is greater than or equal to
the highest proposal number associated with an accepted
value, and (2) the promise is made to a node that did not
respond with a clock attribute.

4. Update timestamp to quench outstanding accepts: If
such a promise exists, then the read will perform an addi-
tional round of updates to a quorum. Let pp be the promise
associated with an unreachable node, and let v, e, and t
be the value, epoch, and timestamp associated with the
highest accepted proposal. The leader issues prepare com-
mands to the replica nodes to obtain a promise greater than
pp, and then sends accept commands to the replica nodes
to update their value, epoch, and timestamp fields to v, e,
and t + 1, respectively. The higher timestamp value pre-
vents older CAS operations from succeeding.

The different modes for satisfying a read operation have
progressively higher execution costs. In the common case, the
leader-only reads can satisfy a read operation using local in-
formation and without communicating with the other replicas.
The quorum reads are performed when the leader is not oper-
ating in leader-only mode immediately after a failover. In this

case, the leader has to communicate with the other replica
nodes in order to process the read request. If the most recent
accepted value is not available on a quorum or if there is evi-
dence of an unreachable node with an outstanding promise,
then we resort to mutating quorum reads that not only incurs
additional communication rounds to the replicas but also pays
the overhead of writes to stable storage in order to record the
updated value and timestamp. Fortunately, a mutating quo-
rum read is needed only after failover and when there is an
unreachable node that has obtained a promise to update the
given key-value pair. Further, this is invoked only for the very
first operation on the key after the failover; subsequent reads
can be processed locally by the leader. This escalation of op-
erating modes means that we incur the additional overheads
associated with our use of fine-grained RSMs (e.g., per-key
prepare messages and per-key timestamp updates) only in a
limited number of cases.

3.4 Bounded Transport Processing

The logic outlined above allows reads to either commit or ex-
plicitly fail outstanding operations that have been received
and processed by any member of the replica group. We now
enhance our system to provide time bounds on the delay for
propagating a command from the client to a replica node. This
allows clients to also reason about the execution status of com-
mands recently initiated by some other client in the system
(e.g., the previous instance of a VM that failed unexpectedly).

CAS operations are tagged with the time at which they
are initiated by the Stargate code. The leader ensures that it
finishes processing the CAS operation within a bounded time
of T seconds. If the time bound expires and the leader had
failed to initiate any accept messages to process and propagate
the new value, then it simply drops the request and returns
a timeout message. As a consequence of this time bound, a
read operation that is issued T seconds after an update will
encounter one of the following cases: the prior update has
been committed; the prior update was accepted at a subset
of the nodes, in which case the read will commit it; or prior
update is not at any of the responsive replicas, in which case
the read will prevent the prior update from committing. The
read can thus determine the execution status of the prior
update, and repeated reads will return the same consistent
value in the absence of other concurrent updates.

This bounded-time guarantee assists in handling failover of
application code, migration of virtual disks across Stargate in-
stances, and other tasks. For example, the cluster management
software can delay the failover of applications until the time
bound has expired to ensure that they are not affected by spuri-
ous races. For the Stargate systems code, such as that of virtual
disk migration logic where stalls are not appropriate, clients
directly invoke mutating quorum read to abort any in-flight
operations from the old site until the time bound has expired.

The use of time bounds is similar in spirit to that of leases
in a distributed system, and the concerns associated with the

use of an implicit global clock being mitigated by the fol-
lowing two considerations. First, the clients of the key-value
store are the block storage management services that run on
the same set of nodes as the distributed key-value store and
thereby share the same set of local clocks on each node. Sec-
ond, in a local area enterprise cluster, time synchronization
protocols such as NTP/PTP can achieve sub-millisecond time
synchronization accuracy whereas the time bounds that we
provide are in the order of seconds (which is consistent with
the disk timeout values in operating systems/file systems).

4 Evaluation and Deployment Measurements
Our evaluations comprise of four parts. First, we character-
ize the metadata service using representative traces from cus-
tomer clusters. Second, we show the performance benefits of
using fine-grained RSMs by comparing with an implemen-
tation of a coarse-grained RSM (i.e., cRSM) approach de-
scribed in Section 2. We perform these evaluations in a con-
trolled testbed setting that runs just the metadata service and
not the rest of the cluster block storage system. Note that
the controlled environment has the same failure rate, request
read/write ratio, and key popularity distribution that we ob-
served in practice. Third, we present the performance of our
metadata service as part of complete system evaluations. We
configure a cluster with client VMs and workload generators,
measure the performance of our metadata service, and charac-
terize the performance benefits of optimizations. Finally, we
report performance numbers from real-world deployments.

4.1 Experiment Setup

Our evaluations are performed on typical enterprise on-
premises clusters. Specifically, our controlled testbed is a 4-
node cluster, where each node is a Supermicro 1U/2U server,
enclosing E5-2680 v3/E5-2620 v4 processors, 64GB/128GB
DDR4 memory, two Intel DC P3600 NVMe SSDs, and a
dual-port 10Gbps Intel X710 NIC. We perform the remaining
evaluations on similar hardware, but at a larger scale across
a large number of customer clusters. Appendix B.1 presents
details of the LSM configurations that we use in practice. The
replication factor for a key is three in all experiments.

4.2 Metadata Workload Characterization

We present metadata measurements from 980 custom clusters
(Figure 20 in Appendix B.2). Generally, each cluster contains
3 to 30 nodes and uses 24.7TB block storage on average. The
three metadata components (vDisk block, ExtentGroupID,
and ExtentId) have sizes that are 0.02%, 0.06%, and 0.01% of
the physical storage, respectively. Note that the size of both
block storage and metadata store will reduce when deduplica-
tion and compression are enabled.

Next, we characterize the metadata workload in terms of
read/write ratio, value size distribution, and key access popu-
larity, by taking continuous snapshots from three custom clus-
ters, where each cluster has at most 16 nodes. We make the
following observations. First, unlike other previous key-value

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

dist_oplog

extent_group_id

extent_id

extent_group

sync_lws

sync_oplog

vdisk_block

vdisk_oplog

R
e

a
d

/W
ri
te

 r
a

ti
o Read Write

Figure 6: Read/write ratio for 8 frequently ac-
cessed metadata tables.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000 1100

C
D

F

Value size (B)

Read Write

Figure 7: Value size distribution of read/write
requests. Key size is less than 100 bytes.

Cluster1 Cluster2 Cluster3
vdisk block 0.99 0.99 0.99
extent id 0.80 0.80 0.85
extent group id 0.60 0.55 0.50
extent phy_state Uniform Uniform Uniform

Table 1: Key access popularity of four different
metadata tables for three customer clusters. The
first three types of metadata are Zipf; we show
their skewness factors.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120

L
a

te
n

c
y
 (

m
s
)

Throughput (KRPS)

fRSM
cRSM batch=1

cRSM batch=64
cRSM batch=128

Figure 8: Latency v.s. throughput under the
skewed workload for multiple shards.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120

L
a

te
n

c
y
 (

m
s
)

Throughput (KRPS)

fRSM
cRSM batch=1

cRSM batch=64
cRSM batch=128

Figure 9: Latency v.s. throughput under the uni-
form workload for multiple shards.

 0

 20

 40

 60

 80

 100

 120

1 Core 2 Core 3 Core 6 Core 12 Core

T
h

ro
u

g
h

p
u

t
(K

R
P

S
) fRSM cRSM

Figure 10: Maximum throu. for the skewed
workload as we the number of cores.

store workload profiles studied under social networks/web set-
tings [21,24], our metadata service presents various read/write
ratios ranging from write-only loads for various system logs
to read/write intensive ones for various filesystem metadata
items (see Figure 6). Second, the read/write requests are dom-
inated by small values, say less than 512B (see Figure 7).
In fact, about 80% of reads and writes involve values that
are less than 200 bytes in size. Further, requests that involve
more than 1KB value sizes are about 1.0% of the reads/writes.
Finally, there exist various access patterns in our metadata
service. As shown in Table 1, some metadata shows highly
skewed key/value accesses, while others have low skewness
or even present uniform access patterns.

4.3 Benefits of Fine-grained RSMs

We now evaluate the performance benefits of fRSMs using
streamlined deployments that run just the metadata service
on physical nodes (as opposed to client VMs). No client
workloads are executing on service nodes. We use a workload
generator and configure it to issue a similar request pattern as
our most frequently accessed metadata that has 43% reads and
57% writes, value size of 512B, and a Zipf distribution with
skewness factor of 0.99. We also consider a uniform access
case (i.e., random access pattern) as an additional workload.
We inject faults into the leader using failure rate observed in
the wild (Section 4.5). We evaluate fRSM and cRSM in terms
of both latency and throughput.

Higher throughput. We set up a three-node replica group
with twelve data shards, running across two SSDs and twelve
CPU cores. In the case of cRSM, each node is a leader for four
shards, each shard allocated a separate core, and six shards
share each SSD. In the case of fRSM, there is a consolidated
commit log striped across the two SSDs, and each operation
is dynamically scheduled to a CPU core. We consider cRSM
configured to perform batched commit using different batch

sizes. fRSM achieves 5.6× and 2.3× higher throughputs over
cRSM (with batch size of 128) for skewed and random cases,
respectively (see Figures 8 and 9). This is because fRSM
(1) allows requests accessing different keys to be reordered
and committed as soon as they complete; (2) eliminates the
computation cost associated with scanning the RSM log to
identify and retry uncommitted entries; (3) avoids unnecessary
head-of-line blocking caused by other requests; (4) achieves
better load balance across SSDs and cores even in skewed
workloads. The first three benefits can be observed even in
the single shard case (Figures 11 and 12), while the next
experiment further examines the load balance benefits.

Better load balancing. To examine the load-balancing
benefits of fRSM , we again consider a three-node replication
group with twelve data shards but vary the number of CPU
cores used to process the workload. We consider the skewed
workload, and we configure cRSM to use a batch size of 64.
We then measured the maximum throughputs achieved and
the average/p99 latency of operations when we achieve the
maximum throughput (see Figures 10 and 13). fRSM provides
a 1.9×, 4.1×, 6.1×, 11.0× throughput improvement and 1.9×,
2.4×, 3.3×, 5.3× (1.3×, 2.5×, 3.3×, 4.9×) avg(p99) latency
reduction as we increase the number of cores from 1 core
to 2, 4, 6, and 12 cores, respectively. The performance of
cRSM, on the other hand, does not improve with more than
two provisioned cores. This is because, under load skews,
fRSM allows balanced and timely execution of operations
on different key-based RSMs, while cRSM has to commit
requests in the RSM log sequentially and is subject to skews
and head-of-line blocking.

4.4 Performance of Commercial Offering

We now evaluate the fRSM approach when implemented in-
side a commercial product providing a cluster-wide storage
abstraction. This introduces many additional overheads as

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

L
a

te
n

c
y
 (

m
s
)

Throughput (KRPS)

fRSM
cRSM batch=1

cRSM batch=64
cRSM batch=128

Figure 11: Latency v.s. throughput under the
skewed workload for a single shard.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

L
a

te
n

c
y
 (

m
s
)

Throughput (KRPS)

fRSM
cRSM batch=1

cRSM batch=64
cRSM batch=128

Figure 12: Latency v.s. throughput under the
uniform workload for a single shard.

 0

 20

 40

 60

 80

 100

 120

1 Core 2 Core 3 Core 6 Core 12 Core

L
a

te
n

c
y
 (

m
s
)

fRSM-avg
cRSM-avg

fRSM-p99
cRSM-p99

Figure 13: Average/p99 latency for the skewed
workload as we increase the number of cores.

 0

 20

 40

 60

 80

 0 20 40 60 80 100 120 140

L
a

te
n

c
y
 (

m
s
)

Throughput (KRPS)

Read Write

Figure 14: Latency versus throughput for reads
and writes inside a Stargate cluster.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

% of key accesses w/o a chosen bit

Figure 15: Operations requiring a multi-phase
protocol when the leader has no chosen value.

 0

 30

 60

 90

 120

 150

20% 40% 60% 80% 100%

T
h

ro
u

g
h

p
u

t
(K

o
p

s
)

% of key accesses w/o a chosen bit

fRSM cRSM

Figure 16: Throughput for the skewed workload
varying the fraction of multi-phase operations.

the metadata service is executed inside a controller virtual
machine, there is virtualized access to the network, and stor-
age/CPU resources are shared with the rest of the cluster man-
agement system as well as client VMs.

We use an internal three-node cluster to evaluate fRSM and
use an in-house workload generator that mimics various types
of client VM behavior. Figure 14 reports the performance.
The node is able to support peak throughputs of 121.4KRPS
and 57.8KRPS for reads and writes, respectively. Under a
low to medium request load, the average latency of reads and
writes is 0.63ms and 1.83ms, respectively. In the appendix, we
provide additional measurements of the internal cluster that
quantify the benefits of using a gradation of read execution
modes and utilizing the appropriate read variant for a given
key. Overall, the throughput performance of fRSM inside the
commercial offering is in the same ballpark as the stand-alone
evaluation, but the access latency is significantly higher due
to various queueing delays and interference with other storage
operations that are concurrently performed by the VMs and
the cluster management software.

4.5 Measurements from Real-world Deployments

High availability. We collect failure data over a two-week
period (from 2018/09/12 to 2018/09/25) from about 2K cus-
tomer clusters. On average, there are 70 software detached
events (due to unanswered heartbeat messages) and 26 hard-
ware failures (e.g., a disk being corrupted/dead) per day, re-
spectively. Crucially, our measurements show that a recover-
ing node is able to integrate itself into the metadata service
within 30 seconds irrespective of the number of key-value op-
erations that might have been performed when it was down.
Appendix B.4 reports detailed failure handling performance.
The reason for this fast recovery is that a recovering node
only replays the operations in its commit log before it can
participate in the consensus protocols. Each key accessed sub-

sequently would allow the recovering node to update just that
particular key-value state given the fine-grained nature of the
RSMs in our system. The node can also lazily update the re-
maining key-value state in the background, and we observe
that our system does so in about 630secs on average. In other
words, the fRSM approach speeds up node integration signifi-
cantly by more than 20x.

Multi-phase operations. The primary overhead associated
with fRSM is the need for one or more additional rounds of
protocol messages when a leader invokes an operation on a
key that was previously mutated through a different leader.
cRSM also incurs leadership change overheads, but they are
at a shard-level, whereas fRSM incurs the overheads on a per-
key basis. We quantify how often this happens in practice
by measuring the fraction of instances where a leader does
not have the chosen bit set and has to perform additional
protocol phases. Figure 15 shows that fRSM incurs additional
overheads for less than 1% of the key accesses in more than
90% of the cluster snapshots. We then performed an analysis
of how the fRSM throughput degrades as we vary the number
of accesses requiring multi-phase operations given the skewed
workload discussed earlier. Figure 16 shows that, even though
the throughput of fRSM degrades in our controlled testbed,
fRSM’s throughput is still higher than that of cRSM’s even
when 100% of the operations require multiple phases.

Cluster throughputs. We report the node/cluster through-
put of the metadata layer from real deployments. Figure 17
shows the cluster throughput, where (1) every point represents
a cluster data point; (2) the left y-axis represents both the
throughput as well as the number of Paxos state machines that
are executing per second (since every operation corresponds
to a Paxos instance of a key-value pair); (3) the right y-axis is
the number of nodes in the cluster. It varies from 3 nodes to
a maximum of 33 nodes in the cluster; (4) the red line repre-
sents the throughput measurements per node. We can observe
that our metadata layer can scale from a few thousand state

Figure 17: Cluster-level and node-level throughput for the metadata
layer in the custom cluster.

machine invocations to about 393K state machine invocations
per second across the cluster. The cluster with the maximum
number of cluster-level operations had eight nodes, and the
per-node throughput is ∼59K operations per second, which is
consistent with the stress tests performed on the internal clus-
ter. Note that the peak system throughput for the other clusters
could be higher, as our measurements are snapshots of the data
and the observed throughput is a function of the offered load.

5 Deployment-based Experience
From our experience developing the Metadata store and trou-
bleshooting issues faced by our customers, we have not only
improved the robustness of the system but also have learned
a number of non-obvious lessons.

5.1 Fault Tolerance

Stargate provides highly-available block storage, and we de-
scribe how the metadata layer handles various cluster failures.

Transient failure. This is a typical failure scenario where
the failed node recovers within a short period, e.g., a node
taken offline for upgrades. When the node is the leader of a
replica group, one of the other replicas will elect itself as the
leader. The new leader initially processes reads and writes
using quorum operations instead of transiting into leader-
only mode (since scan is an expensive operation). The system
keeps track of newly created SSTables on the leader and en-
sures these newly created SSTables are not compacted with
older ones. This guarantees that new updates are segregated
from older ones. When the failed node recovers, it elects it-
self as the leader of the replica group, provided it is the nat-
ural leader of the shard. We then transfer the newly created
SSTables to the recovered node to enable it to catch up on lost
updates and enter leader-only mode after it does so. If a sig-
nificant period of time has elapsed without the failed node re-
covering (e.g., 30 minutes in our current system), the current
leader attempts to transition to leader-only mode. For this, it
has to scan the entire keyspace, by performing batched quo-
rum reads or mutating quorum reads as necessary, to discover
the up-to-date state for all keys in its shard.

Correlated or group failure. Generally, this is an uncom-
mon event but will happen when (1) the rack UPS (uninter-
ruptible power supply) or rack networking switch goes down;
(2) the cluster undergoes planned maintenance. We apply a
rack-aware cluster manager, where Stargate creates different
location independent failure domains during the cluster cre-
ation and upgrade phases. Upon metadata replication, based
on the replication factor (or fault tolerance level), we place
replicas across different failure domains to minimize the prob-
ability that the entire metadata service is unavailable.

Optimization. It is worth noting that the choice of the LSM
tree as a node’s local data storage is beneficial in optimizing
the handling of failures. With appropriate modifications to the
LSM tree, we are able to keep the newly created data segre-
gated. It also helps optimize the transfer of state to new nodes
that are added to the replica set (to restore the replication fac-
tor in the case of persistent failures) by enabling the bulk trans-
fer of SSTable state to the new nodes. Further, our system has
a background process that periodically checks the integrity of
stored data and re-replicates if necessary. This accelerates the
recovery process. If a node goes down for a while, the sys-
tem starts a dynamic healing approach that proactively copies
metadata to avoid a two-node failure and unavailability.

5.2 Addition/Removal of Nodes

Recall that, in Stargate’s metadata store, keys are spread
across nodes using consistent hashing. Since we apply ev-
ery update for a key to only a quorum of the key’s replicas
to maximize system throughput, the addition of nodes to the
cluster must be handled carefully. For example, consider the
addition of node A (in between Z and B) to a 4 node clus-
ter with nodes Z, B, C, and D. Say a key in the range (Z, A]
has previously been written to only B and D, i.e., 2 out of the
key’s 3 replicas B, C, and D. Now, a read for that key could
potentially return no value, since 2 of the key’s 3 new replicas
(A, B, and C) have no record of it.

To prevent such issues, we introduce a new node by tem-
porarily increasing the replication factor for the keys assigned
to it, until the node is caught up. Having a new node catch
up by issuing Paxos reads for all of its keys is, however, terri-
bly slow; this process has taken as long as 18+ hours at one
of our customers! So, we also had to develop a protocol that
enables a new node to directly receive a copy of relevant por-
tions of other nodes’ SSTables. Since a new node starts serv-
ing new operations while receiving LSM state in the back-
ground, we disable caching until the new node is caught up,
so as to prevent inconsistency between in-memory and on-
disk state. This bulk copy method is also used during the node
removal process. Besides that, we place the removed node
into a forwarding state such that replication requests won’t
be accepted, but local requests will be forwarded to another
node. After affected token ranges are scanned and a quorum
of the remaining nodes can respond to the request, the re-
moved node is excised from the DHT ring.

5.3 Deletion of Keys

Consensus protocols such as Paxos are silent on the issue of
deletion; it is assumed that Paxos state must be kept around
forever. Therefore, when a key is deleted, correctly removing
that key’s Paxos state from all replicas proved to be tricky to
get right for several reasons. (We describe our delete protocol
in Appendix A.2.) Even after all replicas commit to their
LSMs a tombstone record indicating a key’s deletion, we
found that the key’s old value could resurface for multiple
reasons. Example causes include faulty SSDs failing to write
an update to stable storage despite acknowledging having
done so, or misbehaving clients issuing mutating reads with
an epoch number lower than the key’s epoch value when it
was deleted, causing the old value to be re-propagated to
all replicas. To avoid such scenarios, apart from using high-
quality SSDs, we set a key’s tombstone record in the LSM to
be deleted only 24 hours after the third record was created.
Since we use the current time to pick epoch numbers, 24 hours
is sufficiently large that clock skew cannot prevent epoch
numbers from monotonically increasing.

6 Related Work
Our work is related to recent research efforts in consensus
protocols, consistent storage systems, metadata management,
relaxed consistency, and cluster storage.
Consensus protocols: To provide consistency in the pres-
ence of node faults, we use a consensus protocol that is an ex-
tension of protocols such as Multi-Paxos [16], Viewstamped
Replication [25], and Raft [26]. The crucial difference is
that we integrate request processing (which in our case is
read/CAS/delete operations of a key-value store) with the con-
sensus protocol logic. This approach allows us to realize fine-
grained replicated state machines that enable effective use of
storage and compute units in a setting where they are scarce
(since client VMs are co-located with the storage service).

We share the same insight as other replication protocols
that reduce coordination by identifying operations that can
be performed independently (e.g., Generalized Paxos [17],
EPaxos [23]), but we use this insight to optimize the use of
storage and computing on a server node. Our work is related
to foundational algorithmic work on atomic distributed reg-
isters [1, 9], but we support synchronization operations that
have an unbounded consensus number (such as CAS).
Consistent storage systems: Our work is also related to
recent work on various types of consistent key-value stor-
age systems. Unlike Spanner [5], RIFL [19], FaRM [7], and
TAPIR [35], our key-value store does not directly support
transactions but rather limits itself to single key operations.
Instead, it provides the atomic CAS primitive, which is used
by the block storage management layer to make mutating up-
dates and limited types of transactional operations. Our key-
value store, however, provides bounded time operations and
stronger ordering constraints that are required by legacy appli-
cations in virtualized settings. Its node-local data structures

are based on those of BigTable [4] and HBase [11], and we
make some modifications to aid in fast failure recovery. Our
consistent storage system is also related to MegaStore [2],
which provides per-row transactional updates using Paxos.
Our approach integrates the Paxos algorithm with the key-
value store logic in order to both enhance performance as well
as provide stronger operation ordering guarantees.
Metadata management in P2P systems: Traditional DHT-
based P2P storage systems (like DHash [6], Pastry [28],
OceanStore [15], Antiquity [33], Ceph [34]) provide a man-
agement layer that maps physical blocks to node locations.
Such metadata is a read-only caching layer that only changes
when nodes join/leave. However, our metadata service main-
tains mappings between physical and virtual blocks, which
could frequently change under VM migration. Hence, our sys-
tem has a stronger consistency requirement.
Relaxed consistency: Researchers have proposed a couple
of relaxed consistency models to reduce request execution
latency, especially for geo-replicated key-value storage. For
example, Walter [30] supports parallel snapshot isolation
and conducts asynchronous replication. Within each site, it
uses multi-version concurrency control and can quickly com-
mit transactions that write objects at their preferred sites.
COPS [22] is a geo-replicated key-value store that applies
causal consistency across the wide area. RedBlue [20] defines
two types of requests: blue operations execute locally and
lazily replicate in eventually consistency manner; red oper-
ations serialize with respect to each other and require cross-
site coordination. The metadata layer of our enterprise cloud
storage has a linearizable requirement.

7 Conclusion
Enterprise clusters today rely on virtualized storage to sup-
port their applications. In this paper, we presented the design
and implementation of a consistent metadata index that is re-
quired to provide a virtual disk abstraction. Our approach is
based on using a distributed key-value store that is spread
across the cluster nodes and is kept consistent using consen-
sus algorithms. However, unlike other systems, our design
uses fine-grained RSMs with every key-value pair represented
by a separate RSM. Our design is motivated by the effective
use of storage and computing on clusters that is achieved by
flexible scheduling of unrelated operations. Our work tackles
a range of challenges in realizing fine-grained RSMs and pro-
vides useful ordering guarantees for clients to reason about
failures. We build and evaluate our system, compare it with
coarse-grained RSMs in controlled testbed settings, and pro-
vide measurements from live customer clusters.

Acknowledgments
This work is supported in part by NSF grants CNS-1714508
and CNS-1563849. We would like to thank the anonymous
reviewers and our shepherd, Rebecca Isaacs, for their com-
ments and feedback.

References
[1] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Shar-

ing Memory Robustly in Message-Passing Systems.
Journal of the ACM, 42(1):124–142, 1995.

[2] Jason Baker, Chris Bond, James C. Corbett, JJ Fur-
man, Andrey Khorlin, James Larson, Jean-Michel Leon,
Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
Megastore: Providing Scalable, Highly Available Stor-
age for Interactive Services. In Proceedings of the Con-
ference on Innovative Data System Research, 2011.

[3] Navin Budhiraja, Keith Marzullo, Fred B Schneider,
and Sam Toueg. The Primary-Backup Approach. Dis-
tributed systems, 2:199–216, 1993.

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A distributed storage system for structured data. In 7th
USENIX Symposium on Operating Systems Design and
Implementation, 2006.

[5] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Ra-
jesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szyma-
niak, Christopher Taylor, Ruth Wang, and Dale Wood-
ford. Spanner: Google’s Globally-Distributed Database.
In 10th USENIX Symposium on Operating Systems De-
sign and Implementation, 2012.

[6] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area Cooperative Storage
with CFS. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles, 2001.

[7] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation, 2014.

[8] EMC. EMC Isilon OneFS: A Technical Overview, 2016.

[9] Burkhard Englert, Chryssis Georgiou, Peter M. Musial,
Nicolas Nicolaou, and Alexander A. Shvartsman. On
the Efficiency of Atomic Multi-reader, Multi-writer Dis-
tributed Memory. In Proceedings of the 13th Interna-
tional Conference on Principles of Distributed Systems,
2009.

[10] Gluster. Cloud Storage for the Modern Data Center: An
Introduction to Gluster Architecture, 2011.

[11] HBase Reference Guide. https://hbase.apache.
org/book.html.

[12] Maurice Herlihy. Wait-free Synchronization. ACM
Transactions on Programming Languages and Systems,
13(1):124–149, 1991.

[13] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. ZooKeeper: Wait-free Coordina-
tion for Internet-scale Systems. In USENIX Annual
Technical Conference, 2010.

[14] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation, 2016.

[15] John Kubiatowicz, David Bindel, Yan Chen, Steven Cz-
erwinski, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. OceanStore: An
Architecture for Global-scale Persistent Storage. In Pro-
ceedings of the Ninth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, 2000.

[16] Leslie Lamport. Paxos Made Simple. ACM Sigact News,
32(4):18–25, 2001.

[17] Leslie Lamport. Generalized Consensus and Paxos.
Technical Report 2005-33, Microsoft Research, 2005.

[18] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Ver-
tical Paxos and Primary-Backup Replication. In The
ACM Symposium on Principles of Distributed Comput-
ing, 2009.

[19] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushita, and John Ousterhout. Implementing Lineariz-
ability at Large Scale and Low Latency. In Proceedings
of the 25th Symposium on Operating Systems Principles,
2015.

[20] Cheng Li, Daniel Porto, Allen Clement, Johannes
Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. Mak-
ing Geo-replicated Systems Fast As Possible, Consistent
when Necessary. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Imple-
mentation, 2012.

[21] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to Fast
In-Memory Key-Value Storage. In 11th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion, 2014.

https://hbase.apache.org/book.html
https://hbase.apache.org/book.html

[22] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky,
and David G. Andersen. Don’t Settle for Eventual: Scal-
able Causal Consistency for Wide-area Storage with
COPS. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, 2011.

[23] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There Is More Consensus in Egalitarian Parlia-
ments. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, 2013.

[24] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and
Implementation, 2013.

[25] Brian M Oki and Barbara H Liskov. Viewstamped Repli-
cation: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of the
seventh annual ACM Symposium on Principles of dis-
tributed computing, 1988.

[26] Diego Ongaro and John Ousterhout. In Search of an
Understandable Consensus Algorithm. In Proceedings
of the USENIX Annual Technical Conference, 2014.

[27] Ohad Rodeh and Avi Teperman. zFS - A Scalable Dis-
tributed File System Using Object Disks. In Proceed-
ings of the 20th IEEE/11th NASA Goddard Conference
on Mass Storage Systems and Technologies, 2003.

[28] Antony Rowstron and Peter Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. In IFIP/ACM International
Conference on Distributed Systems Platforms and Open
Distributed Processing, 2001.

[29] Frank Schmuck and Roger Haskin. GPFS: A Shared-
Disk File System for Large Computing Clusters. In
Proceedings of the 1st USENIX Conference on File and
Storage Technologies, 2002.

[30] Yair Sovran, Russell Power, Marcos K Aguilera, and
Jinyang Li. Transactional storage for geo-replicated sys-
tems. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, 2011.

[31] Sun. Lustre File System: High-Performance Storage
Architecture and Scalable Cluster File System, 2007.

[32] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy Transactions in
Multicore In-Memory Databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, 2013.

[33] Hakim Weatherspoon, Patrick Eaton, Byung-Gon Chun,
and John Kubiatowicz. Antiquity: Exploiting a Secure
Log for Wide-area Distributed Storage. In Proceedings
of the 2Nd ACM SIGOPS/EuroSys European Conference
on Computer Systems, 2007.

[34] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A Scalable,
High-performance Distributed File System. In Proceed-
ings of the 7th Symposium on Operating Systems Design
and Implementation, 2006.

[35] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. Building
Consistent Transactions with Inconsistent Replication.
In Proceedings of the 25th Symposium on Operating
Systems Principles, 2015.

A More Details of fRSM
In this appendix, we present additional details regarding the
design of our system.

A.1 CAS and Read Algorithmic Description

Algorithm 1 CAS procedure
1: procedure CAS_CLIENT(key,valnew,epochnew, tsnew)
2: < valold ,CLOCK >← lsm_read(key)
3: if CLOCK.epoch≥ epochnew then
4: if CLOCK.epoch = epochnew & CLOCK.chosen 6= 1 then
5: valnew← valold
6: end if
7: err← 1
8: else if CLOCK.ts≥ tsnew then
9: if CLOCK.ts = tsnew & CLOCK.chosen 6= 1 then

10: valnew← valold
11: end if
12: err← 1
13: end if
14: if CLOCK.pp is not valid then . Issued by another node
15: CLOCK.pp← get_higher_proposal(CLOCK.pp)
16: lsm_write(key,CLOCK,epoch_new, ts_new)
17: for N in Replicagroup do
18: send_prepare(key,CLOCK,N)
19: end for
20: else
21: for N in Replicagroup do
22: send_accept(key,valnew,CLOCK,epochnew, tsnew,N)
23: end for
24: end if
25: if err = 1 then
26: send_client_reply(key,CASerror)
27: end if
28: end procedure
29: procedure CAS_INTERNAL_LEADER(req)
30: < keyreq,valreq,CLOCKreq >= parse_request(req)
31: <CLOCKlocal >← lsm_read(keyreq)
32: if reqtype is prepare_reply then
33: lsm_write_reply(CLOCKlocal ,req)
34: if CLOCKlocal .response_num≥ QUORM then
35: for N in Replicagroup do
36: send_accept(key,valnew,CLOCKlocal ,N)
37: end for
38: end if
39: else if reqtype is accept_reply then
40: lsm_write_reply(CLOCKlocal ,req)
41: if CLOCKlocal .response_num≥ QUORM then
42: send_client_reply(key,CLOCKlocal ,N,CASsuccess)
43: end if
44: else if reqtype is accept then . Same as the way follower works.
45: end if
46: end procedure
47: procedure CAS_INTERNAL_FOLLOWER(req)
48: < keyreq,valreq,CLOCKreq >= parse_request(req)
49: <CLOCKlocal >← lsm_read(keyreq)
50: if reqtype is prepare then
51: if CLOCKreq.pp ≥CLOCKlocal .pp then
52: CLOCKlocal ←CLOCKreq
53: lsm_write_clock(keyreq,CLOCKlocal)
54: send_prepare_reply(key,CLOCKlocal ,ACK)
55: else
56: send_prepare_reply(key,CLOCKlocal ,REJ)
57: end if
58: else if REQtype is accept then
59: if CLOCKreq ≥CLOCKlocal then
60: CLOCKlocal ←CLOCKreq
61: commit_log_write(keyreq,valreq,CLOCKlocal)
62: lsm_write_whole(keyreq,valreq,CLOCKlocal)
63: send_accept_reply(key,CLOCKlocal ,ACK)
64: else
65: send_accept_reply(key,CLOCKlocal ,REJ)
66: end if
67: end if
68: end procedure

Algorithm 2 READ procedure
1: procedure READ_CLIENT(key)
2: if leader_only = 1 then . leader-only read
3: < val,CLOCK >← lsm_read(key)
4: if CLOCK.chosen 6= 1 then
5: if CAS_client(key,val,CLOCK.epoch,CLOCK.ts) =CASSuccess then
6: send_client_reply(key,val)
7: else
8: send_client_reply(key,READerror)
9: end if

10: elsereturn val
11: end if
12: else . quorum read
13: for N in Replicagroup do
14: send_read(key,N)
15: end for
16: end if
17: end procedure
18:
19: procedure READ_INTERNAL_LEADER(req)
20: < keyreq,valreq,CLOCKreq >= parse_request(req)
21: <CLOCKlocal >← lsm_read(keyreq)
22: if reqtype is read_timeout then . mutating quorum read
23: if CAS_client(key,val,CLOCK.epoch,CLOCK.ts) =CASSuccess then
24: send_client_reply(key,val)
25: else
26: send_client_reply(key,READerror)
27: end if
28: else . quorum read
29: lsm_write_reply(CLOCKlocal ,req)
30: if CLOCKreq ≥CLOCKlocal then . mutating quorum read
31: if CAS_client(key,val,CLOCK.epoch,CLOCK.ts) =CASSuccess then
32: send_client_reply(key,val)
33: else
34: send_client_reply(key,READerror)
35: end if
36: end if
37: if CLOCKlocal .response_num≥ QUORM then
38: send_client_reply(key,val)
39: end if
40: end if
41: end procedure
42:
43: procedure READ_INTERNAL_FOLLOWER(req)
44: < keyreq,valreq,CLOCKreq >= parse_request(req)
45: <CLOCKlocal >← lsm_read(keyreq)
46: send_read_reply(keyreq,valreq,CLOCKlocal)
47: end procedure

Algorithm 1 and 2 presents how CAS/read requests are han-
dled at the leader and followers. They follow our protocol de-
scription in Sections 3.3.2 and 3.3.3.

A.2 Delete Processing

The key-value store also supports a delete operation, which
is used by the block storage system to remove index map en-
tries that are no longer necessary (e.g., when a virtual disk
snapshot is deleted). A delete request from a client is similar
to a regular CAS update where the client provides the epoch e
and timestamp t +1. The leader processes a delete operation
by first getting a quorum of nodes to update the value associ-
ated with the key to a special DeleteForCell value for epoch e
and timestamp t +1. If the DeleteForCell value was not ac-
cepted by all replicas but only by a quorum, then a Deleted-
CellTombstoned message is sent to ensure replicas keep the
key-value pair until the next deletion attempt. As far as the
client is concerned, quorum nodes accepting a DeleteForCell
is considered as a successful CAS update.

Periodically, the leader attempts to complete a two-phase

the highest proposal number, corresponding to
the highest leader log instance;

the number of the latest committed log instance;

log entries; each entry contains the accepted
proposal number, and command value;

cRSM consensus state

view number:

latest commit ID:

log[]:

fRSM consensus state

instance number:

<key, val>:

epoch/timestamp, corresponding to the highest
leader instance;

key-value pairs; each pair contains the promised
proposal number, accepted proposal number,
and key/value data;

Figure 18: Consensus state comparison between cRSM and fRSM .

deletion process to delete the value completely. When it has
gotten all replicas to accept the delete request, the first phase
is considered complete. It then sends a second message to in-
struct replica nodes to schedule the key for deletion and to
remove all state associated with it. This request is recorded
in Memtable/SSTable individually on every replica. The next
major compaction on a replica will remove the state. Until
then the deletion record persists at each replica with its asso-
ciated clock containing epoch e and timestamp t +1.

Once the key deletion is successful (quorum nodes have
accepted the deletion request), any new CAS updates with
epoch ≤ e are rejected as CAS errors. New client updates for
the key (i.e., key creation) must use a new (higher) epoch with
timestamp 0.

A.3 fRSM Operation Summary

Table 2 summarizes read/write operations under various cases
in terms of request latency, message count, and metadata stor-
age operation count.

A.4 The Relationship between cRSM and fRSM

Note that fRSM works exactly the same as cRSM but in
a fine-grained way. In terms of the consensus state (Fig-
ure 18 in the appendix), cRSM maintains a per-shard view
number, the latest commit ID, and a log of RSM instances
(where each instance has an accepted proposal number and
the command value). fRSM essentially maintains informa-
tion only for the most recent instance and directly encodes the
promised/accepted proposal number along with the key/value
pair. As a result, it doesn’t require the latest commit ID. In
terms of the way they handle the leader change event, cRSM
uses a full two-round consensus protocol to synchronize the
latest commit ID, preparing for all future commands. fRSM
also takes a full two-phase consensus protocol to synchro-
nize the consensus state for each key. In the example shown
in Figure 19 (in the appendix), where there are eight opera-
tions accessing three different keys, cRSM issues the leader
prepare message at op1, while fRSM performs this prepare at
op1, op3, and op7.

fRSM leader change

R key1
op1

W key1 R key2 W key2 R key2W key1 R key3W key3
op2 op3 op4 op5 op6 op7 op8

Upon change, each key i, start a two-round Paxos and prepare for all
future requests that access key i;

Upon change, start a two-phase Paxos protocol and prepare for all
future requests (RSM instances);

cRSM leader change

leader change

Figure 19: Leader change comparison between cRSM and fRSM .

B More Real-world Evaluation
B.1 LSM Configuration

Table 3 shows key LSM parameters. They are configured
based on the physical storage media, cluster setup, and meta-
data characteristics. The table presents the default values.

B.2 Deployment Scale

Figure 20 presents the deployment scale in terms of node
number, storage size, and metadata size.

B.3 Internal Cluster Measurements

We consider again the internal cluster running the complete
storage and virtualization system along with client VMs in-
voking stress tests on the metadata and storage layer (as dis-
cussed earlier in). We report the average/p99 latency distri-
bution of read/write requests (Figure 21), showing compara-
ble end-to-end performance for read and write operations. We
also evaluate the performance of leader-only reads. Leader-
only mode significantly reduces the number of protocol mes-
sages and storage accesses, enabling fast metadata access. Fig-
ures 22 and 23 show that leader-only mode results in benefits
across different value sizes. On average, across various sizes,
leader-only mode halves the latency and more than doubles
the throughput. This underscores the benefits of using a gra-
dation of read execution modes and utilizing the appropriate
read variant for a given key.

B.4 Failure and Recovery Measurements

We provide additional details on the failure and recovery mea-
surements from our customer clusters. Figure 24 shows the
number of software detached events and fatal hardware er-
rors across the measurement period across all of the 2K clus-
ters. Both of them are detected by the DHT health manager.
Under software failures, our system will quickly restart the
metadata service and rejoin the DHT ring, consuming 2.7s
on average. Upon fatal hardware errors, we reboot the server
box and then walk through some device checks (e.g., storage
media and network). Figure 27 presents our observed server
downtime distribution. After node failure, the system follows
a 3-phase node handling failure to recover to the leader-only
mode, i.e., regaining leadership (T1), performing local recov-

Operations Latency (RTT) Message # Leader LSM RD. # Leader LSM WR. # Follower LSM RD. # Follower LSM WR. #
Cold CAS 2 4dn/2e 2dn/2e+1 2dn/2e+1 2 2
Warm CAS 1 2dn/2e dn/2e+1 dn/2e+1 1 1
Leader-only Read 0 0 1 0 0 0
Quorum Read 1 2n n+1 n+1 1 0
Mutating Quorum Read 3 2n+4dn/2e 2dn/2e+n+2 2dn/2e+n+2 3 2

Table 2: Message RTTs and LSM read/write counts for the leader and the follower under different settings. n is the number of replicas. cold CAS
refers to the case that the proposal of a key is issued by another node so that the leader has to invoke the two round Paxos. warm CAS means that the
leader is able to skip the 1st round of prepares.

Parameter Description Default value
max_heap_size Maximum heap size of the metadata store 2GB
flush_largest_memtables Heap usage threshold when flushing the largest memtable 0.9
default_memtable_lifetime Life time in minutes for any memtable 30
min_flush_largest_memtable Minimum memtable size forced flush when heap usage is high 20MB
max_commit_log_size_on_disk Maximum disk usage by commit logs before triggering a cleanup task 1GB
commitlog_rotation_threshold Maximum size of an individual commit log file 64MB
number_of_compaction_threads Number of threads to perform minor/major compaction 2
compaction_throughput_limit Maximum disk throughput consumed by compaction on a disk 64MB

Table 3: LSM performance-sensitive parameters.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Node #

(a) Node #.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

C
D

F

Storage size (TB)

(b) Storage size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
D

F

Metadata size (GB)

vdisk block
extent group id

extent id

(c) Metadata size.

Figure 20: Node #, storage size, and metadata size CDF across 980 custom clusters.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

C
D

F

Time (ms)

read-avg
read-p99

write-avg
write-p99

Figure 21: Average/p99 read/write latency CDF
inside a Stargate cluster.

 0

 50

 100

 150

 200

 250

 300

1KB 4KB 8KB 16KB 32KB 64KB

L
a

te
n

c
y
 (

m
s
)

Value size

w/o leader-only
w/ leader-only

Figure 22: Latency versus value size, compared
between with and without leader-only mode.

 0

 20

 40

 60

 80

 100

 120

 140

1KB 4KB 8KB 16KB 32KB 64KB

T
h

ro
u

g
h

p
u

t
(K

R
P

S
)

Value size

w/o leader-only
w/ leader-only

Figure 23: Throughput versus value size, com-
pared between with and without leader-only
modes.

 0

 20

 40

 60

 80

 100

 120

 140

Sep 12 Sep 14 Sep 16 Sep 18 Sep 20 Sep 22 Sep 24

F
a

ilu
re

 c
o

u
n

t
(#

)

Time

Hardware unexpected failure
Software detached

Figure 24: Failure rate among 2K custom VMs
(Year 2018).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Recovery Time (s)

Figure 25: CDF of node recovery time inside a
Stargate cluster.

 0

 0.2

 0.4

 0.6

 0.8

 1

100K 200K 300K 400K 500K 600K

C
D

F

Recovered records (#)

Figure 26: CDF of recovered records inside a
Stargate cluster.

ery (T2), and performing a leader scan (T3). Based on our col-
lected traces, we observe that T1 consumes 1.0ms. During T2
phase, the node reads the commit log and executes missing
requests. Figures 25 and 26 present the CDF of local node
recovery (T2) and the number of recovered operation records
(from the committed log) for 4 clusters, respective. Note that

our cluster node is able to serve client requests starting from
T2 in a non-leader-only mode and enters the leader only mode
after the scan finishes (T3).

The duration of the T3 phase depends on scan performance.
To enable leader-only reads, the new leader must scan through
its owned range to learn the latest values. In some cases,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Downtime (s)

Figure 27: Node downtime CDF (after the hardware failure).

 0

 20

 40

 60

 80

 100

 120

 140

2010 2012 2014 2016 2018

Is
s
u
e
s

Year

Created Resolved

Figure 28: Metadata service corruption report over years.

0	

100	

200	

300	

400	

500	

600	

500K	
 keys	
 1	
 million	
 keys	

Ti
m
e	

(s
)	

Number	
 of	
 Keys	
 Scanned	

Scan	
 Time	
 for	
 Enabling	
 Leader	
 Only	
 Reads	

No	
 repairs	

Repairs	

Figure 29: Time to perform a scan in order to enable leader-only reads.

Paxos writes must be done, and this imposes additional la-
tency costs for the scanning process. The worst-case repair
time occurs when Paxos operations must be performed for
every key. Conversely, the best-case scan time occurs when
no consensus operations need to performed (i.e., the node has
all of the latest data). Figure 29 provides the time associated
with scans when the nodes are loaded with data comprising
of 32-byte keys and 8KB values. When repairs need to run
for every value, the total scan time is about 6× long. These
measurements show the quick integration of recovering nodes
into the metadata service.

B.5 Metadata Corruption Reports

Figure 28 shows the number of cases that have been reported
by our QA based that have caused data unavailability or cor-
rupt data being returned to the client based on the tests. We
have not culled for duplicate issues, where the single cause
manifested in multiple ways. The broad category of failures
has changed over the years. Initially, it was the interaction
with the local filesystems (fsyncs, o_directs), persistent me-
dia corruption, cluster misconfiguration. In recent years, it
has been due to the addition of new features like leader-only
reads, fast range migrations, balancing with no node down-
times. There have been a handful of protocol implementation
issues that were weeded out fairly quickly.

C Testing Framework
Our testing strategy and framework has evolved over the years.
Based on experience, we have found white box testing to be

one of the key ways to identify implementation issues in new
features and avoid regressions. We have instrumented code to
simulate various scenarios and probabilistic error conditions
like replica packet drops, timeouts, and erroneous key states.
Whenever a bug is discovered in the field or in black box
testing, we add a white box test to simulate the same condition
along with making the fix.

We also have multiple test clusters that do end-to-end black
box testing with error injections. Errors can be in the form of
service restarts, service down, corruption over the network,
timeouts, replays, and corruption of persistent store. As an
example, we use a test devised specifically for fRSM that per-
forms atomic increments on value(s) stored in key(s) n times
(where each of the atomic increment is a CAS update) and,
at the end, when all clients are done, check whether the final
value of each key is n times the number of clients. While these
clients are incrementing values using CAS, we randomly kill
replica/leader nodes, insert failures, randomly drop messages
between leader/replica nodes, add a delay in replying to mes-
sages, etc. Apart from incrementing values in the keys, we
also delete keys in the middle of the test to go through the
delete workflow and re-insert the key(s) with the value(s) seen
just before the deletes, so the clients can continue increment-
ing the values. We also add/remove replicas to the metadata
service while this test is underway to test add/remove node
scenarios and different read variants. These type of tests can
be performed within a developer environment and have aided
in building a robust system.

It is non-trivial to pinpoint performance bottlenecks due to
the complexity of our system. We instrument our logic across
the metadata read/write execution path and report runtime
statistics at multiple places, such as the number of outstanding
requests at the Paxos leader, the hit rate of the key clock
attribute, read/write/scan latency at leader and follower of
one key-range, etc. This instrumentation has been helpful in
identifying various performance issues.

	Introduction
	Motivation
	Metadata Storage Overview
	Baseline Design
	Performance Implications of Baseline Design

	System Design
	Overview and Design Roadmap
	Operation API and Consistency Semantics
	Operation Processing Logic
	Consensus State
	CAS Processing
	Read Processing

	Bounded Transport Processing

	Evaluation and Deployment Measurements
	Experiment Setup
	Metadata Workload Characterization
	Benefits of Fine-grained RSMs
	Performance of Commercial Offering
	Measurements from Real-world Deployments

	Deployment-based Experience
	Fault Tolerance
	Addition/Removal of Nodes
	Deletion of Keys

	Related Work
	Conclusion
	More Details of fRSM
	CAS and Read Algorithmic Description
	Delete Processing
	fRSM Operation Summary
	The Relationship between cRSM and fRSM

	More Real-world Evaluation
	LSM Configuration
	Deployment Scale
	Internal Cluster Measurements
	Failure and Recovery Measurements
	Metadata Corruption Reports

	Testing Framework

