
Network Error Logging:
Client-side measurement of end-to-end web service reliability

Sam Burnett1, Lily Chen1, Douglas A. Creager3, Misha Efimov1, Ilya Grigorik1, Ben Jones1, Harsha V.
Madhyastha1,2, Pavlos Papageorge1, Brian Rogan1, Charles Stahl1, and Julia Tuttle1

1Google 2University of Michigan 3GitHub
nel-paper@google.com

Abstract
We present NEL (Network Error Logging), a planet-scale,

client-side, network reliability measurement system. NEL
is implemented in Google Chrome and has been proposed
as a new W3C standard, letting any web site operator col-
lect reports of clients’ successful and failed requests to their
sites. These reports are similar to web server logs, but
include information about failed requests that never reach
serving infrastructure. Reports are uploaded via redundant
failover paths, reducing the likelihood of shared-fate failures
of report uploads. We have designed NEL such that service
providers can glean no additional information about users or
their behavior compared to what services already have vis-
ibility into during normal operation. Since 2014, NEL has
been invaluable in monitoring all of Google’s domains, al-
lowing us to detect and investigate instances of DNS hijack-
ing, BGP route leaks, protocol deployment bugs, and other
problems where packets might never reach our servers. This
paper presents the design of NEL, case studies of real out-
ages, and deployment lessons for other operators who choose
to use NEL to monitor their traffic.

1 Introduction
Maintaining high availability is a matter of utmost impor-
tance for the operator of any popular web service. When
users cannot access a web service, this may not only result in
loss of revenue for the service provider but may also impact
the service’s reputation, causing users to shift to competing
services. Therefore, it is critical that a web service opera-
tor detect and react in a timely manner when its service is
inaccessible for any sizable population of users.

The primary challenge in doing so is that network traffic
faces many threats as it traverses the Internet from clients
to servers, most of which are outside the control of the ser-
vice operator. Rogue DNS resolvers can serve hijacked re-
sults [2], ISP middleboxes can surgically alter traffic [27],
bad router policy can silently drop packets [24], misconfig-
ured BGP can take entire organizations offline [1], and more.
Even though each of these issues is caused by systems that
are not under the web service operator’s control, the operator
must bear primary responsibility for detecting and respond-
ing to them.

To address this challenge, a range of approaches have been
developed over the years. For instance, server-side request
logs (e.g., the Apache web server’s access.log and error.log
files [31]) give fine-grained information about the success or
failure of each incoming request. After annotating these logs
with additional information, like the ISP or geographic loca-
tion of the end user, operators can identify when interesting
populations of end users are all affected by the same reliabil-
ity issues [5, 4]. Alternative approaches rely on a dedicated
monitoring infrastructure comprising a globally distributed
set of vantage points. These approaches either actively probe
the service to detect unreachability [6, 20] or passively mon-
itor BGP feeds to identify routing issues [7].

Unfortunately, these existing solutions suffer from two
fundamental limitations.

• First, they are typically capable of only detecting large,
systemic outages. For example, with server-side moni-
toring, a major problem (e.g., a global outage of a major
service, or a regional outage affecting a large enough re-
gion) might show up as a noticeable drop in total request
volume [28], but operators typically only learn of smaller
problems when users manually report them.1 These user
reports are often frustratingly vague, and collecting addi-
tional information from nonexpert users is next to impos-
sible, so investigation may take hours or even days.

• Second, and more importantly, existing approaches are in-
capable of precisely quantifying how many clients are af-
fected, if any. For example, active probing from dedicated
probing infrastructure can only probe from a handful of
locations relative to the number of real users, and probe
traffic is not always representative of what actual users ex-
perience (e.g., probers may not use real web browsers and
might receive different network configuration than actual
end users). Without knowing how many users are affected,
the operator is unable to judge whether it should prioritize
the troubleshooting of a detected problem over other on-
going issues that deserve its attention.

To overcome these challenges in detecting and scoping in-
stances of service unreachability, we need a system that (1)

1While sites like https://downdetector.com crowdsource such reports,
historically we have often only learned of problems via social media.

passively monitors actual end user traffic to any target web
service; (2) has visibility into reliability issues regardless of
where on the end-to-end path they occur; and (3) requires lit-
tle to no custom engineering work on the part of the operator.

With these goals in mind, we have designed, implemented,
and deployed NEL (Network Error Logging). The key intu-
ition behind NEL’s design is that clients have ground truth
about their ability to access a web service. Therefore, NEL
leverages end users’ browsers to collect reliability informa-
tion about the service. NEL is implemented directly in
the browser’s network stack, collecting metadata about the
outcome of requests, without requiring any custom per-site
JavaScript instrumentation. The browser then uploads these
reports to a redundant set of collection servers, which aggre-
gates reports from users around the globe to detect and scope
network outages.

This paper describes our contributions, based on the fol-
lowing three tracks:

First, we present our solutions to the various engineering
and policy challenges that arise in using client-side data to
detect reachability issues. When clients are unable to talk
to a service, how do we still ensure successful collection of
unreachability reports from these clients? What should up-
loaded reports contain so that they aid in diagnosing and es-
timating the impact of outages? How do we prevent abuse of
the system, given that clients are free to upload fraudulent re-
ports and service operators can attempt to learn about clients’
reachability to other services? Our primary consideration in
answering these questions has been to preserve user privacy;
we ensure that NEL does not reveal more about clients than
what service operators would learn during normal operation.

Second, we describe our experiences in using NEL to
monitor reachability to Google’s services since 2014. In that
time, as we relay in Section 4, it has been instrumental in
detecting and mitigating a wide variety of network outages
including routing loops, BGP leaks, DNS hijacks, and proto-
col misconfigurations. In particular, without NEL, it would
have been hard, if not impossible, to estimate the number of
clients affected by each outage. Thus, NEL has proved in-
valuable in helping us identify which problems warrant im-
mediate investigation due to their large impact and which
ones we can afford to ignore or attend to later.

Third, after several years of experience with an initial im-
plementation that could only monitor Google services, we
describe our recent efforts to promote this capability as a new
proposed W3C standard [11]. Standardizing this work has
two benefits: (1) it allows all service operators to take advan-
tage of this new collection ability, and (2) it allows operators
to collect reliability data from any user agent that complies
with the standard, and not just Chrome.

NEL is not a panacea for painstaking problem detection
and diagnosis. It cannot report problems when clients are
completely disconnected from the network or cannot reach
at least one of a redundant set of collectors. It reports

Figure 1: Steps and entities involved in enabling a client to ac-
cess a web service.

only coarse-grained summaries about entire requests, and is
no substitute for lower-level network diagnostics like trace-
routes and packet captures. (For example, it can detect when
clients experience connection timeouts, but cannot tell you
much more about why.) Nonetheless, NEL has proven a
valuable tool for detecting and scoping network outages that
are invisible to other monitoring infrastructure.

2 Background and Motivation
We begin by listing several causes that may render a web ser-
vice inaccessible, solutions that exist to detect service reach-
ability problems, and the limitations of these solutions that
motivated us to develop NEL.

2.1 Causes of service inaccessibility

As Figure 1 shows, a typical communication between a client
and a web service offered over HTTPS involves the follow-
ing steps: the client performs a DNS lookup of the service’s
hostname, establishes a TCP connection to the IP address it
obtains, performs a TLS handshake with the server, and then
sends its HTTP request.2

Given these steps, a client may be unable to communicate
with a web service due to any of the following reasons:

• DNS failure: The client will be unable to execute any
of the subsequent steps if its attempt to resolve the ser-
vice’s hostname fails. This can happen either if the name-
server that the client uses is unresponsive, or if the service
provider’s DNS setup is misconfigured.

• DNS hijack: The client could get an incorrect IP address
in response to its DNS request if either the nameserver that
the client uses is compromised or if the client is compro-
mised to use a malicious nameserver.

• IP unreachability: When the client does get a correct IP
address, the Internet may be unable to route packets from
the client to that IP, either due to problems with BGP (e.g.,
misconfiguration or convergence delays) or because of ac-
tive blocking by network operators.

2Note that this only considers the user’s communication with a “front-
end” server. Modern services typically require many back-end service calls
to generate the final response, which are hidden behind the interaction with
the front-end server, and invisible to the client (and by extension, NEL).

• Prefix hijack: Alternatively, if the prefix which contains
the IP address has been hijacked, the client’s requests
will be directed to servers not controlled by the service
provider. The client will hence be (hopefully) unable to
complete TLS connection setup.

• Faulty middlebox: When IP-level reachability between
the client and the service is functional, the client’s attempt
to connect to the service may still fail due to a misconfig-
ured or malicious middlebox enroute.

• Service faulty/down: Lastly, even if the client’s DNS
lookup succeeds and both IP-level and TLS-level connec-
tivity are unhindered, the client will be unable to access a
service that is down or misconfigured.

2.2 Existing solutions and limitations

To detect unreachability caused by the above-mentioned
problems, a wide range of solutions have been developed
over the years. This body of prior work falls broadly into
four categories.
Monitoring from distributed vantage points. A popular
approach is to monitor reachability from a dedicated set of
distributed vantage points. Solutions that use this approach
either actively probe services from devices that mimic real
clients [3, 6]—probing can either be at the application level
(e.g., in the form of HTTP requests) or at the routing level
(e.g., in the form of traceroutes)—or passively monitor BGP
updates (e.g., to detect prefix hijacks [22, 19]), or use some
combination of the two [20, 35]. Such approaches can de-
tect problems that have wide impact. Localized problems
are, however, likely to go unnoticed because a set of vantage
points typically cannot match the global coverage of a ser-
vice’s clients. Moreover, when unreachability is detected, it
is hard to estimate how many real clients are affected.
Monitoring service logs. To ensure broad coverage, ser-
vice providers can monitor their service’s usage either by an-
alyzing server-side logs or by augmenting pages on their site
with JavaScript that performs and uploads client-side mea-
surements (popularly referred to as Real User Monitoring, or
RUM for short [9]). With either strategy, operators must infer
reachability problems from the absence of traffic. Requests
from affected users will never arrive at the server and there-
fore are absent from server-side logs, whereas users unable
to fetch even the HTML of a web page will not execute any
JavaScript included on the page, even if cached. For any pop-
ulation of users, a significant drop in requests compared to
what is typically expected (given historical traffic volumes)
may indicate a reachability problem being experienced by
these users. The challenge here is: how to distinguish be-
tween localized reachability problems and intrinsic volatility
in traffic volumes? While traffic in aggregate across a large
population of users is typically fairly predictable (e.g., same
from a particular hour in a week to that hour next week), the
smaller the subset of users considered, the larger the unpre-

Data source Enable Detect Estimate #
timely localized of affected

detection outages clients

Distributed moni-
toring infrastructure

X ⇥ ⇥

Service logs X ⇥ ⇥
Backscatter traffic ⇥ ⇥ ⇥
User reports ⇥ X ⇥
NEL X X X

Table 1: Properties satisfied by different approaches for detect-
ing service reachability problems at scale.

dictability. As a result, drops in traffic volumes for small
populations of users are not adequate evidence for service
operators to take action.
Monitoring backscatter traffic. Similar limitations ex-
ist with solutions that rely on backscatter traffic—traffic that
clients send to unused portions of the IP address space—to
detect reachability issues [12]. Here too, one has to infer (for
example) censorship based on the absence of traffic. Conse-
quently, problems can be reliably detected only when they
are large in scope. Moreover, even when backscatter traffic
shows an absence of traffic from a large population, those
users likely cannot reach any IP address.
Leveraging user reports. An approach which can detect
localized problems, unlike the previous categories of solu-
tions, is to rely on complaints/reports from users. However,
such solutions are typically incapable of detecting reachabil-
ity problems in a timely, reproduceable, representative, and
consistent manner. For example, users in some regions may
be less likely to notify service operators about problems, due
to language or cultural barriers.

Table 1 summarizes the limitations of these existing solu-
tions. The overriding one, which motivated our development
of NEL, is the inability to accurately estimate how many

clients are currently affected by an outage. In our experi-
ence, a high confidence estimate of the scope of a problem
is the top criterion to warrant investigation by a service op-
erator. Lacking such data, it is hard to triage and prioritize
human effort to troubleshoot the large number of issues that
a service provider has to deal with at any point in time.

3 Design
This section presents the design of NEL, our browser-based
mechanism for collecting information about a web service’s
availability, as seen by its clients. By using the client as the
vantage point, the operator gains explicit information about
the impact of reliability problems, rather then having to esti-

mate the impact based on either the absence of traffic or by
extrapolating from a small set of clients.

Google has twice implemented the ideas behind NEL: first
as a proof of concept that could only monitor reachability to
Google properties, and again as a proposed public W3C stan-

Confidental and proprietary

3. Failed HTTP request Web server

4. NEL report

NEL collector
Client

1. Successful
HTTP request

2. NEL activation

via HTTP response header

Figure 2: When a client successfully communicates with a ser-
vice, collection of client-side reports is activated via a NEL pol-
icy in the service’s response headers. The client reports the suc-
cess and failure of its subsequent requests to that service to col-
lectors referenced in the NEL policy.

dard [11] available to all service operators. Here, we focus
on the latter due to its general availability. We also summa-
rize important differences between the two implementations.

3.1 Approach and challenges

When stated at a high level, NEL’s approach is fairly sim-
ple and intuitive: clients upload reports summarizing their
ability to either successfully or unsuccessfully access target
services. In aggregate, such reports enable the provider to
piece together the ground truth as to how many, and which,
of its clients are unable to access its service.

Realizing this approach in practice requires us to answer
several questions:
• How do clients know which services to collect reliability

information about?
• What should clients include in reports they upload?
• In order to reliably report that information, where should

clients upload reports to?
Before describing our answers to these questions (sum-

marized in an illustration of NEL’s architecture in Figure 2),
we first list the properties required of such a system, which
motivate our design choices.

3.2 Security, privacy, and ethics

When designing NEL, we have to balance collecting enough
information to enable quick detection of reliability issues
versus satisfying the security and privacy expectations of
both service owners and their end users. There are four prin-
ciples in particular that we must follow:
1. We cannot collect any information about end users, their

device/user agent, or their network configuration, that the
server does not already have visibility into. That is, we
should not collect new information relative to existing
server logs; only existing information in a different place.

2. We can only collect information about requests that user
agents issue when users voluntarily access services on the
Web. We cannot issue requests in the background (i.e.,
outside of normal user activity), even though this prevents
us from proactively ascertaining service reachability.

3. End users can opt out of collection at any time, either
globally or on a per-site basis. Support for respecting opt-
outs must be implemented by NEL-compliant user agents,
so that users do not need to trust service providers for opt-
outs to take effect.

4. Modulo that end-user opt-out, it is only the site owner who
gets to decide whether reports are collected about a par-
ticular site, and if so, where they are sent. Third parties
(including browser vendors) must not be able to use NEL
to monitor sites that they do not control.

These principles have clear ramifications on the design of
the system, as we discuss below in our description of NEL’s
design; Table 2 provides a summary.

3.3 When do clients generate reports?

Configuration via response headers. How does a user
agent know which requests to collect reports about? An op-
erator needs a way to instruct client browsers to collect re-
ports about requests to services they control, along with any
configuration parameters about that collection.

HTTP response headers provide exactly what we
need: service operators insert policy configuration head-
ers (Report-To and NEL) into their outgoing responses; Fig-
ure 3(a) shows an example. The user agent’s network stack
intercepts these policy headers as part of the normal process-
ing of the response. NEL is limited to secure connections—
HTTPS connections with validated certificates—ensuring
that (in the absence of a subversion of the certificate trust
validation mechanism) third parties cannot inject NEL poli-
cies into the responses of servers not under their control.

If an attacker does somehow subvert connection security,
they could inject NEL’s HTTP headers and can obtain NEL
monitoring data. For example, a malicious or compromised
CDN provider could siphon NEL logs off to their own col-
lector. But such an attacker could obtain the same data by
other means (e.g., by injecting additional JavaScript).
Scope of activation. We need to ensure that client-side
collection of NEL reports does not allow third parties to col-
lect information about sites they do not control. The cleanest
way to do this is to follow the existing Same-Origin Policy
(SOP) [8], and to have report collection be scoped to the ori-
gin (domain name, scheme, and port) of the request. That is,
collection would be activated (or deactivated) for all requests
to an origin; any collection policy configured for origin A
would have no effect on requests to origin B, even if both
origins happen to be owned and operated by the same entity.

Note that NEL does not preclude user agents from gener-
ating NEL reports even when the user is in private browsing
mode. In such cases, any service’s server-side logs do re-
flect the user’s use of its service. NEL is simply collecting
the same information at the client and uploading it via re-
dundant paths to the same service provider. As we describe
later in this section, the contents of any NEL report ensure

Goal Approach Refinements/Experience

Securely activate client-
side collection of reacha-
bility reports

• Include NEL policy header in HTTP responses
• Enforce Same-Origin Policy
• Limit to HTTPS connections

• With include subdomains option, one success-
ful communication with an origin suffices for a
user agent to start collecting (some) reports for
all subdomains of that origin

Ensure report content pre-
serves user privacy, yet
aids diagnosis

• Only include information that is visible to service
during normal operation

• Limited set of hierarchically organized error types

• Upload reports even for successful requests to
establish baseline request rate and to reduce
burstiness of collection workload

Enable secure and timely
collection of NEL re-
ports from clients

• Causes that can render collectors unreachable
should be disjoint from those that can affect the
service’s reachability

• Client downgrades report (removing sensitive in-
formation) if service’s IP address is not one from
which it has received NEL policy for this origin

• Specify weight and priority per collector to bal-
ance load and to enable failover across collectors

• Configurable sampling rates to reduce load on
both clients and collectors

• Host collectors on cloud infrastructure to deter
censorship of report collection

Table 2: Summary of the approach taken in NEL to address different design decisions, along with experience-based refinements.

that the service provider can glean no additional information
about its users than it can from its server-side logs.

Preventing DNS rebinding attacks. On its own, SOP is
not enough to prevent a malicious actor from using NEL to
learn about the reachability of origins that they do not con-
trol. Consider a rebinding attack, where an attacker who
owns bad.example wishes to learn about the availability of
good.example. They start by configuring DNS to resolve
bad.example to a server that they control (using a short TTL),
and getting an end user to make a request to bad.example.
The server returns a NEL policy instructing the user agent
to send NEL reports to a collector run by the attacker. They
then update DNS to resolve bad.example to good.example’s
IP address(es), and cause the user to make another request to
bad.example. Even though the request looks like it will go
to the original bad.example server, it will instead be routed
to good.example’s server; if there are any errors with the
connection, NEL reports about those errors will be sent to
the attacker’s collector. In this way, the attacker has been
able to collect error reports about good.example, even though
they do not own it. This kind of attack could also be used
to port scan an internal network, by repeatedly rebinding
bad.example to several different internal IP addresses.

NEL prevents such attacks by having user agents down-

grade the quality of a report when the server IP address that
a user agent contacts is not one from which it previously re-
ceived the NEL policy header for this origin. In this case,
instead of reporting whether the request succeeded or not
(and the error type if not), the report simply states that the
user agent’s DNS lookup yielded a different IP address. This
information is safe to report to the attacker, since it is infor-
mation that they already knew; and, because it relates to what
addresses bad.example resolves to, the attacker is actually
the legitimate party to deliver this information to. Note that
this can limit the utility of NEL’s reports for domains that
resolve to many IP addresses (e.g., CDNs).

Subdomain reports. A consequence of activating NEL via
headers in HTTP responses and enforcing SOP is that NEL

cannot help an operator discover a client’s inability to access
their service unless the client has successfully communicated
with the service at least once in the past. To minimize the
impact of this constraint on service providers, a NEL pol-
icy can include the include subdomains field, which tells the
user agent to collect and upload reports for both the origin as
well as all of its subdomains.

At first glance, this is a clear violation of SOP: there is no
guarantee that the web sites hosted at each subdomain are
owned by the same entity.3 To maintain our privacy proper-
ties, a user agent can only use an include subdomains policy
to report DNS errors about requests to a subdomain, since the
author of the policy has only been able to establish ownership
of that portion of the domain name tree. Subdomain reports
about successful requests, and about any errors that occur
during or after connection establishment, are downgraded to
reports only containing information visible in DNS. Such re-
ports suffice for the service provider to discover unreachabil-
ity due to DNS misconfiguration, e.g., the provider may have
forgotten to add a DNS entry for a new subdomain.

3.4 What do clients upload?

Report content. The most important part of a NEL re-
port (Figure 3(b) shows an example) is the type, which
indicates whether the underlying request succeeded or
failed. If the request succeeded, the report’s type will
be ok; if it failed, it will describe what error condition
caused the request to fail. The full set of predefined er-
ror types is given in the specification [11, §6]; exam-
ples include http.error, dns.name not resolved,
tcp.reset, and tcp.timed out. These predefined
types are categorized hierarchically, so that one can find, for
example, all TCP-related failures by looking for any type that
starts with tcp.

We have found it useful to collect NEL reports even for
successful requests, despite the fact that these requests also
show up in server-side logs. Reporting on successful re-

3Consider a PaaS cloud offering like Google App Engine, where inde-
pendent cloud applications are hosted at subdomains under appspot.com.

Confidental and proprietary

Report-To: {
 "endpoints": // Try to send reports to one of these URLs
 [{"url": "https://collector1.com/upload-nel"},
 {"url": "https://collector2.com/upload-nel"}],
 "group": "nel", // The name of this group of endpoints
 "max_age": 300 // This set of collectors expires in 5 minutes
}
NEL: {
 "failure_fraction": 1, // Report all failed requests
 "success_fraction": 0.25, // Report 25% of successful requests
 "include_subdomains": false, // Don’t report for subdomains
 "report_to": "nel", // Report to a collector in this group (above)
 "max_age": 300 // This NEL policy expires in 5 minutes
}

[{
 "age": 60000, // The report was 1 minute old when uploaded
 "type": "network-error", // This is a NEL report
 "url": "https://example.com/about/", // The URL the client requested
 "user_agent": "Mozilla/5.0", // The client's User-Agent header
 "body": {
 "type": "tcp.timed_out" // The connection timed out
 "phase": "connection", // The request failed during handshake
 "server_ip": "203.0.113.75", // The client tried to connect to this IP
 "sampling_fraction": 1.0, // This report had a 100% chance of collection
 "protocol": "h2", // The request was made using HTTP/2
 "method": "GET",
 "referrer": "https://example.com/", // The HTTP Referer
 "elapsed_time": 45000, // Lifetime of the request in milliseconds
 }
}]

(a) (b)

Figure 3: Examples of (a) a service’s use of NEL headers in its HTTPS response to activate report collection by a user agent, and (b)
a report uploaded by a user agent. Comments are not included in real headers and reports.

quests lets us directly compare error ratios from successful
and failed reports, without having to join the NEL logs with
server-side logs. Comparing successful reports to web server
logs also lets us estimate the relationship between NEL re-
port volumes and actual request volumes.

In addition to the type, NEL reports can only contain a
fixed set of additional information, as defined by the public
specification. This helps ensure that implementors do not ac-
cidentally include additional information that would violate
our desired privacy properties. In authoring the specifica-
tion, our primary constraint when determining which fields
to include is to ensure that every field in the report contains
information that the server can already see during its normal
processing of the request.

Given this constraint, NEL reports include basic infor-
mation about the request: URL (with user credentials and
fragment identifiers removed), HTTP request method (GET,
POST, etc.), application and transport protocol (HTTP/1.1,
HTTP/2, QUIC, etc.), User-Agent string, and referrer. The
reports also include the HTTP status code of the response, if
one was received, and how long the request took to complete.

Reports also contain the IP address of the server that the
user agent attempted to connect to. For most requests, this
is the public IP address of the service’s front-end server that
directly accepts incoming connections from end users. In-
clusion of this IP address in reports is crucial to enable de-
tection of DNS hijacking; though the error type in the report
may indicate successful TCP connection setup, the server IP
address mentioned in the report will not be one used by any
of a service’s front-end servers.

As mentioned above, there are several situations where a
NEL report is downgraded for privacy reasons; for instance,
when the server IP of the request is not one that the corre-
sponding NEL policy was received from. In these cases, any
privacy-sensitive fields are modified or removed from the re-
port, to maintain the property that the report only contains
information that the policy author already had access to. The
NEL specification [11] contains more detail about precisely
which fields are modified or removed, and when.
What do reports not contain? There are many details
about the client that we explicitly exclude from NEL reports,

even at the expense of hampering diagnosis. For example, if
a user agent is using a client-configured proxy server, the IP
address that the user agent attempts to connect to would be
the IP address of that proxy server. Since that proxy config-
uration is not intended to be visible to the server, we cannot
include the IP address in the report. Note that this restric-
tion only applies to proxies configured by the end user. If
their ISP is using a transparent proxy for all of its customers’
requests, any individual user agent won’t easily be able to
detect this. That means that the server IP reported by the
user agent will still be the actual address of the origin server,
while the client IP address seen by the server and any NEL
collectors will be the address of the transparent proxy.

Similarly, we cannot include the IP address of the DNS re-
solver that the client uses. For DNS-related network outages,
this would be useful information to collect, since it would
help the service owner determine whether a rogue or mis-
configured DNS resolver is at fault for an outage; however,
since this information is not visible to the server when pro-
cessing a request, we cannot include it in a NEL report.

NEL reports also do not include details about HTTP re-
quests that are immaterial to diagnosing reachability prob-
lems. For example, user agents exclude cookies and URL
parameters from reports. A NEL report does include the full
path that a request was issued for, not just the hostname to
which the request was issued. We have not found much use
for this information so far, but it may prove useful to an oper-
ator whose service configuration varies across different path-
names under the same origin.
Sampling rates. For high-volume sites, it is undesirable
to have clients generate NEL reports about every attempted
request, since that could double the number of requests a
client must make and would require the site’s collection in-
frastructure to be able to deal with the same full volume of
request traffic as the actual site. NEL allows service opera-
tors to define a sampling rate, instructing user agents to only
generate reports about a random subset of requests. More-
over, they can provide separate sampling rates for successful
and failed requests. Typically, one will want to configure a
very high sampling rate for failed requests, since those re-
quests are more operationally relevant and more important

to collect as much information about as possible. The util-
ity of collecting reports for successful requests is largely to
estimate their total number, so lower sampling rates (e.g., 1–
10%) are typically sufficient. Each NEL report includes the
sampling rate in effect when that particular report was gen-
erated, which allows collectors to weight each report by the
inverse of its sampling rate when determining totals.

To reduce overhead, it may be tempting to adaptively vary
the sampling rate over time. However, the need to increase
sampling rates will arise precisely when an outage occurs.
At that point, it will be infeasible for the service provider to
update the NEL policy being used by affected clients.

Google uses a 5% sampling rate for successes and 100%
for failures. We chose these numbers based on our expe-
rience working with NEL: (1) we find a lower sampling
rate dilutes our data too much when examining small user
populations (e.g., when investigating outages in small ISPs),
and (2) we want a relatively consistent report traffic volume,
rather than massive spikes in load during major outages.

3.5 Where do clients upload reports to?

Once a user agent has generated reports about requests to
an origin, those reports must somehow be sent back to the
service operator’s monitoring infrastructure. To do this, the
service operator defines a set of collectors, giving an upload
URL for each one (see Figure 3(a)). Since the set of collec-
tors is defined in the NEL policy included in HTTP response
headers, service operators have full control over where NEL
reports about their origins are sent to.

User agents will periodically batch together reports about
a particular origin, and upload those reports to one of the
origin’s configured collectors. The report upload is a sim-
ple POST request, with the JSON-serialized batched report
content in the request payload.

Report uploads are subject to Cross-Origin Resource Shar-
ing (CORS) [32] checks. If the origin of the collector is dif-
ferent than the origin of the requests that the NEL reports de-
scribe, the user agent will perform a CORS preflight request
to verify that the collector is willing to receive NEL reports
about the origin. If the CORS preflight request fails, the NEL
report will be silently discarded. Reports are only uploaded
over HTTPS to prevent leaking their content to passive in-
network monitors.
Collector failure modes. For an operator to detect out-
ages in a timely manner, it is crucial that clients be able to
upload NEL reports even when they are unable to reach the
monitored service. This requires that the collection path dif-
fer from the request path in as many ways as possible. As
a consequence, not only must the collectors be hosted dif-
ferently than the monitored service, but it is desirable that
there be significant hosting diversity among those collectors.
Examples of the ways in which collectors might differ from
the monitored service include: different IP address (to learn
about the service’s IP being unreachable); different version

of IP (if IPv4 is reachable, but not IPv6); different AS num-
ber (to account for BGP/routing issues); different transport
protocol (e.g., for QUIC-specific problems); and different
hostname, registrar, and DNS server4 (if the service’s name-
server is unreachable). Later, in Section 4, we recount the
kinds of collector diversity that have proved to be most valu-
able in our experience.

Given the effort necessary to ensure that collectors for a
service do not share the same failure modes as the service it-
self, one may wonder whether the collectors could be used to
improve the availability of the service, beyond collecting ev-
idence of its (un)reachability. However, a NEL collector re-
quires significantly fewer resources than necessary to run the
monitored service. In particular, NEL collectors typically do
not need to make the same latency guarantees as interactive
web requests. Therefore, a service’s collection infrastructure
is unlikely to have the necessary capacity for an operator to
serve affected users from the collectors when these users are
unable to access the service normally.
Load balancing and failover. NEL enables service opera-
tors to define arbitrary load balancing and failover behavior
for their collectors. Inspired by the DNS SRV record [17],
a NEL policy can specify an optional weight and priority
for each collector. When choosing which collector to up-
load a report to, a user agent will randomly select a collector
from those with the smallest priority value, weighted by their
weight values. The user agent keeps track of whether up-
loads to a particular collector fail too frequently; if so, that
collector is marked as pending, and taken out of rotation.
This ensures that collectors with higher priority are only at-
tempted if all collectors with lower priority have failed. This
mechanism gives service operators maximum flexibility in
determining how to configure their collection infrastructure.

If all of the collectors are unreachable, the user agent will
retain the reports in memory for a small amount of time (typ-
ically 15 minutes). When this happens, it often indicates a
complete loss of connectivity on the part of the user. Dur-
ing this time, the user agent will continue attempting to de-
liver the reports (typically once per minute, with exponen-
tial backoffs). If the reports have still not been delivered
after several attempts, they are dropped. The short interval
ensures that we have visibility into temporary connectivity
losses, while not requiring much storage in the user agent.

Note that a NEL user agent will also upload reports sum-
marizing the success or failure of its attempts to upload a
NEL report to a collector; after all, attempts to upload NEL
reports are also HTTP requests. We refer to these as meta re-

ports. Such meta reports help a service provider detect prob-
lems that clients face in contacting its collectors. To prevent
infinite recursion, user agents generate meta reports only for
uploads of NEL reports that are not meta reports.

4Note that all of these must be different for the client to use a completely
different set of nameservers to resolve the collector’s hostname.

Feature Domain Reliability NEL W3C standard
Adoption model Opt-in Opt-out
Activation time Browser start After first successful

request to an origin
Activation None HTTP response headers
overhead

Coverage Google origins Any HTTPS origin

Table 3: Comparison of the two implementations of NEL:
the version that monitors reachability from Chrome’s users to
Google’s services versus the W3C standard. The latter incurs
additional overhead to be generic.

Censorship resistance. Although we have found NEL use-
ful in detecting and investigating state-sponsored censorship,
NEL itself is not particularly resistant to censorship. An at-
tacker who can block access to an origin can also trivially
enumerate all NEL collectors for the origin, and block access
to those collectors. Service operators could try to introduce a
modicum of censorship resistance by hosting NEL collectors
in cloud providers, thereby tying the fate of report collection
to the cloud provider as a whole. An operator could also
make it harder for an adversary to identify all of its collec-
tors by returning different subsets of collectors to different
clients [34]; however, a NEL collector may be discernable
via network traffic analysis [14].
Report authenticity. Since NEL reports are generated by
user agents running on untrusted client devices, there is noth-
ing preventing clients from generating and uploading fraud-
ulent reports. A service provider can account for this chal-
lenge by only reacting to problems that affect a large enough
population of unique client IP addresses (typically dozens).
This measure ensures that a malicious entity can only cause a
service operator to react to fake outages if they control a large
number of client devices (e.g., a botnet operator). However,
making NEL robust to fraud in this manner comes with the
risk of minimizing the impact of an outage which affects a
few IP addresses shared by many client devices, e.g., when
many devices are behind a shared NAT.

3.6 Domain Reliability

Thus far, this section has described the public standard [11]
which is usable by all services and browsers, and available
in Chrome as of version 69. We also implemented these
ideas in an earlier proof-of-concept called Domain Relia-

bility, which could only monitor reachability from Chrome
users to Google services. There are some important differ-
ences between Domain Reliability and NEL (see Table 3).

• Since Domain Reliability was not generally available to all
service operators and only monitored Google properties,
it required users to explicitly opt in to report collection.
With NEL, any user agent which implements the standard
collects reports by default for origins which include NEL
policies in their responses. A user can opt out of NEL
either globally or on a per-origin basis.

• One consequence of NEL being opt-out is that its users
will represent a more uniform sample of a service’s user-
base. Because of this, we expect to more confidently gen-
eralize results from NEL to non-NEL clients.

• With Domain Reliability, the list of origins for which
clients generate reachability reports and the list of collec-
tors to which they upload these reports was hard-coded
into Chrome. Any updates to these lists were delivered
as part of Chrome’s regular update process, resulting in a
multiple-week lead time to push any monitoring changes
to our users. In contrast, with NEL, any web service gets
to bootstrap the origins to monitor and the collector do-
mains by including this information as headers in the ser-
vice’s HTTP responses. This allows monitoring changes
to be picked up immediately, with the cost of increased
overhead in client-server traffic.

• An implication of the previous point is that NEL can en-
able a client to upload reachability reports for a particu-
lar origin only after that client has successfully commu-
nicated with that origin at least once. Without doing so,
the client would neither know that it must generate and
upload reports for this origin, nor know which collectors
to upload these reports to. Because its configuration was
hard-coded in Chrome, Domain Reliability enabled mon-
itoring of a client’s reachability to Google’s services even
if that client had never successfully been able to commu-
nicate with any Google origin.

• Since Domain Reliability was only implemented in
Chrome, it could not reveal reachability issues faced by
users of other browsers. With NEL, a service can collect
reports from any HTTP client that implements the pro-
posed W3C standard [11].

• Because Domain Reliability’s configuration was encoded
in source code, we relied on the existing code review pro-
cess to ensure that the configuration adhered to our desired
security and privacy properties. Because this configura-
tion was restricted (by policy) to Google properties, we
did not have to downgrade Domain Reliability reports like
is needed for NEL in some situations; instead, we ensured
that Domain Reliability’s hard-coded policy prevented re-
ports from being sent at all in those situations.

4 Deployment Experiences
This section relays some of our experiences with the tech-
niques described in the previous section. In each case, data
alerted us to the presence of a problem and hinted at a
cause based on the population of users reporting that prob-
lem (i.e., the “shape” of the problem); however, these tech-
niques are most useful in concert with other network diag-
nostic tools that can dig deeper into specific problems and
provide “smoking gun” evidence of a particular cause.

Note that this section deals with Domain Reliability, the
initial prototype of these concepts that we developed to mon-

Confidental and proprietary

$ traceroute X.Y.Z.33
 Loss% Snt Last Avg Best Wrst StDev
 1.|-- ip1.isp.net 0.0% 100 0.2 1.1 0.2 49.3 5.5
 2.|-- ip5.isp.net 0.0% 100 6.1 8.3 4.5 12.4 2.3
 3.|-- ip6.isp.net 0.0% 100 8.4 8.8 7.5 36.5 3.9
 4.|-- ip7.isp.net 0.0% 100 7.6 9.2 7.6 18.2 2.8
 5.|-- ip8.isp.net 99.0% 100 2671. 2671. 2671. 2671. 0.0
 6.|-- ??? 100.0 100 0.0 0.0 0.0 0.0 0.0
 7.|-- ??? 100.0 100 0.0 0.0 0.0 0.0 0.0
 8.|-- ip9.isp.net 99.0% 100 7314. 7314. 7314. 7314. 0.0
 9.|-- ??? 100.0 100 0.0 0.0 0.0 0.0 0.0
 10.|-- ??? 100.0 100 0.0 0.0 0.0 0.0 0.0
 11.|-- ip10.isp.net 99.0% 100 5179. 5179. 5179. 5179. 0.0
 12.|-- ??? 100.0 100 0.0 0.0 0.0 0.0 0.0
 13.|-- ip11.isp.net 99.0% 100 2722. 2722. 2722. 2722. 0.0
 14.|-- ??? 100.0 100 0.0 0.0 0.0 0.0 0.0

Confidental and proprietary

$ traceroute X.Y.Z.32
 Loss% Snt Last Avg Best Wrst StDev
 1.|-- ip1.isp.net 0.0% 10 0.2 0.2 0.2 0.3 0.0
 2.|-- ip2.isp.net 0.0% 10 6.9 8.4 4.8 11.8 2.4
 3.|-- ip3.isp.net 0.0% 10 7.7 8.3 7.5 10.7 1.1
 4.|-- ip4.isp.net 0.0% 10 33.5 10.7 7.5 33.5 8.1
 5.|-- ip1.google.com 0.0% 10 49.7 49.2 43.3 55.2 4.4
 6.|-- ip2.google.com 0.0% 10 49.0 48.5 44.3 51.6 2.6
 7.|-- ip3.google.com 0.0% 10 47.6 47.8 44.3 53.2 2.9
 8.|-- X.Y.Z.32 0.0% 10 48.9 49.8 45.9 58.7 4.6

(a) (b)

Figure 4: (a) Traceroute to the affected IP address appears to show a routing loop in the last-mile ISP, and (b) traceroute from the
same vantage point to an adjacent IP address exits the ISP within a few hops. Hostnames and IP addresses are anonymized.

itor traffic only to Google’s services. We have monitored
Google’s services with it since Chrome 38 in 2014 and are
currently migrating our monitoring to use NEL. Although
Domain Reliability and NEL are not qualitatively different,
Section 3.6 explains how one might expect our experiences
to differ once we fully migrate to NEL.

4.1 Unreachability of a single IP address

In December of 2018, Chrome clients started reporting fail-
ures of TCP connections and QUIC sessions made to a single
Google IP address. The problem affected all requests to that
IP from all users in every ISP in one country for the follow-
ing two weeks.

Further manual investigation revealed that traceroutes
from an affected host to that IP were failing inside a transit
ISP which dominates wired connectivity within that coun-
try. We also occasionally noticed IPs belonging to this transit
provider in high-TTL hops of the traceroute, suggesting that
packets were stuck in a routing loop in that ISP’s network
(see Figure 4). The problem was eventually resolved after
we contacted the ISP, although we never learned how they
presumably fixed it.

NEL was useful in this case in several ways.

• It let us quickly detect a problem we may have never no-
ticed otherwise. The impacted IP served content that is
visible to users but is not critical (e.g., thumbnail images),
which may be why we received no reports about this prob-
lem on social media, and why there was no visibility on
crowdsourced sites like downdetector.com.

• NEL was additionally helpful in confirming that the prob-
lem had gone away, particularly since the ISP never noti-
fied us that they fixed it.

• Diversity of our NEL collectors was trivially useful in this
case; a collector hosted on any IP other than the one im-
pacted could have successfully received report uploads.

Although other network monitoring tools could have
caught this problem (e.g., active probing of all serving IPs),
it would have been difficult to assess the scale of users im-
pacted or even to achieve dense enough probe coverage to
know how many ISPs were affected. It would have been

Confidental and proprietary

Google
AS 15169

MainONE
AS 37282

China
Telecom
AS 4809

Trans
Telecom

AS 20485

Charter
(Many
ASNs)

216.58.192.0/22
LEAKED

Legit advertisements

Leaked advertisements

Client traffic
Cogent
AS 174

(Several
other

networks)

(Several
other

networks)

(Several
other

networks)

Verizon
Wireless

AS 22394

216.58.192.0/19

216.58.192.0/22

Figure 5: AS 37252 leaked prefixes to its peers, which ultimately
misrouted traffic in several downstream ASNs. NEL quantified
the impact of the leak on users in those downstream networks.

even more difficult to feel confident that the problem had
been completely resolved.

However, NEL alone was not enough to diagnose this is-
sue because it gave no information about the location of the
problem other than the set of users affected. We needed other
tools, like traceroute, to identify which network links were
impacted and that most, if not all, of the Internet traffic in
that country transits through one ISP.

4.2 BGP leakage

On November 12, 2018, AS 37282 leaked its routing table
to its upstream providers. As shown in Figure 5, this leak
rerouted traffic destined for some Google prefixes, causing
packet loss for many of our users. The network operations
community noticed this incident and the media widely re-
ported on it.5

NEL saw this incident as an increase in connection time-
outs for the leaked prefixes. Although many other monitor-
ing tools had clear visibility of the leaked BGP routes [7],
NEL directly told us the incident’s impact on user traffic.
In some networks, NEL reported that nearly all requests to
these prefixes timed out. Moreover, diversity of our NEL
collectors was useful in this case, because we had collectors
running in IP prefixes not affected by the leakage.

5https://www.manrs.org/2018/11/route-leak-causes-major-
google-outage/

On the other hand, NEL said nothing about the cause of
the outage other than perhaps that the problem was local-
ized to a specific set of prefixes. It would probably be most
valuable to overlay NEL data on existing BGP leak detection
tools, to distinguish relatively benign incidents of BGP leak-
age (i.e., that do not impact much traffic) from major events
like this one.

Note that BGP leaks that have no impact on the users of
Google’s services are likely since Google advertises and uses
different IP prefixes to serve its users in different parts of the
world. Hence, when an ISP erroneously advertises one of
our prefixes, this has no impact on users if this ISP operates
in a region far from where we use the affected prefix. NEL
helps us avoid troubleshooting such inconsequential prob-
lems, whose impact would otherwise have been hard to de-
termine only based on analysis of BGP data.

4.3 Malware-induced DNS hijacking

In February of 2018, NEL reported that users in a large ISP
were resolving several of our domains to non-authoritative IP
addresses belonging to a third-party cloud hosting provider.
Clients could still complete requests to these domains (i.e.,
most reports we received had type ok), suggesting the pres-
ence of a layer 3 proxy server. Although requests were suc-
cessful, this was still concerning because a proxy could re-
duce performance and reliability. We could not find reports
of the problem online or reproduce the issue ourselves from
our CDN infrastructure in the ISP.

We later discovered a rogue DNS resolver associated with
malware that was responding to DNS requests in much the
same way. We theorize that either (1) an ISP DNS server
had been compromised to resolve requests using the rogue
resolver, or (2) many machines and/or home routers in that
ISP had been similarly compromised.

This case highlights a key advantage of NEL over tradi-
tional active probing: NEL monitors actual user network
conditions and configurations, which can differ from those
of dedicated monitoring infrastructure. It can detect massive
problems that are simply invisible to other forms of moni-
toring. However, this case also highlights that NEL is not
necessarily very helpful in debugging problems; in this case,
since NEL does not report which DNS resolver clients use,
it did not help us make progress on the problem.

Note that collector diversity was unnecessary in this case
because requests to these hijacked domains still worked.
Nonetheless, NEL was helpful because it alerted us to the
presence of a proxy server associated with malware.

4.4 Protocol-specific problems

On March, 17, 2017, NEL observed that users were having
trouble connecting to Google services in two of our datacen-
ters in the United States and Europe. On closer inspection,

only clients using QUIC [23] were affected. This was cor-
roborated by reports from users.6

Our operations team traced the problem back to a bad
server configuration change, and mitigated it soon after. The
problem caused machines in the affected datacenters to drop
all traffic on established QUIC sessions. Although QUIC
clients transparently fall back to TCP when QUIC cannot es-
tablish a connection, that did not help in this case because
we only dropped packets after a connection was established.

This situation illustrates the value of black box traf-
fic monitoring; if operations teams only monitor specific
protocol-level metrics (e.g., number of connections estab-
lished), then there is a chance that those metrics do not tell
the whole story. NEL lets operations teams know whether
users’ connections are healthy end-to-end.

NEL collector diversity was useful in this case because
the problem was localized to a few datacenters; clients could
successfully upload NEL reports to other locations.

4.5 Monitoring of NEL report uploads
In addition to discovering network outages, we have also
leveraged NEL’s collection infrastructure to monitor previ-
ously unmonitored infrastructure. Other operators of NEL
collectors may do the same.

Domain Reliability monitors only Google’s first-party ser-
vices, but not customer-owned origins hosted on Google’s
cloud infrastructure. This is currently a blind spot in our
monitoring. Moreover, NEL will not allow us to monitor
customer-owned origins directly, since NEL’s privacy design
gives the customer, and not their cloud provider, control over
whether reports are collected and where they are sent.

To help ameliorate this limitation, in addition to our ex-
isting diverse set of NEL collectors, we run another set of
collectors hosted on our cloud infrastructure. As a result,
whenever a user makes a request to a Google service, the
user agent generates a NEL report and attempts to upload it
to one of our cloud collectors with a probability based on the
values of the weight fields in our NEL policy. The user agent
then generates and uploads a meta report about the upload of
the original report.

Although this technique does not grant us visibility into
problems affecting individual cloud tenants (e.g., a miscon-
figured tenant firewall), it at least lets us detect problems af-
fecting our entire cloud infrastructure, even if those problems
are localized to a small number of clients. For example, this
helped us quickly confirm that the BGP leak in Section 4.2
also impacted our cloud infrastructure.

One caveat to meta reports is that they are not represen-
tative. Any sampling rates defined in the NEL policy are
compounded for meta reports, making it more difficult to get
a large enough collection of meta reports to derive a statisti-
cally meaningful signal. Clients with unreliable connectivity
are more likely to attempt to send NEL reports, and to fail

6https://news.ycombinator.com/item?id=13892431

doing so. So, we see higher baseline error rates for NEL
report traffic from such clients compared to the global set of
NEL reports. As a result, we cannot compare NEL error rates
for our cloud infrastructure and our non-cloud infrastructure;
but, trend analysis on meta reports remains useful.

5 Deployment Challenges
This section discusses several practical challenges we en-
countered when deploying NEL. Other web service opera-
tors are likely to encounter similar hurdles.

5.1 Collector diversity

As seen in some of our case studies (§4), diversity in the
deployment of collectors has been crucial to collect client
unreachability reports in a timely manner. For example, in
the BGP leak case, it was crucial that we had a collector in a
different prefix from those leaked.

While such diversity existed in Google’s infrastructure
even prior to our deployment of NEL, hosting collectors
across the globe, in multiple prefixes and AS numbers, and
supporting multiple IP versions is unlikely to be straight-
forward for an arbitrary web service. Therefore, to ease
the use of NEL by other web services, we envision public
cloud providers offering “NEL collectors as a service.” Like
Google, other large cloud providers also have a rich diversity
of global infrastructure that naturally lends itself for use as
NEL collectors.

5.2 Overhead

NEL increases network traffic for both clients and service
providers in two ways: 1) the additional header that the ser-
vice provider must include in its responses to clients’ HTTP
requests, and 2) reports that clients upload to NEL collectors.
Response header overhead. As shown in Figure 3, servers
must send two headers to activate NEL: NEL and Report-To.
Although exact sizes vary depending on the number of col-
lectors and the presence of non-default options, headers are
typically several hundred bytes long and are uncompressed
unless the client is using HTTP/2. Furthermore, there is cur-
rently no way for clients to tell the server whether they sup-
port NEL or already have activated NEL for an origin, so
servers typically include headers on all requests to all clients.
This could be particularly problematic when serving many
small objects, in which case NEL headers could constitute a
significant fraction of the total response size.

Service operators have several ways to curtail NEL’s
bandwidth usage. Operators could (1) only serve NEL on
a fixed fraction of responses, (2) try to predict which clients
support NEL based on their User-Agent header, or (3) only
serve NEL headers on HTTP/2 connections, under the as-
sumption that (due to NEL’s relatively young age) all clients
that support NEL also support HTTP/2.
Report upload overhead. NEL also incurs overhead when-
ever clients upload reports. Reports we receive from our

clients are 532 ± 34 bytes long; clients batch these into up-
loads that contain an average of 1.3 reports each. Clients
upload a batch of reports about an origin once per minute.

Clients pay additional bandwidth overhead for failed up-
loads: 1) Clients incur connection establishment overhead
multiple times as they retry an upload to different collectors,
and 2) each failed upload may itself generate a NEL report.

Service operators can control these overheads with sam-
pling rates in the NEL header. In particular, because most

requests succeed, the success fraction field can have a large
impact on total upload traffic. For example, over 90% of
requests to our services succeed and reports about those re-
quests do not contribute much to our ability to reason about
network outages other than by establishing proper baselines.
We set success fraction to 0.05, but success reports are still
almost 40% of our upload traffic.

5.3 Provisioning for bursty workloads

We could further reduce success fraction, but at a cost. Al-
though request failures are much rarer than successes, fail-
ures are very bursty. Major network outages can cause large
networks to send tens or hundreds of times more NEL re-
ports than they normally would. A service’s NEL collection
infrastructure must be provisioned to handle these cases or
risk data collection failing at exactly when it is most needed.

NEL client retry logic compounds this by causing clients
to retry uploads to collectors when they are overloaded. We
currently mitigate this by having our collectors always re-
turn HTTP 200, which prevents clients from retrying uploads
when the collection infrastructure is overloaded. If more ex-
plicit control is needed, the NEL specification requires user
agents to stop sending reports to a collector entirely when
that collector returns an HTTP 410 (Gone) response.

5.4 Application-layer retries

It can be tempting to compare error rates across different
kinds of applications, domains, and URLs. For example, one
might suspect that if one domain has four times the error rate
of another then something must surely be wrong with the for-
mer domain. Although this might be true, application-layer
retry logic could also explain the discrepancy.

For example, if a Web application makes a lot of AJAX
requests to example.com and retries those requests when

they fail, then the overall NEL error rate for example.com
will appear higher. This is because successive request fail-
ures are likely not independent; if a request fails once, it is
much more likely that a second request will also fail.

This logic also applies to user-initiated retries. If a par-
ticular request is more likely to elicit a retry (e.g., a browser
reload) from a user when it fails, that can also inflate the NEL
error rate. For example, a user may be more likely to retry
requests that are very important to them whereas they may
simply abandon more trivial requests.

6 Future Work
End-to-end report encryption. As mentioned in Sec-
tion 5.1, one easy way operators can increase the likelihood
that clients can successfully upload NEL reports is to host
collectors in cloud providers. However, NEL clients cur-
rently assume that operators trust collectors and therefore do
not encrypt reports beyond uploading them using HTTPS.
If an operator does not trust a cloud, their only option cur-
rently is to use the cloud as a layer 3 proxy and terminate
HTTPS elsewhere. Future versions of NEL could encrypt
reports end-to-end (e.g., using PGP), which would decouple
collectors (which would see reports as opaque blobs) and re-
port analyzers (which could decrypt reports).
Automated triage. Individual NEL reports are rarely use-
ful; we derive utility from examining collections of reports
and identifying patterns in those collections. For example, if
we see many timeouts of requests to many IPs in a prefix, that
may indicate a problem with that entire prefix. We currently
look for problems in a manually curated set of dimensions
based on our past experience, but in the future could try to
automatically identify problematic user populations without
a priori knowledge of likely problems. Based on the “shape”
of a given problem (i.e., the distribution of different types of
NEL reports), we could attempt to automate triage of the
problem. For example, if we detect that all users in just one
ISP are having difficulty accessing a domain, then we could
automatically notify that ISP, since their network configura-
tion is a likely culprit.
Reducing overhead. Future versions of NEL might add
several mechanisms to reduce the overhead of NEL policy
headers. For example, we might let services specify NEL
policies in external URLs, using a mechanism like the pro-
posed Origin Policy [33] or Site-Wide HTTP Headers [26]
standards. By making their NEL policy object cacheable,
service providers can preclude clients from having to fetch
the policy from the external URL after every successful re-
quest. We may also let clients include request headers which
indicate when the server should send NEL policy headers,
using a mechanism similar to HTTP Client Hints [16]. This
would prevent servers from needlessly sending NEL headers
to clients that will ignore them.

7 Related Work
Earlier in Section 2, we reviewed prior work which shares
NEL’s aim of detecting and diagnosing service unreachabil-
ity. Here, we compare NEL to other systems which also rely
on client-side measurements.

There have been a number of previous client-side mea-
surement systems focused on one of the following goals:
continual collection of passive measurements [30], enabling
users to measure their network [21], or orchestration of mea-
surement campaigns [29, 25, 13]. All of these efforts aim
to gather measurements with the aim of compiling perfor-

mance distributions, characterizing middleboxes, measuring
network topologies, etc. Since none of this data needs to be
compiled in a timely manner, uploading via redundant paths
has been unnecessary in these efforts, unlike in NEL. More-
over, since the measurements gathered in these systems do
not contain application traffic, protecting user privacy has
not been a concern.

Windows Error Reporting (WER) [15] is most similar in
spirit to NEL in that it too uploads error reports gathered
at the client. WER does have to pay attention to privacy
by pruning crash reports before uploading them. However,
since uploaded crash reports are analyzed at a later point in
time [18], failover on the upload path was unnecessary in this
case too.

Odin [10] enables Microsoft to gather measurements from
their clients to their CDN. By incorporating active measure-
ment logic into client applications, Odin preempts concerns
regarding coverage associated with dedicated monitoring in-
frastructure. Like NEL, Odin too attempts to make report
uploading fault-tolerant via proxies in third-party networks.
Unlike NEL, since Odin only relies on measurements that it
actively issues, purging reports to protect privacy is not a sig-
nificant concern. Odin also cannot be used by services not
managed by Microsoft.

8 Conclusion
Despite the wide range of solutions available today to de-
tect and diagnose reachability issues over the Internet, ser-
vice operators lack an important capability: the ability to
quantify the number of clients affected by any particular out-
age. To fill this void, we presented NEL, which equips ser-
vice providers with timely collection of reachability reports
generated at the client. Incorporation of NEL’s techniques
into Chrome has proved invaluable over the last few years in
monitoring reachability to Google’s domains. Motivated by
our experience, we have proposed NEL as a W3C standard
to spur support for it in other user agents and to enable other
service providers to benefit from this capability.

Acknowledgements
We thank the anonymous reviewers and our shepherd, Ky-
oungSoo Park, for their valuable feedback. Many people at
Google have contributed to this project, particularly through
their experiences investigating problems NEL has detected.
In particular, we thank Emma Christie, Fred Douglas, Lo-
gan Ingalls, Martijn Stevenson, Matthew Steele, Steve Wang,
Wesley Darlington, and Yan Avlasov for investigating issues
that NEL has detected over the years. Debashish Chatterjee,
Francesco Marabotto, Jelmer Vernooij, and Mitchell Jeffrey
have provided valuable support from Google’s SRE organi-
zation. We thank Chris Bentzel for initial sponsorship of
the project. Harsha Madhyastha’s participation was funded
in part by the National Science Foundation via award CNS-
1563849.

References
[1] BGP errors are to blame for Monday’s Twitter out-

age, not DDoS attacks. https://www.csoonline.
com/article/3138934/security/bgp-errors-are-to-
blame-for-monday-s-twitter-outage-not-ddos-
attacks.html.

[2] A DNS hijacking wave is targeting companies at an
almost unprecedented scale. https://arstechnica.
com/information-technology/2019/01/a-dns-
hijacking-wave-is-targeting-companies-at-an-
almost-unprecedented-scale/.

[3] Dynatrace. http://www.dynatrace.com.
[4] ELK stack: Elasticsearch, Logstash, Kibana. https:

//www.elastic.co/elk-stack.
[5] Google Stackdriver. https://cloud.google.com/

stackdriver/.
[6] RIPE Atlas. https://atlas.ripe.net.
[7] ThousandEyes. https://www.thousandeyes.com/

solutions/bgp-and-route-monitoring.
[8] A. Barth. RFC 6454: The Web Origin Concept. Inter-

net Engineering Task Force (IETF), Dec. 2015.
[9] P. Anastas, W. R. Breen, Y. Cheng, A. Lieberman, and

I. Mouline. Methods and apparatus for real user moni-
toring, 2010. US Patent 7,765,295.

[10] M. Calder, R. Gao, M. Schröder, R. Stewart, J. Pad-
hye, R. Mahajan, G. Ananthanarayanan, and E. Katz-
Bassett. Odin: Microsoft’s scalable fault-tolerant CDN
measurement system. In USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI),
2018.

[11] D. Creager, I. Grigorik, A. Reitbauer, J. Tuttle, A. Jain,
and J. Mann. Network Error Logging. W3C Editor’s
Draft, W3C Web Performance Working Group, 2019.

[12] A. Dainotti, C. Squarcella, E. Aben, K. C. Claffy,
M. Chiesa, M. Russo, and A. Pescapé. Analysis of
country-wide internet outages caused by censorship. In
ACM Internet Measurement Conference (IMC), 2011.

[13] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich,
M. Allman, N. Weaver, and V. Paxson. Fathom:
A browser-based network measurement platform. In
ACM Internet Measurement Conference (IMC), 2012.

[14] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver,
and V. Paxson. Examining how the great firewall dis-
covers hidden circumvention servers. In ACM Internet

Measurement Conference (IMC), 2015.
[15] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,

V. Orgovan, G. Nichols, D. Grant, G. Loihle, and
G. Hunt. Debugging in the (very) large: Ten years of
implementation and experience. In ACM Symposium

on Operating Systems Principles (SOSP), 2009.
[16] I. Grigorik and Y. Weiss. HTTP Client Hints. Internet-

Draft, HTTP Working Group, 2019. https://httpwg.
org/http-extensions/client-hints.html.

[17] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for

specifying the location of services (DNS SRV). Tech-
nical report, IETF, 2000.

[18] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Per-
formance debugging in the large via mining millions of
stack traces. In International Conference on Software

Engineering (ICSE), 2012.
[19] X. Hu and Z. M. Mao. Accurate real-time identification

of IP prefix hijacking. In IEEE Symposium on Security

and Privacy, 2007.
[20] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krish-

namurthy, D. Wetherall, and T. E. Anderson. Studying
black holes in the Internet with Hubble. In USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2008.
[21] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.

Netalyzr: Illuminating the edge network. In ACM In-

ternet Measurement Conference (IMC), 2010.
[22] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and

L. Zhang. PHAS: A prefix hijack alert system. In
USENIX Security symposium, 2006.

[23] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Kra-
sic, D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyen-
gar, and J. Bailey. The QUIC transport protocol: De-
sign and Internet-scale deployment. In ACM SIG-

COMM, 2017.
[24] R. Mahajan, D. Wetherall, and T. Anderson. Under-

standing BGP misconfiguration. In ACM SIGCOMM,
2002.

[25] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M.
Mao. Mobilyzer: An open platform for controllable
mobile network measurements. In MobiSys, 2015.

[26] M. Nottingham. Site-Wide HTTP Headers. Internet-
Draft, IETF Network Working Group, 2017. https://
mnot.github.io/I-D/site-wide-headers/.

[27] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver.
Detecting in-flight page changes with web tripwires.
In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2008.
[28] P. Richter, R. Padmanabhan, N. Spring, A. Berger, and

D. Clark. Advancing the art of Internet edge outage
detection. In ACM Internet Measurement Conference

(IMC), 2018.
[29] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R.

Choffnes, F. E. Bustamante, B. Krishnamurthy, and
W. Willinger. Dasu: Pushing experiments to the Inter-
nets edge. In USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI), 2013.
[30] S. Sundaresan, S. Burnett, N. Feamster, and W. De Do-

nato. BISmark: A testbed for deploying measurements
and applications in broadband access networks. In
USENIX ATC, 2014.

[31] The Apache Software Foundation. Apache log files.
https://httpd.apache.org/docs/2.4/logs.html.

[32] A. van Kesteren. Cross-origin resource sharing. Tech-

nical report, W3C, 2014.
[33] M. West. Origin Policy. Draft Community Group Re-

port, Web Incubator Community Group, May 2017.
https://wicg.github.io/origin-policy/.

[34] M. Zamani, J. Saia, and J. R. Crandall. TorBricks:
Blocking-resistant Tor bridge distribution. In Interna-

tional Symposium on Stabilization, Safety, and Security

of Distributed Systems, 2017.
[35] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and

R. Bush. iSPY: Detecting IP prefix hijacking on
my own. IEEE/ACM Transactions on Networking,
18(6):1815–1828, 2010.

