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Abstract

While it is widely acknowledged that network congestion

in High Performance Computing (HPC) systems can signifi-

cantly degrade application performance, there has been little

to no quantification of congestion on credit-based intercon-

nect networks. We present a methodology for detecting, ex-

tracting, and characterizing regions of congestion in networks.

We have implemented the methodology in a deployable tool,

Monet, which can provide such analysis and feedback at run-

time. Using Monet, we characterize and diagnose congestion

in the world’s largest 3D torus network of Blue Waters, a 13.3-

petaflop supercomputer at the National Center for Supercom-

puting Applications. Our study deepens the understanding of

production congestion at a scale that has never been evaluated

before.

1 Introduction

High-speed interconnect networks (HSN), e.g., Infini-

band [48] and Cray Aries [42]), which uses credit-based flow

control algorithms [32, 61], are increasingly being used in

high-performance datacenters (HPC [11] and clouds [5, 6, 8,

80]) to support the low-latency communication primitives

required by extreme-scale applications (e.g., scientific and

deep-learning applications). Despite the network support for

low-latency communication primitives and advanced conges-

tion mitigation and protection mechanisms, significant perfor-

mance variation has been observed in production systems run-

ning real-world workloads. While it is widely acknowledged

that network congestion can significantly degrade application

performance [24, 26, 45, 71, 81], there has been little to no

quantification of congestion on such interconnect networks

to understand, diagnose and mitigate congestion problems

at the application or system-level. In particular, tools and

techniques to perform runtime measurement and characteri-

zation and provide runtime feedback to system software (e.g.,

schedulers) or users (e.g., application developers or system

managers) are generally not available on production systems.

This would require continuous system-wide, data collection

on the state of network performance and associated complex

analysis which may be difficult to perform at runtime.

The core contributions of this paper are (a) a methodol-

ogy, including algorithms, for quantitative characterization

of congestion of high-speed interconnect networks; (b) in-

troduction of a deployable toolset, Monet [7], that employs

our congestion characterization methodology; and (c) use of

the the methodology for characterization of congestion using

5 months of operational data from a 3D torus-based inter-

connect network of Blue Waters [1, 27, 60], a 13.3-petaflop

Cray supercomputer at the National Center for Supercom-

puting Applications (NCSA) at the University of Illinois at

Urbana-Champaign. The novelty of our approach is its ability

to use percent time stalled (PT s)
1 metric to detect and quan-

titatively characterize congestion hotspots, also referred to

as congestion regions (CRs), which are group of links with

similar levels of congestion.

The Monet tool has been experimentally used on NCSA’s

Blue Waters. Blue Waters uses a Cray Gemini [21] 3D torus

interconnect, the largest known 3D torus in existence, that

connects 27,648 compute nodes, henceforth referred to as

nodes. The proposed tool is not specific to Cray Gemini and

Blue Waters; it can be deployed on other k-dimensional mesh

or toroidal networks, such as TPU clouds [3], Fujitsu TOFU

network-based [18, 20] K supercomputer [70] and upcoming

post-K supercomputer [10]2. The key components of our

methodology and the Monet toolset are as follows:

Data collection tools: On Blue Waters, we use vendor-

provided tools (e.g., gpcdr [35]), along with the Lightweight

Distributed Metric Service (LDMS) monitoring frame-

work [17]. Together these tools collect data on (a) the network

(e.g., transferred/received bytes, congestion metrics, and link

failure events); (b) the file system traffic (e.g., read/write

bytes); and (c) the applications (e.g., start/end time). We are

released raw network data obtained from Blue Waters [57] as

well as the associated code for generating CRs as artifacts with

this paper [7]. To the best of our knowledge, this is the first

1PT s, defined formally in Section 2, approximately represents the intensity

of congestion on a link, quantified between 0% and 100%.
2The first post-K supercomputer is scheduled to be deployed in 2021.
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Figure 1: Characterization and diagnosis workflow for interconnection-networks.
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Figure 2: Cray Gemini 48-port switch.

such large-scale network data release for an HPC high-speed

interconnect network that uses credit-based flow control.

A network hotspot extraction and characterization

tool, which extracts CRs at runtime; it does so by using an

unsupervised region-growth clustering algorithm. The clus-

tering method requires specification of congestion metrics

(e.g., percent time stalled (PT s) or stall-to-flit ratios) and a

network topology graph to extract regions of congestion that

can be used for runtime or long-term network congestion

characterization.

A diagnosis tool, which determines the cause of conges-

tion (e.g., link failures or excessive file system traffic from

applications) by combining system and application execution

information with the CR characterizations. This tool leverages

outlier-detection algorithms combined with domain-driven

knowledge to flag anomalies in the data that can be correlated

with the occurrence of CRs.

To produce the findings discussed in this paper, we used

5 months of operational data on Blue Waters representing

more than 815,006 unique application runs that injected more

than 70 PB of data into the network. Our key findings are as

follows:

• While it is rare for the system to be globally congested,

there is a continuous presence of highly congested regions

(CRs) in the network, and they are severe enough to affect

application performance. Measurements show that (a) for

more than 56% of system uptime, there exists at least one

highly congested CR (i.e., a CR with a PT s > 25%), and that

these CRs have a median size of 32 links and a maximum

size of 2,324 links (5.6% of total links); and (b) highly

congested regions may persist for more than 23 hours, with

a median duration time of 9 hours3. With respect to impact

on applications, we observed 1000-node production runs

of the NAMD [77] application 4 slowing down by as much

as 1.89× in the presence of high congestion compared to

median runtime of 282 minutes.

• Once congestion occurs in the network, it is likely to persist

rather than decrease, leading to long-lived congestion in

the network. Measurements show that once the network

has entered a state of high congestion (PT s > 25%), it will

persist in high congestion state with a probability of 0.87

3Note that Blue Waters allows applications to run for a maximum of 48 hours.
4NAMD is the top application running on Blue Waters consuming 18% of

total node-hours [58].

in the next measurement window.

• Quick propagation of congestion can be caused by net-

work component failures. Network component failures

(e.g., network router failures) that occur in the vicinity of a

large-scale application can lead to high network congestion

within minutes of the failure event. Measurements show

that 88% of directional link failures 5 caused the formation

of CRs with an average PT s ≥ 15%.

• Default congestion mitigation mechanisms have limited

efficacy. Our measurements show that (a) 29.8% of the 261

triggers of vendor-provided congestion mitigation mecha-

nisms failed to alleviate long-lasting congestion (i.e., con-

gestion driven by continuous oversubscription, as opposed

to isolated traffic bursts), as they did not address the root

causes of congestion; and (b) vendor-provided mitigation

mechanisms were triggered in 8% (261) of the 3,390 high-

congestion events identified by our framework. Of these

3,390 events, 25% lasted for more than 30 minutes. This

analysis suggests that augmentation of the vendor-supplied

solution could be an effective way to improve overall con-

gestion management.

In this paper, we highlight the utility of congestion regions in

the following ways:

• We showcase the effectiveness of CRs in detecting long-

lived congestion. Based on this characterization, we pro-

pose that CR detection could be used to trigger congestion

mitigation responses that could augment the current vendor-

provided mechanisms.

• We illustrate how CRs, in conjunction with network traf-

fic assessment, enable congestion diagnosis. Our diagno-

sis tool attributes congestion cause to one of the follow-

ing: (a) system issues (such as launch/exit of application),

(b) failure issues (such as network link failures), and (c)

intra-application issues (such as changes in communication

patterns within an application). Such a diagnosis allows

system managers to take cause-specific mitigating actions.

This paper’s organization is illustrated in Figure 1. We

present background information on the Gemini network, per-

formance data, and congestion mitigation mechanisms in Sec-

tion 2. In Section 3, we present our data collection method-

ology and tools. In Section 4, we present our methodology

for characterizing congestion. We present our measurement-

5see Section 5.4 for the definition of directional link.



driven congestion characterization results in Section 5. In

Section 6, we discuss the further utility of our methodology

to inform targeted responses, and in Section 7, we discuss its

use in diagnosing the root causes of congestion. We address

related work in Section 8 and conclude in Section 9.

2 Cray Gemini Network and Blue Waters

A variety of network technologies and topologies have been

utilized in HPC systems (e.g., [19, 21, 31, 36, 42, 59, 62, 75]).

Depending on the technology, routing within these networks

may be statically defined for the duration of a system boot cy-

cle, or may dynamically change because of congestion and/or

failure conditions. More details on HPC interconnects can be

found in Appendix A. The focus of this paper is on NCSA’s

Cray XE/XK Blue Waters [1] system, which is composed of

27,648 nodes and has a large-scale (13,824 x 48 port switches)

Gemini [21] 3D torus (dimension 24x24x24) interconnect. It

is a good platform for development and validation of conges-

tion analysis/ characterization methods as:

• It uses directional-order routing, which is predominantly

static6. From a traffic and congestion characterization per-

spective, statically routed environments are easier to vali-

date than dynamic and adaptive networks.

• Blue Waters is the best case torus to study since it uses

topology-aware scheduling (TAS) [41, 82], discussed later

in this section, which has eliminated many congestion is-

sues compared to random scheduling.

• Blue Waters performs continuous system-wide collection

and storage of network performance counters.

2.1 Gemini Network

In Cray XE/XK systems, four nodes are packaged on a

blade. Each blade is equipped with a mezzanine card. This

card contains a pair of Gemini [21] ASICs, which serve as

network switches. The Gemini switch design is shown in

Figure 2. Each Gemini ASIC consists of 48 tiles, each of

which provide a duplex link. The switches are connected with

one another in 6 directions, X+/-, Y+/- and Z+/-, via multiple

links that form a 3D torus. The number of links in a direction,

depends on the direction as shown in the figure; there are 8

each in X+/- and, Z+/- and 4 each in Y+/-. It is convenient

to consider all links in a given direction as a directionally

aggregated link, which we will henceforth call a link. The

available bandwidth on a particular link is dependent on the

link type, i.e., whether the link connects compute cabinets or

blades, in addition to the number of tiles in the link [76]. X,

Y links have aggregate bandwidths of 9.4 GB/s and 4.7 GB/s,

respectively, whereas Z links are predominantly 15 GB/s, with

1/8 of them at 9.4 GB/s. Traffic routing in the Gemini network

is largely static and changes only when failures occur that

need to be routed around. Traffic is directionally routed in

the X, Y, and Z dimensions, with the shortest path in terms of

6When network-link failures occur, network routes are recomputed; that

changes the route while the system is up.

hops in + or - chosen for each direction. A deterministic rule

handles tie-breaking.

To avoid data loss in the network 7, the Gemini HSN uses a

credit-based flow control mechanism [61], and routing is done

on a per-packet basis. In credit-based flow control networks,

a source is allowed to send a quantum of data, e.g., a flit, to

a next hop destination only if it has a sufficient number of

credits. If the source does not have sufficient credits, it must

stall (wait) until enough credits are available. Stalls can occur

in two different places: within the switch (resulting in a inq

stall) or between switches (resulting in an credit stall).

Definition 1 : A Credit stall is the wait time associated with

sending of a flit from an output buffer of one switch to an input

buffer of another across a link.

Definition 2 : An Inq stall is the wait time associated with

sending of a flit from the output buffer of one switch port to an

input buffer of another between tiles within the same network

switch ASIC.

Congestion in a Gemini-based network can be characterized

using both credit and inq stall metrics. Specifically, we con-

sider the Percent Time Stalled as a metric for quantifying

congestion, which we generically refer to as the stall value.

Definition 3 : Percent Time Stalled (PT s) is the average time

spent stalled (Tis) over all tiles of a directional network link

or individual intra-Gemini switch link over the same time

interval (Ti): PT s = 100∗Tis/Ti.

Depending on the network topology and routing rules, (a)

an application’s traffic can pass through switches not directly

associated with its allocated nodes, and multiple applications

can be in competition for bandwidth on the same network

links; (b) stalls on a link can lead to back pressure on prior

switches in communication routes, causing congestion to

spread; and (c) the initial manifestation location of congestion

cannot be directly associated with the cause of congestion.

Differences in available bandwidth along directions, com-

bined with the directional-order routing, can also cause back

pressure, leading to varying levels of congestion along the

three directions.

2.2 Congestion Mitigation

Run-time evaluations that identify localized areas of con-

gestion and assess congestion duration can be used to trigger

Congestion Effect Mitigating Responses (CEMRs), such as

resource scheduling, placement decisions, and dynamic ap-

plication reconfiguration. While we have defined a CEMR

as a response that can be used to minimize the negative ef-

fects of network congestion, Cray provides a software mecha-

nism [33] to directly alleviate the congestion itself. When a

7The probability of loss of a quantum of data in credit-flow networks is

negligible and mostly occurs due to network-related failures.



variety of network components (e.g., tiles, NICs) exceeds a

high-watermark threshold with respect to the ratio of stalls to

forwarded flits, the software instigates a Congestion Protec-

tion Event (CPE), which is a throttling of injection of traffic

from all NICs. The CPE mechanism limits the aggregate traf-

fic injection bandwidth over all compute nodes to less than

what can be ejected to a single node. While this ensures that

the congestion is at least temporarily alleviated, the network

as a whole is drastically under-subscribed for the duration

of the throttling. As a result, the performance of all applica-

tions running on the system can be significantly impacted.

Throttling remains active until associated monitored values

and ratios drop below their low-watermark thresholds. Appli-

cations with sustained high traffic injection rates may induce

many CPEs, leading to significant time spent in globally throt-

tling. Bursts of high traffic injection rates may thus trigger

CPEs, due to localized congestion, that could have been alle-

viated without the global negative impact of throttling. There

is an option to enable the software to terminate the applica-

tion that it determines is the top congestion candidate, though

this feature is not enabled on the Blue Waters system. The

option to terminate application in a production environment

is not acceptable to most developers and system managers as

it will lead to loss of computational node-hours used by the

application after the last checkpoint.

While some of this congestion may be alleviated by

CEMRs such as feedback of congestion information to appli-

cations to trigger rebalancing [29] or to scheduling/resource

managers to preferentially allocate nodes (e.g., via mecha-

nisms such as slurm’s [79] node weight), some may be un-

avoidable since all networks have finite bandwidth.

On Blue Waters a topology-aware scheduling (TAS) [41,

82] scheme is used to decrease the possibility of application

communication interference by assigning, by default [12],

node allocations that are constrained within small-convex

prisms with respect to the HSN topology. Jobs that exceed

half a torus will still route outside the allocation and possibly

interfere with other jobs and vice versa; a non-default option

can be used to avoid placement next to such jobs. The I/O

routers represent fixed, and roughly evenly distributed, pro-

portional portions of the storage subsystem. Since the storage

subsystem components, including I/O routers, are allocated

(for writes) in a round robin (by request order) manner in-

dependent of TAS allocations, storage I/O communications

will generally use network links both within and outside the

geometry of the application’s allocation and can also be a

cause of interference between applications.

3 Data Sources and Data Collection Tools

This section describes the datasets and tools used to collect

data at scale to enable both runtime and long-term characteri-

zation of network congestion. We leverage vendor-provided

and specialized tools to enable collection and real-time stream-

ing of data to a remote compute node for analysis and char-

acterization. Data provided or exposed on all Cray Gemini

systems includes: OS and network performance counter data,

network resilience-related logs, and workload placement and

status logs. In this study, we used five months (Jan 01 to May

31, 2017) of production network performance-related data

(15 TB), network resilience-related logs (100 GB), and appli-

cation placement logs (7 GB). Note that the methodologies

addressed in this work rely only on the availability of the data,

independent of the specific tools used to collect the data.

Network Performance Counters: Network performance-

related information on links is exposed via Cray’s gpcdr [35]

kernel module. Lustre file system and RDMA traffic in-

formation is exposed on the nodes via /proc/fs and

/proc/kgnilnd. It is neither collected nor made available for

analysis via vendor-provided collection mechanisms. On Blue

Waters, these data are collected and transported off the system

for storage and analysis via the Lightweight Distributed Met-

ric Service (LDMS) monitoring framework [17]. In this work,

we use the following information: directionally aggregated

network traffic (bytes and packets) and length of stalls due

to credit depletion; Lustre file system read and write bytes;

and RDMA bytes transmitted and received. LDMS samplers

collect those data at 60-second intervals and calculate derived

metrics, such as the percent of time spent in stalls (PT s) and

percent of total bandwidth used over the last interval. LDMS

daemons synchronize their sampling to within a few ms (ne-

glecting clock skew) in order to provide coherent snapshots

of network state across the whole system.

Network Monitoring Logs: Network failures and conges-

tion levels are monitored and mitigated by Cray’s xtnlrd soft-

ware. This software further logs certain network events in a

well-known format in the netwatch log file. Significant exam-

ple log lines are provided in Cray documents [33,34]. Regular

expression matching for these lines is implemented in Log-

Diver [66], a log-processing tool, which we use to extract the

occurrences, times, and locations of link failures and CPEs.

Workload Data: Blue Waters utilizes the Moab scheduler,

from which application queue time, start time, end time, exit

status, and allocation of nodes can be obtained. The work-

load dataset contains information about 815,006 application

runs that were executed during our study period. A detailed

characterization of Blue Waters workloads can be found in

Appendix B and Blue Waters workload study [58].

Note that we will only be releasing network data. Worload

data and network monitoring logs will not be released due to

privacy and other concerns.

4 CR Extraction and Characterization Tool

This section first describes our motivation for choosing

congestion regions (CRs) as a driver for characterizing net-

work congestion, and then describes our methodology (imple-

mented as the Monet tool) for extracting CRs over each data



collection interval and the classification of those CRs based

on severity.

4.1 Why Congestion Regions?

We seek to motivate our choice to characterize congestion

regions (CRs) and the need for estimates for severity in terms

of the stall values. We first show that the charcterization of

hotspot links individually do not reveal the spatial and growth

characteristics which is needed for diagnosis. Then, we show

how characterizing CRs is meaningful.

Characterizing hotspot links individually do not reveal

regions of congestion. Figure 3 characterizes the median,

99%ile and 99.9%ile duration of the hotspot links by gen-

erating the distribution of the duration for which a link per-

sists to be in congestion at PT s ≥ PT sThreshold value. For

example, 99.9%ile duration for hotspot links with PT s ≥ 30

is 400 minutes (6.67 hours). The measurements show that the

median duration of hotspot link at different PT s thresholds

is constantly at ∼ 0, however, 99.9%ile duration of hotspot

links linearly decreases with increasing PT s threshold value.

Although such characterizations are useful to understand con-

gestion at link-level, they hide the spatial characteristics of

congestion such as the existence of multiple pockets of con-

gestion and their spread and growth over time. The lack of

such information makes it difficult to understand congestion

characteristics and their root cause.
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Figure 4: Correlating congestion with NAMD application runtime

CRs captures relationship between congestion-level and

application slowdown efficiently. In order to determine

possible severity values and show effectiveness of CRs in

determining application slowdown, we extracted from the

production Blue Waters dataset a set of NAMD [77]8 runs

8NAMD has two different implementations: (a) uGNI shared memory parallel

(SMP)-based, and (b) MPI-based. In this work, unstated NAMD refers to

uGNI SMP-based implementation. uGNI is user level Generic Network

Interface [83].

each of which ran on 1000 nodes with the same input param-

eters. We chose NAMD because it consumes approximately

18% of total node-hours available on Blue Waters9. Figure 4a

shows the execution time of each individual run with respect

to the average PT s over all links within the allocated applica-

tion topology. (Here we leverage TAS to determine severity

value estimates based on the values within the allocation; that

is not a condition for the rest of this work.) Figure 4a shows

that execution time is perhaps only loosely related to the av-

erage PT s; with correlation of 0.33 . In contrast, 4b shows

the relationship of the application execution time with the

maximum average PT s over all CRs (defined in 4.2) within the

allocated topology; with correlation of 0.89. In this case, exe-

cution time increases with increasing maximum of average

PT s over all regions. We found this relationship to hold for

other scientific applications. This is a motivating factor for

the extraction of such congestion regions (CRs) as indicators

of ‘hot-spots’ in the network. We describe the methodology

for CR extraction in the next section.

In addition, we selected approximate ranges of PT s values,

corresponding to increasing run times, to use as estimates

for the severity levels as these can be easily calculated, un-

derstood and compared. These levels are indicated as sym-

bols in the figure. Explicitly, we assign 0-5% average PT s

in a CR as Negligible or ‘Neg’, 5-15% as ‘Low’, 15-25% as

‘Medium’, and > 25% as ‘High’. These are meant to be quali-

tative assignments and not to be rigorously associated with

a definitive performance variation for all applications in all

cases, as the network communication patterns and traffic vol-

umes vary among HPC applications. We will use these ranges

in characterizations in the rest of this work. More accurate

determinations of impact could be used in place of these in

the future, without changing the validity of the CR extraction

technique.

4.2 Extracting Congestion Regions

We have developed an unsupervised clustering approach

for extracting and localizing regions of congestion in the net-

work by segmenting the network into groups of links with

similar congestion values. The clustering approach requires

the following parameters: (a) network graph (G), (b) conges-

tion measures (vs for each vertex v in G), (c) neighborhood

distance metric (dδ), and (d) stall similarity metric (dλ). The

network is represented as a graph G. Each link in the network

is represented as a vertex v in G, and two vertices are con-

nected if the corresponding network links are both connected

to the same switch (i.e., the switch is an edge in the graphs).

For each vertex v, the congestion measures(s) are denoted

by the vector vs, which is composed of credit stalls and inq

9This was best effort extraction and the NAMD application runs may not

be exactly executing the same binary or processing the same data, as user

may have recompiled the code with a different library or used the same

name for dataset while changing the data. There is limited information to

extract suitable comparable runs from historical data that are also subject to

allocation and performance variation.
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Figure 5: CR size, duration, evolution characterization. # of CRs across ‘Low’, ‘Medium’, and ‘High’ are 9.4e05, 7.3e05, and 4.2e05 respectively.

stalls, which we use independently. Distance metrics dδ and

dλ are also required, the former for calculating distances be-

tween two vertices and the latter for calculating differences

among the stalls vs. We assign each vertex the coordinate

halfway between the logical coordinates of the two switches

to which that vertex is immediately connected, and we set dδ

to be the L1 norm between the coordinates. Since the Blue

Waters data consists of directionally aggregated information

as opposed to counters on a per-tile-link (or buffer) basis,

then, in our case, dλ is simply the absolute difference between

the two credit-stall or the two inq-stall values of the links,

depending on what kinds of regions are being segmented.

We consider credit and inq stalls separately to extract CRs,

as the relationship between the two types of stalls is not im-

mediately apparent from the measurements, and thus require

two segmentation passes. Next, we outline the segmentation

algorithm.

Segmentation Algorithm The segmentation algorithm has

four stages which are executed in order, as follows.

• Nearby links with similar stall values are grouped together.

Specifically, they are grouped into the equivalence classes

of the reflexive and transitive closure of the relation ∼r

defined by x ∼r y ⇔ dδ(x,y)≤ δ∧dλ(xs −ys)≤ θp, where

x,y are vertices in G, and δ,θp are thresholds for distance

between vertices and stall values, respectively.

• Nearby regions with similar average stall values, are

grouped together through repetition of the previous step,

but with regions in place of individual links. Instead of

using the link values vs, we use the average value of vs over

all links in the region, and instead of using θp, we use a

separate threshold value θr.

• CRs that are below the size threshold σ are merged into the

nearest region within the distance threshold δ.

• Remaining CRs with < σ links are discarded, so that re-

gions that are too small to be significant are eliminated.

The optimum values for the parameters used in segmenta-

tion algorithms, except for δ, were estimated empirically by

knee-curve [63] method, based on the number of regions pro-

duced. Using that method, the obtained parameter values 10

are: (a) θp = 4, (b) θr = 4, and (c) σ = 20. In [63], the authors

10stall thresholds are scaled by 2.55× to represent the color range (0-255)

for visualization purposes

conclude that the optimum sliding window time is the knee

of the curve drawn between the sliding window time and the

number of clusters obtained using a clustering algorithm. This

decreases truncation errors (in which a cluster is split into

multiple clusters because of a small sliding window time)

and collision errors (in which two events not related to each

other merge into a single cluster because of a large sliding

window time). We fixed δ to be 2 in order to consider only

links that are two hops away, to capture the local nature of

congestion [47]. It should be noted that the region clustering

algorithm may discard small isolated regions (size ≤ σ) of

high congestion. If such CRs do cause high interference, they

will grow over time and eventually be captured.

Our algorithm works under several assumptions: (a) con-

gestion spreads locally, and (b) within a CR, the stall values of

the links do not vary significantly. These assumptions are rea-

sonable for k-dimensional toroids that use directional-order

routing algorithm. The methodology used to derive CRs is not

dependent on the resource allocation policy (such as TAS).

The proposed extraction and its use for characterization is

particularly suitable for analysis of network topologies that

use directional- or dimensional-order routing. In principle,

the algorithm can be applied to other topologies (such as

mesh and high-order torus networks) with other metrics (such

as stall-to-flit ratio). Furthermore, the region extraction al-

gorithm does not force any shape constraints; thus CRs can

be of any arbitrary shape requiring us to store each vertex

associated with the CR. In this work, we have configured the

tool to store and display bounding boxes over CRs, as doing

so vastly reduces the storage requirements (from TBs of raw

data to 4 MB in this case), provides a succinct summary of

the network congestion state, and eases visualization.

We validate the methodology for determining the param-

eters of the region-based segmentation algorithm and its ap-

plicability for CR extraction by using synthetic datasets, as

described in Appendix D.

4.3 Implementation and Performance

We have implemented the region-extraction algorithm as

a modified version of the region growth segmentation al-

gorithm [78] found in the open-source PointCloud Library

(PCL) [9] [4]. The tool is capable of performing run-time

extraction of CRs even for large-scale topologies. Using the



Blue Waters dataset, Monet mined CRs from each 60-second

snapshot of data for 41,472 links in ∼7 seconds; Monet was

running on a single thread of a 2.0 GHz Intel Xeon E5-2683

v3 CPU with 512 GB of RAM. Thus, on Blue Waters Monet

can be run at run-time, as the collection interval is much

greater than CR extraction time. Since Monet operates on the

database, it works the same way whether the data are being

streamed into the database or it is operating on historical data.

5 Characterization Results

In this section, we present results of the application of

our analysis methodology to five months of data from a large-

scale production HPC system (Blue Waters) to provide charac-

terizations of CRs. Readers interested in understanding traffic

characteristics at the link and datacenter-level may refer to a

related work [16].

5.1 Congestion Region Characterization

Here we assess and characterize the congestion severity.

CR-level Size and Severity Characterizations: Figure 5a

shows a histogram11 of CR sizes in terms of the number of

links for each congested state (i.e., not including ‘Neg’). Fig-

ure 5b show a histogram of the durations of CRs across ‘Low’,

‘Medium’ and ‘High’ congestion levels. These measurements

show that unchecked congestion in credit-based interconnects

leads to:

• High growth and spread of congestion leading to large

CRs. The max size of CRs in terms of number of links

was found to be 41,168 (99.99% of total links), 6,904

(16.6% of total links), and 2,324 (5.6% of total links) across

‘Low’, ‘Medium’ and ‘High’ congestion levels respectively,

whereas the 99th percentile of the12 CR size was found to

be 299, 448, and 214 respectively.

• Localized congestion hotspots, i.e., pockets of congestion.

CRs rarely spread to cover all of the network. The number

of CRs decreases (see Figure 5a) with increasing size across

all severity states except for ‘Low’ for which we observe

increase at the tail. For example, there are ∼16,000 CRs in

the ‘High’ which comprise 128 links but only ∼141 CRs

of size ∼600.

• Long-lived congestion. The CR count decreases with in-

creasing duration, however there are many long-lived CRs.

The 50%ile, 99%ile and max duration of CRs across all

states were found to be 579 minutes (9.7 hours), 1421 min-

utes (23.6 hours), and 1439 minutes (24 hours) respectively,

whereas the 50%ile, 99%ile and max PT s of CRs was found

to be 14%, 46%, and 92%, respectively. CR duration did not

change significantly across ‘Low’, ‘Medium’, and ‘High’.

CR Evolution and State Probability: Figure 5c shows the

transition probabilities of the CR states. The percentage in

11plotted as lines and every tenth point marked on the line using a shape for

clarity.
12We will use %ile to denote percentile in the rest of the paper.
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Figure 6: Network congestion evolution captures transition probabilities

from one severity state to another. Percentage numbers in boxes indicates

percentage of total system wall clock time spent in that state.

the box next to each state shows the percentage of total link-

hours13 spent in that state. It can be interpreted as the proba-

bility that a link will be congested at a severity state at a given

time. For example, there is a probability of 0.10% that a link

will be in the ‘High’. These measurements show that:

• The vast majority of link-hours (99.3% of total link-hours)

on Blue Waters are spent in ‘Neg’ congestion. Considera-

tion of a grosser congestion metric, such as the average stall

time across the entire network, will not reveal the presence

of significant CRs.

• Once a CR of ‘Low’, ‘Medium’ or ‘High’ congestion is

formed, it is likely to persist (with a probability of more

than 0.5) rather than decrease or vanish from the network.

5.2 Network-level Congestion Evolution and

Transition Probabilities

In this section, we assess and characterize the overall net-

work congestion severity state. The overall network conges-

tion severity state is the state into which the highest CR falls.

That assignment is independent of the overall distribution

of links in each state. Figure 6 shows the probabilities that

transitions between network states will occur between one

measurement interval and the next. The rectangular boxes in

the figure indicate the fraction of time that the network resides

in each state. These measurements show the following:

• While each individual link of the entire network is most

often in a state of ‘Neg’ congestion, there exists at least one

‘High’ CR for 56% of the time. However, ‘High’ CRs are

small; in Section 5.1, we found that 99th percentile size of

‘High’ is 214 links. Thus, the Blue Waters network state is

nearly always non-negligible (95%), with the “High” state

occurring for the majority of the time.

• There is a significant chance that the current network state

will persist or increase in severity in the next measurement

period. For example, there is an 87% chance that it will

stay in a ‘High’ state.

• A network state is more likely to drop to the next lower

state than to drop to ‘Neg’.

• Together these factors indicate that congestion builds and

subsides slowly, suggesting that it is possible to fore-

13Link-hours are calculated by ∑ (#links in Region) ×
(measurement time-window) for each state.



cast (within bounds) congestion levels. Combined with

proactive localized congestion mitigation techniques and

CEMRs, such forecasts could significantly improve overall

system performance and application throughput.

5.3 Application Impact of CR

The potential impact of congestion on applications can be

significant, even when the percentage of link-hours spent in

non-‘Neg’ congested regions is small. While we cannot quan-

tify congestion’s impact on all of the applications running on

Blue Waters (as we lack ground truth information on particu-

lar application runtimes without congestion), we can quantify

the impact of congestion on the following:

• Production runs of the NAMD application [77]. The worst-

case NAMD execution runtime was 3.4× slower in the

presence of high CRs relative to baseline runs (i.e., negli-

gible congestion). The median runtime was found be 282

minutes, and hence worst-case runtime was 1.86× slower

than the median runtime. This is discussed in more detail

in Section 4.1.

• In [16], authors show that benchmark runs of PSDNS [74]

and AMR [2] on 256 nodes slowed down by as much as

1.6× even at low-levels of congestion (5% < PT s ≤ 15%).

To find a upper bound on the number of potentially im-

pacted applications, we consider the applications whose allo-

cations are directly associated with a router in a CR. Out of

815,006 total application runs on Blue Waters, over 16.6%,

12.3%, and 6.5% of the unique application runs were impacted

by ‘Low’, ‘Medium’, and ‘High’ CRs, respectively.

5.4 Congestion Scenarios

In this section, we show how CRs manifest under differ-

ent congestion scenarios: (a) system issues (e.g. changes in

system load), (b) network-component failures (e.g. link fail-

ures), and (c) intra-application contention. Since the CRs are

described as bounding boxes with coordinates described in

relation to the 3D torus, they can easily be visualized in con-

junction with applications’ placements at runtime on the torus.

CRs of ‘Neg’ congestion are not shown in the figures.

Congestion due to System Issues: Network congestion

may result from contention between different applications

for the same network resources. That can occur because of

a change in system load (e.g. launches of new applications)

or change in application traffic that increases contention on

shared links between applications.

Figure 7(i) shows four snapshots, read clockwise, of ex-

tracted CRs, including size and severity state, for different

time intervals during a changing workload. Figure 7(i)(a)

shows that ‘Low’ (blue) CRs when most of the workload con-

sists of multiple instances of MPI-based NAMD [77]. The

overall network state was thus ‘Low’. The CRs remained rela-

tively unchanged for 40 minutes, after which two instances

of NAMD completed and Variant Calling [37] was launched.

Three minutes after the launch, new CRs of increased severity
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Figure 7: Case studies: network congestion is shown due to (i) sys-

tem issues (such as introduction of new applications), (ii) failures

(such as network link failure), and (iii) change in communication

pattern within the application.

occurred (Figure 7(i)(b,c)). The ‘High’ (red) 14 and ‘Medium’

(orange) severity CRs overlapped with the applications.

The increase in the severity of congestion was due to high

I/O bandwidth utilization by the Variant Calling application.

The overall network state remained ‘High’ for ∼143 minutes

until the Variant Calling application completed. At that time,

the congestion subsided, as shown in Figure 7(i)(d).

Congestion Due to Network-component Failures:

Network-related failures are frequent [55, 68] and may

lead to network congestion, depending on the traffic on

the network and the type of failure. In [55], the mean time

between failures (MTBF) for directional links in Blue Waters

was found to be approximately 2.46e06 link-hours (or 280

link-years). Given the large number of links (41,472 links) on

Blue Waters, the expected mean time between failure of a

link across the system is about 59.2 hours; i.e., Blue Waters

admins can expect one directional-link failure every 59.2

hours.

Failures of directional links or routers generally lead to

14not visible and hidden by other regions.



occurrences of ‘High’ CRs, while isolated failures of a few

switch links (which are much more frequent) generally do not

lead to occurrences of significant CRs. In this work we found

that 88% of directional link failures led to congestion; how-

ever, isolated failures of switch links did not lead to significant

CRs (i.e., had ‘Neg’ CRs).

Figure 7(ii) shows the impact of a network blade failure

that caused the loss of two network routers and about 96

links (x,y,z location of failure at coordinates (12,3,4) and

(12,3,3)). Figure 7(ii)(a) shows the congestion CRs before

the failure incident and Figure 7(ii)(b) shows the CRs just

after the completion of the network recovery. Immediately

after failure, the stalls increased because of the unavailability

of links, requiring the packets to be buffered on the network

nodes. The congestion quickly spread into the geometry of

nearby applications in the torus. Failure of a blade increased

the overall size (in number of links) of ‘Low’ CRs by a factor

of 2, and of ‘Medium’ CRs by a factor of 4.2, and created

previously non existent ‘High’ CRs with more than 200 links.

Congestion Due to Intra-Application Issues: Conges-

tion within an application’s geometry (intra-application con-

tention) can occur even with TAS. Figure 7(iii) shows con-

gestion CRs while the uGNI-based shared memory parallel

(SMP) NAMD application on more than 2,000 nodes. The

application is geometrically mapped on the torus starting at

coordinates (15, 18, 0) and ending at coordinates (1, 21, 23)

(wrapping around). The congestion CRs alternate between the

two states shown (state 1 shown in Figure 7(iii)(a), and state 2,

shown in Figure 7(iii)(b)) throughout the application run-time

because of changes in communication patterns corresponding

to the different segments of the NAMD code.

Intra-application contention is less likely to elevate to

cause global network issue, unless the links are involved in

global (e.g., I/O) routes, or if the resulting congestion is heavy

enough to trigger the system-wide mitigation mechanism (see

Section 2.2).

Importance of diagnosis: In this section, we have iden-

tified three high-level causes of congestion, which we cat-

egorize as (a) system issues, (b) network-component fail-

ures, and (c) intra-application contention. For each cause,

system managers could trigger one of the following actions

to reduce/manage congestion. In the case of intra-application

congestion, an automated MPI rank remapping tool such as

TopoMapping [46], could be used to change traffic flow band-

width on links to reduce congestion on them. In the case

of inter-application congestion (caused by system issues or

network failures), a node-allocation policy (e.g., TAS) could

use knowledge of congested regions to reduce the impact of

congestion on applications. Finally, if execution of an appli-

cation frequently causes inter-application congestion, then

the application should be re-engineered to limit chances of

congestion.

(a) Box plot of duration of throttling (b) Box plot of time between triggers

of congestion mitigation events

Figure 8: Characterizing Cray Gemini congestion mitigation events.

6 Using Characterizations: Congestion Re-

sponse

In this section, we first discuss efficacy of Cray CPEs and

then show how our CR-based characterizations can be used to

inform effective responses to performance-degrading levels

of congestion.

Characterizing Cray CPEs: Recall from Section 2 that the

vendor-provided congestion mitigation mechanism throttles

all NIC traffic injection into the network irrespective of the

location and size of the triggering congestion region. This

mitigation mechanism is triggered infrequently by design and

hence may miss detections and opportunities to trigger more

targeted congestion avoidance mechanisms. On Blue Waters,

congestion mitigation events are generally active for small

durations (typically less than a minute), however, in extreme

cases, we have seen them active for as long as 100 minutes.

Each throttling event is logged in netwatch log files.

We define a congestion mitigation event (CME) as a col-

lection of one or more throttling events that were coalesced

together based on a sliding window algorithm [63] with a slid-

ing window of 210 seconds, and we use this to estimate the

duration of the vendor-provided congestion mitigation mech-

anisms. Figure 8a and 8b shows a box plot of duration of

and time between CMEs respectively. The analysis of CMEs

shows that :

• CMEs were triggered 261 times; 29.8% of which did not

alleviate congestion in the system. Figure 9 shows a case

where the size and severity of CRs increases after a series

of throttling events.

• The median time between triggers of CMEs was found to

be 7 hours. The distribution of time between events is given

in Figure 8b.

• CMEs are generally active for small durations (typically

less than a minute), however, in extreme cases, we have

seen them active for as long as 100 minutes.

• 8% of the application runs were impacted with over 700 of

those utilizing > 100 nodes.

These observations motivate the utility of augmenting the

vendor supplied solution of global traffic suppression to man-

age exceptionally high congestion bursts with our more local-

ized approach of taking action on CRs at a higher system-level

of granularity to alleviate sources of network congestion.

CR-based congestion detection to increase mitigation ef-

fectiveness: CR based characterizations can potentially im-
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Figure 9: A case in which a congestion protection event (CPE)

failed to mitigate the congestion

prove congestion mitigation and CEMR effectiveness by more

accurately determining which scenarios should be addressed

by which mechanisms and by using the identified CRs to

trigger localized responses more frequently than Cray CMEs.

That approach is motivated by our discovery (see Section 5.2)

that the network is in a ‘High’ congestion state the major-

ity of the time, primarily because of CRs of small size but

significant congestion severity.

We define a Regions Congestion Event (RCE) as a time-

window for which each time instance has at least one region of

‘High’ congestion. We calculate it by combining the CR eval-

uations across 5-minute sliding windows. Figure 10 shows

boxplots of (a) average credit PT S across all extracted CRs

during RCEs’, (b) average inq PT S across all RCEs’, (c) times

between RCE, and (d) durations of the RCEs’. These mea-

surements show

• Relative to the vendor-provided congestion mitigation

mechanisms, our characterization results in 13× more

events (3390 RCEs) upon which we could potentially act.

• Vendor provided congestion mitigation mechanisms trigger

on 8% (261 of 3390) of RCEs.

• The average PT S of maximum inq- and credit-stall across

all extracted regions present in RCEs is quite high, at 33.8%

and 27.4%, respectively.

• 25% of 3390 RCEs lasted for more than 30 minutes, and

the average duration was found to be approximately an

hour.

CRs discovery could also be used for informing conges-

tion aware scheduling decisions. Communication-intensive

applications could be preferentially placed to not contend for

bandwidth in significantly congested regions or be delayed

from launching until congestion has subsided.

7 Using Characterizations: Diagnosing

Causes of Congestion
Section 5.4 identifies the root causes of congestion and

discusses the the importance of diagnosis. Here we explore

that idea to create tools to enable diagnosis at runtime.

7.1 Diagnosis Methodology and Tool

We present a methodology that can provide results to help

draw a system manager’s attention to anomalous scenarios

and potential offenders for further analysis. We can combine

system information with the CR-characterizations to help

diagnose causes of significant congestion. Factors include

applications that inject more traffic than can be ejected into

the targets or than the traversed links can transfer, either via

communication patterns (e.g., all-to-all or many-to-one) or

I/O traffic, and link failures. These can typically be identified

by observation(s) of anomalies in the data.

Mining Candidate Congestion-Causing Factors For

each congestion Region, CRi, identified at time T , we cre-

ate two tables ACRi
(T ) and FCRi

(T ), as described below.

ACRi
(T ) table: Each row in ACRi

(T ) corresponds to an ap-

plication that is within Nhops ≤ 3 hops away from the bound-

ing box of the congestion region CRi. ACRi
(T ) contains in-

formation about the application and its traffic characteristics

across seven traffic features: (a) application name, (b) max-

imum read bytes per minute, (c) maximum write bytes per

minute, (d) maximum RDMA read bytes per minute, (e) max-

imum RDMA write bytes per minute, (f) maximum all-to-all

communication traffic bytes per minute, and (g) maximum

many-to-one communication traffic bytes per minute, where

the maximums are taken over the past 30 minutes, i.e., the

most recent 30 measurement windows. The list of applica-

tions that are within Nhops away from congestion region CRi

are extracted from the workload data. The measurements for

features (a) to (e) are extracted by querying network perfor-

mance counter data, whereas we estimate the features (f) and

(g) are estimated from Network performance counter data

by taking several bisection cuts over the application geome-

try and comparing node traffic ingestion and ejection bytes

among the two partitions of the bisection cut.

FCRi
(T ) table: Each row in FCRi

(T ) corresponds to an

application that is within Nhops ≤ 3 away from the congestion

boundary of CRi. FCRi
(T ) contains information about failure

events across three failure features: (a) failure timestamp, (b)

failure location (i.e., coordinates in the torus), and (c) failure

type (i.e., switch link, network link, and router failures). Lists

of failure events that are within Nhops away from congestion

region CRi are extracted from network failure data.

Identifying Anomalous or Extreme Factors: The next

step is to identify extreme application traffic characteris-

tics or network-related failures over the past 30 minutes that

have led to the occurrence of CRs. For each traffic feature

in ACRi
(T ), we use an outlier detection method to identify

the top k applications that are exhibiting anomalous behavior.

The method uses the numerical values of the features listed in

table ACRi
(T ). Our analysis framework uses a median-based

outlier detection algorithm proposed by Donoho [40] for each

CRi. According to [40], the median-based method is more ro-

bust than mean-based methods for skewed datasets. Because

CRs due to network-related failure events 15 are rare relative

to congestion caused by other factors, all failure events that

15In this paper, we do not consider the effect of lane failures on congestion.



(a) Boxplot of average credit

stall across extracted conges-

tion events.

(b) Boxplot of average inq-

stall across extracted conges-

tion events.

(c) Boxplot of time between

congestion events.

(d) Boxplot of duration of con-

gestion.

Figure 10: Characterization of Regions Congestion Events (RCE).

occur within Nhops of CRi in the most recent 30 measurement

windows are marked as anomalous.

Generating Evidence: The last step is to generate evidence

for determining whether anomalous factors identified in the

previous step are truly responsible for the observed congestion

in the CR. The evidence is provided in the form of a statis-

tical correlation taken over the most recent 30 measurement

time-windows between the moving average stall value of the

links and the numerical traffic feature(s) obtained from the

data (e.g., RDMA read bytes per minute of the application)

associated with the anomalous factor(s). For failure-related

anomalous factors, we calculate the correlation taken over

the most recent 30 measurement time-windows between the

moving average of observed traffic summed across the links

that are within Nhops away from the failed link(s) and the stall

values16. A high correlation produces the desired evidence.

We order the anomalous factors using the calculated correla-

tion value regardless of the congestion cause. Additionally,

we show a plot of stall values and the feature associated with

the anomalous factor(s) to help understand the impact of the

anomalous factor(s) on congestion.

The steps in this section were only tested on a dataset

consisting of the case studies discussed in Section 5.4 and 7

because of lack of ground truth labels on root causes. Creation

of labels on congestion causes requires significant human ef-

fort and is prone to errors. However, we have been able to

generate labels by using the proposed unsupervised method-

ology, which provides a good starting point for diagnosis.

7.2 Comprehensive Congestion Analysis

In this section, we describe an example use case in which

our analysis methodologies were used to detect and diagnose

the congestion in a scenario obtained from real data for which

the ground truth of the cause was available. The overall steps

involved in using our methodologies, included in our Monet

implementation, for congestion detection and diagnosis are

summarized in Figure 11 and described in Section 7. Not all

of the steps discussed below are currently automated, but we

are working on automating an end-to-end pipeline.

Step 1. Extraction of CR. Figure 11(a) shows that our anal-

ysis indicated wide spread high-level congestion across the

system (see the left graph in Figure 11(a)). An in-depth anal-

ysis of the raw data resulted in identification/detection of

16Increase in traffic near a failed link leads to congestion as shown in Sec-

tion 5.4.

congestion regions (see the top-right graph in Figure 11(a)).

Step 2. Congestion diagnosis. There are 3 steps associated

with diagnosing the cause of the congestion.

Step 2.1. Mining candidate factors. To determine the cause

of the congestion, we correlated the CR-data with application-

related network traffic (for all applications that overlapped

with or were near the congestion regions) and network in-

formation to generate candidate factors that may have led to

congestion. In this example, there were no failures; hence, this

analysis generated only application-related candidate factors

ACRi
, as shown in Figure 11.

Step 2.2. Identifying anomalous factors. Next, we utilized

the application traffic characteristics from candidate factors

observed over the last 30 minutes (i.e., many-to-one or all-to-

all traffic communication, and file system statistics such as

read or write bytes) to identify anomalous factors by using

a median-based outlier detection algorithm. In our example,

as indicated in Figure 11(b), the offending application was

“Enzo” which was running on 32 nodes allocated along the “Z”

direction at location (X,Y,Z) = (0,16,16) (indicated by a black

circle in Figure 11(a)). At the time of detection, “Enzo” was

reading from the file system at an average rate of 4 GB/min

(averaged over past 30 minutes and with a peak rate of 70

GB/min), which was 16x greater than the next-highest rate

of read traffic by any other application in that time-window.

The ACRi
(T ) for RDMA read bytes/min was 70 GB/min.

The tool identified the RDMA read bytes/min of the “Enzo”

application as the outlier feature. Hence, “Enzo” was marked

as the anomalous factor that led to the congestion.

Step 2.3. Generating evidence. Once the potential cause

had been established, further analysis produced additional

evidence (e.g., distribution and correlation coefficient asso-

ciated with link stalls in the congestion time window) to

validate/verify the diagnosis results produced in Step 2.2.

Figure 11(c), in the top graph, shows a plot of the sum of

stall rates on all links for all the Gemini routers local to the

compute nodes used by the offending application, (i.e., Enzo)

(normalized to the total stall rate throughout the duration of

the application run). The two peaks (marked) in this top plot

correspond to the increase in read bytes (normalized to total

read bytes during the application run) shown in the bottom

plot. Note that abnormal activity (an excessive amount of traf-

fic to the file system) occurred around 10:10 AM (as shown

Figure 11(c)), which was about 20 minutes before the severe

congestion developed in the system (seen in Figure 11(a)). A
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Figure 11: Detection and Diagnosis methodology applied to real-scenario

“Medium” level of congestion was detected in the system span-

ning a few links (i.e., the congestion region size was small) at

the time of the increased read traffic. Thus the cause was diag-

nosed to be “Enzo”. Although, in this example scenario, the

Cray congestion mitigation mechanism was triggered, it was

not successful in alleviating the network congestion. Instead,

the CR size grew over time, impacting several applications.

“Enzo” was responsible for another triggering of the conges-

tion mitigation mechanism at 3:20 PM (see the top graph in

Figure 11(c)). Monet detected and diagnosed it correctly.

8 Related Work

There is great interest in assessing performance anomalies

in HPC systems with the goal of understanding and minimiz-

ing application performance variation [25, 86, 86, 88]. Mon-

itoring frameworks such as Darshan [65], Beacon [87] and

Kaleidoscope [54] focuses on I/O profiling and performance

anomaly diagnosis. Whereas, our work focuses on assess-

ing network congestion in credit-flow based interconnection

networks. Typically congestion studies are based on measure-

ments of performance variation of benchmark applications

in production settings [25, 88] and/or modeling that assumes

steady state utilization/congestion behavior [23, 52, 64, 73],

and thus do not address full production workloads.

There are research efforts on identifying hotspots and miti-

gating the effects of congestion at the application or system-

layer (e.g., schedulers). These approaches include (a) use

of application’s own indirect measures, such as messaging

rates [25], or network counters from switch that are accessi-

ble only from within an allocation [38, 49, 50, 76], and there-

fore miss measurements of congestion along routes involv-

ing switches outside of the allocation; and (b) use of global

network counter data [17, 26, 28, 30], however, these have

presented only representative examples of congestion through

time or executed a single application on the system [26].

In contrast, this work is the first long-term characterization

of high-speed interconnect network congestion of a large-

scale production system, where network resources are shared

by nodes across disparate job allocations, using global net-

work counters. The characterizations and diagnosis enabled

by our work can be used to inform application-level [29] or

system-level CEMRs (e.g., use of localized throttling instead

of network-wide throttling). Perhaps, the closest work to ours

is [22] which is an empirical study of cloud data center net-

works with a focus on network utilization and traffic patterns,

and Beacon [87] which was used on TaihuLight [43] to moni-

tor interconnection network inter-node traffic bandwidth. Like

others, these works did not involve generation and characteri-

zation of congestion regions, diagnosis of congestion causes,

nor a generalized implementation of a methodology for such,

however, we did observe some complimentary results in our

system (e.g., the existence of hot-spot links, the full bisection

bandwidth was not always used, assessment of persistence of

congestion in links).

Finally, for datacenter networks, efforts such as Express-

Pass [32], DCQCN [89], TIMELY [69] focus on prevent-

ing and mitigating congestion at the network-layer whereas

efforts such as PathDump [84], SwitchPointer [85], Path-

Query [72], EverFlow [90], NetSight [51], LDMS [17] and

TPP [53] focus on network monitoring. These approaches are

tuned for TCP/IP networks and are orthogonal to the work pre-

sented here. Our approach is complementary to these efforts

as it enables characterization of congestion regions (hotspots)

and identification of congestion causing events.

9 Conclusions and Future Work

We present novel methodologies for detecting, character-

izing, and diagnosing network congestion. We implemented

these capabilities and demonstrated them using production

data from NCSA’s 27,648 node, Cray Gemini based, Blue

Waters system. While we utilized the scale and data avail-

ability of the Blue Waters system to validate our approach,

the methodologies presented are generally applicable to other

credit-based k-dimensional meshes or toroidal networks. Our

future work will involve extending the presented techniques to

other network technologies and topologies (see Appendix C).
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A HPC Interconnect Background

Here we briefly give an overview of HPC interconnects and

dive deeper into the details of torus networks.

A.1 Interconnection Networks

An interconnection network is a programmable system that

transports data between terminals. The main design aspects

of interconnection networks are (1) topology, (2) routing, (3)

flow control, and (4) recovery. Topology determines the con-

nection between compute nodes and network nodes (routers,

switches, etc.). Routing, flow control, and recovery heavily

depend on the topology of the interconnection system. The

most widely used topologies in high-performance computing

(HPC) are (1) Fat-Tree (e.g. Summit [13]), (2) DragonFly

(e.g., Edison [15]), and (3) Torus (e.g., Blue Waters [67]).

A.2 Torus Networks

Torus networks can support N = kn nodes which are ar-

ranged in a k-ary n-cube grid (i.e., nodes are arranged in

regular n-dimensional grid with k nodes in each dimension).

In the case of Blue Waters, n = 3. In torus networks, each

node serves simultaneously as an input terminal, output ter-

minal and switching node of the network. Torus networks

are regular (i.e., all nodes have the same degree) and are also

edge-symmetric (useful for load-balancing). Torus networks

are very popular for exploiting physical locality between com-

municating nodes, providing low latency and high throughput.

However, the average hop count to route packets to a ran-

dom node is high compared with other network topolgoies

such as Fat-Tree or DragonFly. On the other hand, extra hop

counts provide path diversity, which is required for building

fault-tolerant architecture.

Routing involves selection of the path from the source

node (src) to destination node (dst) among many possible

paths in a given topology. In torus networks, routing is done

through the directional-order routing algorithm. Directional-

order routing does the following:

• Routes the packet in X+/-, Y+, or Z+ until the dimension

is resolved,

• Routes the packet in Y+/- or Z+ until the Y dimension

is resolved, and

• Routes the packet in Z+/- until the Z dimension is re-

solved, at which point the packet must have arrived at its

destination.

B Workload Information

On Blue Waters, all jobs execute in non-shared mode,

without any co-location with another job on the same com-

pute node. Users can submit batch or interactive jobs using

Moab/Torque [14] and configure several parameters for job

resource request such as: (i) number of nodes, (ii) the number

of cores, and (iii) the system walltime (i.e., requested clock

time for the job). Blue Waters puts a 48-hour walltime restric-

tion. Blue Waters uses Integrated System Console (ISC) [44]

to parse and store the job records and its associated metrics

(performance and failure) in its database.

In [39], Di Martino et al. provided detailed characteriza-

tion of more than 5 million HPC application runs completed

during the first 518 production days of Blue Waters. However,

for completeness, this section provides the workload charac-

teristics of the jobs running on Blue Waters during our study

period. Due to loss of data caused by a failure, we do not have

workload information for Jan 2017 and hence the workload

data shown here is from Feb 2017 - July 2017. During our

study period, 2,219k jobs were executed by 467 unique users.

We characterize the job characteristics in terms of i) job type,

and ii) job size.

B.1 Job type
Blue Waters workload is predominantly composed of sci-

entific applications. The most prolific scientific fields are

summarized in Figure 12a in terms of node-hours. The top

scientific discipline during our study period was ‘Astronomi-

cal Sciences’ (21.9%). However, the top scientific disciplines

changes over time based on resource allocation awards given

by US National Science Foundation and University of Illinois.

Definition 4 Node-seconds: is the product of the number of

nodes and the wallclock time (in seconds) used by a job. The

metric captures the scale of the job’s execution across space

and time.

B.2 Job Size
Figure 13b shows a bar plot summarizing relationship be-

tween percentage by node-seconds (see Def. 4) and percent-

age of jobs, whereas Fig. 13a shows a bar plot summarizing

relationship between number of nodes and percentage of jobs.

74% of the jobs are single-node jobs. However, these jobs

contribute only 5% by node-seconds. The large-scale jobs by

number are small, they contribute to 94% of the total node-

seconds.
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Figure 13: Characteristics of jobs running on Blue Waters.

C Existence of Congestion Hotspots and Re-

gions in DragonFly Interconnect
Here we characterize hotspot links on Edison [15], a 2.57

petaflops production system, to showcase continued existence

of network congestion problems on a current state of the art

network interconnect. Edison uses Cray Aries interconnect

which is based on DragonFly topology and uses adaptive rout-

ing [59]. We use one week of LDMS data that was collected

from Edison at one second interval, and amounts to 7.7 TB.

Our analyses shows 1) presence of long duration hotspot links,

and 2) performance variability on a current state of the art

network interconnect.
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Figure 14: Distribution of hotspot link duration in Edison [replicated from

[56]]

Figure 14 characterizes the median, 99%ile and 99.9%ile

duration of the hotspot links by generating the distribution of

the duration for which a link persists to be in congestion at

PT s ≥ PT s Threshold. While the 99.9%ile hotspot duration is

an order of magnitude lesser compared to the observed results

in Gemini (see Figure. 3), which can be explained by the

low diameter topology and use of congestion-aware routing

policies in Aries. The duration of hotspot is longer than a

minute for congestion thresholds less than 15% PT s. More

details on characterization for Edison can be found in [56].
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Figure 15: Variation of MILC runtime on Edison

Although the hotspot link duration has significantly de-

creased, the performance variation due to congestion contin-

ues to be a problem. For example, we observed significant

performance variation of up to 1.67× compared to baseline

for MILC application [25] on Edison (see Figure 15). MILC

is a communication-heavy application susceptible to conges-

tion on the interconnect. The reason for slowdown of the

application can be attributed to presence of congestion in the

links which rapidly evolves (i.e., a link may not be contin-

uously congested but there is always groups of congested

links). Preliminary analysis of network congestion counters



obtained from Edison [15] suggests existence of congestion

regions that evolve rapidly. Our future work will focus on

applying and extending our methodology to other intercon-

nects technologies that use different topology other than torus

(e.g., Fat-Tree or DragonFly) or use adaptive-routing (e.g.,

UGAL [59]). In emerging network technologies, vastly more

network performance counters are available that can be used

for detecting congestion and hence there is an increased need

for algorithmic methods for discovering and assessing con-

gestion at system and application-level.

D Validation of Congestion Regions Gener-

ated by Region Segmentation

Validation of the region segmentation algorithm was done

by inspecting visualizations of both the unsegmented and

segmented congestion data. We also generated synthetic con-

gestion data and evaluated our algorithm’s performance on it

as a sanity check.

D.1 Results Analysis Discussion

As we do not have any ground truth for our clustering algo-

rithm and the credit and inq stall on each link widely varies

across the system with time (as discussed in previous subsec-

tion), we attempted some sanity checks in order to validate

that the algorithm produced a sensible clustering of the data.

To facilitate this, we implemented visualization tools for visu-

alizing both the raw, unsegmented data, as well as the final,

segmented data. We then ran our algorithm on the conges-

tion data that was recorded at times when we knew there

were congestion events (e.g. when Cray congestion protec-

tion events were triggered), as well as at multiple randomly

sampled timepoints. We then visualized both sets of data and

manually inspected the regions generated, checking visually

to see if they lined up with the visualization of the raw con-

gestion data. For samples that we inspected, the algorithm

worked well for segmenting the data.

As a further test, we generated random congestion data

following a simplified model and scored our algorithm’s ef-

fectiveness at classifying those data. The data was created by

randomly generating regions of congestion in a 24 x 24 x 24

cube representing the 3D torus of the Blue Waters Gemini in-

terconnect. Each congestion region was created by randomly

generating a) a cuboid in which each dimension was between

3 and 9 links inclusive, b) a random stall value s between

20% and 50%, and c) a random integer from {0, 1}. Depend-

ing on the value of the random integer, s was added to the

credit-stall or inq-stall of all the links in the cuboid. Finally,

after all regions were added random Gaussian noise with

(µ,σ) = (0,2.5) was added to both the credit- and inq-stalls

of all the links in the cube to simulate small variances in the

stall values of each link.

We then ran our algorithm on 100 samples, each with a ran-

dom number of regions (from 1 to 8 inclusive), and assigned

a score as well as calculating the precision and recall for that

sample. We scored the match as follows: for a single sam-

ple, let Ai, i = 1 · · ·n be the actual regions and Bi, i = 1 · · ·m
be the regions the algorithm produced. A single sample was

then assigned the score ( 1
n ∑

n
i=1

|Ai∩B ji
|

|Ai∪B ji
| )(

n
max(n,m) ), where |Ai|

represents the number of links in the enclosed region, and

the B ji are the regions that "best" overlap their respective Ai.

The B ji are chosen by going through the regions Ai in order

from smallest to largest, and choosing ji such that B ji has the

largest possible overlap with Ai. Regions created by segmen-

tation that have both inq- and credit-stall < 5% are considered

insignificant and were excluded from this processing.

This scoring assigns a score of 1 to a perfect match, which

degrades to 0 when a) the mismatch between the true and the

matching generated region increases, or when b) the algorithm

generates more regions than true regions.

Based on that scoring, the algorithm achieved an average

score of 0.81 (maximum 1.0) with parameters (θp = 12,θr =
8,θd = 2,θs = 20) over 100 samples, with an average preci-

sion of 0.87 and an average recall of 0.89.

D.2 Summary

While it is not possible to fully validate the efficacy of

our segmentation algorithm, the synthetic datasets generated

give us a degree of confidence that the algorithm does the

right thing on simple models of congestion that satisfy our

assumptions (i.e. that congestion tends to spread locally) and

work well with noise. The comparison between the datasets

before and after the segmentation suggests that algorithm does

still work reasonably well in practice, on real datasets.

The region segmentation algorithm was applied to 5 months

of production data collected as part of the operational environ-

ment of a system. The data was obtained from Blue Waters

through various tools and counters(e.g., network performance

counters, link-aggregated data, scheduler and log files) and

hence is reliant on the correctness. The reliability of the sys-

tem software for synchronized data collection at regular in-

tervals (LDMS) is dependent on the system operation staff

which supports it and performance details for this software

are available in its documention.
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