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Abstract

Modern cloud systems have a vast number of components
that continuously undergo updates. Deploying these frequent
updates quickly without breaking the system is challenging.
In this paper, we present Gandalf, an end-to-end analytics
service for safe deployment in a large-scale system infras-
tructure. Gandalf enables rapid and robust impact assessment
of software rollouts to catch bad rollouts before they cause
widespread outages. Gandalf monitors and analyzes various
fault signals. It will correlate each signal against all the ongo-
ing rollouts using a spatial and temporal correlation algorithm.
The core decision logic of Gandalf includes an ensemble
ranking algorithm that determines which rollout may have
caused the fault signals, and a binary classifier that assesses
the impact of the fault signals. The analysis result will decide
whether a rollout is safe to proceed or should be stopped.

By using a lambda architecture, Gandalf provides both real-
time and long-term deployment monitoring with automated
decisions and notifications. Gandalf has been running in pro-
duction in Microsoft Azure for more than 18 months, serving
both data-plane and control-plane components. It achieves
92.4% precision and 100% recall (no high-impact service out-
ages in Azure Compute were caused by bad rollouts) for data-
plane rollouts. For control-plane rollouts, Gandalf achieves
94.9% precision and 99.8% recall.

1 Introduction

In a cloud-scale system infrastructure like Microsoft Azure,
various teams need to frequently make software changes in
code and configurations to deploy new features, fix existing
bugs, tune performance, etc. With the sheer scale and com-
plexity of such infrastructure, even a small defect in updating
one component may lead to widespread failures with signif-
icant customer impact such as unavailability of the virtual
machine service. Indeed, many catastrophic service outages
are caused by some small changes [2, 3, 4, 5, 19].

Each software change, therefore, must be rigorously re-

viewed and extensively tested. Nevertheless, some bugs could
remain uncaught due to the discrepancies between testing and
production environment in cluster size, hardware SKU (stock
keeping unit), OS/library versions, unpredictable workloads,
complex component interactions, etc.

Thus, even when a software change passes testing, instead
of updating all nodes at once, it is common practice to apply
the change to production gradually following a safe deploy-
ment policy in the order of stage, canary, pilot, light region,
heavier region, half region pairs, other half of region pairs.
Figures 1 and 2 respectively show the scope and duration
for rollouts in Azure infrastructure. More than 70% of the
rollouts target multiple clusters, and more than 20% of the
rollouts last for 1,000+ minutes.

Such characteristics imply that the very process of rolling
out changes in production during the deployment phase
presents an opportunity to catch bad changes in a realistic
setting. If faults caused by a deployment can be caught at
an early stage, it allows the release manager to stop the bad
deployment and roll back the change in time to prevent it from
causing broader impact such as a whole-region or worldwide
unavailability.

Yet, accurately assessing the impact of a deployment in a
cloud system is challenging. Solutions like component-level
watchdogs [31] that check for a handful of component-level
fault signatures are effective for capturing obvious, immedi-
ate issues. They alone, however, are insufficient in catching
production issues that are minor locally but severe globally
across clusters and/or regions. They may also miss latent is-
sues such as memory leaks that happen hours after a rollout.
Additionally, a component-level watchdog may fail to catch
issues that arise only when interacting with other components,
e.g., cross-components API contract violations.

Besides false negative, false alarm poses another challenge.
Figure 3 plots the number of deployments in Azure during
a recent three-month window. We can see that hundreds of
rollout tasks are happening every day. In addition, transient
faults such as service API timeouts and temporary network
issues are common in production. All of these events can eas-
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Figure 1: CDF of the scope (number of
target clusters) of a rollout.
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Figure 2: CDF of the rollout duration (in
minutes).
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Figure 3: Number of rollout tasks per day.
The red dotted line is a trend line.

ily mislead a local deployment health monitor to incorrectly
attribute a failure to an innocent rollout. These false alarms
would cause the innocent rollout to be stopped and prevent
timely changes from being applied. Even worse, develop-
ers also waste significant time and resources in investigating
such false alarms. Consequently, they would not trust future
decisions from the monitoring system.

In this paper, we present Gandalf, an end-to-end analyt-
ics service that addresses the aforementioned challenges to
ensure safe deployment in cloud infrastructure. Instead of ana-
lyzing each rollout separately based on individual component
logs, Gandalf takes a top-down approach to assess the impact
of rollouts holistically. Gandalf continuously monitors a rich
set of signals from the infrastructure telemetry data including
service-level logs, performance counters, and process-level
events. When a system anomaly is detected, Gandalf analyzes
if it is caused by a rollout. If a bad rollout is identified, Gandalf
makes a “no-go” decision to stop it. Gandalf also provides
detailed supporting evidence and an interactive front-end for
engineers to understand the issue and the root cause easily.

The core decision logic of Gandalf is a novel model com-
posed of anomaly detection, correlation analysis and impact
assessment. The model first detects anomaly from raw teleme-
try data. It then identifies if a rollout is highly correlated to
the detected failures through both temporal and spatial corre-
lation and an ensemble ranking algorithm. Finally, the model
uses a Gaussian discriminant classifier to decide if the impact
caused by the suspicious rollout is significant enough to stop
the deployment.

We design Gandalf system with a lambda architecture [6],
combining a real-time decision engine with a batch deci-
sion engine. The real-time engine monitors a one-hour time-
window before and after the deployment to detect immediate
issues; the batch engine analyzes system behavior in a longer
time-window (30 days) to detect more complex, latent issues.
When Gandalf identifies a bad rollout, it automatically notifies
the deployment engine to stop the rollout and fires a ticket
with supporting evidence to the owning team.

Gandalf has been running in production for more than 18
months to ensure the safe deployment of Microsoft Azure
infrastructure components (e.g., host agents for Compute and
Network, host OS). In an 8-month usage window, for data-
plane rollouts, Gandalf captured 155 critical failures at the
early stage and achieved a precision of 92.4% with 100%
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Figure 4: Different rollouts in Azure and impact of a bad rollout.

recall (meaning that no high-impact incidents, i.e., Sev0-2
outages, were caused by bad rollouts); for control plane, Gan-
dalf achieved 94.9% precision and 99.8% recall, with only
two missed issues and two false alarms while monitoring
1200+ region-level deployments. Gandalf has made a signif-
icant contribution to getting Azure availability closer to its
99.999% objective by limiting the blast radius of customer
VM downtime caused by unsafe rollouts.

Gandalf has also improved the deployment experience for
release managers: (1) from looking at scattered evidence to
using Gandalf as a single source of truth; (2) from being
skeptical about Gandalf decisions to enforcing them; (3) from
ad-hoc diagnosis to interactive troubleshooting.

2 Background and Problem Statement

2.1 Deployment in IaaS Cloud
In IaaS cloud, the software stack on the physical nodes and
virtual machines (VM) consists of many layers of components.
Each component may frequently undergo changes on its inde-
pendent rollout schedule to add features and fix bugs. These
rollouts need to be executed with high velocity and minimum
customer impact. For example, in early 2018, Azure quickly
deployed a fix to mitigate the Meltdown [30] and Spectre [26]
CPU vulnerabilities through a host OS update to keep Azure
customers secure. The updates were deployed to millions of
nodes that host customer VMs.

As shown in Figure 4, two main kinds of rollouts happen
in Azure. The data-plane rollouts deploy changes for com-



ponents running within the hosting environment of customer
VMs. For Azure, those components include the host OS, the
guest OS, and various software plugins, called agents, inside
the host and guest OS. In contrast, control-plane rollouts de-
ploy changes to tenant-level services. These services are com-
posed of distributed running instances to manage the system
infrastructure and provide interfaces for their functionalities.
These control-plane components include the Azure Resource
Manager (ARM) [1], which allows customers to query, cre-
ate, update, and delete VMs with REST APIs and the CR-
P/NRP/DiskRP (Compute/Network/Disk Resource Provider),
which handle customer requests and provision corresponding
resources (e.g., virtual disks for VMs). These services are typ-
ically structured as loosely-coupled microservices in Azure
that communicate with each other via APIs. While loose cou-
pling allows each service to be deployed independently, their
deployments also have intricate impacts on each other. Thus,
a simple change in one service, while causing no failure in
that service, might break the contract with another service and
affect a large number of customer API calls if the defective
change gets deployed to production.

2.2 Deployment Monitoring System

Requirements To ensure high availability of the VMs and
services, rollouts are carefully monitored. Traditionally, safe
deployment is a manual process that relies on email commu-
nications, multi-party approval, ad-hoc build test validation,
and experience-based decisions, which is unsustainable at the
scale of Azure. An automated deployment monitoring system
is needed to globally oversee rollout progress and automati-
cally stop bad rollout before it causes widespread impact. A
deployment monitoring system should detect various anoma-
lies in the large volume of infrastructure telemetry data. In
addition, the monitoring system should accurately analyze
if the observed failure is caused by a bad deployment or by
another issue (e.g., random hardware faults). For the former
case, the system should attribute the failure to the responsi-
ble deployment among all the ongoing deployments, stop the
rollout immediately, and provide supporting evidence for de-
velopers to speed up further investigation. For the latter case,
the system should not incorrectly blame and stop an innocent
deployment.

Target Based on our experience, four kinds of failures hap-
pen in production environment: (1) hardware issues that hap-
pen randomly, e.g., due to firmware bugs, temperature; (2)
chronic software “hiccups”, e.g., due to race conditions; (3)
hardware-induced outages, e.g., power outage, broken net-
work cable; (4) software outage due to bad code or settings
in a recent build. Ambient software/hardware issues can be
surfaced through separate anomaly detection solutions. In this
work, we focus on deployment-related outages, i.e., category
(4). Among the four layers of safe-deployment mechanisms
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Figure 5: Azure’s four-layer mechanisms to ensure safe deployment.

in Azure as shown in Figure 5, Gandalf serves as the last
safeguard, focus on catching system-level failures, including
non-obvious and latent issues, caused by bad deployments.

3 Gandalf System Design

The importance of catching failures during rollouts and the
complexity of rollouts in Azure infrastructure motivate the
design and implementation of Gandalf. Gandalf is an end-
to-end, continuous monitoring system for safe deployment.
It automates the assessment of rollout impact, the approval
or stopping of a rollout, the notification to the owning teams,
and the collection of detailed evidence for investigation.

3.1 Design Challenges
In designing Gandalf, we need to address several challenges.

Supporting changes in system and signals. In Azure infras-
tructure, hundreds of thousands of update events with a large
number of fault signals happen every day across the software
stack in millions of physical nodes, VMs, and tenants. Gan-
dalf needs to ingest a comprehensive set of data sources and
efficiently process them in order to provide timely responses
to developers. Furthermore, since Azure extensively employs
agile development and micro-service designs, new compo-
nents emerge and existing components evolve with changing
failure patterns and telemetry signals [37]. Gandalf needs to
support easy onboarding of new components and telemetry
signals while maintaining a robust core decision logic.

Dealing with ambient noise. Ambient faults happen fre-
quently due to diverse reasons such as hardware faults [20],
network timeouts, and gray failures [24]. Many of them are
unrelated to deployments and can be successfully tolerated.
Gandalf needs to deal with such noise. Figure 6 shows an
ambient noise example: container faults happened before and
after a host OS update on 200+ clusters in Azure; but they
were not caused by the host OS deployment—instead, they
were caused by firmware defects that prevent the container
from starting. User behaviors also affect failure patterns. For
example, a customer might invoke a large number of CreateVM
calls during weekdays. This could lead to an increase of API
failures on weekdays and a decrease on weekends. Only mon-
itoring the increase of faults after a deployment could then
result in a wrong conclusion.
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Figure 6: Ambient faults in deployment.
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Figure 7: Spike of faults after deployment.
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Figure 8: Latent faults after deployment.
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Figure 9: CDF of component count rolled out per cluster in a day.

Balancing speed and coverage. Developers want to get im-
mediate feedback on bad rollouts. Figure 7 shows a typical
spike of node faults that happened minutes after a bad rollout.
Gandalf needs to quickly alert and stop the bad deployment
upon detecting such failures. But a quick decision may be
unsound if the failure patterns are subtle. Figure 8 shows an
example of a latent issue detected more than 32 hours after the
deployment. From the figure, we can see that there is no obvi-
ous spike after the deployment of the component. The faults
are observed slowly in a long period. Those latent failures
are usually only triggered by specific user workloads, e.g.,
accessing a specific directory or turning on a system service.
Therefore, Gandalf needs to detect cross-cluster, latent issues
even when a rollout has been ongoing for a while. Covering
such latent issues takes longer time by nature.

Identifying the culprit. An n-to-n mapping relationship ex-
ists between components and failures: one component may
cause multiple types of failure, while a single type of failure
may be caused by issues in multiple components. Figuring
out which failure is likely caused by which component is not
easy due to the complexity of component behaviors. Figure 3
shows that more than 300 deployments take place in Azure
every day and the number is increasing. Figure 9 further plots
the number of deployment on a cluster per day, showing that
about 45% of the clusters have multiple deployments per day.

3.2 System Overview

Figure 10 shows the overview of Gandalf. Gandalf takes a
top-down approach in deployment monitoring by consuming
telemetry data across clusters for holistic analyses. Gandalf
processes three types of data: (1) performance data such as
CPU performance counters and memory usage in the node;
(2) failure signals such as agent faults, container faults, OS
crashes, node reboots and API call exceptions; (3) update

events that describe the component deployment information.
In order to balance speed and coverage for safe deployment,

the analysis engine of Gandalf is structured in a lambda ar-
chitecture [6] with a speed layer and a batch layer. The speed
layer focuses detects simple, immediate issues and provides
quick feedback to developers. The batch layer detects latent,
more complex failures and provides more detailed evidence
for developers to investigate the issue.

The analysis results from the streaming processed data and
batch processed data are consolidated into the serving layer.
The serving layer is built as a highly-reliable and scalable
web service. The web service stores the analytics results in
batch and streaming tables and provides interfaces for various
reporting applications to consume the results. The applica-
tions include a monitoring front-end for developers to view
the rollout status in real-time, a diagnosis UI for investigating
problematic rollout, and REST APIs to directly query the
result data. Based on the decisions, Gandalf will notify the
corresponding component team and create an incident ticket
accordingly. Besides notifications, Gandalf publishes the bi-
nary decisions for different components into a key/value store
to communicate with the deployment engine. The deployment
engine subscribes to the signals in the key/value store and
stops the rollout if a “no-go” decision is made.

3.3 Data Sources
As a deployment monitoring system, Gandalf continuously
ingests deployment events in the Azure infrastructure. These
events describe the software build version along with the
deployment timestamp and location information. To focus
on the system-level impact of rollouts, Gandalf consumes
comprehensive signals from various data sources such as ser-
vice logs, Windows OS events, performance counters, and
machine/process/service-level exceptions. Typically each sig-
nal is ingested from a separate table in the telemetry data
collected in Azure infrastructure. For certain signals, Gan-
dalf performs pre-processing to parse the raw data (e.g., log
messages) and extract a failure signature (e.g., an error code).
These pre-processed signals are aggregated based on their
timestamps, node IDs and service types during the analysis.

When onboarding a new component to Gandalf, the com-
ponent team needs to provide information about where Gan-
dalf can get the deployment events and the telemetry signals
relevant to the component. To ease the correlation analysis
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Figure 10: Overview of Gandalf system.

Attribute Description

Timestamp When the deployment event completes
Location Node, cluster, region, etc.
Pivot Group Hardware SKU, environment, etc.
BuildVersion Build version identifier
AdditionalInfo Additional information of the event

Table 1: Gandalf deployment event input data schema.

Attribute Description

Timestamp When the fault occurs
Location Node, cluster, region, etc.
Pivot Group Hardware SKU, environment, etc.
Signature Fault signature
AdditionalInfo Additional diagnosis information

Table 2: Gandalf fault signal input data schema.

between telemetry signals and deployment events, Gandalf
requires the information to be structured in a unified data
schema as shown in Table 1 and Table 2.

3.4 Stream and Batch Processing
To balance speed and coverage, Gandalf is designed in a
lambda architecture [6] with both streaming and batch anal-
ysis engines. The speed layer consumes data from a fast
pipeline, Microsoft Kusto [7], which is a column-oriented
cloud storage supporting analytics with a few minutes of data
source delay and up to seconds of query delay. Kusto has a
custom query language based on the data-flow model, with
native support for streaming operators. Although Kusto has
short delays, it cannot efficiently handle a large volume of
data using complex algorithms. Therefore, the analysis engine
in the speed layer only considers fault signals that happen 1
hour before and after each deployment in each node, and runs
lightweight analysis algorithms to provide a rapid response.
In Azure, most catastrophic issues happen within 1 hour af-
ter the rollout. Latent faults occurring after 1 hour will be
captured by the batch layer later.

The Gandalf batch layer consumes data from Cosmos,
which is a Hadoop like file system that supports SQL-like

query language with up to hours of data source delay. De-
spite the relatively long delay, Cosmos is an ideal platform
for processing an extremely large volume of data using com-
plex models (e.g., it supports external C++ plugins) to detect
complex failure and latent issues. This allows the batch layer
to analyze faults in a larger time window (30-day period) with
advanced algorithms. The lambda architecture allows us to
provide both fast decision making and higher coverage over
time. A no-go decision can be triggered anytime within the
window if the impact scope is large enough.

Both stream and batch analysis in Gandalf are performed in
an incremental fashion. Every 5 minutes, the stream process-
ing fetches the latest data streams from Kusto and passes it to
the analysis engine in the speed layer. The batch processing
runs as an hourly Cosmos job to process the data since the
last processing time. The partial results from analyzing each
5 mins mini-batch or hourly batch are aggregated with other
partial results in the analysis window to update the overall
result. The incremental analysis improves the efficiency as
well as the fault tolerance of Gandalf—if the analysis job is
restarted, it can resume from the last checkpoint.

3.5 Result Orchestration and Actions
The serving layer of Gandalf is implemented as a highly-
reliable and scalable web service using the Azure service
fabric framework [8]. After each run of Gandalf’s anomaly
detection and correlation algorithms (which we will describe
in Section 4), the results from the speed and batch layers are
stored in two separate reporting tables through the web ser-
vice. These results contain the deployment impact assessment,
the recommended decisions (“go” or “no-go”), the anomaly
patterns, the correlation information, etc.

In general, the telemetry data Gandalf analyzes is both
streamed into Kusto and dumped into Cosmos hourly/daily.
Given that the data ingested by the speed and batch layer is
essentially the same, the reporting results in the two tables
are mostly consistent. For example, if the speed layer quickly
detects a bad deployment, the batch layer will likely catch it as
well, albeit slower. The scenarios when they are inconsistent
is mainly when the batch layer reaches a “no-go” decision



while the speed layer decides a go. This is by design since the
batch layer makes more informed decisions and covers latent
issues that the speed layer cannot detect.

Various DevOps applications pull the results from the re-
porting tables. This way, the Gandalf system is well integrated
into the DevOps workflow. Among the applications, the most
important one is the notification service. When the notifica-
tion service notices a new no-go decision, it sends an email
about the decision to the owning team and creates an incident
ticket with details. It also notifies the deployment engine via
a key-value store to approve or stop the rollout.

3.6 Monitoring and Diagnosis Front-End
Gandalf provides a web front end to enable real-time rollout
monitoring and issue diagnosis support for release managers
and developers. The feature teams can proactively watch the
rollout KPIs (e.g., rollout progress, NodeFaults, Container
Faults, OS Crashes, Allocation Failures and etc.) in real-time
while waiting for the decision from the Gandalf notification
service. After the decision of a rollout is made and sent to the
corresponding team, Gandalf provides information to help de-
velopers investigate the issue and make a quick fix as needed.
For example, Gandalf provides pivot information of the iden-
tified issues (i.e., the issue happens only in instances that have
specific attributes like SKU).

The Gandalf front-end provides the following views: (i)
a binary decision page that summarizes all rollout decisions
for different components and build versions in different en-
vironments; (ii) a rollout profile page that displays the batch
processed decisions and associated diagnosis information;
(iii) an issue profile page for a bad rollout with diagnosis
information such as the impacted nodes and clusters or the
trend in different environments; (iv) a real-time tracking page
that shows the rollout progress, related failures, etc.

4 Gandalf Algorithm Design

Existing Algorithms. In designing the algorithms for Gan-
dalf, we considered existing options from supervised learning,
anomaly detection and correlation analysis but found major
limitations for each of them. Supervised learning is difficult
to apply because system behaviors and customer workloads
as well as failure patterns and failure-update correlation keep
changing. In addition, learning from historical change be-
haviors does not necessarily help predict the future mapping
between failure patterns and new updates. Existing anomaly
detection algorithms alone are also insufficient. This is be-
cause many rollouts may happen simultaneously in the in-
frastructure but anomaly detection itself does not tell which
deployment is responsible for the anomalies. For correlation
analysis, most state-of-the-art methods focus on temporal
correlation based on Pearson correlation [34], which cannot
capture the complex causal relationship in our scenario.
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Figure 11: Gandalf correlation model.

Overview. The Gandalf model consists of three main steps:
(1) anomaly detection detects system-level failures from raw
telemetry data; (2) correlation analysis identifies the compo-
nents responsible for the detected failures among multiple
rollouts; (3) the decision step evaluates the impacted scope
and decides whether the rollout should be stopped or not. The
correlation step in (2) is further divided into four parts, namely,
ensemble voting, temporal correlation, spatial correlation and
exponential time decay. Figure 11 shows the overall analysis
process in the Gandalf. In the following Section, we describe
each step of the algorithm in detail.

4.1 Anomaly Detection
The raw telemetry data that Gandalf analyzes, such as OS
events, log messages, and API call statuses, may be impre-
cise. Therefore, Gandalf first derives concise fault signatures
from raw data to distinguish different faults. A raw fault
event log usually contains both error codes and error mes-
sages. One error code could map to multiple faults if it is too
generic. For example, a POST API call that requests compute
resources could return HTTP ERROR 500 for different reasons
like AllocationFailure or NetworkExecutionError. Directly
analyzing the error codes would mix different faults, diluting
the signal and leading to wrong conclusions. The error mes-
sages, on the other hand, are usually non-structured plain text
with many unnecessary details. Gandalf processes the raw er-
ror messages and applies text clustering [10] to generate fault
signatures. We first replace the unique identifiers such as VM
ID, subscription ID with dummy identifiers using an empirical
log parser similar to prior work [18, 22]. Then we run a simpli-
fied incremental hierarchical clustering model [36] to group
up all processed text into a set of error patterns, e.g., “Null
References” grouped together with NullReferenceException.

After obtaining the fault signatures, Gandalf detects anoma-
lies based on the occurrences of each fault signature. Ambient
faults, such as hardware and network glitches or gray fail-
ures [24], are common in a large-scale cloud system. Simple
threshold-based anomaly detection is ineffective because the
system and the customer behaviors change over time. With
thousands of signatures, it is also unrealistic to manually set
thresholds for each. Gandalf instead estimates the baseline
from past data using Holt-Winters forecasting [14] to detect



anomalies. The training period is set to the past 30 days and
the step interval is set to one hour. When the observed value
deviates from the expected value by more than 4σ, the point
will be marked as an anomaly.

For some components, the occurrences of different fault sig-
natures vary significantly. For example, the volume of client
errors could be much higher than platform errors. To bet-
ter compare the impact of different fault signatures, Gandalf
calculates z-score [28], zi =

xi−µ
σ

, for each anomaly against
historical data in its correlation process.

4.2 Correlation Analysis
A detected failure may not be caused by a bad rollout but
other factors such as random firmware issues. In addition,
at any point, many concurrent rollout tasks can take place
in a large system. Therefore, once anomalies are detected,
Gandalf needs to correlate the observed failures with deploy-
ment events, and evaluate the impact of the failure on the fly.
Note that this identified component might be the triggering
component but not necessarily always the root cause.

4.2.1 Ensemble Voting

Since many components are deployed concurrently, we use a
vote-veto mechanism to establish the relationship between the
faults and the rollout components. For a fault e that happens at
timestamp t f and a rollout component c deployed at td on the
same node, each fault e votes for all the components deployed
before it (i.e., td< t f ) within a window size wb and vetoes all
the components deployed after it (i.e, td> t f ) within a window
size wa. Since the deployments are rolled out continuously
on different nodes at different time, as shown in Figure 12,
we aligned the votes V (e,c) and vetoes VO(e,c) for deployed
component c across all nodes based on the fault age as defined
as age(e,c)=t f − td . Pi are the votes aggregated on WDi as

Pi = ∑
k

V (e,c|WDi), (1)

where age(e,c)<WDi. By default, 4 different hour windows
are used as WD1=1, WD2=24, WD3=72, WD4 is the dura-
tion between the deployment and the latest data point; k is
the number of nodes with the pairs. Similarly, B is the veto
aggregated in a single 72 hour window as

B = ∑
k

VO(e,c|WD−1), (2)

where age(e,c)<WD−1 and WD−1=72.

4.2.2 Temporal and Spatial Correlation

After ensembling the votes of faults to the components, we
calculate the temporal correlation score as

ST (e,c) = ∑
i∈[1,4]

wi log(
(Pi−B+1)

B+1
), (3)
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Figure 12: Faults alignment by fault age during ensemble voting.
The circle represents a fault. The vertical bar is when a component
gets deployed in a node. The arrow blames a fault to a deployment,
where the arrow size represents correlation strength.

where Pi > B. wi is the weight of the time window WDi
in Section 4.2.1. This kernel function tries to filter out the
ambient faults.

As we do not have ground-truth samples to train the val-
ues of wi in the above equation, we set them empirically. A
naïve way would be to assign them the same value. This
does not work well in practice because a component deployed
closer to a fault usually has a higher correlation, implying
the constraint w1 > w2 > w3 > w4. We learned over time that
setting exponential weights (EW) for w1 to w4 works well.
The intuition behind exponential weights (EW) is that faults
happening right after the deployment are much more likely
to have causal relationship than the faults happening a long
time after the deployment.

We then evaluate the spatial correlation through

SS(e,c|t1, t2) = N f /Nd f , (4)

where N f is the number of nodes with fault e during the de-
ployment period t1 to t2 for component c, and Nd f represents
the total number of nodes with fault e, regardless of whether
c was deployed during the same period. If SS(e,c|t1, t2)< β,
where β is the confidence level, we will ignore the blaming of
the pair. The confidence level can be set as 99% or 90% for
different sensitivity. We then identify the blamed component
c j by associating the faults to the component with the largest
temporal correlation:

blame(e) = argmax
c j

ST (e,c j) (5)

4.2.3 Time Decaying

The blaming score is calculated based on the fault age as
shown in Equation 3. If the same fault signature appears again,
the fault may still blame the old rollout if the fault age between



the old rollout and the fault signature is smaller. We need to
focus on new rollouts and gradually dampen the impact of the
old rollout because newly observed faults are less likely to be
triggered by the old rollout. In order to achieve this, we apply
an exponential time decay factors on the blaming score:

blame(e) = blame(e)∗ ( e−t − e−ws

e−1− e−ws
)∗b+a (6)

4.3 Decision process
Finally, we make a go/no-go decision for the component c j
by evaluating the impacting scopes of the deployment such
as the number of impacted clusters, the number of impacted
nodes, number of customers are impacted, etc. Instead of set-
ting static thresholds for each feature, the decision criteria
are trained dynamically with a Gaussian discriminant classi-
fier [9]. The training data is generated from historical deploy-
ment cases with feedback from components teams. Note that
the impacting scope feature set used in this step is typically
organizational policy oriented so it is stable and independent
from software changes or bug fixes. Thus it is feasible to
obtain good labels for this learning approach comparing to
the input features used in correlation analysis.

4.4 Incorporating Domain Knowledge
Gandalf by default treats the input fault signals equally but
also allows developers to specify the importance of certain
faults with customizable weights. The weights are relative
values ranging from 0 to 100, representing the least to the
most importance. The default weight for a fault signal is 1.

Weights are usually adjusted by developers reactively, e.g.,
after investigating a reported issue. For example, developers
for certain service may find out the TimeoutException tend to
be noisy so they reduce its weight to 0.01 for that service; for
the Disk Resource Provider, developers may set the weight
of NullReferenceException to 10 so that Gandalf becomes
more sensitive to this failure signature because it is a strong
indicator of a code bug. If the weight is set to 0, this failure
signature is whitelisted. For example, since developers know
that during the rollout of NodeOSBaseImage, node reboots
are expected, the weight for NodeReboot can be set to 0 to
exclude it from the correlation analysis. In general, developers
rarely set a fault weight to 0 to avoid missing true issues
unless the signal keeps causing false alarms or to encode
special rule like the previous example. Since Gandalf exposes
the weight settings to developers through a database table,
developers sometimes use scripts to adjust weights in a batch,
e.g., lowering weights for all AllocationFailure* signatures.

5 Evaluation

Gandalf is a production service in Azure. In this Section, we
evaluate its business impact, provide three case studies, and
analyze the effectiveness of the core algorithms (Section 4).

Figure 13: User activities of Gandalf real-time monitoring UI.

5.1 Business Impact
Adoption. The Gandalf service has been running in produc-
tion and monitoring the Azure infra rollout safety for more
than 18 months. It has been widely adopted for the deploy-
ments of data-plane components and control-plane services
(Section 2.1) across the entire fleet. Specifically, Gandalf
currently monitors 19 component rollouts in the data plane
including Host OS updates, Agent Package updates, GuestOS
updates, etc., as well as 4 control-plane component updates in-
cluding Compute Resource Provider, Disk Resource Provider,
Azure Front End, and Fabric Controller. Figure 13 shows the
usage of Gandalf front-end by release managers and develop-
ers. Usually, hundreds of page-visits occur every day. When
a large rollout happens, the daily number of page visits can
reach several thousand.

Scale. The Gandalf system processes on average 270K plat-
form events daily, 770K events on peak days, and logs about
600 million API calls per day in the control plane, including
more than 2,000 fault types. The total data volume analyzed
is more than 20TB per day.

Deployment Speed. Gandalf has significantly improved the
release velocity. For each deployment, Gandalf can make
decisions in about 5 minutes end-to-end on the speed layer,
and in about 3 hours on the batch layer. Gandalf cuts the
deployment time for the entire production fleet by more than
half (Figure 14). As a result, billions of customer API requests
will benefit from new features much earlier.

Gandalf streamlines the traditionally cumbersome deploy-
ment workflow. Prior to Gandalf, the component-level watch-
dogs were sometimes noisy or missed important failures.
Thus, extensive email communications were needed among
the release manager, feature owners and dependent component
teams to clear suspicious failure alerts and obtain approval.
As a 24/7 monitoring system, Gandalf removes the majority
of these costs. Meanwhile, Gandalf provides rich supporting
evidence for each alert to facilitate further investigation.

As Azure grows with ever more data to analyze, Gandalf
can benefit from additional innovations that improve the per-
formance of analytics systems [29, 35, 38]. For example, if we
can cut the delay of our streaming layer from 5 minutes to 10s,
it will greatly improve the deployment speed. On the other
hand, even with ultra-low data processing latency, Gandalf
still needs to wait to accumulate enough evidence for high-
confidence decisions. If the rollout quality can be predicted
beforehand, the system will have higher business impact. We
leave this as our future work.



A B C D E F G H I J K L M N

Deployment ID

0

1

2

3

4

D
u
ra

ti
o
n
 (

n
o
rm

.) Average deployment duration after Gandalf

Average deployment duration before Gandalf

Figure 14: Deployment duration before and after
adopting Gandalf

Stage Canary Pilot Prod
0%

10%

20%

30%

40%

P
e
rc

e
n
t.

 o
f 

is
s
u
e
s

Figure 15: Percentage of issues detected
in each environment.

Stage Canary Pilot Prod
0%

10%

20%

30%

40%

P
e
rc

e
n
t.

 o
f 

ti
c
k
e
ts

False Positive

True Positive

Figure 16: Accuracy of tickets issued by
Gandalf in each environment.

5.2 Accurately Preventing Bad Rollouts

Azure enforces a safe deployment policy for all rollouts. Be-
fore a component update can be pushed to production, it must
pass tests in several environments in the order of Stage, Ca-
nary and Pilot. Figure 15 shows the percentage of issues we
detected in different environments for rollouts in the data
plane. We can see that almost all (99.2%) suspicious rollouts
are blocked before reaching production. The rest (0.8%) is
blocked in the early stage of production. This means Gandalf
effectively limits the blast radius of most bad rollouts.

Once Gandalf stops a rollout, it will send an alert ticket to
the corresponding team. Figure 16 shows the accuracy of the
alerting in different environments. We can see that most of
the false alerting are issued in Stage and Canary environment,
which is well aligned to the Gandalf design goal. The false
positive rate in Stage and Canary is higher compared to other
environments because there are higher levels of noisy failure
signals in these environments. Latent issues may mislead the
Gandalf service. For example, a faulty agent update acciden-
tally deletes an important folder but does not cause immediate
faults. Later, a GuestOS update by customer touched that
folder and triggered faults, causing Gandalf to mis-blame the
GuestOS deployment.

Overall, in an 8-month usage window from Jan. 2018
to Nov. 2018, Gandalf captured 155 critical failures at the
early stage of the data-plane rollouts and achieved a precision
of 92.4% with 100% recall (no high-impact incidents were
caused by bad rollouts). The detected failures are diverse,
including agent faults, OS crashes, node faults, unhealthy con-
tainers and VM reboots, which would have caused widespread
availability outages. For the control plane, Gandalf has made
decisions for 1200+ region-level deployments. The precision
is 94.9% and recall is 99.8%. Gandalf filed 39 incidents and
only 2 of them are false alarms. Meanwhile, Gandalf automat-
ically approved all other region-level deployments and only
missed 2 true issues. One false negative occurred because of
incomplete logs. The other was due to the faulty component
throwing generic timeout exceptions instead of specific errors,
which misled Gandalf.

The most common issues Gandalf caught are compatibil-
ity issues and contract breaking issues. Compatibility issues
arise when updates are tested in an environment with latest
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Figure 17: Latent faults caused by network agent deployment.

hardware or software stack but the deployed nodes may have
different hardware SKUs or OS or library versions. Contract
breaking issues occur when the component does not obey its
API specifications and break dependent components.

5.3 Case Studies

We share three representative cases of bad rollouts that Gan-
dalf successfully prevented.

Case I: Cross-component Impact. Release managers tend
to ignore faults from other components, which may miss cross-
component reliability issues. Gandalf makes informed deci-
sion based on anomaly detection and correlation analysis, and
is sensitive to such issues. In one case of deploying a Compute
Resource Provider (CRP) service update, Fabric Controller
(FC) lease failures occurred. When Gandalf first made a no-
go decision for the deployment in Canary regions, CRP team
claimed these failures were irrelevant to CRP rollout based on
their past experience. Therefore, the release manager directly
requested to bypass the no-go decision and unblock the roll-
out. Later on, Gandalf issued another no-go decision in Pilot
regions for the same reason, indicating a strong correlation be-
tween this failure and CRP rollout. With such evidence, CRP
team did a deeper investigation and confirmed it was indeed
a regression in CRP. When the customers in Pilot regions
reported relevant issues, a hotfix had already been deployed.
Because of Gandalf, the regression was caught before it could
enter production.

Case II: Impact in Specific Region. After a rollout passes
the Pilot regions, release managers typically assume the soft-
ware updates are in high quality. But Gandalf keeps monitor-
ing throughout the deployment process. Issues that arise at
this stage are usually not caused by code bugs of the deployed
component but rather the incompatible settings in a specific
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region. Gandalf is effective in detecting these region-specific
issues. For example, during one DiskRP service deployment,
Gandalf made a no-go decision in SouthFrance, a late-stage
production region. The alert turned out to be caused by a
compatibility bug introduced by another component, which is
only exposed after the latest DiskRP being deployed in this
specific region. With the timely alerting and mitigation, only
3 subscriptions were impacted.

Case III: Latent Impact. Gandalf detects not only immedi-
ate issues that happened right after the deployment but also
latent issues that happen several hours or even days after de-
ployments. Gandalf detects the latent issues in the early stage
and prevents it from affecting customers in production envi-
ronment. Figure 17 shows a deployment case of a Network
Agent in Canary. OS crashed during 24 hours to 72 hours
after the deployment and Gandalf issued a Sev2 alert (i.e.,
large customers impacts). The root cause was a conflict be-
tween old firmware version and new driver version. When the
network agent rollout upgraded the NIC firmware and drivers,
the firmware upgrade script missed one of the hardware revi-
sions. Gandalf accurately attributed the faults to the Network
Agent deployment even though the failures occurred 24 hours
after the deployment, while many other concurrent updates
was ongoing in these clusters.

5.4 Effectiveness of Correlation Algorithms
In this Section, we evaluate the effectiveness of the Gandalf
correlation algorithms. The results are from real rollouts in
Azure between Jan. 2018 to Nov. 2018.

Parameter Settings. wi in Equation 3 is respectively set to 8,
4, 2, 1, so that the weights are exponentially decreased along
the time windows. The spatial correlation threshold β is set
to be 0.8 to tolerate noise in the telemetry data. The ws in
Equation 6 is set to 90 as the longest monitoring period of a
rollout is 90 days. b is set to 1 and a is set to 0.2 so that the
decay factor is scaled between [0.2,1].

Exponential Weights. Figure 18 shows that without the ex-
ponential weights (EW) used in temporal correlation for dif-
ferent time windows, the precision decreases but the recall
remains the same. The reason is that given a spike of faults,
without EW, the blame score is high for a bunch of compo-
nents in addition to the real one, which leads to low precision

but the same recall. EW treats component with different fault
ages differently, which increase the precision.

Spatial Correlation. Figure 18 shows that by incorporating
spatial correlation, Gandalf correlation precision is increased
by 77%. The reason is that multiple components are often
rolled out in similar time frame in a large system. The tempo-
ral correlation results can be very noisy. By incorporating the
spatial correlation, the noisy results can be greatly reduced. As
the algorithm can accurately identify the problematic compo-
nents and prevent it from causing high impacts to customers,
the recall also increases.

Time Decaying. Figure 18 shows that without the time decay-
ing algorithm, the precision decreases by 58.8% and the recall
decreases by 12.7%. The reason is that after a fault (e.g., con-
nection timeout) is detected in a bad rollout, the bug causing
the fault will be fixed. Later, the same timeout fault might still
occur due to other bugs in another component being deployed.
If we do not have the time decaying algorithm, the fault may
be still blamed on the old component while missing the faulty
new component.

Veto. Gandalf uses a veto mechanism to reduce ambient noise.
Figure 18 shows that without the vetos, the precision de-
creases by 8.7% and the recall rate is the same. The reason
is that if the failure signature appears before the rollout, the
failure is more likely not related to the rollout. If we only look
at the failure after the deployment, we are more likely to stop
rollout based on the ambient signals.

Accumulative Effects of Algorithms. Figure 19 shows the
accumulative effect of different algorithms. Comparing Fig-
ure 19 with Figure 18, we can find that the spatial algorithm
and the time decaying algorithm contribute most to precision.
Although the individual algorithm such as veto, exponential
weights is important as shown in Figure 18, without the spa-
tial correlation algorithm and the time decaying algorithm,
their effects alone on precision are relatively small.

5.4.1 Impact of Window Size

Figure 20 shows the effect of window size settings. We can
see that the choices of window size do not significantly affect
precision. This is because the main purpose of different win-
dows is to differentiate the importance of the time between
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updates and anomalies. As long as the window size can pro-
vide different weights to the time interval between faults and
update events, the precision should be similar as the spatial
and temporal correlation algorithms are the major contribu-
tor to noise reduction. However, from the figure we can see
that if WD1 and WD2 windows are too large, the precision
decreases. The window size has no effects on the recall due
to the same reason as that of the EW effectiveness.

5.4.2 Effectiveness of Weight Adjustments

Figure 21 shows how weight adjustments impact Gandalf
decisions on the control-plane rollouts from 01/01/2019 to
03/06/2019. In this experiment, we compare Gandalf deci-
sions using customized weights with 1) decisions without
weight adjustment for all new faults (NoNewWs); 2) deci-
sions without weight adjustments for all important faults
(NoLargeWs), i.e., all large weights changed back to 1; 3)
decisions without weight adjustment for all noisy faults (NoS-
mallWs), i.e., all small weights changed back to 1. We can see
that NoNewWs decreases the precision slightly (1.8%) and
decreases the recall significantly (73.2%). NoLargeWs and
NoSmallWs have a similar effect on precision and recall. The
experiments show that customizing weights can significantly
improve recall while maintaining high precision.

From Sep. 2018 to Mar. 2019, 47% of the fault signatures
are assigned with non-default weights, with 5 to 10 weights
customized for a typical component/team. During this period,
only the weights of 18 signatures in total are adjusted 4 times
by developers. Thus, the tuning efforts overall are small.

6 Discussion

Gandalf has been running in Azure production environment
for more than 18 months. In this section, we share perspectives
from our users (Azure engineers and release managers) and
lessons we learned along the way.

6.1 Transforming Deployment Experience

“We can call it a very good day for Gandalf!”

“This is a good case for Gandalf and a lesson or two for us”

“Gandalf has helped our rollout to the better. Thanks!”

– Comments from our users
The impact of Gandalf goes beyond accurately preventing

bad rollouts. We are thrilled to witness how Gandalf has
transformed the engineers and release managers’ experience
in deploying software changes:

From looking for scattered evidence to using a single
source of truth. Before Gandalf was created, component-
level watchdogs are used for safe deployment. These watch-
dogs only have isolated views about individual components.
It is therefore difficult to rely on them for safe deployment.
Consequently, release managers still need manual efforts to
check the deployment behavior from additional data sources
and communicate across related teams for ensuring deploy-
ment safety. The additional communication cost and decision
overhead caused the deployment period to be long. Gandalf
ingests comprehensive data sources in the data plane and
control plane, and runs system-level analysis with anomaly
detection and correlation models. Therefore, Gandalf can pro-
vide a single source of truth with various dimensions.

From skeptic to advocate. When some teams adopt Gandalf,
the experienced engineers may be initially skeptical about
Gandalf’s data-driven approach and its decisions. As Gandalf
detects complex failures that even experts can miss, the engi-
neers start to trust Gandalf decisions and enforce the team to
carefully investigate each “no-go” alert by Gandalf. For many
teams, the deployment policy has become that the rollout will
not continue to the next region unless Gandalf gives a green
light decision.

From ad-hoc diagnosis to interactive troubleshooting.
Before Gandalf, when an alert was sent to a component
team, the engineers needed to write various queries for
multiple data sources or access some sample nodes to
grep the fault traces for diagnosis. Gandalf provides an
interactive diagnosis portal to directly show the fault details.
In particular, Gandalf aggregates the VM-level, node-level
and cluster-level faults and buckets these faults based on
their fault types. For example, faults “Failed function:

RuntimeVmBaseContainer::ValideXBlockBaseDisk:

0x81700035, XDiskLeaseIdMismatchWithBlobOperation:

0xc1425034” will be bucketed into ContainerFault-Creation-
DiskLeaseIdMismatch. Developers can drill down each fault
bucket interactively to inspect the detailed fault source
such as error messages and logs. The portal also shows
the historical baselines to illustrate the difference so that
the developers can better understand the impact scope and
severity. Moreover, the portal shows the pivot analysis results,
e.g., SKU Gen2.3, that highlight potential causes.

6.2 Lessons Learned

We also learned several lessons while we built Gandalf. First,
while F-score is a widely used metric to balance the precision



and recall of a decision model, in reality, different components
may favor precision and recall differently. For teams with lim-
ited engineering capacity, they often prefer a system that only
sends true alerts so that engineers can focus on investigating
true issues. For teams that manage mission-critical services,
100% recall is a strict requirement. Missing any true issues
causes much more damage than false alarms. A monitoring
system should be tailored for different needs. For example, to
fix the Meltdown and Spectre CPU vulnerability, the updates
needed to be deployed to millions of nodes quickly. Since
the rollout would impact millions of customers, Gandalf was
optimized for extremely high recall and feature teams used
the interactive portal to proactively monitor the rollout. False
alarms were less critical in this scenario as engineer resources
were enough to investigate all Gandalf reported issues.

Second, transparency and supporting evidence are crucial to
build trust. It is difficult to trust machine decisions, especially
on critical tasks. In cloud deployments, the release manager
holds the same opinion because a simple false decision could
be extremely harmful. That is why a black-box service that is
not explainable is hard to be adopted for deployment moni-
toring even if the decisions are highly accurate. To gain trust,
we design the Gandalf model to match the human decision
process and make every step transparent. Gandalf surfaces
rich supporting evidence, including the ranked list of faults,
where the faults occurred, comparison of the time-series sig-
nal data before and after deployment, statistical summaries
of the impact scope (e.g., how many nodes and customers are
affected). Such evidence helps explain to release managers
why Gandalf makes each decision.

Third, analytics models should be adaptive. Many standard
anomaly detection and time series algorithms are ineffective
in a large-scale production system if applied without domain
knowledge. It is almost impossible or at least extremely costly
to learn such domain knowledge purely from the data. This is
especially true when the system is constantly evolving, e.g., an
increasing number of new fault signals will emerge. We work
closely with engineers to continuously incorporate their input
into Gandalf decision model (because domain knowledge may
not be fully discovered in one shot!).

7 Related Work

Time-series based anomaly detection models [13] provide
high-quality alerts in DevOps. Instead of checking raw logs,
DevOps can focus on the anomalous failure events while
new build is rolling out [39]. Hangal and Lam first intro-
duce DIDUCE [21], a practical tool that detects complex
program errors and identifies root causes. Wang et al. [40]
propose entropy-based anomaly testing, which uses arbitrary
metrics distributions instead of fixed thresholds, for online
systems anomaly detection. Fu et al. [17] propose classifica-
tion algorithms to identify performance issue beacons. Laptev
et al. [27] design a generic time-series anomaly detection

framework, EGADS for Yahoo. Cohenet al. [16] use Tree-
Augmented Naive Bayes models (TAN) to correlate SLO with
system states as signatures. Panorama [23] detects gray fail-
ures through instrumenting observability hooks in the source
code of observer components. However, without correlating
anomalies with operational events, these work cannot identify
which rollout is responsible or whether the detected anomalies
are unrelated to deployments.

A number of tools have been built to analyze the correla-
tion between KPI signals and system state changes. Bahl et
al. [11, 12, 15] propose an inference graph that captures the
dependencies between all components of the IT infrastructure
by combining together these individual views of dependency
and tries to locate the root cause. Azure is growing so fast that
it is hard to build such dependency graph accurately at low
cost. Several other methods are proposed for correlating sys-
tems signals and events [25, 32, 33, 41, 42]. But they mainly
focus on extracting correlations in temporal dimension. Pure
temporal correlation is insufficient for accurately identifying
bad rollouts in our scenario.

8 Conclusion

In cloud infrastructures that undergo frequent changes, en-
suring bad rollouts are accurately caught at the early stage is
crucial to prevent catastrophic service outage and customer
impact. In this paper, we present Gandalf, an end-to-end an-
alytics service for safe deployment of cloud infrastructure.
Gandalf assesses system-level impact of deployments by de-
signing anomaly detection, correlation analysis and failure
impact analysis algorithms in its decision model. It uses a
lambda architecture to provide both real-time and batch de-
ployment monitoring, with automated deployment decisions,
a notification service and a diagnosis front-end. Gandalf has
been running in Azure production for more than 18 months.
Gandalf blocked 99.2% of the bad rollouts before they enter
production. For data-plane rollouts, Gandalf achieved 92.4%
precision with 100% recall. For control-plane rollouts, Gan-
dalf achieved 94.9% precision and 99.8% recall.
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