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Abstract
Packet collisions happen every day in WiFi networks. RT-

S/CTS is a widely-used approach to reduce the cost of colli-

sions of long data packets as well as combat the hidden ter-

minal problem. In this paper, we present a new design called

comb decoding (CombDec) to efficiently resolve RTS colli-

sions without changing the 802.11 standard. We observe that

an RTS payload, when treated as a vector in a vector space,

exhibits a comb-like distribution; i.e., a limited number of

vectors are much more likely to be used than the others due to

RTS payload construction and firmware design. This enables

us to reformulate RTS collision resolution as a sparse recov-

ery problem. We create algorithms that carefully construct

the search range for sparse recovery, making the complexity

feasible for system design and implementation. Experimen-

tal results show that CombDec boosts the WiFi throughput

by 33.6% – 46.2% in various evaluation scenarios.

1 Introduction

CSMA/CA is fundamental for WiFi to coordinate multiple

nodes to access the wireless channel. RTS/CTS is a widely-

used mechanism in WiFi, which uses short RTS packets for

fast collision inference, transmission path check as well as

combating the hidden terminal problem [5]. In many early

WiFi products, RTS/CTS was disabled due to the concern of

overhead [32]. With the substantial increase of data demand

in recent years, WiFi data packets become longer and longer,

and today’s WiFi devices send an RTS packet when the size

of a data packet exceeds a given threshold. The threshold is

usually set to around 2,300 bytes [1, 4, 6, 7, 9] to balance the

performance and the overhead. RTS/CTS is also used in ad-

vanced WiFi functionalities, such as beamforming and MU-

MIMO [5]. In addition, global RTS/CTS [41,45,64] has also

been proposed for cross-technology communications.

The essence in the RTS/CTS mechanism is to trade a small

cost of the RTS collision for a potentially large cost of data

collision. In this paper, we revisit the RTS collision prob-

lem and present the comb decoding (CombDec) system to

resolve RTS collisions without changing the 802.11 standard

and thus improve the wireless channel utilization as well as

the network throughput.

The observation behind designing CombDec is that the

data payload of an RTS packet, when treated as a vector in a

vector space, exhibits a comb-like distribution. Specifically,

the RTS content consists of 160 bits, which leads to 2160 pos-

sibilities. We find that the standard-structured data fields in

RTS actually result in at most around 221 possible contents

in today’s WiFi networks. Therefore, the probability distribu-

tion of such contents will exhibit a comb-like shape: only up

to 221 out of 2160 contents having non-zero probabilities.

As a result, we reformulate the RTS collision problem as a

weighted sum problem: we consider the received signal due

to an RTS collision is the sum of all 221 RTS contents trans-

mitted at the same time, but with different channel weights.

An RTS content has a non-zero channel weight if it is actu-

ally transmitted, and zero weight otherwise. Then, resolving

the collision is equivalent to solving for the channel weight

for each RTS content. The key observation to solve the prob-

lem is that a vast majority of the 221 channel weights should

be zeros because a collision involves only a few RTS pack-

ets in a real-world network. In other words, the vector that

includes all channel weights is sparse, which opens a path to

use sparse recovery [18, 19, 47] to resolve RTS collisions.

One significantly challenging issue around collision res-

olution based on sparse recovery is the computational com-

plexity because we start from around 221 possibilities of RTS

signals to resolve a collision. To cope with this issue, we an-

alyze how a key RTS data field, Duration (that specifies the

time duration an RTS packet reserves), is constructed in state-

of-the-art 802.11 firmware. A comprehensive set of 802.11ac

packet traces are also collected to understand the distribu-

tion of Duration in various scenarios. It is found that to-

day’s firmware imposes extra restrictions on Duration and

is biased towards a limited number of value selections, and

the distribution of Duration in real-world packets is highly

uneven and patterned. Based on this observation, CombDec

is designed with two key components: (α, β)-construction
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and γ-decimation, which adaptively narrow down the search

range in sparse recovery to a set of only hundreds of potential

RTS signals, making system design of collision resolution

practical for WiFi networks.

We implement CombDec in a 20-node network testbed,

and evaluate it in different scenarios. Experimental results

demonstrate that our design has both direct and indirect im-

pacts on today’s WiFi systems and setups.

Direct Impact: Today’s WiFi devices usually adopt a conser-

vative RTS threshold (i.e., around 2300 bytes), which results

in 30% - 45% data transmissions initiated by RTS (according

to our packet trace collection and analysis). By directly using

CombDec with current RTS settings, we find via experiments

that CombDec is able to decode 98% of two-RTS collisions

and improve the network throughput by up to 23.3%.

Indirect Impact: CombDec offers a new capability of decod-

ing RTS collisions and in fact encourages changing today’s

WiFi setups for more RTS transmissions. Therefore, by re-

ducing the RTS threshold to zero and letting every device al-

ways send RTS before data (indicating that most collisions in

the network become RTS collisions), CombDec significantly

improves the network throughput by up to 46.6% in experi-

mental evaluations.

The design of CombDec is the first systematic work to-

wards resolving RTS collisions in WiFi networks. It is non-

invasive and redefines the role of the RTS functionality and

pushes WiFi towards a collision-free environment.

2 Motivation and Design Intuition

In this section, we introduce the motivation and key idea of

reformulating the problem of packet collisions.

2.1 Packet Collision and Resolution

We use a noise-free, flat-fading uplink scenario as a simple

motivating example: Alice and Bob send their packets to the

AP at the same time. Alice’s and Bob’s packets consist of

L time-domain baseband symbols, represented by vectors1

xA ∈ X and xB ∈ X , respectively, where X ⊂ CL×1 denotes

the set of all possible baseband symbol vector for xA and xB,

and CL×1 is the L-dimensional complex vector space.

Then, the received signal at the AP can be written as

y = hAxA + hBxB, (1)

where hA,hB ∈C (C denotes the complex plane) are the chan-

nel gains from Alice and Bob to the AP, respectively.

If we look at the collision (1) and assume that Alice’s and

Bob’s signals go through similar channel conditions to the

AP, Alice’s or Bob’s signal will have an SNR around 0dB

due to mutual interference. Simply given (1), the AP is less

1Throughout this paper, a vector is by default a column vector instead of

a row vector, unless otherwise specified.

likely to recover Alice’s or Bob’s signal due to two major

reasons.

• If the AP adopts a traditional decoding design, it cannot

decode a signal with SNR around 0dB, because an acceptable

SNR is usually 10dB or above [29] for WiFi.

• Although multi-user detection [59] has been developed

as a vital solution to decode multiple user’s signals, this tech-

nique in general requires that users employ distinct spread

spectrum codes [60] to differentiate themselves at the signal

level. Nonetheless, there is no such code design in WiFi.

Apparently, additional information is needed to resolve the

collision (1). Our key observation is that the RTS packet for-

mat itself provides valuable information for collision resolu-

tion in a WiFi network.

2.2 Anatomy of RTS in WiFi

The RTS/CTS mechanism lets a sender reserve the channel

by sending an RTS packet first. Once the receiver replies with

a CTS packet, the sender transmits the data packet. The RTS

packet specifies a network allocation vector (NAV), which is

the total time duration it wants to reserve, including the time

durations of the CTS, the data and the ACK.

The data payload in an RTS packet consists of 20 bytes or

160 bits, and we denote it as an RTS data vector b ∈ [0,1]160,

where [0,1]160 is the space for all vectors with length 160,

whose element is either 0 or 1. At the PHY layer, the data

vector b is interleaved, coded and modulated into a signal

vector x ∈ X , where X is the set of all values of x. These

processes together can be denoted as a one-to-one function

mapping f : [0,1]160 → X , which converts the RTS data vec-

tor b to the RTS signal vector x = f (b). As f is one-to-one

correspondence, |X | = 2160 (| · | denotes the cardinality, or

the number of elements, of a set).

We observe that all RTS data vectors in [0,1]160 are not

equally probable in the real world because all data fields in

RTS are well structured and specified.

• FrameControl contains 2 bytes specified in 802.11.

• Duration is the 2-byte NAV in microseconds. The last

bit is set to 0 and thus it holds up to 215 values.

• RA and TA (6 bytes each) are the destination and source

addresses, respectively. As today’s WiFi is widely used for

Internet access, stations communicate mostly with the AP.

The AP knows that RA in an RTS packet sent to it is its own

address and TA should be the address of one of its stations.

Suppose that a dense network can support 26 stations (e.g.,

Linksys EA8500 firmware supports up to 51 stations [11])

and the number of possible values of TA in RTS is 26.

• FCS (4 bytes) is for error detection and relies on other

data fields. It provides no additional information.

Thus, from the AP’s perspective, the number of RTS data

vectors of interest is 215 (from Duration) × 26 (from RA/TA)

= 221 in the full RTS vector space [0,1]160. As a result, the
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Figure 1: Example: distribution of RTS signal vectors.

number of RTS signal vectors of interest is also 221 in the sig-

nal vector space X with |X | = 2160. If we index all vectors

in X from 1 to 2160 and measure via the probability distribu-

tion how each vector is likely to be seen in the real world, we

will obtain a comb-shaped distribution similar to the example

shown in Figure 1. We call an RTS signal vector a tooth vec-

tor if the probability that it can be seen at the AP is positive.

Although the index goes from 1 to 2160 in Figure 1, the num-

ber of tooth vectors should be no less than 221 according to

our analysis. The comb-shaped distribution is in evident con-

trast to the traditional decoding assumption (also illustrated

in Figure 1) that all potential values of a signal vector are

equally probable [31]. This opens a door for us to go beyond

traditional decoding to resolve RTS collisions.

2.3 Idea of Collision Resolution

Based on the observation from Figure 1, we present the basic

idea regarding how to resolve an RTS collision.

2.3.1 Problem Reformulation

Denote by M = {mi}i∈[1,M] (M = |M |) the set of tooth vec-

tors. Define the comb matrix M = [m1,m2, · · · ,mM] (i.e.,

each column in M is a tooth vector). The AP can pre-

construct the comb matrix M by inserting all possible RTS

to M to form the columns. The AP’s goal is to find exactly

which ones in M are actually involved in the collision.

Mathematically, we reformulate the collision problem to

an equivalent one: assume that all tooth vectors in M are

transmitted to the AP, but they go through different wireless

channels. In particular, the tooth vectors involved in the ac-

tual collision go through the wireless channels with realis-

tic channel gains, but those not involved in the collision go

through the channels with zero channel gains. For example,

in Figure 2, Alice, Bob and other users have different tooth

vectors. The received signal y is considered as the sum of all

these tooth vectors weighted by different channel gains. The

channel gain weight of a tooth vector is the realistic channel

gain if it is indeed transmitted, and zero otherwise. If Alice’s

transmitted signal is m1, the channel gain weight g1 for m1

is the real channel gain between Alice and the AP, and the

weights for the rest of Alice’s tooth vectors are all zeros (e.g.,

g2 = 0 as Alice transmits m1 not m2). As such, the received

Alice               Bob             Other users

m1      m2     �     �     �     �     �     �

received signal y

channel gain 
weight vector g

comb 
matrix M

�             � 

 (realistic 
channel gain)       

g2=0g1 ... ... ... ... ... ...

... ...

Figure 2: Reformulation of network collision.

signal y can be reformulated as

y=
M

∑
i=1

migi = [m1,m2, · · · ,mM]
︸ ︷︷ ︸

comb matrix M

[g1,g2, · · · ,gM]
︸ ︷︷ ︸

channel gain weight vector g

T , (2)

where g is called the channel gain weight vector and ·T de-

notes the matrix transpose. Based on (2), collision resolu-

tion is equivalent to solving for unknown g given y and M.

Then, the tooth vectors actually involved in the collision cor-

respond to non-zero elements in the solved g.

2.3.2 Solution based on Reformulation

There are two key observations on the reformulation in (2).

• The unknown channel gain weight vector g is sparse

in a real-world network because of two reasons: (i) There

is no self-collision. As shown in Figure 2, if Alice sends a

tooth vector m1, we have g1 6= 0; and any other tooth vector

belonging to Alice will have a zero channel gain weight (e.g.,

g2 = 0) since there is no way Alice transmits both m1 and

m2. (ii) Because of the random backoff in WiFi, a collision

is likely caused by only several users transmitting at the same

time. Thus, g should include only several non-zero elements.

• The comb matrix M should exhibit a nearly random

matrix property. Each tooth vector mi in M is mapped from

an RTS data vector through interleaving and error-correction

coding. Their main purpose is to scramble and re-map all bits

into a larger bit space in a (nearly) random way such that the

error-correction performance approaches the random coding

performance in Shannon’s capacity [24].

Given the sparse property and nearly random matrix prop-

erty, the channel gain weight vector g should be recovered

with high probability by L1-norm minimization according to

the theory of compressive sensing [26, 28, 38]. Thus, resolv-

ing an RTS collision leads to the following optimization.

Given: comb matrix M and received signal y,

Objective: gsolution = argmin‖g‖1, subject to y = Mg,
(3)

where ‖g‖1 is the L1-norm of g (i.e., ‖g‖1 = ∑gi∈g |gi|).
The theoretical framework lays out a promising path to-

wards resolving RTS collisions. Although the L1-norm min-

imization in (3) can be solved by many efficient algorithms
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[17–19, 27, 62], directly applying (3) to collision resolution

incurs an unbearable cost because the comb matrix M con-

sists of up to 221 = 2,097,152 tooth vectors according to our

initial analysis in Section 2.2. Thus, significant challenges

exist to make collision resolution meaningful and practical.

3 Construction of Comb Matrix

The initial step towards our CombDec design is to find a way

to reduce the size of the comb matrix M (that can include 221

tooth vectors) for a low-cost solution. In this section, we ana-

lyze the 802.11 standard, firmware and packet traces to show

that there is a feasible way to significantly reduce the size

of 221. Then, we design two algorithms, (α,β)-construction

and γ-decimation, to reduce 221 to only a few hundreds, while

maintaining the high performance for collision resolution.

The use of (α,β)-construction and γ-decimation clears the

major hurdle towards system implementation.

3.1 Standard and Firmware based Analysis

As aforementioned in Section 2.2, M consists of 221 tooth

vectors because of Duration and RA/TA fields in RTS. The

Duration field specifies the 15-bit NAV in microseconds

with 215 = 32,768 potential values, which largely contribute

to the size of M. 802.11 specifies that the NAV is computed

as one data packet duration, plus one CTS, one ACK, and

three SIFS durations. Given a network setup, SIFS, CTS and

ACK durations are usually fixed (e.g., SIFS is fixed to be 16

µs in 802.11ac at 5GHz). Thus, the value space of the NAV

depends dominantly on the value space of the time duration

of a data packet. In 802.11, the time duration of a data packet

is bounded by aPPDUMaxTime, the maximum time duration

of a data packet (in µs), and indirectly bounded by aPSDU-

MaxLength, the maximum payload length of a data packet

(in bytes). As aPPDUMaxTime for 802.11ac is 5,484µs, the

space size of the NAV is reduced from 32,768 to at most

5,484 in the 802.11ac network.

Today’s WiFi chipsets may still avoid transmitting a long

packet (close to 5,484µs) due to the cost consideration or

hardware limitations. Hence, drivers implement their own

packet length constraints on a data packet, which is usu-

ally less than the standard-defined aPSDUMaxLength or aP-

PDUMaxTime. We perform comprehensive code analysis on

WiFi drivers and find that different vendors indeed pose dif-

ferent constraints on their own chipset, further limiting the

value selection of the NAV. The detailed firmware analysis

can be found in Appendix A.

As a result, we can leverage these constraints to further re-

duce the value space of the NAV in RTS. However, many

WiFi drivers (in particular 802.11ac ones) are still propri-

etary and distributed in the binary form. It is not practical to

study every WiFi chipset/firmware and optimally minimize

the value space of the NAV in RTS packets. In what follows,
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Figure 3: Percentages of data packets protected by RTS.

we analyze real-world packet traces to develop a generic way

to narrow down the value space.

3.2 Packet Trace based Analysis

The key to reducing the size of the comb matrix is through

shrinking the value space of NAV in RTS. We have shown

that a WiFi driver can restrain the value space of NAV. More-

over, implementation-dependent rate control and data aggre-

gation in proprietary WiFi drivers are not likely to produce

uniformly distributed NAV values, but may be more biased

towards certain selections and yield a NAV distribution sim-

ilar to Figure 1. Our objective is to collect massive packet

traces to understand the NAV distribution. Then, we create

generic algorithms to select those NAVs that are the most

likely to be seen for constructing the comb matrix M.

The first step towards understanding the NAV distribution

in real-world RTS packets is to collect a substantially large

number of packet traces for analysis. As no set of 802.11ac

packet data is publicly available, we conducted our own mea-

surements and collected in total 1.3 TB packet trace data with

2.33 billion packets in realistic environments2, including (i)

a public library (65.21 GB), (ii) three academic conferences

(31.14 GB), (iii) five residential communities (65.69 GB),

(iv) three major-brand hotels (109.48 GB), (v) four major

US airports (88.5 GB), (vi) a university research lab (938.81

GB). The library, conference, and airport data traces were

measured only within the business hours (i.e., 9am–5pm).

Figure 3 shows the the percentages of data packets that

are protected by RTS among all data packets collected in dif-

ferent scenarios. Although a typical RTS threshold is set to

around 2300 bytes [1, 4, 6, 7, 9], we see from Figure 3 that

data packets of less than 2300 bytes are still likely to be pro-

tected by RTS. For example, in the hotel scenario, 78.55%

data packets are initiated by RTS even when their lengths

are less than 2300 bytes. Moreover, around 70% - 90% data

packets of over 2300 bytes are protected by RTS in different

scenarios. Overall, we observe from Figure 3 that RTS is still

2Note that the payloads of all data packet were removed after the collec-

tion to avoid the privacy concern.
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(a) (b)

Figure 4: Distribution of NAVs from (a) the airport dataset,

and (b) all Belkin devices in all datasets.

intensively used in today’s Wi-Fi networks.

Looking into the NAV values in RTS packets, we observe

that these values are unevenly distributed. For example, Fig-

ure 4(a) shows the NAV distribution of RTS packets in the

airport dataset, which reveals that many NAV values (partic-

ularly around 230 µs) are much more likely to be observed

than the others. The NAV distribution also depends on a

WiFi driver. For example, Figure 4(b) plots the distribution

of the Belkin WiFi driver measured from RTS packets sent

by Belkin devices (recognized by MAC addresses) in all

datasets. The figure shows that the distribution is quite pat-

terned, indicating that the driver has several NAV levels to

construct payloads. We observe uneven or patterned distri-

butions in all datasets and offer a more detailed analysis in

Appendix B.

Thus, if we only choose the most likely NAV values (in-

stead of all possible values) to construct the comb matrix M,

the size of M should be substantially reduced. In addition,

our design should not be device/firmware specific. For exam-

ple, it may be possible to select NAV values based on the

pattern of Belkin devices in Figure 4(b). But this method is

too cumbersome because we have to examine the behaviors

of all different WiFi devices. Our strategy is to use an online

algorithm that actively computes the NAV distribution of a

device, and then selects the most likely NAV values from the

computed distribution to construct the comb matrix M.

3.3 The (α,β)-Construction Algorithm

To select the most likely NAV values to construct M, a node

(either the AP or a station) should store the distribution of the

NAV values in RTS packets from every other node in a net-

work. In addition, the node should keep updating the storage

to account for nodes joining or leaving the network. To this

end, we propose the (α,β)-construction algorithm running at

individual nodes to construct M.

3.3.1 Algorithm Design

For a node that runs the algorithm, it records the frequency

(i.e. the number of appearances) of a NAV value in RTS pack-

Alice                          Bob                               Other users

m1    m2     �     �     �     �     �     �     �      �     �  

�             � 

NAV NAV NAV

frequency frequency frequency
     �                                 

� 

�                             � �     � 

reconstructed RTS signal vectors as tooth vectors in comb matrix M

select the α 
most likely 

NAVs

every minute: 
reduced all 

frequencies by β 

Local storage: updated whenever an RTS packet arrives

Figure 5: (α,β) construction running at the AP.
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Figure 6: Different collision scenarios in Alice’s view.

ets transmitted by every other node in the network. When a

new RTS packet with a NAV value is decoded, the node will

increase the frequency of that NAV value by one in its local

storage. There are two key factors α and β in the algorithm.

• Coverage factor α: For every other node in the network,

the algorithm selects the α NAV values with the highest fre-

quencies to form the tooth vectors and the comb matrix.

• Forgetting factor β: The algorithm decreases the fre-

quencies of all NAV values by β every minute. The minimum

frequency is always set to be zero. And if the frequencies

of all NAV values associated with a node become zero, the

node’s information will be all removed from the storage as it

is considered no longer active or out of the network.

The (α,β)-construction algorithm works differently for

the AP and stations. Figure 5 shows how it works at the AP:

the AP stores the frequency of each possible NAV value from

each station. When a collision happens at the AP, it knows the

collision must be due to at least two stations (which could

be Alice, Bob, or others) transmitting to it. Thus, the AP se-

lects the α most likely NAV values from Alice, constructs

an RTS data vector using each of these values, together with

Alice’s MAC address as TA and its own MAC address as

RA, then maps each RTS data vector by function f (includ-

ing interleaving, error-correction coding, modulation, IFFT)

in Section 2.2 to a signal vector (which is a tooth vector in

the comb matrix M). Then, the AP repeats the same process

for Bob and all other stations to finally obtain the full M.

A station’s construction of the comb matrix differs from

the AP. For example, as shown in Figure 6, Alice observes a

collision (a) when two other stations Bob and Carol are trans-

mitting to the AP, (b) when one other station Bob is transmit-

ting to the AP and at the same time the AP is transmitting

to a third station Carol, or (c) when the AP is transmitting to

Alice while Bob and Carol are transmitting to the AP. In all

three cases, collision resolution is only meaningful for Alice

in case (c) because the collision in case (c) includes the AP’s
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Table 1: Miss rate and average size of M.

α=600 Miss rate Ave. # of # of tooth

β=10 nodes vectors in M

Library 6.9 % 12.8 7680

Conferences 3.6 % 11.6 6960

Apartments 1.5 % 6.5 3900

Hotels 0.7 % 10.3 6180

Airports 8.8 % 18.8 11280

Lab 5.7 % 6.3 3780

signal intended for Alice. Even when Alice successfully re-

solves cases (a) and (b), Alice only knows that there is no

signal of interest and then stops. Therefore, the construction

is sufficient for Alice as long as case (c) can be resolved by

Alice. According to case (c), a station should construct the

comb matrix by using RTS signal vectors from the AP to it-

self and other RTS signal vectors from other stations to the

AP. The construction process is similar to Figure 5.

3.3.2 Selections of (α,β) and Cost Evaluations

The size of the resultant comb matrix M depends on both α
and β. In particular, α is the number of tooth vectors from one

node, and β in fact determines how many nodes will be used

in constructing M because (i) all frequencies are decreased

by β every minute and (ii) a node will be removed from the

construction when all its frequencies become zero. The algo-

rithm with a larger β forgets nodes faster, thereby reducing

the number of nodes used for constructing M.

The performance of (α,β)-construction can be evaluated

by the miss rate, defined as the probability that when an RTS

packet arrives at a node, M constructed by the algorithm at

the node does not include the NAV value in the RTS packet.

A large α and a small β are able to reduce the miss rate, but

at the same time increase the size of M, incurring more cost.

Our objective is to find the pair of (α,β) to balance the

miss rate and the complexity for general WiFi scenarios. To

this end, we simulate a WiFi network in each of the packet

datasets, replay all collected packets to simulate RTS arrivals

at each node, and measure the miss rate of the algorithm with

different values of α and β. Table 1 shows one selection of

(α,β)=(600,10) for all scenarios that achieves a good bal-

ance between the miss rate and the size of M (measured by α
multiplying the average number of nodes used for construct-

ing M). We can see that all miss rates are below 9% with

around 4,000–12,000 tooth vectors in M.

3.4 The γ-Decimation Algorithm

Through 802.11 standard analysis, firmware analysis, packet

trace analysis and (α,β)-construction, we have dramatically

shrink the size of M from the initial 2,097,152 tooth vectors

to 12,000 or fewer vectors. All these push the optimization in

(3) to the practice. However, finding the L1-norm minimiza-

tion with 12,000 vectors in (3) still incurs a substantial cost.

We propose γ-decimation to further reduce such a cost while

maintaining the high performance.

Denote by M the number of tooth vectors in M constructed

by (α,β)-construction. The basic idea of the γ-decimation

algorithm (γ > 1 is called decimation rate) is to select, based

on the received signal vector y, M/γ vectors out of all M tooth

vectors in M to form a decimated comb matrix M′.

The design intuition is that the received signal y contains

only several tooth vectors in M that we aim to find out. If we

compute the correlation between y and each tooth vector mi

in M, defined as C(y,mi) = ‖mH
i y‖2 (·H denotes conjugate

transpose and ‖ · ‖2 denotes the L2-norm), we then obtain

M correlation values. Due to the property of correlation, we

should observe a high correlation value if a tooth vector is

indeed included in y, and a low correlation value otherwise.

However, due to channel noise and limited length of tooth

vectors, some tooth vectors not in y may also exhibit high

correlation values. But it is not necessary to exactly identify

which tooth vectors with high correlation values are indeed

in y at this stage, γ-decimation just chooses M/γ tooth vec-

tors that have the highest correlation values to form the dec-

imated comb matrix M′. It is very likely that tooth vectors

involved in the collision are included in M′ as long as M/γ
is sufficiently large. We provide theoretical analysis for the

performance of γ-decimation and show that all RTS signals

involving a collision will survive the decimation and be in-

cluded in M′ with high probability in Appendix C.

As a result, the final comb matrix for (3) is constructed

as follows: (i) (α,β)-construction constructs the comb ma-

trix M with M tooth vectors (this steps ensures a low miss

rate), (ii) γ-decimation decimates M into the decimated comb

matrix M′ with only M/γ tooth vectors (this steps ensures

that tooth vectors involving the actual collision are preserved

with high probability), and (iii) the decimated comb matrix

M′ is used in (3) for collision resolution to finally identify

which tooth vectors are included in the collided signal y.

To make (3) feasible for today’s systems, M′ should have

only hundreds of tooth vectors. As (α,β)-construction main-

tains up to around 12,000 vectors (shown in Table 1), the

decimation rate γ should be around 12 or more.

3.5 Complexity Analysis

In the following, we estimate the computational complexity

and storage complexity of CombDec.

3.5.1 Computational Complexity

We evaluate CombDec’s complexity by comparing it with

a benchmark, which is the complexity to decode a typical

802.11 data packet with 40MHz bandwidth, 3/4 convolu-

938    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



10 20 30 40 50 60 70

Decimation Rate ( )

0

5

10

15
N

u
m

b
er

 o
f 

C
y
cl

es
 (

 1
0

8
)

CombDec

decoding 1000 bytes

decoding 3000 bytes

decoding 5000 bytes

decoding 7000 bytes

Figure 7: Number of cycles: CombDec vs benchmark.

tional coding, and 64QAM. We describe the major computa-

tional operations involved in the benchmark and CombDec.

• The benchmark complexity is proportional to the data

payload length, denoted by N bytes. Decoding a data packet

requires the FFT and Viterbi algorithms. The packet contains

0.0247N OFDM symbols plus 4 PHY headers symbols. The

FFT on each symbol requires 64 log(128) complex multipli-

cations and 128log(128) complex additions [10]. In addition,

the Viterbi algorithm incurs 4K(10.67N+252) real additions

and 2K(10.67N+252) real comparisons, where K is the con-

straint length of convolutional code [12].

• In CombDec, suppose (α,β)-construction maintains M

tooth vectors of length L, the correlation of the received sig-

nal with each of the tooth vector in γ-decimation needs a

total of ML complex additions and multiplications. Among

all correlation values, selecting the M/γ largest values incurs

M + M log(M)/γ comparisons by using the max heap tree

approach [3]. The complexity of L1 minimization depends

on an iterative algorithm and is bounded by the cubic poly-

nomial complexity [62]. In order to estimate an exact com-

putational cost, we use simulations to run the primal-dual

interior-point algorithm [47] to solve the L1-norm minimiza-

tion in M/γ tooth vectors and compute the average numbers

of additions, multiplications and comparisons.

As the complexity involves different types of operations,

including additions, multiplications and comparisons. We

need to have a unified cost utility metric to measure the over-

all costs of CombDec and the benchmark. We use the number

of general CPU cycles as the utility metric [2]. In particular,

one real addition or comparison is counted as one cycle and

one multiplication is 4 cycles [2]; and a complex operation

is 4 times the number of cycles incurred by its real counter-

part [10]. Note that an algorithm or a computational opera-

tion can be specifically optimized on a particular signal pro-

cessing software or hardware platform. Our estimation using

CPU cycles is not intended to be exactly accurate for an im-

plementation platform, but serves as an approximate way to

demonstrate what computational complexity level CombDec

is at when compared with the benchmark.

Figure 7 shows the total numbers of cycles incurred by

CombDec and the benchmark. In Figure 7, we let (α,β)-
construction form M = 12,000 tooth vectors to accommo-

date the airport scenario in Table 1 and set a typical constraint

length K = 7 in the Viterbi Algorithm. It is observed from

Figure 7 that choosing γ to be in [20, 50] leads to the com-

plexity of CombDec roughly equivalent to decoding a packet

with 1000–3000 bytes, which makes CombDec ready for sys-

tem implementation.

3.5.2 Storage Complexity

CombDec also incurs a storage cost. First, CombDec for a

device must store the frequency of each NAV value for any

other active device in the network. The cost of storing all

NAV frequencies is equal to the NAV space size multiplying

the average number of active devices. There are 5,484 pos-

sible NAV values in 802.11ac and around 18.8 active nodes

under (α,β) construction for the airport scenario (shown in

Table 1). Hence, the storage cost is 5484 × 18.8 × 1 = 101

KB when the frequency value is a one-byte integer. Second,

after γ-decimation, all tooth vectors should be stored for L1-

minimization. The storage cost is the number of tooth vectors

multiplying the length of a tooth vector. When γ ∈ [20,50],
the number of decimated tooth vectors in the airport scenario

is 240 to 600. If a typical RTS packet is transmitted at 12

Mbps (4 64-subcarrier OFDM symbols) and the element in

tooth vector is a 4-byte complex number, the length of a tooth

vector is 64×4×4= 1 KB. Thus, the cost of storing all these

tooth vectors is in the range of [240,600] KB.

Overall, the major storage cost is around [341, 701] KB.

This cost is also reasonable for today’s WiFi systems. For

example, Qualcomm’s 802.11ac chipset IPQ4018 has an on-

chip memory of 256 MB [50] and related APs cost as low as

tens of dollars [8, 13].

4 CombDec System Design

The (α,β)-construction and γ-decimation algorithms pave

the way for a feasible system solution to (3). In this section,

we present CombDec system design. We first introduce the

system architecture, then describe each key component.

We design CombDec as an independent decoder in addi-

tion to the traditional 802.11 decoder. Figure 8 shows four

major components in CombDec: the prologue module, (α,β)-

construction, γ-decimation, collision resolution, and the epi-

logue module. As shown in Figure 8, CombDec is triggered

only when decoding of either the PHY header or the PHY

payload fails. In the following, we present the designs of in-

dividual CombDec Components.

The Prologue Module: The prologue module does all pre-

processing before collision resolution.

Combining Multi-path Signal Components: The received

signal may include a number of multi-path components with

different time offsets. To improve the performance of Comb-

Dec under multi-path fading, we use the maximum ratio com-

bining (MRC) [31] to combine the multi-path signal com-

ponents. Specifically, denote by s(n) the n-th time-domain
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symbol in the received signal. Based on the 802.11 packet

preamble, we use a matched filer [32, 58] to detect the time

offset and estimate the channel gain of each signal compo-

nent. Given K components found, we use the MRC [31] to

coherently sum all K time-shifted copies of s(n) and obtain

s′(n) = ∑K
k=1 h∗ks(n+δk), where k-th component having time

offset δk and channel gain hk, and h∗k is the complex conju-

gate of hk. Note that signal components may be from differ-

ent senders in a collision, CombDec does not differentiate

them in the prologue module.

Collision Recognition and Early Stop: Next, CombDec de-

cides if s′(n) can be potentially resolved. There are three

types of collisions: RTS-only, RTS-data (involving at least

one RTS packet and one data packet), and data-only colli-

sions. CombDec will stop if the collision belongs to data-

only collision. Note that the recognition does not need to be

100% accurate, it simply provides a way to exclude obvious

data-only collisions that cannot be resolved by CombDec.

In WiFi networks, the beginnings of collided packet trans-

missions are roughly aligned because of CSMA/CA (if we

do not consider the hidden terminal problem). Thus, we mea-

sure the time durations of different power levels of the re-

ceived signal to identify the type of a collision. According

to 802.11, the data rate for RTS is selected by a station from

a limited set of basic rates defined by the AP (e.g., 12 Mbps

and 24 Mbps are widely observed in our packet traces). Thus,

a RTS time duration can be measured by a very limited num-

ber of OFDM symbol durations, e.g., 3 (or 4) OFDM symbol

durations for 24 (or 12) Mbps. We record the time duration li,

from the beginning of the signal s′(n), to the position in s′(n)
where the i-th signal power change happens and is larger than

a threshold ∆. When the power level reaches the noise floor,

we stop and obtain a set of time durations L = {li}i∈[1,|L|].

We consider a collision as (i) RTS-only if each value in L is

close to one of the RTS durations corresponding to the ba-

sic rate set defined by the AP, (ii) RTS-data if one value is

close to an RTS duration and any other value is not close to

any of the RTS durations, and (iii) data-only otherwise. Fig-

ure 9(a) shows an example of RTS-only collision, where two

measured time durations occupy 3 and 4 OFDM symbol du-

rations, respectively, which is recognized as the collision of

two RTS packets with different rates.

The Collision Resolution Module: The prologue module
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Padding in comb matrix construction.

outputs either RTS-only or RTS-data signals for collision res-

olution, (α,β) construction will construct every tooth vectors

for the comb matrix. As devices in a network may use dif-

ferent basic rates to transmit RTS packets (leading to differ-

ent lengths of tooth vectors), CombDec zero-pads the shorter

tooth vectors with higher data rates to form the complete

comb matrix M used for collision resolution. Figure 9(b)

shows an example of constructing the comb matrix M by

zero-padding shorter tooth vectors. Then, M is γ-decimated

to M′, which is used in the primal-dual algorithm [47] that

solves the L1-minimization in (3). Note that if a collision is

RTS-data, the module resolves the collided RTS signal vec-

tors by treating any data signal as the noise, and then leaves

the potential decoding of data for the epilogue module.

The Epilogue Module: The collision resolution module

yields a small set of potential RTS signal vectors involved in

the collision, denoted by R . There are still important ques-

tions left: (i) Which RTS in R a receiver should choose to

reply with CTS? (ii) Can we decode the data in the presence

of an RTS-data collision? (iii) Moreover, we also need an er-

ror detection mechanism to ensure the collision is correctly

resolved because errors may happen in CombDec. We first

describe how CombDec chooses data or RTS. The AP and

stations have different decision making processes.

Decision Making at AP: The AP observes a collision when

multiple stations transmit to the AP at the same time.

• Choosing the RTS with the largest NAV: if the col-

lision is RTS-only, the AP chooses the RTS of the largest

NAV to reply with CTS. Note that we intend to maximize the

channel utilization in this way. A more advanced policy (e.g.,

considering the utilization and fairness) can be designed and

adopted going beyond the main scope of this paper.

• Choosing data over RTS: If the collision is RTS-data,

the AP first decodes all RTS packets in the collision resolu-

tion module, then proceeds to decode the data. If the data

is successfully decoded, the AP chooses data over RTS and

sends back the ACK to the sender of the data. This is because

data packets are usually longer than RTS packets. Giving pri-

ority to data should improve the channel utilization.

Decision Making at Stations: A station observes a colli-

sion when multiple other nodes (either other stations or the

AP) transmit at the same time. As shown in Figure 6(c), a
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station only cares about the AP’s signal transmitted to it.

• If R includes an RTS vector from the AP to the station,

the collision is due to the AP transmitting to the station and

at the same time at least one other station transmitting to the

AP, the station always sends CTS to the AP.

• Otherwise, there is no RTS in R intended for the station.

If the collision is RTS-data, the station proceeds to decode

the data because the data may be intended for it; otherwise,

the station stops.

Error Checking and Data Decoding: Once a decision is

made (choosing RTS or data), we must ensure there is no er-

ror with the chosen RTS or we must proceed to decode the

data. How to proceed with error checking and data decod-

ing? We find that a traditional 802.11 receiver, as shown in

Figure 8, already has a PHY payload decoder with the cyclic

redundancy check (CRC) mechanism. Thus, we should lever-

age the existing architecture to perform the decoding and er-

ror checking to minimize the complexity of CombDec.

As a result, if CombDec decides to act on a particular RTS

signal or to decode a data signal, it uses interference cance-

lation to remove all other signals from the collided signal.

Specifically, if a decision is to decode the data, CombDec

removes all RTS signal vectors in R from the received sig-

nal s′(n) and write the resultant signal as s′c(n) = s′c(n)−

∑
|R |
i=1 ri(n)gi, where ri(n) and gi are the n-th element and the

channel gain weight of the i-th RTS tooth vector in R , respec-

tively. Similarly, if the decision is to act on the j-th RTS vec-

tor (i.e., choose the j-th RTS in R to reply with CTS), Comb-

Dec removes all other RTS tooth vectors from the s′(n) and

the resultant signal becomes s′c(n) = s′c(n)−∑
|R |
i=1,i6= j ri(n)gi.

Finally, the signal s′c(n) goes from CombDec into the tradi-

tional PHY payload decoder, which performs decoding and

error checking, then passes the correct RTS or data to the

MAC layer for protocol processing (e.g., replying with CTS).

In addition, the MAC address and data rate information of a

correct RTS packet is stored and its NAV value is also up-

dated in (α,β)-construction as shown in Figure 8.

5 Evaluation

In this section, we evaluate the performance of CombDec.

We first introduce the experimental setups, then measure the

performance benefits CombDec brings to WiFi networks.

5.1 Setups

Testbed Implementation: We have implemented the pro-

totype of CombDec on 20 USRP X310/300 devices. Each

device is equipped with two UBX-160 daughterboards and

two VERT 2450 antennas. We implement a basic 802.11ac

PHY-MAC architecture with 20-MHz settings: 64 OFDM

subcarriers (including 48 data subcarriers), BPSK, QPSK,

16QAM, and 64QAM modulations, Alamouti code based
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Figure 10: Environment for experiments.

MIMO, and convolutional coding at the PHY layer, and CS-

MA/CA scheme with an initial contention window size of

8 [5] at the MAC layer. Control packets including RTS, CTS,

and ACK are also implemented.

Experimental Settings: We aim to measure the performance

of CombDec in a realistic indoor environment inside a cam-

pus building shown in Figure 10. Network nodes are placed

at various locations and transmit packets whose contents are

generated according to our collected 802.11ac packet traces.

Note that we do not implement the 256QAM modulation

as we found no single packet using a data rate associated

with 256QAM in all collected packet traces. This does not

severely affect the performance evaluation since 256QAM is

intended only for very high SNR conditions.

We use the following default settings for experiments (un-

less otherwise specified): (i) all nodes are saturated; i.e., they

always have packets to transmit; (ii) α=600, β=10, and γ=20

for CombDec; (iii) the airport dataset is used to generate

packets as it represents the most crowded condition in all

datasets; (iv) all nodes have the same transmit power.

Evaluation Metrics: We use the following metrics to evalu-

ate the real-time performance of CombDec.

• Success probability of collision resolution is defined as

the probability that CombDec recovers exactly all collided

RTS signals. The recovery will be considered as a failure if

CombDec recovers only a subset of collided RTS signals or

mis-identifies an RTS signal not involved in the collision.

• Normalized throughput (or utilization efficiency), is de-

fined as the percentage of the time duration on the wireless

channel that is used to deliver data packets. An ideal net-

work should have a normalized throughput of 1. However,

control signals (e.g., RTS/CTS) and collisions deteriorate the

throughput. We aim to show how much channel utilization ef-

ficiency CombDec can improve via resolving RTS collisions.

• Throughput gain ratio, defined as the ratio between the

increased normalized throughput from traditional 802.11 de-

coding to CombDec and the normalized throughput under tra-

ditional decoding. Throughput gain ratio can directly reflect

how CombDec improves the network performance.

5.2 Success Probability

We first evaluate the success probability of CombDec for

collision resolution. In this evaluation, multiple nodes only
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ties under 2-6 transmitters.

0 10 20 30 40
0

0.5

1

Number of Received Packets (× 10
3
)

S
u

cc
es

s 
P

ro
b

ab
il

it
y

 

 

α = 800

α = 600

α = 400

α = 200

Figure 12: Impact of value of

α in (α,β)-construction.

0 10 20 30
0

0.5

1

Number of Received Packets (× 10
3
)

S
u

cc
es

s 
P

ro
b

ab
il

it
y

 

 

β = 60

β = 20

β = 10

Figure 13: Impact of value of

β in (α,β)-construction.

0 10 20 30
0

0.5

1

Number of Received Packets (× 10
3
)

S
u

cc
es

s 
P

ro
b

ab
il

it
y

 

 

γ = 10

γ = 15

γ = 20

γ = 25

γ = 30

Figure 14: Impact of value of

γ in γ-decimation.

0 10 20 30 40
0

0.5

1

Number of Received Packets (× 10
3
)

S
u

cc
es

s 
P

ro
b

ab
il

it
y

 

 

4 vs. 3 symbols

4 vs. 2 symbols

3 vs. 2 symbols

Figure 15: Resolving colli-

sions with different rates.

2 4 6 8

0

0.2

0.4

0.6

Location

S
u

cc
es

s 
P

ro
b

ab
il

it
y

 

 

node 1: data; node 2: RTS

node 1: RTS; node 2: data

Figure 16: Resolving RTS-

data collisions.

Lib. Lab Apt. Air. Conf.Hot.

Scenario

0.4

0.45

0.5

0.55

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

Traditional

CombDec

Figure 17: Throughputs under

different scenarios.

200 400 600 800

Coverage Factor 

0.4

0.45

0.5

0.55

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

Traditional

 = 10

 = 20

 = 40

Figure 18: Throughputs with

different α and γ.

transmit RTS packets to the AP placed at location 0 in Fig-

ure 10, where the success probability is measured.

Impact of Number of Transmissions: We evaluate Comb-

Dec’s ability to resolve collisions due to two and more trans-

missions. To this end, we place multiple transmitters at lo-

cation 1, which send RTS packets at the same time to the

AP at location 0. Figure 11 shows the success probabilities

that the AP resolves the collision under 2–6 transmitters. The

success probability is computed for every 1,000 packets re-

ceived. It is noted from Figure 11 that as the total number

of received packets at the AP increases, CombDec gradually

gains the NAV information in RTS packets, and thus the suc-

cess probability also increases and finally remains stable. It

is also observed that CombDec is able to resolve 98% of two-

node collisions and 86% of three-node collisions. The perfor-

mance degrades when the number of transmitters increases.

However, a collision caused by 5 or more WiFi nodes is much

less frequent because of the random backoff in CSMA/CA.

Values of α and β: We evaluate the impacts of α and β on

the success probability. We place two nodes at location 1 that

transmit RTS packets at the same time to the AP at location 0.

Figure 12 shows that as α goes from 200 to 600, the success

probability increases from 0.28 to 0.98; and further increase

of α will not substantially improve the success probability.

Figure 13 shows the impact of β on the success probabil-

ity. We observe that when β increases from 10 to 60 (i.e.,

CombDec forgets the history faster), the success probability

reduces from 0.98 to 0.77. From both figures, we can see

that the uniform selection of α = 600 and β = 10 yield very

high performance for the airport scenario, and accordingly

are also suitable for other less crowded scenarios.

Value of γ: We adopt the same setup in Figure 13 to evaluate

the impact of γ. Figure 14 illustrates that gradually increasing

γ does not severely decrease the success probabilities. For

example, when γ becomes 30, the success probability reduces

to 0.831. This indicates that adjusting γ can smoothly balance

the performance and the implementation cost.

Impact of Zero-Padding: In each of our packet datasets, we

find that a majority of RTS packets are transmitted at the

same data rate; however, RTS packets with different rates

do exist. These packets have different lengths of 2, 3, or 4

OFDM symbols. Therefore, a minority of collisions involv-

ing RTS packets with different rates. CombDec uses zero-

padding to solve this issue as discussed in Section 4. We mea-

sure the ability of CombDec to resolve such a type of colli-

sions. Hence, we place two nodes at location 1 sending RTS

packets with different lengths to the AP. Figure 15 shows

that the success probabilities remain approximately the same

when RTS packets have different lengths in a collision. From

Figure 15, we conclude that CombDec has no difficulty in re-

solving this type of collisions.

RTS-Data Collisions: CombDec also attempts to resolve an

RTS-data collision via canceling the RTS signal from the

received signal and then performing decoding. To evaluate

such an ability, we place one node (node 1) at location 1 to

send RTS to the AP, and place another node (node 2) at one
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of locations 1–8 to send data to the AP for the first round

of experiments, and then let node 1 send data and node 2

send RTS for the second round. The first and second rounds

represent the scenarios in which the receiving power of RTS

is greater than and less than that of data, respectively. We

consider the collision is resolved when both RTS and data

packets are decoded successfully. Figure 16 depicts the suc-

cess probability of collision resolution as node 2’s location

changes. The figure shows that generally, the success prob-

ability is higher when the receiving power of RTS is higher

than that of data. This is because CombDec first treats any

data packet as the noise to recover any RTS packet from the

receiving signal. The results demonstrate that CombDec, pri-

marily designed to handle RTS-only collisions, is capable of

resolving RTS-data collisions in some scenarios.

5.3 Network Performance Evaluation

We then evaluate the benefits of CombDec for the network

performance. Note that it is impossible to measure the net-

work performance with CombDec under different setups at

the same time because the resolution of a collision directly

affects follow-on network dynamics. We have to measure

the performance under different setups over non-overlapping

measurement periods. Therefore, we conduct experiments

during off-business hours to minimize the impact of environ-

mental factors on different measurement periods.

5.3.1 Single Network Scenario

We first consider a single-network scenario: 12 nodes are

placed at locations 0–11, in which the AP is at location 8,

as shown in Figure 10. The network does not run in the MU-

MIMO mode (i.e., the AP does not transmit data via MU-

MIMO to multiple stations in the downlink). The RTS thresh-

old is set to be 2,300 bytes for all nodes (i.e., RTS is triggered

only when a data packet to be transmitted has a length over

2,300 bytes). The value of 2,300 is typical for today’s WiFi

products (e.g., the default value in Cisco APs is 2347 [9]).

Throughput Improvement: Figure 17 demonstrates the

comparisons of normalized throughputs under traditional

802.11 decoding and CombDec. Note that the throughput

performance is always measured at the AP. We can see that

CombDec is able to uniformly boost the performance of

traditional 802.11 decoding. For example, the normalized

throughput for the airport scenario increases from 0.43 to

0.53, leading to a throughput gain ratio of (0.53 - 0.43)/0.43 =

23.3%. In all different scenarios, we observe that the through-

put gain ratio under CombDec is 11.6%–23.3%.

Improvement by Tuning α and γ: We aim to find if we

can improve the performance by tuning α and γ, which are

important factors to balance the performance and complexity.

Figure 18 shows the normalized throughputs for various α
and γ values in the airport scenario. The figure shows that

keeping increasing α and decreasing γ do not always lead to

evident improvement. For example, when α goes from 600

to 800 and γ decreases from 20 to 10, the throughput under

CombDec only increases from 0.491 to 0.494.

Improvement by Reducing RTS Threshold: It is still pos-

sible to further improve the network performance. Our ob-

servation is that traditionally, an RTS collision is considered

not resolvable; therefore, many WiFi devices are conserva-

tive to set the RTS threshold. The transmission of a data

packet triggers an RTS transmission only when its data size

is greater than the threshold. In all previous experiments, the

threshold is set as a typical value of 2,300 for today’s net-

works. Now CombDec has the capability of decoding RTS

collisions; therefore, it can be beneficial to encourage more

RTS transmissions by reducing the threshold. Figure 19 com-

pares the normalized throughputs under traditional 802.11

decoding and CombDec for different RTS thresholds. The

figure shows that reducing the threshold generally decreases

the throughput performance under traditional decoding; how-

ever and interestingly, it substantially boosts the performance

under CombDec. The best case for traditional decoding is

to set the threshold as 2000–2500, resulting in a normalized

throughput of 0.456. By contrast, the best case for Comb-

Dec is to remove the threshold and let everyone always send

RTS before data, yielding a higher throughput of 0.657. The

throughput gain ratio is computed as (0.657-0.456)/0.456 =

44.08%. This encouraging result shows that CombDec has

an immediate impact on today’s practice of setting the RTS
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threshold, and significantly reducing this threshold can push

WiFi towards a collision-free environment.

5.3.2 Collocated Networks

Next, we place a new network close to the single network

used in previous experiments. In the new network, 8 nodes

are placed at locations 12–19 and the AP is at location 15,

as shown in Figure 10. The two networks use the same fre-

quency and thus interfere with each other. We call the APs in

the original and new networks AP 1 and AP 2, respectively.

Figure 20 shows the throughput performance under differ-

ent settings in the airport scenario. In Figure 20, the one-

network performance is the performance measured at AP 1

in the previous single-network scenario (without the new net-

work); and the two-network performance is measured as the

average of the throughputs measured at AP 1 and AP 2. We

can observe from Figure 20 that when the new network is

placed, the throughput performance degrades due to mutual

interference. CombDec still performs better than traditional

802.11 decoding. In the two-network scenario, the best case

for CombDec is setting the RTS threshold to 0 (which is also

beneficial to solving the hidden terminal problem), yielding

a throughput of 0.579; and the best case for traditional decod-

ing has a throughput of 0.396. The throughput gain ratio is

thus (0.579 - 0.395)/0.395 = 46.6%, which is also a substan-

tial throughput improvement. Figure 21 compares the best

case throughput performance between CombDec (removing

the RTS threshold) and traditional coding (setting the thresh-

old to 2,300) in different scenarios. It can be seen that the

throughput gain ratio of CombDec is 33.6% – 46.2%.

As discussed in Section 3, CombDec is designed to only

store information of its own network. In the two-network sce-

nario, it is possible to enhance the performance of CombDec

by letting (α,β)-construction store the information (includ-

ing MAC addresses, NAVs, and RTS rates) of the other net-

work. Figure 22 shows that storing other network informa-

tion can further yet slightly improve the throughput perfor-

mance of CombDec with a fairly large α.

6 Related Work

Interference Cancelation and Mitigation: In the literature,

successive interference cancelation (SIC) has been proposed

to decode collisions by using either pre-coded signatures or

different receiving powers [15, 33, 35, 36, 39, 40, 53, 66]. The

time offsets in different packet collisions (e.g., in the pres-

ence of hidden terminals) has also been leveraged to resolve

collisions [32, 42, 63]. In addition, interference cancelation

was widely studied in the full-duplex mode [20,22,23,56,66].

In cross-technology communication, corrupted packets may

also be decoded by detecting the interference type [21,37]. A

number of studies have also proposed interference alignment

and nulling with or without channel state information [43,46].

These approaches cannot be readily adapted to regular WiFi

scenarios considered in this paper, where RTS packets col-

lide at the beginning of each transmission.

Multi-user Detection: CombDec is related to multi-user

detection that attempts to decode multiple users’ signals

from the overlapped signal [25, 44, 61]. In cellular networks,

CDMA has been widely used to assign distinct spread spec-

trum codes to different users [60]. However, there is no such

code design in RTS packets. Constructive interference [25]

is able to receive multiple synchronized transmissions. Nev-

ertheless, it requires all packets have the same content, which

is impossible for RTS signals. The work in [51] applied the

time division technique to the byte level such that multiple

users can share the same packet. This method needs a strict

coordination among all users. A multi-user system is built

in [44] through sharing multiple channels to users who are

allowed to duplicate the signal into these channels. Applying

these designs to WiFi requires modification of the standard;

in contrast, CombDec is a non-invasive design.

Improving WiFi Performance: Substantial efforts have

been devoted to improving the WiFi link performance [14,

16,30,34,48,49,55,57,65]. For example, [14,30,57] focused

on optimizing the user selection algorithm in MU-MIMO

and [16, 54, 65] aimed to improve the beamforming related

techniques. Different algorithms were also investigated to im-

prove the rate adaptation in WiFi [34, 49]. Recently, a rapid

picocell switching has also been proposed for wireless transit

networks [55]. CombDec is orthogonal to these studies that

aim to improve WiFi performance in different aspects. We

show that CombDec makes it possible to resolve RTS colli-

sions and pushes WiFi towards a collision-free environment.

7 Conclusion

This paper provides a systematic study to resolve RTS col-

lisions in WiFi networks. Our core contribution is a new

decoding system CombDec that uses (α,β)-construction, γ-

decimation and sparse recovery to resolve RTS collisions.

CombDec does not require changing the 802.11 standard

and redefines the role of the RTS functionality in WiFi. We

show via system implementation and extensive evaluation

that CombDec has a beneficial impact on WiFi networks and

substantially improves the throughput performance by 33.6%

– 46.2% in various scenarios.
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APPENDIX A

We analyze popular WiFi drivers and AP firmware to un-

derstand these practical constraints: (i) Linux kernel drivers:

ath9k (Qualcomm/Atheros 802.11n chipsets), brcmsmac

(Broadcom 802.11n chipsets), and iwlwifi (Intel 802.11n/ac

chipsets); (ii) 802.11ac AP firmware in Linksys EA8500,

EA9500, TP-Link AC1200, C5400, and AD7200.

In particular, ath9k allows the maximum length of a

data payload to be either 8,192 or 65,535 bytes (aPSDU-

MaxLength for 802.11n is 65,535) based on its version num-

ber (as shown in Listing 1); brcmsmac uses the maximum

duration of 5,000 µs (aPPDUMaxTime for 802.11n is 10,000

µs) (as shown in Listing 2); iwlwifi allows the maximum

duration to be 4,000 µs (aPPDUMaxTime for 802.11ac is

5,484), as the excerpted code shown in Listing 3. In addition,

Linksys EA8500, EA9500, andTP-Link AC1200, C5400 and

AD7200 share the same code: the maximum length of a data

payload is 65,535 bytes (aPSDUMaxLength for 802.11ac is

4,692,480)(as shown in Listing 4).

Listing 1: Source code in Qualcomm/Atheros ath9k

(802.11n)

/* hw.h */
...
#define ATH_AMPDU_LIMIT_MAX (64 * 1024 - 1)
...
/* hw.c */

...
if (AR_SREV_9160_10_OR_LATER(ah) ||

AR_SREV_9100(ah))
pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;

else
pCap->rts_aggr_limit = (8 * 1024);

...

Listing 2: Source code in Broadcom brcmsmac (802.11n)

/* ampdu.c */
...
/* max dur of tx ampdu (in msec) */
#define AMPDU_MAX_DUR 5
...

ampdu->dur = AMPDU_MAX_DUR;
...

Listing 3: Source code of Intel iwlwifi (802.11ac)

/* mvm/constants.h */
...
#define IWL_MVM_RS_AGG_TIME_LIMIT 4000
...
/* mvm/rs.c */
...

lq_cmd->agg_time_limit =
cpu_to_le16(IWL_MVM_RS_AGG_TIME_LIMIT);

...

Listing 4: The same source code in Linksys

EA8500/EA9500 and TP-Link AC1200/C5400/AD7200.

/* include/linux/ieee80211.h */
...
/*
Maximum length of AMPDU that the STA can receive.
Length = 2 ^ (13 + max_ampdu_length_exp)-1 (octets)
*/
enum ieee80211_max_ampdu_length_exp {

...
IEEE80211_HT_MAX_AMPDU_64K = 3

};
...
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APPENDIX B

Our comprehensive data collections capture WiFi packet

traces under a diversity of traffic load conditions over long

time periods. For each transmitter in the packet traces, we

compute the NAV distribution in its RTS packets. We find

that the NAV distribution is highly patterned or uneven in

its value space. Figure 23 shows the NAV distributions of

top five devices that send the largest numbers of RTS pack-

ets in different measurement environments. We observe from

Figure 23 that each device’s NAV values almost concentrate

in the small value regions. For example, in the lab scenario,

92.1% NAV values in RTS packets from device 3 is 156.

We also notice that, interestingly, WiFi devices from the

same manufacturer (identified by their MAC addresses) do

exhibit similar NAV distribution in their RTS packets. Fig-

ure 24 illustrates the distributions of all NAV values in RTS

packets transmitted by devices from 15 common manufac-

turers. It is seen from Figure 24 that the distributions exhibit

different patterns by manufacturers, mainly due to their dis-

tinct firmware designs. Similar to Figure 23, Figure 24 shows

the NAV distributions are highly uneven and patterned with

a small number of NAV values much more likely to show up

in RTS packets than the others.

In addition to NAV, we also measure the data rates of RTS

packets. Figure 25 depicts the distribution of RTS dta rates

in different environments. We can see that a large number of

devices adopt 12 Mbps and 24 Mbps data rates to send RTS.

Furthermore, in the conference and hotel scenarios, most de-

vices even only use the 24 Mbps data rate.

Based on the packet trace analysis, if we select the NAV

values that are most likely in RTS packet from each device to

construct the comb matrix M, we should be able to decrease

the size of M at the cost of a small performance penalty.

APPENDIX C

Performance of γ-decimation: For the tooth vector set M =
{mi}i∈[1,M], where M = |M | and mi ∈ C

L×1, γ-decimation

selects M/γ tooth vectors with largest correlation values to

form a new comb matrix. Denote by M ′ the set consisting of

these selected M/γ tooth vectors by γ-decimation. Without

loss of generality, we assume the collided signal y contains

the first S tooth vectors, i.e., m1, · · · ,mS. In this section, nota-

tions are summarized as follows: (i) o(1) denotes a function

that converges to 0 as L → ∞; (ii) E(·) and Var(·) denote the

expectation and variance operators, respectively; (iii) for a

complex number m, m∗ is the complex conjugate of m, and

|m| is the magnitude of m. Now we state the following theo-

rem to show the performance of γ-decimation:

Theorem 1 Define event A as the event that m1, m2, · · · , ms

are all selected by γ-decimation in M ′. Then, it holds that

P(A) = 1−o(1) (i.e., event A happens with high probability).

Proof: We first normalize the correlation between comb

matrix M and the received vector y. From (2), we have

z =
1

L
MH y

=
1

L








mH
1 m1 mH

1 m2 · · · mH
1 mM

mH
2 m1 mH

2 m2 · · · mH
2 mM

...
...

...
...

mH
Mm1 mH

M−1m2 · · · mH
MmM















g1

g2
...

gM







.

(4)

Let z = [z1,z2, · · · ,zM ]H . It holds that ∀zi ∈ z,

zi =
1

L

M

∑
s=1

gsm
H
i ms =

1

L

M

∑
s=1

L

∑
k=1

gsm
∗
i,kms,k. (5)

Because each tooth vector mi has the random property by

coding, for any entry m j,i ∈ mi, we have E(m j,i) = 0 and let

E(|m j,i|
2) = σ2.

Since tooth vectors m1,m2, · · · ,mS are the ones to be re-

solved, we know the first S members in g are not zeros. De-

fine Y as

Y =
M

∑
m=S+1

1{|zm|>h}, (6)

denoting the number of false alarms (i.e., noise exceeding

the threshold), where h is a threshold, and 1{|zm|>h} is the

indicator function defined as

1{|zm|>h} =

{

1, if |zm|> h

0, otherwise.
(7)

To evaluate the performance of γ-decimation, we define an-

other event

B =

(
S⋂

s=1

{|zs|> h}

)
⋂

{Y ≤ (γM− S)},

where the first part denotes that the correlation values z1, z2,

· · · ,zS are all above the given threshold h and the second part

indicates that there are at most (γM − S) other correlation

values above h. If event B happens, m1, m2, · · · , mS will be

selected by γ-decimation and thus event A must happen. This

means P(A|B) = 1 and P(A) ≥ P(B). Therefore, according

to Fréchet inequalities, we obtain

P(A)≥ P

((
S⋂

s=1

{|zs|> h}

)
⋂

{Y ≤ (γM− S)}

)

≥ P

(
S⋂

s=1

{|zs|> h}

)

−P(Y > (γM − S)).

(8)

From (8), we need two steps to finish the proof:

• Step 1: prove P
(⋂S

s=1{|zs|> h}
)
= 1− o(1).

• Step 2: prove P(Y > (γM − S)) = o(1).
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Figure 23: NAV distributions at different locations.
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Figure 24: NAV distributions of different vendors.

Step 1:

By Fréchet inequalities, we have that

P

(
S⋂

s=1

{|zs|> h}

)

≥
S

∑
s=1

P(|zs|> h)− (S− 1). (9)

According to Cantelli’s inequality [52], for 1 ≤ s ≤ S, we

have the probability

P(|zs|> h)≥ 1−
Var(|zs|)

Var(|zs|)+ (h−E(|zs|))2
. (10)

Next we derive E(|zs|) and Var(|z2
s |) respectively. Because

1 ≤ s ≤ S, without loss of generality, we consider the first

element z1. From (5), by leveraging Lemma 1, we have

E(|z1|) = E(
1

L
g1mH

1 m1 +
1

L

S

∑
s=2

gsm
H
1 ms) = g1σ2, (11)

and

E(|z1|
2) = E




1

L2

(

mH
1

S

∑
s=1

gsms

)2




=
1

L2
E

(
S

∑
s=1

L

∑
k=1

gsm
∗
1,kms,k

S

∑
s′=1

L

∑
k′=1

gs′m
∗
1,k′ms′,k′

)

=
1

L2

S

∑
s=1

L

∑
k=1

S

∑
s′=1

(
L

∑
k′=1,k′ 6=k

gsgs′E(m
∗
1,kms,k)

×E(m∗
1,k′ms′,k′)+ gsgs′E(m

∗
1,kms,km∗

1,kms′,k)
)

.

= g2
1σ4 +

1

L
Ξ1,

(12)
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Figure 25: RTS data rate distributions.

where

Ξ1 =

(

g2
1(E(|m1,k|

4)−σ4)+E((m∗
1,k)

2)E(m2
1,k)

S

∑
s=2

g2
s

)

.

From (11) and (12), we obtain the variance of z1 as

Var(|z1|) = E(|z1|
2)− (E(|z1|))

2 =
1

L
Ξ1. (13)

Replacing (13) into (10), we have

P(|z1|> h)≥ 1−
Ξ1

Ξ1 +L(h− gsσ2)2
. (14)

Then, (9) can be rewritten as

P

(
S⋂

s=1

{|zs|> h}

)

≥ 1−
S

∑
s=1

Ξs

Ξs +L(h− gsσ2)2

≥ 1− S
Ξmax

Ξmax +L(h− gmaxσ2)2
,

(15)

where Ξmax = max{Ξs}s∈[1,S], and gmax = max{gs}s∈[1,S].

When L → ∞, the probability converges to 1.

Step 2:

Letting y = γM− S, by Markov’s inequality, we have

P(Y > y)≤
1

y
E(Y ), (16)

then from (6), we have

E(Y ) = E

(
M

∑
m=S+1

1{|zm|>h}

)

=
M

∑
m=S+1

P(|zm|> h). (17)

According to Chebyshev’s inequality, we can obtain

P(||zm|−E(|zm|)|> h)≤
Var(|zm|)

h2
. (18)

Next, we derive E(|zm|) and Var(|zm|). Without loss of gen-

erality, we consider the last element zM . Similarly, we have

E(|zM|) =
1

L
E

(
S

∑
s=1

L

∑
k=1

gsm
∗
M,kms,k

)

= 0, (19)

and

E(|zM|2) =
1

L2
E

(
S

∑
s=1

L

∑
k=1

gsm
∗
M,kms,k

)2

=
1

L2

S

∑
s=1

L

∑
k=1

S

∑
s′=1

gsgs′E(m
∗
M,kms,km∗

M,kms′,k)

=
1

L

S

∑
s=1

g2
sE((m

∗
M,k)

2)E(m2
s,k).

(20)

Let ΨM = ∑S
s=1 g2

sE((m
∗
M,k)

2)E(m2
s,k), then we can obtain

Var(|zM |) = E(|zM|2)− (E(|zM|))2 =
1

L
ΨM. (21)

Replacing (19) and (21) into (18), we have

P(|zM |> h)≤
ΨM

Lh2
. (22)

Thus (17) can be rewritten as

E(Y )≤
M

∑
m=S+1

ΨM

Lh2
≤ (M− S− 1)

Ψmax

Lh2
, (23)

where Ψmax = max{Ψm}m∈[S+1,M]. Finally,

P(Y > y)≤
1

y
E(Y )≤

(M− S− 1)Ψmax

Lyh2
. (24)

When L → ∞, P(Y > y) converges to 0, which completes the

proof. �
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Lemma 1 Given tooth vectors mi and m j, for all mk,i ∈
mi and ms, j ∈ m j satisfying E(mk,i) = E(ms, j) = 0 and

E(|mk,i|
2) = E(|ms, j|

2) = σ2, the following two statements

are true: (i) if i 6= j, E( 1
L

mH
i m j) = 0 and E(| 1

L
mH

i m j|
2) =

1
L

σ4; (ii) if i = j, E( 1
L

mH
i mi) = E( 1

L
mH

j m j) = σ2 and

E(| 1
L

mH
i mi|

2) = 1
L
(L− 1)σ4 + 1

L
3σ4.

Proof: Let z = 1
L

mH
i m j =

1
L ∑L

k=1 m∗
i,km j,k.

For statement (i), since E(mi,k) = E(m j,k) = 0, we have

E(
1

L
mH

i m j) = 0.

Furthermore, as we know E(|mi,k|
2) = E(|ms,k|

2) = σ2, we

can obtain

E(|
1

L
mH

i m j|
2) =

1

L2
E

(
L

∑
k=1

m∗
i,km j,k

L

∑
q=1

m∗
i,qm j,q

)

=
1

L
σ4

(25)

For statement (ii), it is easy to know that

E(
1

L
mH

i m j) = E(
1

L
mH

i mi) = σ2

and

E(|
1

L
mH

i mi|
2) = E

(

1

L

L

∑
k=1

m∗
i,kmi,k

)2

=
1

L2
L(L− 1)σ4 +

1

L2

L

∑
k=1

E(|mi,k|
4)

=
1

L
(L− 1)σ4 +

1

L
3σ4.

(26)

Therefore, we complete the proof. �
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