CableMon: Improving the Reliability of Cable Broadband Networks via Proactive Network Maintenance

Jiyao Hu*, *Zhenyu Zhou**, Xiaowei Yang, Jacob Malone, and Jonathan W Williams

*Jiyao Hu and Zhenyu Zhou, placed in the alphabetic order, are the lead student authors and contributed equally to this work.

Broadband Networks are Important

E-Commerce

Work from Home

Remote Learning

Entertainment

Cable Broadband: One of Few Choices in U.S.

- Availability to U.S. homes
 - VDSL: 43%
 - FTTP: 29%
 - Cable: 93%

• Coaxial cables are vulnerable to radio frequency (RF) interference

- Coaxial cables are vulnerable to radio frequency (RF) interference
- Aging can lead to problems

- Coaxial cables are vulnerable to radio frequency (RF) interference
- Aging can lead to problems
 - Cable shielding erosion

- Coaxial cables are vulnerable to radio frequency (RF) interference
- Aging can lead to problems
 - Cable shielding erosion
 - Loose connectors

- Coaxial cables are vulnerable to radio frequency (RF) interference
- Aging can lead to problems
 - Cable shielding erosion
 - Loose connectors
 - Broken amplifiers
 - •

...

- Coaxial cables are vulnerable to radio frequency (RF) interference
- Aging can lead to problems
 - Cable shielding erosion
 - Loose connectors
 - Broken amplifiers
 - ...
- Reliablity of broadband is at most 99% (<< FCC's requirement for PSTN, 99.99%)

Goal

Improving the reliability of cable broadband networks

Roadmap

- Limitations of Existing Work
- CableMon Design
 - High-level Idea
 - Challenges
 - Solutions
 - ISP Deployment
- Evaluation
- Conclusion

Roadmap

- Limitations of Existing Work
- CableMon Design
 - High-level Idea
 - Challenges
 - Solutions
 - ISP Deployment
- Evaluation
- Conclusion

Cable Modem (CM)

Cable Modem Termination System (CMTS)

- Cable industry developed the PNM framework
- CMTS communicates with CM periodically to obtain PNM data
- A monitoring server collects all CMs' PNM data
 - E.g., Signal to Noise Ratio (SNR)

- Cable industry developed the PNM framework
- CMTS communicates with CM periodically to obtain PNM data
- A monitoring server collects all CMs' PNM data
 - E.g., Signal to Noise Ratio (SNR)

- Cable industry developed the PNM framework
- CMTS communicates with CM periodically to obtain PNM data
- A monitoring server collects all CMs' PNM data
 - E.g., Signal to Noise Ratio (SNR)

- Cable industry developed the PNM framework
- CMTS communicates with CM periodically to obtain PNM data
- A monitoring server collects all CMs' PNM data
 - E.g., Signal to Noise Ratio (SNR)

- Cable industry developed the PNM framework
- CMTS communicates with CM periodically to obtain PNM data
- A monitoring server collects all CMs' PNM data
 - E.g., Signal to Noise Ratio (SNR)

Existing Work

- Manually-set thresholds
 - A metric below/above a threshold: Repair the network
 - Hard to determine a proper threshold manually
 - Current recommendations: High false positives
 - In one of our studies, over 25% modems need repair following the PNM Best Practice document

Roadmap

- Limitations of Existing Work
- CableMon Design
 - High-level Idea
 - Challenges
 - Solutions
 - ISP Deployment
- Evaluation
- Conclusion

Roadmap

- Limitations of Existing Work
- CableMon Design
 - High-level Idea
 - Challenges
 - Solutions
 - ISP Deployment
- Evaluation
- Conclusion

• Use customer trouble tickets as hints to learn what patterns of PNM data indicate network faults

- Use customer trouble tickets as hints to learn what patterns of PNM data indicate network faults
- Design goals

- Use customer trouble tickets as hints to learn what patterns of PNM data indicate network faults
- Design goals
 - Save operational costs of ISPs by forecasting troubles before customer calls

- Use customer trouble tickets as hints to learn what patterns of PNM data indicate network faults
- Design goals
 - Save operational costs of ISPs by forecasting troubles before customer calls
 - No manual labeling

- Use customer trouble tickets as hints to learn what patterns of PNM data indicate network faults
- Design goals
 - Save operational costs of ISPs by forecasting troubles before customer calls
 - No manual labeling
 - No extensive parameter tuning

- Use customer trouble tickets as hints to learn what patterns of PNM data indicate network faults
- Design goals
 - Save operational costs of ISPs by forecasting troubles before customer calls
 - No manual labeling
 - No extensive parameter tuning
 - Efficient

Tickets Correlate with Network Faults

Challenges

- Tickets are noisy
 - Customers may call for network-irrelevant issues
 - Customers may not call when network faults occur

Challenges

- Tickets are noisy
 - Customers may call for network-irrelevant issues
 - Customers may not call when network faults occur
- PNM data
 - Instantaneous channel conditions, not sufficient for fault detection
 - Including environmental noise, not an accurate description of channel conditions

Filter Non-network Related Tickets

- Tickets are filtered according to the Description, Action, Dispatched, etc.
- Network tickets correlate better with PNM data values

WMA Difference

WMA Difference

WMA Difference

Variance

WMA Difference

Variance

- Normal:
- 1 ticket
- 10 data points (~40 hours)
- Ticketing Rate: 1/40 hours

Normal:

- 1 ticket
- 10 data points (~40 hours)
- Ticketing Rate: 1/40 hours

Abnormal:

- 2 tickets
- 3 data points (~12 hours)
- Ticketing Rate: 2/12 hours

Normal:

- 1 ticket
- 10 data points (~40 hours)
- Ticketing Rate: 1/40 hours

Abnormal:

- 2 tickets
- 3 data points (~12 hours)
- Ticketing Rate: 2/12 hours

Ticketing Rate Ratio = Abnormal Ticketing Rate Normal Ticketing Rate = 6.67

- Normal:
- 1 ticket
- 5 data points (~20 hours)
- Ticketing Rate: 1/20 hours

Normal:

- 1 ticket
- 5 data points (~20 hours)
- Ticketing Rate: 1/20 hours

Abnormal:

- 2 tickets
- 8 data points (~32 hours)
- Ticketing Rate: 2/32 hours

Normal:

- 1 ticket
- 5 data points (~20 hours)
- Ticketing Rate: 1/20 hours

Abnormal:

- 2 tickets
- 8 data points (~32 hours)
- Ticketing Rate: 2/32 hours

Ticketing Rate Ratio = Abnormal ticketing rate Normal ticketing rate = 1.25

Argmax(Ticketing Rate Ratio)

Abnormal ticketing rate Normal ticketing rate

CableMon Properties

- Ticketing Rate Ratio (TRR)
 - is monotonously decreasing w.r.t. both false positives (FPs) and false negatives (FNs) under the assumption ticketing noise is uniformly distributed
 - 2. is maximized iff. both FPs and FNs are 0

Formal proof can be found in the paper

Selecting Top Features

- We select the features that achieve the highest ticketing rate ratio
- For the features generated from the same metric, we will select at most two

Top Five Features

Feature	Ticketing Rate Ratio
snr-var	14.49
uncorrected-var	7.66
rxpower-wma-diff	5.31
t3timeouts-wma-diff	4.93
t4timeouts-var	4.18

Combining Features

- If one feature is abnormal, the data point is labelled as abnormal
 - Different features may detect different types of network faults
 - Use the threshold(s) that maximize(s) the ticketing rate ratio for each feature

How ISPs Use CableMon

- Proactive detection
 - Make a dispatch decision only after a fault persists
 - Convert pointwise detection to abnormal event detection using a sliding window algorithm
 - See paper for more details

How ISPs Use CableMon

- Proactive detection
 - Make a dispatch decision only after a fault persists
 - Convert pointwise detection to abnormal event detection using a sliding window algorithm
 - See paper for more details
- Diagnosis
 - Determine whether the customer reported problem is network relevant

Roadmap

- Limitations of Existing Work
- CableMon Design
 - High-level Idea
 - Challenges
 - Solutions
 - ISP Deployment
- Evaluation
- Conclusion

Roadmap

- Limitations of Existing Work
- CableMon Design
 - High-level Idea
 - Challenges
 - Solutions
 - ISP Deployment
- Evaluation
- Conclusion

Evaluation

• Dataset

Evaluation

• Dataset

• Other Approaches
• Dataset

• Other Approaches

ISP Tools

• Dataset

• Other Approaches

• Dataset

• Other Approaches

• Dataset

• Other Approaches

- Methodology
 - Ideal: Real world deployment (working in progress)
 - Experiments: Emulate how ISPs use CableMon
 - Run the sliding window algorithm
 - Count the number of tickets arrived during an abnormal event
- Metrics
 - Ticket prediction accuracy
 - Ticket coverage
 - Normalized ticketing rate

Results

	Ticket Prediction Accuracy	Ticket Coverage	Normalized Ticketing Rate
CableMon	81.92%	22.99%	3.55
SVM	75.64%	12.54%	2.02
Random Forest	73.14%	14.21%	2.24
Decision Tree	68.93%	15.53%	2.52
Comcast's Tool	23.48%	2.21%	1.18
AnonISP's Tool	10.04%	25.13%	0.98

Res	ults		irre	Many PNM elevant tickets
		Ticket Prediction Accuracy	Ticket Coverage	Normalized Ticketing Rate
	CableMon	81.92%	22.99%	3.55
	SVM	75.64%	12.54%	2.02
	Random Forest	73.14%	14.21%	2.24
	Decision Tree	68.93%	15.53%	2.52
	Comcast's Tool	23.48%	2.21%	1.18
	AnonISP's Tool	10.04%	25.13%	0.98

Res	ults		irre	Many PNM elevant tickets
		Ticket Prediction Accuracy	Ticket Coverage	Normalized Ticketing Rate
	CableMon	81.92%	22.99%	3.55
	SVM	75.64%	12.54%	2.02
	Random Forest	73.14%	14.21%	2.24
	Decision Tree	68.93%	15.53%	2.52
	Comcast's Tool	23.48%	2.21%	1.18
	AnonISP's Tool	10.04%	25.13%	0.98

Res	ults		irre	Many PNM elevant tickets
		Ticket Prediction Accuracy	Ticket Coverage	Normalized Ticketing Rate
	CableMon	81.92%	22.99%	3.55
	SVM	75.64%	12.54%	2.02
	Random Forest	73.14%	14.21%	2.24
	Decision Tree	68.93%	15.53%	2.52
	Comcast's Tool	23.48%	2.21%	1.18
	AnonISP's Tool	10.04%	25.13%	0.98

Ticket Life Time

- Tickets detected by CableMon
 - last for longer time
 - indicate harder issues

Ticket Life Time

- Tickets detected by CableMon
 - last for longer time
 - indicate harder issues

Type of Tickets

- Tickets detected by CableMon
 - are more severe
 - need more dispatches

Type of Tickets

- Tickets detected by CableMon
 - are more severe
 - need more dispatches

Type of Tickets

- Tickets detected by CableMon
 - are more severe
 - need more dispatches

More results can be found in the paper

Conclusion

- CableMon to detect network faults
- Use tickets as hints: No manual labeling
- Overcome the noise from both PNM data and customer trouble tickets
- Achieve high ticket prediction accuracy, and moderate ticket coverage

Thanks for your attention!

Questions?